Published as a conference paper at COLM 2024

Guiding Language Model Reasoning with Planning Tokens

Xinyi Wang!} Lucas Caccia?, Oleksiy Ostapenko®>*, Xingdi Yuan?,

William Yang Wang?, Alessandro Sordoni®3*

!University of California, Santa Barbara 2Microsoft Research

3Mila — Quebec Al Institute *Université de Montréal

xinyi_wang@ucsb.edu, william@cs.ucsb.edu, {eric.yuan, alsordon}@microsoft.com

Abstract

Large language models (LLMs) have recently attracted considerable inter-
est for their ability to perform complex reasoning tasks, such as chain-of-
thought (CoT) reasoning. However, most of the existing approaches to
enhance this ability rely heavily on data-driven methods, while neglecting
the structural aspects of the model’s reasoning capacity. To encourage a
more structural generation of CoT steps, we propose a hierarchical gener-
ation scheme: we let the LM generate a planning token at the start of each
reasoning step, intuitively serving as a high-level plan of the current step,
and add their embeddings to the model parameters. Our approach requires
a negligible increase in trainable parameters (0.001%) and can be applied
through either full fine-tuning or a more parameter-efficient scheme. We
demonstrate our method’s effectiveness by applying it to three different
LLMs, showing notable accuracy improvements across three math word
problem datasets and one multihop QA dataset with respect to standard

fine-tuning baselines.!

1 Introduction

The great potential of solving complex reasoning problems, including world knowledge
reasoning (Hendrycks et al., 2020; Suzgun et al., 2022), logical reasoning (Pan et al., 2023),
and math reasoning (Cobbe et al., 2021; Hendrycks et al., 2021b), using pre-trained large
language models (LLMs) (Touvron et al., 2023a;b; Brown et al., 2020) has drawn much
attention recently. A popular and effective paradigm of reasoning with LMs is chain-of-
thought (CoT) reasoning (Wei et al., 2022; Wang et al., 2022). In CoT the LMs are required
to generate both the reasoning steps and answer for a given problem. Recent research
has recognized the importance of CoTs for complex reasoning problems. Multiple works
focus on augmenting high-quality alternative CoTs in training data. For example, Yue
et al. (2023) fine-tune LLMs on multiple math datasets with CoT and program-of-thought
(PoT) solutions. Yuan et al. (2023) applies rejection sampling on the LLM samples. Other
works elicit reasonings from exogenous resources, such as more capable LLMs, i.e. GPT-
4 (Mukherjee et al., 2023; Luo et al., 2023). Although these methods are shown to be highly
effective, the fundamental problem of how to effectively guide an LM to generate more
useful CoT is not directly tackled by these data-augmentation-based methods.

We aim to propose a lightweight training method to fundamentally improve the effectiveness
of the generated CoTs. While current methods usually directly generate the complete
CoT solution, we hypothesize that a hierarchical generation of the CoT steps will benefit
the overall quality of the solution. More specifically, we introduce planning tokens at the
beginning of each CoT step, which are special tokens that encode a high-level solution plan
of the current CoT step. We consider three ways of inferring the planning tokens: heuristic
assignment, clustering reasoning states, and latent variable learning with VAE (Kingma
& Welling, 2013). At training time, we first assign planning tokens to each CoT step and

*This work was done during an internship at Microsoft Research, Montreal.
IWe open source the code at https://github.com/WANGXinyilLinda/planning_tokens.

https://github.com/WANGXinyiLinda/planning_tokens

Published as a conference paper at COLM 2024

0. Training Data 1. Planning Token Inference
1 1)
T B S S e L2 et
‘ ——— (= ()~ inference |
2. Training 3. Generation
tT rl t2] r? 2 y yt'l‘\ r't t'2] r'? 72 y'
i - ¥ + - -
‘ Language Model (\’ [Language Model]

IEEEXEIJENEIIXIEE NS

P 3
PN) G) A)

Figure 1: An overview of our method: Given an input question x and its CoT steps !, ..., 7,

we train a planning token inference model to infer the planning tokens #. Subsequently,
we fine-tune an LM on data augmented with the inferred planning tokens. Given a new

question x’, the trained LM can infer planning tokens ', CoT steps '/, and final answer /.

