Executable Governance for AI: Translating Policies into Rules Using LL.Ms

Gautam Varma Datla', Anudeep Vurity?, Tejaswani Dash®, Tazeem Ahmad*,
Mohd Adnan’, Saima Rafi®

'New Jersey Institute of Technology, Newark, USA
23George Mason University, Fairfax, USA
4School of Mathematics, Physics and Computing, University of Southern Queensland, Australia
University of Aveiro, Aveiro, Portugal
®Edinburgh Napier University, Edinburgh, Scotland, UK
lovd6 @njit.edu, *avurity @ gmu.edu, 3tdash@gmu.edu, *Tazeem.Ahmad @unisq.edu.au, >m.adnan1821@gmail.com,
bs.rafi @napier.ac.uk

Abstract

Al policy guidance is predominantly written as prose, which
practitioners must first convert into executable rules before
frameworks can evaluate or enforce them. This manual step
is slow, error-prone, difficult to scale, and often delays the
use of safeguards in real-world deployments. To address
this gap, we present Policy—Tests (P2T), a framework that
converts natural-language policy documents into normalized,
machine-readable rules. The framework comprises a pipeline
and a compact domain-specific language (DSL) that en-
codes hazards, scope, conditions, exceptions, and required
evidence, yielding a canonical representation of extracted
rules. To test the framework beyond a single policy, we ap-
ply it across general frameworks, sector guidance, and en-
terprise standards, extracting obligation-bearing clauses and
converting them into executable rules. These Al-generated
rules closely match strong human baselines on span- and rule-
level metrics, with robust inter-annotator agreement on the
gold set. To evaluate downstream behavioral and safety im-
pact, we add HIPA A-derived safeguards to a generative agent
and compare it with an otherwise identical agent without
guardrails. An LLM-based judge, aligned with gold-standard
criteria, measures violation rates and robustness to obfuscated
and compositional prompts. Detailed results are provided in
the appendix. We release the codebase, DSL, prompts, and
rule sets as open-source resources to enable reproducible
evaluation.

Code — https://github.com/gautamvarmadatla/Policy-
Tests-P2T-for-operationalizing- AI-governance

Introduction

As artificial intelligence (Al) permeates critical sectors, en-
suring its responsible use has become imperative (Cheng
et al. 2025; Shen et al. 2024; Carlini et al. 2021; Wei, Shi
et al. 2024). In response, governments and industry bod-
ies have introduced governance frameworks. For example,
the European Union AI Act sets obligations for high risk
uses (European Union 2024), and the NIST AI Risk Man-
agement Framework provides a voluntary guide focused on

Copyright © 2026, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

trustworthiness (NIST 2023). Building on these efforts, ad-
ditional standards and principles promote responsible prac-
tice, including the OECD AI Principles (Organisation for
Economic Co-operation and Development 2019) and ISO
IEC 42001 for Al management systems (International Orga-
nization for Standardization and International Electrotech-
nical Commission 2023). However, these instruments are
intentionally nonprescriptive. The Al RMF explicitly states
that it is intended to be voluntary, rights preserving, and use
case agnostic, and the companion Playbook offers sugges-
tions that organizations may adopt as needed, rather than
mandated tests (National Institute of Standards and Tech-
nology 2023). Efforts like Singapore’s Al Verify show how
process checks and technical evaluations can be packaged
into a single toolkit, yet teams still spend expert hours turn-
ing broad guidance into the concrete checks that a specific
system will pass or fail in a repeatable way (Commission
2021). From here, the gap unfolds in practice, as organiza-
tions must invent concrete, verifiable procedures to demon-
strate compliance in deployed systems, and this shortfall can
erode public trust in high-stakes settings.

Our work targets this gap by asking whether policy text
can be turned into checks that fit naturally into an engineer-
ing workflow. We first ask whether an automated pipeline
can extract policy rules with span level and field level qual-
ity that stands up to careful human work. We then ask
whether rules derived from policy actually reduce observed
violations when they are used to evaluate the behavior of
Al agents under a consistent runtime. Finally, we examine
which controls matter most for the quality and robustness
of extracted rules, including schema guarded decoding, tar-
geted repairs, evidence gating, semantic deduplication, SMT
conflict checks, and counterfactual flips.