Fire and snowflake denote trainable and frozen models, respectively. Note that x, riH, y
can all include multiple tokens, we depict them as single blocks/variables for simplicity.

then do regular supervised fine-tuning. At inference time, the LM will be able to generate
the corresponding planning tokens first, before generating each CoT step. In practice, the
planning tokens” embeddings add negligible additional learnable parameters to the LLMs
(< 0.001%). This makes our method integrate well with parameter-efficient fine-tuning
methods like LoRA (Hu et al., 2021).

While the idea of adding new tokens to the generative LM’s vocabulary and then training
the associated embeddings has been explored before (Li & Liang, 2021; Lester et al., 2021),
the function and effect of our proposed planning tokens are significantly different from
the previous works. Our planning tokens are designed to increase and guide the reasoning
ability of LM fine-tuned with other supervised fine-tuning methods, instead of acting as a
parameter-efficient fine-tuning method (Li & Liang, 2021; Lester et al., 2021) on its own. The
fact that planning tokens are specialized within one task and can be generated and inferred
by LMs like regular tokens also sets us apart from the previous soft token tuning based
methods. For example, Qin & Eisner (2021) treat the soft tokens as special indicators for
specific relations, and Goyal et al. (2023) fixed the position of the pause token to right after
the prompt and serves only as extended computation before generation.

We perform experiments on three math word problem (MWP) datasets (GSM8K (Cobbe
et al., 2021), AQUA (Ling et al.,, 2017), and MATH (Hendrycks et al., 2021a)), and one
multihop QA dataset (StrategyQA (Geva et al., 2021)). The experiment results in Section 3.1
show that by adding planning tokens at training time, we are able to improve upon the
baseline without planning tokens by 3.3% accuracy points on average over three pre-trained
language models (Phi 1.5 (Gunasekar et al., 2023), 7B Llama 2 (Touvron et al., 2023b), and
13B Llama 2) and three MWP datasets. We also show that the gains of our method do not
solely come from the augmented computational space induced by increasing the length of
the reasoning with planning tokens but also from the specialization induced by the planning
tokens. In Section 3.2, from a detailed error analysis of the generated CoT solutions, we
found that our method performs notably better on longer CoT solutions. The error type
analysis also suggests that our method can better refer to the previous information and
increase the computing capacity of the model. We also investigate how LLMs utilize the
planning tokens by looking into the attention weights, which suggest that planning tokens
can carry information throughout the whole sequence.

2 Method

Setup We assume that we have a dataset D composed of triples {(x,7,y)}, where x is a
problem to solve, r is the ground-truth reasoning associated with the problem and y is the

Published as a conference paper at COLM 2024

final answer. The assumption that the ground-truth reasoning is included in the dataset
might be circumvented by either generating CoTs with rejection sampling from a base
LM (Yuan et al., 2023) or by creating reasoning paths from a larger model (Luo et al., 2023;
Mukherjee et al., 2023). We fine-tune a base LLM to predict the concatenation of reasoning
and answers given the inputs, i.e.:

1 0
argmgx; og p(r,ylx;0),

where we assume that x, r, y are properly tokenized and 0 is the trainable parameter of
the pre-trained LLM. To provide more high-level guidance to the LLM at fine-tuning time
with reasoning data, we assume that each reasoning r is the realization of some higher-
level planning process, which is latent, thus unobserved in the dataset. To model this
assumption, we define by reasoning step a sub-sequence of tokens appearing in the reasoning.
We create reasoning steps by splitting the reasoning with a delimiter token, which might be
dataset-specific, but for simplicity, we fix it to be \n for all datasets.

Letr = rl,..., 75, where S is the number of steps in the reasoning. We assume that each

reasoning step ' is generated conditional on the previous reasoning steps and a discrete
latent planning variable #' taking values into 1... P. Given that the planning variables value
between 1 and P, they can be considered as condensed summaries of each reasoning step
and can therefore provide useful guidance while producing the reasoning r. We also assume
the answer y is generated with a special planning variable t¥ which has always a value
equal to P for each example. Without loss of generality, we assume that only #/ can take

value P, i.e. p(t = P) = 0 for each t,i # y.

If the planning variables were indeed observed, the complete data D¢ would be composed

of tuples (x, ol S5, y). Let us assume for the moment that the complete dataset
is available to us. In order for the dataset to be processed by an LLM, we verbalize each
planning variable # with a (or possibly multiple) planning token(s). Here we abuse the
notation # for this (set of) planning token(s) for simplicity. In practice, this means that we
extend the vocabulary of the LLM tokenizer with P (or more) new tokens of our choice, and
modify accordingly the input and output embedding matrix of the LLM. The embeddings of
the new tokens will be additional training parameters for the LLM, which add a negligible
parameter overhead over the base model.

With this modification in mind, the complete data D can be readily used to train an LLM
by maximizing the complete data log-likelihood:

argmaleog p(tl,rl,) ..,ts,rs,ty,y|x; 0"),
ot De

by 6 we denote the original LLM parameters comprising the embeddings of the planning
tokens. From the equation above, we can see that the LLM will be trained to first generate the
high-level planning token for each reasoning step, and then generate the detailed reasoning
step. This can help LLMs to generate more consistent and controlled reasoning chains.

2.1 Planning Tokens Inference

We consider three different ways of inferring the planning variable from the given CoT train-
ing data: Arithmetic, K-Means, and SQ-VAE. In practice, this inference step corresponds to
assigning the instantiated planing tokens to the reasoning steps prior to fine-tuning the LM
and learning the embeddings of the planing tokens.

Arithmetic For math word problemes, it is natural to consider the basic arithmetic operation
contained in each reasoning step 7' as the plan token t' similar to Zhang et al. (2023); Qin &
Eisner (2021). This yields four planning tokens (+, -, X, <), which can be easily extracted
from each *. If more than one operator is found, then we use as many planning tokens as
the number of operations found, e.g. <+><*>.

This approach has several drawbacks. First, some operations, such as doubling a quantity,
can be implemented with more than one operator (e.g. + and x). Thus, this arithmetic

Published as a conference paper at COLM 2024

partitioning can fail to capture the similarity between these reasoning steps. Second, for
some more complex datasets such as MATH, where the reasoning goes beyond basic
operators, such heuristics might not be simple to design if not provided by the dataset.
Finally and most importantly, such a heuristic does not apply to non-math datasets like
multihop QA datasets. To relax these shortcomings, we turn to inference planning tokens
from the embeddings of CoT steps.

We first gather reasoning steps r' for all examples in our dataset, then apply an inference
algorithm on the representations ¢(r'), V7' € D. We obtain ¢(r?) by using an LLM to encode
the whole text sequence of an example (x,y), and then averaging the last hidden layer
outputs of the corresponding tokens in 7'. In this way, we aggregate both the question and
previous steps’ information in the contextualized representation ¢(r?).

K-Means We run an off-the-shelf K-Means implementations on the set of representations
¢(r") for all reasoning steps in the dataset D. Each planning variable #' is then assigned the
index of the centroid closest to #'.

SQ-VAE In this approach, our aim is to learn a non-linear transformation of each represen-

tation ¢(r') that better captures the meaningful directions of variation of the representations
for the dataset D under consideration. Variational Autoencoders (VAEs) (Kingma & Welling,
2014) offer a probabilistic approach to learning such non-linear latent representations of
data. In their original formulations, VAEs learn a Gaussian-distributed latent space of
representations. To induce a discrete structure in the latent space, we follow Miao et al.
(2017), and use a “Gaussian-softmax” parameterization, which soft-quantizes the latent
representations before reconstructing the input data. In particular, our VAE maximizes the
following objective:

L(enc,dec, ®) = Eqezijg iy [|ldec(@(r')|2) — ¢(r')|]2] — KL(enc('|¢p(r')), N (0,1)),
z=®q, q=softmax(z')

where enc and dec are the encoder and the decoder neural networks that transform the steps
representation into the non-linear manifold and back into the original representation space
respectively (the encoder parameterizes mean and log-variance of a Gaussian distribution);
q is the soft-quantization of the Gaussian-distributed representation z/, which corresponds
to the distribution over clusters. ® is a learnable matrix with P — 1 rows (the last value is
reserved for the answer planning variable) representing the cluster centroids. Therefore
the model tries to reconstruct the input representation given a soft-combination of cluster
centroids. With this model, after training, we obtain the assignment for the planning
variables as t! = argmax softmax(enc(¢(r'))), where enc(¢(r')) denotes the mean of the
Gaussian distribution parameterized by enc.