To address these questions we present a Policy—Tests
(P2T) framework that converts policy documents into exe-
cutable rules without breaking stride. The pipeline ingests
policy documents and finds spans that are likely to contain
obligations or prohibitions, then performs schema guarded
LLM extraction supported by deterministic checks and an
optional LLM judge so that rules are both structured and
scrutinized. When outputs fall short the system applies min-
imal edit repairs that preserve meaning, removes near du-



1. Ingestion & Chunking

{ ii. Semantic Dedup

2. Clause filtering

i. Structural Dedup f

3. Rule Generation

ryy > ii. Judge rules h
2 \\ ( Deterministic + LLM )

4
i. Mine rules =

iv. SMT
v. Counterfactuals conflicts

+ Evidence gating

_— 92 ¢
@@@ |||.r5;t-:;a|r

i . EEEEE i
- D a—
B CEEEEE

@

Figure 1: P2T overview. The pipeline reads policy documents and returns executable atomic rules. It does so by iteratively
extracting and refining rules with LLMs and deterministic checks, including clause mining, evidence gating, and SMT (Satisfi-

ability Modulo Theories) validation.

plicates through semantic clustering so that reviewers see
the essential set, and flags contradictions through logical
checks that help analysts resolve conflicts early. A compact
machine readable schema captures hazards, scope, condi-
tions, exceptions, and required evidence, which lets natural
language clauses compile to checklists and scenario based
rules that engineers can run. We evaluate P2T through hu-
man baselines, ablations over pipeline controls, and agree-
ment audits comparing Al-generated rules with adjudicated
human extractions for each document. Because there are
no established benchmarks for policy-to-rule translation, we
focus on internal consistency, human agreement, and con-
trolled ablations rather than direct model-to-model compar-
isons. We release the codebase, prompts, DSL, and public
policy derived rule sets with testability flags to enable inde-
pendent replication and reuse. Our goal and contribution is
a clear path from principle to proof, where teams can rou-
tinely test for compliance, surface issues early in develop-
ment, and sustain responsible deployment in settings where
failures carry real consequences.

Background & Related Work

In recent years, the community has pursued three main
routes for operationalizing responsible Al. Training-time
alignment, including RLHF and Constitutional Al improves
baseline behavior by internalizing a fixed set of principles
(Ouyang et al. 2022; Bai, Kadavath et al. 2022). These
methods are valuable, but they adapt poorly to evolving or
domain-specific policies because policy updates require new
data, new fine-tuning, and there is no straightforward way
to verify compliance with each concrete obligation. Run-
time guardrail frameworks such as NeMo Guardrails and
Guardrails Al offer a practical safety layer across models
by enforcing developer-authored rules in a DSL (NVIDIA
2025; Guardrails AI 2025). Their effectiveness, however, is
bounded by manual authoring and maintenance, and cover-
age remains limited to the rules practitioners remember to

encode. In parallel, evaluation toolkits like OpenAl Evals
and PromptFoo facilitate scripted assessments of model be-
havior, yet they presuppose that tests already exist, leaving
the translation from policy prose to executable checks as a
largely manual exercise (OpenAl 2025; promptfoo 2025).

Adjacent efforts illuminate the gap without closing it.
Policy-as-prompt approaches pass natural-language policies
to models as classifiers or filters, but they still rely on care-
ful hand-crafted prompts to reflect real clauses (Palla et al.
2025). Rules-as-code platforms and policy engines such as
OpenFisca, DMN, or OPA/Rego execute formal rules at
scale, yet they begin only after experts have already con-
verted text into logic (OpenFisca contributors 2025; Ob-
ject Management Group 2025; Open Policy Agent main-
tainers 2025). Knowledge-graph and Graph-RAG pipelines
help organize regulations and ground answers in source pas-
sages, but they emphasize retrieval and question answering
rather than producing a portable, machine-readable rule cor-
pus (IBM 2024). Benchmarks including COMPL-AI, SG-
Bench, TAU-Bench, and recent agent testbeds reveal pol-
icy failures under controlled scenarios, but they evaluate
against predetermined criteria rather than deriving those cri-
teria from governance documents (Guldimann et al. 2024;
Mou, Zhang, and Ye 2024; Toloka 2025). In response to
these limitations, we provide the missing bridge from policy
documents to enforcement and testing frameworks. We au-
tomatically extract structured, machine-readable rules from
policy text. The extracted rules record provenance, scope,
and hazards; encode conditions and exceptions; specify con-
crete requirements and acceptable evidence; annotate sever-
ity and testability; and include illustrative benign and adver-
sarial examples. They serve as reusable artifacts consumed
by downstream enforcement and evaluation systems, rather
than tests themselves. A single extracted rule can be ren-
dered as a NeMo Colang snippet for runtime control, con-
figured as a Guardrails validator, compiled into OPA/Rego
for policy engines, or transformed into Evals-style prompts



Document Cand. Ext. Uniq. Test.(%) Ex.{0)
EU AI Act (Reg. (EU) 2024/1689, Arts. 8-15) 21 63 51 333 0
NIST AI RMF (Profiles: MAP 1.1-5.3; MEASURE 1.1-2.7) 60 122 117 43.6 7
HIPAA Privacy Rule (45 C.F.R. Part 164 Subpart E) 56 94 77 85.7 31
Microsoft Responsible Al Standard v2 88 196 140 75.0 7
Total 276 522 427 58.8 50

Table 1: Corpus summary and pipeline. Abbreviations: Cand. = Candidate spans, Ext. = Extracted rules,
Uniq. = Unique rules after de-duplication, Test. = Testable rules after de-duplication, Ex. (I/O) = Testable

rules with input/output validation as evidence signals.

for batch assessment. The pipeline can be re-run on up-
dated documents to track policy evolution without retrain-
ing. Moreover, it incorporates validation and repair proce-
dures, including schema checks, LLM judging, targeted re-
pair, and optional SMT consistency analysis, which improve
fidelity to source clauses and reduce contradictions. Collec-
tively, these properties position our approach as the miss-
ing policy-to-rule layer that connects policy specification to
enforcement and evaluation, enabling continuous, auditable
compliance.

Pipeline Overview

We present a modular, provenance-preserving pipeline that
converts policy text into reusable, machine-readable rules
for enforcement and evaluation. Deterministic modules han-
dle ingestion, clause filtering, schema validation, vocabulary
normalization, de-duplication, and consistency checks to en-
sure stability and reproducibility, as seen in Fig.1. LLMs are
used only where semantic interpretation is essential: to gen-
erate atomic rules under a strict JSON schema, repair invalid
rules, tag testability, and synthesize rule-specific examples.

To make stages interoperable, we define a compact JSON
DSL that fixes the rule schema; each stage then fills in or
validates parts of this schema so the record is progressively
completed. The DSL encodes each clause as a JSON rule
with fixed fields. scope uses predefined enums for actor,
data_domain, and context. hazard, conditions,
exceptions, and requirement are natural-
language strings, with arrays when multiple items occur.
testability carries a boolean flag, a short rationale,
and evidence_signals from a closed set (io_check,
log_check, config_check, ci_gate, data_check,
repo_check, access_check, attest_check).
evidence is populated only when the clause explicitly
names an artifact; otherwise it remains empty. Each rule
records provenance (doc, citation, span_id). The
full DSL schema appears in the Appendix. We next walk
through the pipeline stages, from ingestion to example
generation.

Step 1: Ingestion and chunking. This step converts raw
policy text into clean, addressable units that the pipeline can
reason about. It removes boilerplate, preserves section con-
text, and splits content into spans such as sentences, cap-
tions, figure summaries, and tables. The result is a consistent
stream of spans, each with text, location context, and a stable

identifier, creating a canonical evidence feed for clause min-
ing and end-to-end traceability across all downstream stages.

We primarily evaluated three chunking strategies for this
step: single-sentence spans, sliding context windows that
attach neighboring sentences to each target sentence, and
paragraph-level spans treated as the atomic unit. For policy
documents, paragraph-level spans worked best because they
provide enough local context for grounded obligations with-
out overwhelming the model. Sliding windows produced
reasonable results but increased duplicates due to overlap-
ping windows that encouraged the model to restate simi-
lar rules. Single-sentence spans minimized duplication but
led to under-specified rules when clauses relied on sur-
rounding qualifiers. Based on these trade-offs, we default to
paragraph-level spans while retaining section headers and
citations for provenance.

Step 2: Clause mining (Optional). This step narrows spans
to sentences likely to encode enforceable policy by de-
tecting deontic markers, exception cues, actor mentions,
quantitative or temporal indicators, and cross-references.
It downweights definitions and boilerplate, removes dupli-
cates, and outputs candidate clauses with tags and prove-
nance for structured extraction. The tags specify clause
type (obligation, prohibition, exception, exemption, defini-
tion, or other) and extract deadlines, thresholds, and cross-
references. These deterministic filters reduce downstream
LLM cost but may lower recall when obligations lack ex-
plicit cues or span multiple bullets. Tailoring heuristics to an
organization’s writing style improves recall while retaining
the efficiency benefits of early filtering.