2.2 Planning Tokens Parametrization

Each planning variable may be verbalized by one or more planning tokens. Moreover, we
discussed two orthogonal intuitive effects that might be achieved by augmenting the dataset
with planning tokens. The first is to augment the computational capacity of the model by
providing additional “scratch” space to predict the next reasoning step; the second is the
specialization induced by information-bearing planning tokens. To be able to disentangle
both effects in our model, we introduce two hyper-parameters in our approach: n_prefix and
n_special. BEach planning variable can be verbalized using a variable number of both generic
prefix planning tokens and special planning tokens. A planning token annotated example
with n_prefix = n_special = 3 is shown below:

Question: Chenny is 10 years old. Alyana is 4 years younger than Chenny. How old is Anne if she is 2 years older than Alyana?

<prefix_0><prefix_1><prefix_2> Alyanais 10 - 4 = <<10-4=6>>6 years old.
<prefix_0><prefix_1><prefix_2> So, Anne is 6 + 2 = <<6+2=8>>8 years old.
<prefix_0><prefix_1><prefix_2> The answeris: 8

Published as a conference paper at COLM 2024

Model Method #clusters #trainable GSMSK MATH AQUA S-QA Avg

Phil5 Full-FT 0 100% 12.5 1.3 27.2 - 13.5
(1.3B) + General 1 100% 154 2.0 354 - 17.6
+ Arithmetic 4 100% 15.0 2.3 33.1 - 16.8
+ K-Means 5 100% 14.5 2.7 36.5 - 17.7
+ SQ-VAE 5 100% 15.8 3.3 34.3 - 17.8
Llama2 LoRA 0 0.343% 38.2 6.5 36.6 584 349
(7B) + Pause 1 0.344% 37.2 6.7 36.2 580 345
+ General 1 0.344% 38.5 6.7 37.8 59.1 355
+ Arithmetic 4 0.344% 39.5 5.6 38.2 - -
+ K-Means 5 0.344% 39.1 6.7 40.5 622 371
+ SQ-VAE 5 0.344% 40.0 7.0 41.3 62.8 378
Llama2 LoRA 0 0.279% 44.6 72 41.3 69.5 407
(13B) + General 1 0.280% 479 79 42.5 703 422
+ Arithmetic 4 0.280% 419 4.6 35.8 - -
+ K-Means 5 0.280% 49.6 8.4 44.1 715 434
+ SQ-VAE 5 0.280% 50.6 8.5 439 724 439

Table 1: Testing accuracy of fine-tuned language models on different math word datasets.
We set the number of planning tokens (n_prefix+n_special) to 6.

Here <kmeans1_0>, <kmeans1_1>, and <kmeans1_2> are the three planning tokens induced by
the first K-Means cluster.

3 Experiments

Datasets We conduct experiments on four datasets. The Grade School Math dataset
(GSMSBK) (Cobbe et al., 2021) contains 8.5K examples of linguistically diverse grade school
math world problems. The MATH dataset (Hendrycks et al., 2021a) is a collection of 12.5K
challenging competition mathematics problems formatted in latex notation. The AQUA-
RAT dataset (Ling et al., 2017) contains 100K samples of mathematical problems, along with
sequences of human-readable mathematical expressions in natural language. StrategyQA
contains 3K multi-hop questions annotated with decomposed single-hop questions, which
we used as the Chain-of-thought (CoT) path of the question.

Base LLMs Our empirical analysis uses several decoder-only architectures of varying sizes.
We use the 7B and 13B variants of Llama2 (Touvron et al., 2023b), both trained over 2 trillion
tokens from publicly accessible data sources. We also experiment with Phi-1.5 (Gunasekar
et al., 2023), a 1.3B parameter model trained on a mixture of textbook-quality code data, and
additional synthetically generated textbook and exercise data.