Step 3: Structured extraction. This is the main step
where the pipeline produces rules that systems can actually
use. An LLM performs the initial extraction, guided by few-
shot examples and a strict DSL-compliant JSON schema,
to emit atomic, machine-readable rules. After structural
validation and scope normalization, we invoke an LLM-
based judge to flag missing hazards, empty scope, unverifi-
able evidence, or conflicts between requirements and excep-
tions. When it flags issues, a repair LLM applies minimal,
provenance-preserving edits. Judge outputs were not double
annotated; we validated their utility via the observed gains
with Judge+Repair in Table 3. After this, we optionally ap-
ply three checks: (1) an evidence gate that enforces verifia-
bility by requiring appropriate evidence fields and, if config-
ured, restricting sources to trusted domains; (2) a Satisfiabil-



No. Gold Span SE Ev
Document Span Pred Cov.T TestAccT Span F11 AUPRC 1 Similarity T  Similarity 1
(European Union 2024) 20 11.00 0.55+0.20 0.55+0.20 0.79+£0.14 0.73+0.16 0.244+0.09 0.24+0.10
(NIST 2023) 33 2450 0.71+0.13 0.71+£0.13 0.83£0.11 0.88+0.11 0.26+0.05 0.30=+0.07
(HIPAA 2003) 43 3450 0.76+0.11 0.764+0.11 0.754+0.08 0.70+0.13 0.264+0.05 0.32+0.06
(Microsoft Corporation 2022) 71 5450 0.75+0.08 0.75+0.08 0.84+£0.06 0.91+0.06 0.30+0.04 0.36=+0.06

Table 2: Evaluation by document with span-level and rule-level metrics. Abbreviations: Pred = predicted spans, Cov. = coverage,
TestAcc = testability accuracy, Span F; = span-level F1, Span AUPRC = span-level area under the precision—recall curve, SE
Similarity = structured extraction slot-level similarity, Ev Similarity = evidence-signal field similarity. 1 indicates higher values
are better. All values except Gold span represent means across decoding seeds, with “+” indicating 95% bootstrap confidence

intervals.

ity Modulo Theories (SMT) consistency check that encodes
rules as logical constraints and uses a solver to detect contra-
dictions where overlapping scopes would require and forbid
the same predicate; and (3) counterfactual probing that gen-
erates small paraphrases of the source clause to test polarity
sensitivity and expose fragile extractions or overfitting. The
output is an aggregated rules file and a per-clause trace that
record accepted rules, confidence, and any issues, ready for
enforcement and evaluation. All prompts used in this step
are available in our repository.

Step 4: De-duplication. This step consolidates repeated or
paraphrased rules so the resulting rule set reflects unique
obligations without losing traceability. We first apply struc-
tural de-duplication using a canonical signature over scope,
hazard, conditions, exceptions, requirements, and severity,
aggregating all contributing spans. We then run a seman-
tic pass that embeds each rule and merges high-similarity
pairs within sensible blocks such as the same document
and scope. For example, from the EU Al Act, Regulation
(EU) 2024/1689, Article 10(5)(a) and 10(5)(f), we extract
two rules from one clause: providers must “verify and doc-
ument that other data, including synthetic or anonymised,
would not suffice for bias detection” and providers must “en-
sure the records of processing activities state why special-
category data were necessary and why alternatives would
not work.” Although their evidence slots differ, both express
one obligation, so the semantic pass merged them into a sin-
gle canonical rule.

Step 5: Testability tagging (Optional). Here we assess
whether each rule can be operationally verified. An LLM re-
views the rule and, using a fixed rubric, determines if an ob-
jective pass—fail oracle exists and which evidence channels
apply (e.g., I/O inspection, logs, configuration, CI artifacts,
data, or repository state). The output augments each rule
with is_testable, a short rationale, and suggested evi-
dence signals. This optional but recommended step produces
rules that can be tested, with defined evidence channels sim-
plifying check implementation in downstream frameworks.

Step 6: Example generation (Optional). For rules that are
marked testable and include an I/O evidence signal, an LLM
generates small sets of realistic prompts: benign cases that
should pass the rule and adversarial cases that should pro-
voke a violation if the rule is enforced. Each set is tailored to

the rule’s scope, hazard, conditions, exceptions, and sever-
ity, and follows strict JSON output. This creates immedi-
ate, organization-specific test inputs for black-box evalua-
tion and regression, enriching each rule with reproducible
examples that downstream enforcement and assessment har-
nesses can run as-is.