Baselines First, we compare against the vanilla baselines of full-fine-tuning (Full-FT) for
Phi-1.5 and LoRA fine-tuning for Llama-2. Then, we compare to a baseline that combines
plain soft token tuning (General) with the base fine-tuning method (Full-FT/LoRA). For
this baseline, we prepend the same prefix tokens to each CoT step. i.e. P = 1.

Note that the General baseline can be viewed as prompt-tuning (Lester et al., 2021) + the
base fine-tuning method, when the prefix tokens are only prepended to the first CoT step.
To make prompt-tuning more comparable to our planning token methods, we enhance the
original prompt-tuning by also prepending prefix tokens to other CoT steps.

We also tried the prompt-tuning (Lester et al., 2021) and prefix-tuning (Li & Liang, 2021) only
parameter efficient tuning baseline. We found that they are not suitable for complex CoT
reasoning tasks in our setting, as their capacity is limited when using a reasonable number
(similar to our method) of tunable tokens. The inference time and memory complexity
become unreasonable when we try to scale the trainable parameters to be similar to LoRA
(8k tunable tokens). Detailed results can be found in the Appendix.

Our Methods Our methods are denoted with the three different planning types: Arithmetic,
K-Means and SQ-VAE.

Published as a conference paper at COLM 2024

Plan Type Number of Plan Tokens
2 6 10

General 379 385 38.3
Arithmetic 39.5 389 38.5
K-Means 38.9 39.1 38.1
SQ-VAE 40.0 38.8 38.2

Plan Type Number of Clusters P
1 3 5 7 10

General 38.5 - - - -
K-Means - 379 391 399 36.7
SQ-VAE - 39.6 400 394 389

Table 2: Impact of varying the number of clusters (left) and varying the number of plan-
ning tokens (right) (n_prefix+n_special). We set n_prefix = n_special. For general, we match
computation by adding prefix tokens.

3.1 Results

We present our main results in Table 1. Generally, we observe that for all three datasets
considered and all the model sizes, the best-performing approach leverages planning tokens.
We note that, across scales, Full-FT + General and LoRA + General improves over vanilla
fine-tuning (Full-FT or LoRA), echoing our understanding from Chi et al. (2023) and Feng
et al. (2023) that adding additional tokens before each reasoning step increase the compute
capacity of the LM and results in better performance. For the three datasets, Arithmetic does
not consistently outperform General pointing to the fact that hand-designed heuristics might
not be optimal and the gain observed over Full-FT/LoRA may due to additional allowed
computation space. However, the other two embedding-based planning type inference
methods, K-Means and SQ-VAE, consistently outperform both General and Arithmetic,
pointing to the importance of using machine-learned planning tokens specialization. Over
the 7B version of Llama2, all methods with planning tokens provide consistent gains over
the baselines of up to 1.7 points, a relative increase of 6%. Our results over the Llama2
13B tell a similar story, where again the best-performing method across all datasets uses
planning tokens. We show a 1.5 gain in average accuracy (4.5 % relative gain). Among these
two approaches, SQ-VAE seems to be a more reliable approach, as is it always the best-
performing method on average. This can be understood as the non-linear latent inference
method works slightly better than the linear one. More expressive latent inference methods
might be needed to obtain a larger performance improvement.

Ablation We show ablation studies with respect to the number of clusters P and the
number of planning tokens used in total. A larger P means we classify reasoning steps
into more fine-grained planning types. Note that P = 1 means we always use the same
planning tokens for all steps which is the same as the General baseline. From Table 2 (left),
We observe that the performance of both K-Means and SQ-VAE first goes up and then goes
down when the number of clusters increases. This likely reflects that our planning token
inference models are not able to produce too fine-grained reasoning type. From Table 2
(right), we observe that it is not necessary to assign too many tokens to a planning type. We
suspect that too many planning tokens will result in a longer sequence which negatively
affects the language model’s reasoning ability.

3.2 Analysis

Errors by Reasoning Length In Figure 2, we show the accuracy by the complexity of the
test example as measured by reasoning length on AQUA and GSMSK. For the two datasets,
the introduction of planning tokens improves long reasoning performance, thus hinting
that the planning tokens provide better control over long reasoning chains. For GSM8K,
planning tokens seem to underperform the baseline for short reasoning chains. While both
Arithmetic and SQ-VAE improve on long reasonings, SQ-VAE improves more on average.
In future work, we can assign position-aware planning tokens for different steps, to enhance
the long reasoning improvement.