Corpus, Baselines & Evaluation
Corpus

This keeps the schema grounded in the obligations prac-
titioners actually face and improves coverage and transfer
across domains. We also select sources that clearly state
obligations or prohibitions, articulate conditions and excep-
tions, and vary in drafting style, so evaluation reflects legal,
technical, and operational language. Concretely, we mine se-
lected titles from the EU Al Act (Reg. (EU) 2024/1689) Ar-
ticles 8—15 (European Union 2024); the NIST AI RMF Pro-
files (MAP 1.1-5.3 and MEASURE 1.1-2.7) (NIST 2023);
Microsoft Responsible Al Standard v2 (Microsoft Corpora-
tion 2022); and the HIPAA Privacy Rule, 45 C.ER. Part 164
(HIPAA 2003). Each document passes through the pipeline
to produce spans, then candidate clauses, with light neigh-
boring context retained to aid interpretation. Human re-
viewers then convert the sampled clauses into atomic rules.
For transparency, we report per-document counts at each
pipeline stage as shown in Table 1, where generated exam-
ples are produced only for rules tagged as testable with I/O-
check evidence signals. All public texts are cited and used
under their licenses, enterprise policies are taken from pub-
lic postings or short excerpts under fair use, and no personal
data is processed.

Human-Annotated Gold Set and Protocol

We build a compact, human-annotated gold set that reflects
the end-to-end policy-to-rule pipeline described above. An-
notators first decide, at the span-level, whether a span ex-
presses one or more atomic rules. For positive spans, they
extract the atomic rules and complete fields for hazard;
scope (actor, data domain, context); conditions; exceptions;
requirements; and evidence. They also judge whether each
rule is operationally testable and select the evidence chan-
nels that could verify it. Each span is annotated indepen-
dently by two raters and disagreements are adjudicated by
a senior reviewer. We report agreement at the span level



SE Actor Requirements Conditions Exceptions Evidence signal
Variant Coverage Span F; slot similarity Dupldx| similarity similarity  similarity similarity similarity
GPT-5-mini (Few-Shot)  0.9296  0.9714 0.3641 0.0000  0.5352 0.5388 0.4447 0.9127 0.5155
+ Judge + Repair 0.9437 09784 0.3886 0.0000  0.6620 0.5633 0.4316 0.9280 0.5904
+ Judge + Repair + Dedup 0.8873  0.9640 0.3624 0.1525  0.5775 0.5009 0.4254 0.8592 0.5378
GPT-40-mini ( Few-Shot) 0.8875  0.8342 0.2528 0.0000  0.6324 0.3951 0.3009 0.8718 0.3014
+ Judge + Repair 0.8028  0.8824 0.2944 0.0000  0.6197 0.2693 0.2921 0.7887 0.3357
+ Judge + Repair + Dedup 0.8169  0.8759 0.2949 0.2039  0.6338 0.2760 0.2772 0.7887 0.3521

Table 3: Ablation results. Dupldx = duplicates removed divided by the sum of rules kept after de-duplication and
duplicates removed. Span F; = precision recall F; on span matches. SE slot similarity = mean of span averages of field
similarities. Actor Requirements Conditions Exceptions Evidence signal = per field similarities; actor uses minimum
one item overlap, others use LLM similarity in O to 1. Ablations begin from a simple LLM (few-shot) extraction baseline
under our DSL schema, then add Judge+Repair and Dedup in sequence.

and the field level, using Cohen’s s (Cohen 1960) for cate-
gorical labels and Krippendorff’s o (Krippendorff 2018)
for multi-label sets, with 95% confidence intervals. Here,
span level refers to the sentence window used to decide
whether it contains one or more atomic rules, and field level
is computed per extracted rule slot. Quality control pro-
ceeds in three steps that connect to the main task. First,
a 30-item calibration set is completed to align raters; any
low-agreement patterns trigger targeted rubric edits before
full-scale annotation. Second, to track drift over time, we
seed 5% of assignments with previously adjudicated hidden-
gold items and monitor agreement on these checks. Third,
we stratify sampling by source and domain so the result-
ing set remains balanced and informative throughout the
study. Across five source-specific gold sets (7pyes=427;
per-doc n={51,117,42,77,140}), the macro-average (un-
weighted over docs) was: span k£ = 0.83 £ 0.03, testable
K = 0.76 £ 0.04, scope-actors o = 0.63 &= 0.05 and hazard
K = 0.64 £ 0.05.