Error Taxonomy After inspecting the generated chain-of-thoughts solutions from all three
datasets, we propose to classify the errors into the following five categories:

¢ Misunderstanding of question: generated solution does not answer the given question.

Published as a conference paper at COLM 2024

GSM8K Aqua
0.30 0.5 -

Planing type Planing type -06
mm N/A 025 0.4 - mn N/A
0 5- Arithmetic man Arithmetic

= SQ-VAE - 3- s SQ-VAE ~-0.4
(u 04— I}
~0.15
‘-’ 03— 4
02_ ~0.10
|I| Il Ill
II II | 0.0 - -0.0

0.0- - 0.00
3 4 5 8 9 10 11 12 0-3 4- 9-20
Number of reasonlng steps (ground truth) Number of reasoning steps (ground truth)

0.6 -

Accuracy
o o
N w

Portion of total trials
Pomon Uf total trials

Figure 2: Accuracy on GSMS8K (left) and Aqua (right) on test examples by their number of
ground-truth reasoning steps. SQ-VAE consistently increases performance for test examples
that require more steps of reasoning to be solved.

Error Misunderstanding of Computation Inaccurate extraction of | Wrong application of Wrong logic
type question errors question information math knowledge
Example | Question: ...How many cups of | ...7 + 3301x = Question: ...He spends the | ...The number of feet ...$2ab=12=2"3
feed does she need to give her | 3371x... next half-hour driving at a the plane is from the \cdot b"2$...
chickens in the final meal of speed of 30mph... ground is the target of
the day... ...He drove 2 hours at a geometric
...then each chicken gets 40/20 30mph so he traveled sequence...
=<<40/20=2>>2 cups of feed 2*30=<<2*30=60>>60
per chicken. The answer is: 2 miles...
Dataset LORA SQ-VAE LORA | SQ-VAE LORA SQ-VAE LORA SQ-VAE | LORA | SQ-VAE
GSM8K 4.1% 4.1% 8.0% 6.1% 34.5% 33.0% 0.2% 0.5% 16.2% 14.9%
MATH 21.0% 23.5% 8.1% 5.0% 27.3% 24.7% 20.3% 18.2% 23.1% 23.0%
AQUA 8.3% 8.7% 12.6% 9.4% 25.6% 23.2% 2.8% 2.0% 19.5% 20.1%

Figure 3: Examples of different error types generated by 7B Llama 2. The frequency of each
error type generated by the LoRA baseline and our LoRA + SQ-VAE planning method on
test sets are predicted by GPT4 and then manually verified.

¢ Computation errors: errors in evaluating equations.

¢ Inaccurate extraction of question information: inaccurate references to the information
provided in the question.

* Wrong application of math knowledge: equations, concepts, or theorems used in the
generated solution are not suitable for the question.

* Wrong logic/unreasonable step: generation does not follow common logic.

We prompt GPT4 to obtain the error type of each generated example, and then manually
verify whether the predicted error type matches the explanation. In Figure 3, the SQ-VAE
error frequencies significantly lower than the N/A baseline are in bold font. As we can see,
across three datasets, our method consistently improves on the computation errors and
the inaccurate extraction of question information. The lower computation errors indicate
that our inferred planning tokens either increase the computation capacity of the model
or contain compute-related information. Our method being able to make more faithful
reference to the information in the questions indicates planning tokens are helpful for long-
range control of generations, which echoes the observation and assumptions in the previous
sections. The differences in other error categories are either insignificant or inconsistent
over datasets. Note that GSM8K and AQUA have a similar distribution over the error types,
while MATH has significantly more misunderstanding of questions and wrong application
of math knowledge. This is understandable as MATH is significantly more difficult as it
is from American Mathematics Competitions (AMC). These questions are less obvious to
approach and require applications of non-trivial math theorems.

Attention on planning tokens To better understand how LLMs make use of the planning
tokens, we inspect the attention by first computing an overall average of the attention
weights assigned to the planning tokens versus the normal tokens. As shown in Table 3,
we found that K-Means and SQ-VAE planning tokens are assigned much higher attention
weights than General and Arithmetic planning tokens, when comparing to normal tokens.

Published as a conference paper at COLM 2024

General Arithmetic K-means SQ-VAE
Normal token 0.0045 0.0039 0.0039 0.0043
Planning token 0.0009 0.0012 0.0071 0.0070

Table 3: Averaged attention on planning tokens v.s. normal tokens across all layers, heads,
and previous tokens on the test set of GSM8K, with Llama 2 (7B) model.

0.15

LO.‘IO

0.05

Question: Chenny is 10 years old. Alyana is 4 years younger than Chenny. How old is Anne if she is 2 years older than Alyana?
<prefix_0> <prefix_1> <prefix_2> <prefix_2> <vae4_0> <vae1_0><vael_1><vael_2> Alyanais 10 - 4 = <<10-4=6>>6 years old.
<prefix_0> <prefix_1> <prefix_2> <prefix_2> <vae4_0> <vaed_1><vaed_2> So, Anneis 6 + 2 = <<6+2=8>>8 years old.
<prefix_0> <prefix_2> <prefix_2> <prefix_2> <answer_0> <answer_1> <answer_2> The answer is: 8

Figure 4: Two attention heads activated by planning tokens, with a test example generated
by Llama 2 (7B) LoRA fine-tuned with SQ-VAE planning tokens. Question tokens are
omitted in the attention heat map but included in attention computation. A lighter color
means a larger attention weight. Best viewed zoomed in.

This implies that the inferred planning tokens might be more helpful for the generation,
which is consistent with the main results performance in Table 1.

While the raw attention weight itself might be a debatable way of understanding the token
importance, the attention pattern still serves as a valid way of understanding how the
Transformer works. Similar to Olsson et al. (2022), we identify attention heads that have
strong patterns corresponding to the planning tokens as shown in Figure 4, and deduct how
language models make use of the planning tokens from the patterns.

More specifically, we compute the average attention weight difference between planning
tokens and normal tokens from different attention heads, and visualize the attention heads
with the largest difference, as they are likely to strongly correspond to the utilization of
planning tokens. We visualize two such attention heads on a CoT generated with SQ-VAE
planning tokens in Figure 4. The attention head shown on the left strongly attend to the
specialized planning tokens throughout the CoT sequence. The attention head shown on
the right shows that the general planning tokens are only attended by themselves, which
might imply that the general planning tokens only serve as indicators of the beginning of a
CoT step, instead of carrying information to the whole sequence.

Distinguishability of the Induced Clusterings We investigate whether SQ-VAE learns
better planning types than K-Means via a probing task (Alain & Bengio, 2017). Concretely,
we collect a dataset consisting of CoT steps and their planning token labels obtained from
K-Means and SQ-VAE. We train a simple model (either a logistic regression or a shallow
neural network) to learn the mapping from a sentence to its planning token label. We

Published as a conference paper at COLM 2024

hypothesize that the better planning type should facilitate easier learning dynamics for
simple models because the class boundaries should be easily accessible from the data.

test accuracy As a case study, we study the 5-cluster setting on
the GSM8K dataset. Given a planning type, we ran-
domly sample 2000 sentences from each of the five

it . categories. We leverage a pre-trained text encoder? to

logistic regression

0.5

{
04 2-layer mip convert sentences into vector representations. Taking
—— 6-layer mip : . :
03 il the text enpodmgs as input, the probe network (logis-
o — SQVAE tic regression, 2-layer MLP, or 6-layer MLP) performs
R T KMeate a 5-way classification.
0 20 40 60 80 100 L
k training examples We show test accuracy curves in Figure 5. We ob-

.) serve a clear gap between SQ-VAE (solid lines) and
Figure 5. Testing accuracy .Of fche K-Means (dashed lines) in the curves. This reflects
probes on the sentence classification oyr main results reported above, where SQ-VAE pro-
task. duces a better overall downstream task performance.