Evaluation Setup, Metrics, and Ablations

Two seeds are run for every document and they differ only
in sampling so any variation reflects generation randomness.
For each document we evaluate each seed against its hu-
man gold set. To measure quality of structured extraction
we compute field similarity for each field. Actor, domain
and context use a minimum one item overlap between the
gold list and the predicted list which yields a score of one
for a hit and zero otherwise. Hazard, conditions, exceptions,
requirements and evidence signals use an LLM based simi-
larity score in the range zero to one with a token-based Jac-
card fallback when the corresponding filed is unavailable.
For each span we average the field similarity values to ob-
tain a span macro similarity. We then average span macro
similarity across all spans to report SE slot similarity. Cov-
erage is the fraction of gold spans that have at least one pre-
dicted rule that matches the span by exact identifier or by ci-
tation tail match. Testable accuracy compares the predicted
is_testable label with the gold label when present. We
also report evidence signal similarity by averaging the evi-
dence signals field scores over spans. For span detection we

treat unique predicted spans extracted from rules as detec-
tions of gold spans. A predicted span is a true positive if it
matches any gold span by exact identifier or by citation tail
match. Otherwise it is a false positive. A gold span without a
matching prediction is a false negative. For span-level met-
rics, we report F1-score and Area under the precision recall
curve ( AUPRC). Results are reported in Table 2.

Ablations. We primarily vary two components to assess
their impact on rule quality. First the extraction model using
GPT 5 mini and GPT 40 mini to test robustness across ar-
chitectures, disentangle pipeline effects from model capac-
ity and show that gains are not tied to a single configuration
or provider. Second the safeguards are applied in stages as
LLM — LLM + judge + repair — LLM + judge + repair
+ deduplication. Results appear in Table 3: Adding Judge
+ Repair improves coverage, span-level F1, and SE slot
similarity across both GPT-5-mini and GPT-40-mini, while
also boosting alignment on actor roles and evidence signals.
Adding semantic de-duplication further enhances dedupli-
cation and actor consistency. However, it slightly reduces
coverage and field-level similarity, indicating a trade-off be-
tween redundancy reduction and recall.

Conclusion

Policy—Tests translates policy prose into executable,
machine-readable rules through a validated pipeline and a
compact DSL, and it generalizes across heterogeneous doc-
uments. The resulting rules align closely with human base-
lines and improve downstream behavior. However, limi-
tations remain: ambiguous or context-dependent language
may yield incomplete or incorrect rules, and a compact
DSL might not capture all nuances (e.g., temporal or prob-
abilistic constraints). Furthermore, relying on LLMs intro-
duces risks, because models can hallucinate or generate
plausible but incorrect rules, so rigorous validation is re-
quired. As prior work notes, human oversight remains es-
sential in high-stakes rule extraction (Kennan et al. 2025).
Future work should pursue interactive validation loops (e.g.,
user feedback), richer semantic modeling, and expansive,
evolving benchmarks to stress test real-world scenarios. Ad-
dressing these limitations will further strengthen fidelity, ro-



bustness, and auditability. Together, these advances position
Policy—Tests as a practical bridge from prose to enforce-
ment, ready to be exercised against live policies and audited
for real-world compliance.

References

Bai, Y.; Kadavath, S.; et al. 2022.
ai: Harmlessness from ai feedback.
arXiv:2212.08073.

Carlini, N.; Tramer, F.; Wallace, E.; et al. 2021. Extracting
Training Data from Large Language Models. In Proceedings
of the 30th USENIX Security Symposium (USENIX Security
2021), 2633-2650.

Cheng, S.; Meng, S.; Xu, H.; et al. 2025. Effective PII Ex-
traction from LLMs through Augmented Few-Shot Learn-
ing. In Proceedings of the 34th USENIX Security Sympo-
sium (USENIX Security 2025). Seattle, WA, USA. ISBN
978-1-939133-52-6.

Cohen, J. 1960. A Coefficient of Agreement for Nominal
Scales. Educational and Psychological Measurement, 20(1):
37-46.

Commission, P. D. P. 2021. Developing the MVP for Al
Governance Testing Framework. States the framework uses
a mix of technical/statistical tests and process checks. Ac-
cessed 17 Oct 2025.

European Union. 2024. Regulation (EU) 2024/1689 of the
European Parliament and of the Council of 13 June 2024
laying down harmonised rules on artificial intelligence (Ar-
tificial Intelligence Act). Official Journal of the European
Union, L 2024/1689, 12 July 2024.

Guardrails Al 2025. Guardrails: A Framework for Building
Reliable AI Applications. Documentation accessed 2025-
10-17.

Guldimann, P.; Spiridonov, A.; Staab, R.; and Jovanovi¢, N.
e. a. 2024. COMPL-AI Framework: A Technical Interpre-
tation and LLM Benchmarking Suite for the EU Artificial
Intelligence Act. arXiv preprint arXiv:2410.07959.

HIPAA 2003. 2003. Standards for Privacy of Individu-
ally Identifiable Health Information (HIPAA Privacy Rule),
45 C.FR. Part 164 Subpart E. Privacy Rule under the Health
Insurance Portability and Accountability Act (HIPAA).
IBM. 2024. Implementing Graph RAG Using Knowledge
Graphs. Accessed 2025-10-17.

International Organization for Standardization; and Inter-
national Electrotechnical Commission. 2023. ISO/IEC
42001:2023 Information technology, Artificial intelligence
and Management system.

Kennan, A.; Singh, L.; Guevara, A. G.; Ahmed, M.; and
Goodman, J. 2025. AI-Powered Rules as Code: Experiments
with Public Benefits Policy. Technical report, Beeck Center
for Social Impact + Innovation, Digital Government Hub,
Georgetown University. Last updated September 4, 2025;
documents experiments translating SNAP and Medicaid pol-
icy into machine-readable rules.

Krippendorff, K. 2018. Content Analysis: An Introduction to
Its Methodology. Thousand Oaks, CA: SAGE Publications,
4 edition.

Constitutional
arXiv preprint

Microsoft Corporation. 2022. Responsible Al Standard v2:
General Requirements. Microsoft Corporation. Microsoft
Responsible Al Standard, publicly released June 2022.

Mou, Y.; Zhang, S.; and Ye, W. 2024. Sg-bench: Evaluat-
ing llm safety generalization across diverse tasks and prompt
types. Advances in Neural Information Processing Systems,
37: 123032-123054.

National Institute of Standards and Technology. 2023. NIST
AI RMF Playbook.

NIST, A. 2023. Artificial intelligence risk management
framework (AI RMF 1.0). 100-1.

NVIDIA. 2025. NeMo Guardrails Overview. NVIDIA Cor-
poration. Accessed 2025-10-17.

Object Management Group. 2025. Precise specification of
business decisions and business rules — Overview. Ac-
cessed 2025-10-17.

Open Policy Agent maintainers. 2025. Open Policy Agent:
Introduction. Accessed 2025-10-17.

OpenAl. 2025. Evals: A Framework for Evaluating LLMs
and LLM Systems. Repository accessed 2025-10-17.

OpenFisca contributors. 2025. What is OpenFisca. Ac-
cessed 2025-10-17.

Organisation for Economic Co-operation and Development.
2019. Recommendation of the Council on Artificial Intelli-
gence.

Ouyang, L.; Wu, J.; Jiang, X.; et al. 2022. Training Lan-
guage Models to Follow Instructions with Human Feed-

back. In Advances in Neural Information Processing Sys-
tems (NeurlPS).

Palla, K.; Li, A.; Hosseini, H.; Deng, Y.; and Sandholm, T.
e. a. 2025. Policy-as-Prompt: Rethinking Content Modera-
tion in the Age of Generative Al. In Proceedings of the ACM
Web Conference 2025. ACM.

promptfoo. 2025. promptfoo Documentation: Intro and Get-
ting Started. promptfoo. Accessed 2025-10-17.

Shen, X.; Chen, Z.; Backes, M.; et al. 2024. “Do Anything
Now”: Characterizing and Evaluating In-The-Wild Jailbreak
Prompts on Large Language Models. In Proceedings of the
2024 ACM SIGSAC Conference on Computer and Commu-
nications Security (CCS °24), 1671-1685. Salt Lake City,
UT, USA.

Toloka. 2025. TAU-Bench Extension: Benchmarking
Policy-aware Agents in Realistic Settings. Accessed 2025-
10-17.

Wei, B.; Shi, W.; et al. 2024. Evaluating Copyright Take-
down Methods for Language Models. In Advances in Neu-
ral Information Processing Systems 37 (NeurIPS 2024),
Datasets and Benchmarks Track.

Appendix
Policy— Tests DSL (v1)

Overview. Each extracted rule is a JSON object with
fixed fields for provenance, scope, hazard, conditions, ex-
ceptions, requirements, evidence, severity, and testabil-
ity. We keep the DSL compact and provenance-first: (i)



all rules carry source.doc, source.citation, and
source.span_id; (ii) scope uses simple string arrays to
stay model-agnostic; (iii) testability records the ratio-
nale and which evidence channels are appropriate for verifi-
cation. Below is the JSON Schema used in our experiments.

T

|
2 "$schema": "https://json-schema.org/draft/2020-12/schema",
3 "title": "Policy -> Tests DSL (ultra-mini)",
4 "type": "object",
5 "additionalProperties": false,
6 "required": ["rule_id","source","scope","requirement","
is_testable", "testability"],
7 "properties": {
8 "rule_id": {"type":"string"},
9 "source": {
10 "type":"object", "additionalProperties": false,
11 "required":["doc", "citation", "span_id"],
12 "properties": {
13 "doc":{"type":"string"},
14 "citation":{"type":"string"},
15 "span_id":{"type":"string"}
16 }
17 b
18 "scope": {
19 "type":"object", "additionalProperties": false,
20 "required": ["actor"],
21 "properties": {
22 "actor":{"type":"array", "items":{"type":"string"}},
23 "data_domain":{"type":"array","items":{"type":"string"}
’
24 "context":{"type":"array", "items":{"type":"string"}}
25 3
26 3,
27 "hazard": {"type":"string"},
28 "requirement": {"type":"string"},
29 "severity": {"type" :"string", "enum": ["low", "medium", "high"]
30 "is_testable": {"type":"boolean"},
31 "testability": {
32 "type":"object", "additionalProperties": false,
33 "required": ["evidence_signals"],
34 "properties": {
35 "evidence_signals":{"type":"array","items":{"type":"
string"}},
36 "reason":{"type":"string"}
37 1
38 h
39 h
40 |3

Operational cost and runtime

We report indicative pipeline efficiency to contextualize au-
tomation benefits. Across four documents the pipeline pro-
cessed 42,465,118 input tokens for about $20 total and ran
about 30 minutes to 3 hours per document, depending on
document length, clause density, and model choice. For
comparison, experienced annotators typically require 5-8
minutes per atomic rule, which yields tens of hours of man-
ual work even before adjudication. Summary figures appear
in Table 5.

Assessing the safety impact of generated rules - A
case study

We evaluate whether rule enforcement reduces unsafe be-
havior while preserving robustness across prompt types
by comparing a baseline assistant with the same assistant
instrumented with guardrails. Three HIPAA-derived, I/O-
testable rules are encoded as NeMo output rails (NVIDIA

System  Bucket Violation rate A vs clean
Baseline  Clean 0.02 0.00
Baseline  Obfuscated 0.58 +0.56
Baseline  Compositional 0.42 +0.40
Baseline  Overall 0.34 —
Guarded Clean 0.00 0.00
Guarded Obfuscated 0.08 +0.08
Guarded Compositional 0.06 +0.06
Guarded Overall 0.05 —

Table 4: Violation rates with clean defined as benign
prompts. A uses each system’s clean rate as anchor. Overall
is the mean across 60 prompts.

Doc Rules RT (h) Pipe. cost (USD) Ann. hrs (exp)
EU AT Act (Arts. 8-15) 51 0.6-1.2 $3.5 4.3-6.8
NIST AI RMF Profiles 117 1.0-2.0 $6.0 9.8-15.6
HIPAA Privacy Rule 77 0.5-1.0 $4.0 6.4-10.3
Microsoft RAI Standard v2 140 1.0-3.0 $6.5 11.7-18.7

Table 5: Compact runtime and pipeline cost summary. Ab-
brev.: RT = pipeline runtime; Pipe. cost (USD) = pipeline
cost in USD; Ann. hrs (exp) = manual annotation hours for
experienced raters (5—8 minutes per rule).

2025) and applied to an assistant. The rules target three high
risk themes in our corpus, namely HIPAA permitted PHI use
only, no genetic PHI for underwriting, and marketing pay-
ment must be disclosed. On 60 prompts (20 clean, 20 obfus-
cated, 20 compositional), an LLM judge evaluates each re-
sponse against a JSON rule description and returns pass/fail.
We measure violation rate overall and by bucket and report
robustness deltas relative to the clean bucket; the prompt set
is released with our code for reproducibility, and Table 4
summarizes results.

Ambiguity and failure modes

Ambiguous or context-dependent clauses remain challeng-
ing. We mitigate ambiguity with paragraph-level chunking
to preserve local qualifiers, clause mining to surface de-
ontic cues, a rubric-driven judge with minimal repair to
catch missing hazard or scope, and counterfactual prob-
ing to expose polarity sensitivity. These controls reduce er-
rors but do not eliminate them. Recurrent failures include
softened or dropped qualifiers, scope misassignment when
key cues are nonlocal or cross-referenced, and unclear tem-
poral or conditional language. SMT checks, evidence gat-
ing, and de-duplication target contradictions, verifiability,
and redundancy rather than ambiguity. Additional failure
modes include nested exceptions and negations, overlapping
or multi-party scopes, and implicit conditions that fall out-
side the extracted span. The pipeline can also over-normalize
nuanced qualifiers into coarse schema slots, blurring dis-
tinctions between “may,” “should,” and “shall.” Document-
specific drafting quirks and domain shifts degrade clause-
mining and extraction heuristics, leading to uneven perfor-
mance across documents and domains.