4 Related Work

Trainable new tokens The idea of adding new tokens with trainable embeddings on the
input side of a generative LM has been proposed before (Li & Liang, 2021; Lester et al.,
2021). The most common way of adding new tokens is to insert them at a fix position in the
prompt given to LMs. By only training the embeddings of these new tokens, these methods
act as parameter-efficient fine-tuning techniques to adapt LMs to specific task (Qin & Eisner,
2021; Li & Liang, 2021; Lester et al., 2021). Our planning tokens are not intended to serve as
a parameter-efficient fine-tuning method. Instead, our method creates a small parameter
overhead to the base fine-tuning method and serves as guidance to LM’s reasoning process.
Qin & Eisner (2021) uses a mixture of soft tokens to model a relation, which tries to specialize
within the relation extraction task. However, we do not explicitly compute the mixture
probability across all token types as in Qin & Eisner (2021), which can be untractable for
CoT generation. Instead, at each step, we let the LM choose one planning token type.

Another line of work prepend newly added tokens as memory to transformers Burtsev
et al. (2020); Bulatov et al. (2022); Darcet et al. (2023), which echos our understanding that
increasing sequence length can increase the capacity of the Transformer. Goyal et al. (2023)
proposes to append a new pause token after the prompt so that the LM can have more
computation budget before starting the actual generation. This shares the same idea with
the token as a memory line of work. On the contrary, Mu et al. (2023) proposes to append
a new gist token after the prompt so that the following generation will only attend to this
gist token for compression purposes. Our General baseline can be viewed as an enhanced
version of Goyal et al. (2023). Instead of only adding new tokens after the prompt, we also
add new tokens before each CoT step, which further increases the computation capacity.
To the best of our knowledge, no existing work proposes to add new tokens that can be
generated by the LMs at inference time. The learned specialization of planning tokens
within one task, instead of assigning a token for each specific task, is also novel.

Math Reasoning Recently, LM-based math reasoning models have shown to be highly
effective (Azerbayev et al., 2023; Yang et al., 2023). Recent studies on complex math reasoning
problems usually adopt a CoT-based approach (Zhang et al., 2023; Li et al., 2023) that fine-
tunes/prompts LLMs to generate reasoning steps before giving the final answer. Most
fine-tuning works are highly dependent on the augmented CoT solutions generated by a
strong pre-trained LM (Yue et al., 2023; Yuan et al., 2023; Mukherjee et al., 2023; Luo et al,,
2023). Our planning token method can fundamentally improve the fine-tuning performance
regardless of the present of augmented CoT data. A possible extension of our work is to
combine our method with the CoT data augmentation method to boost the performance
even more. Our method is especially related to Zhang et al. (2023). They perform CoT fine-

2We use mpnet-base Song et al. (2020), a default model in Sentence-Transformers Reimers &
Gurevych (2019).

Published as a conference paper at COLM 2024

tuning of GPT2 by first predicting the math operation of each reasoning step at generation
time, which is less efficient than our end-to-end method.

5 Conclusion

We proposed using planning tokens to gain better control over reasoning with LLMs. Our
planning tokens increase the performance over baselines at a minimal parameter cost. We
studied our method’s efficacy across three different base models and multiple datasets. First,
we see a straightforward extension of our framework which could use multiple planning
variables at every reasoning step, each planning variable is responsible for deliberating in a
different “view” of that particular reasoning step (Wang et al., 2023). Second, future work
should go beyond our heuristic inference procedures and learn the inference network, such
as to maximize the marginal log-likelihood of the observed data: we could then interpret the
overall model as a Sequential VAE (Goyal et al., 2017). Finally, it is meaningful to continue
the exploration towards interpretability and explainability of the planning tokens (Khashabi
et al,, 2021). We believe such research could shed light on prompt searching/optimization
studies performed both by humans (Zamfirescu-Pereira et al., 2023) and machines (Shin
et al., 2020; Sordoni et al., 2023).

6 Ethics Statement

We do not foresee a significant societal impact resulting from our proposed method. In
this work, we propose to equip LLMs with planning tokens to obtain better reasoning
capabilities. We find that the planning tokens discovered by embedding-based methods
(less interpretable, e.g., K-Means and SQ-VAE) consistently outperform those from heuristics-
based methods (more interpretable, e.g., Arithmetic). Therefore, an obvious direction for
future work is to improve the interpretability of such methods. In addition, while we
aim to improve an LLM’s reasoning ability, it is possible that the training of the planning
tokens could be affected by misinformation and hallucinations introduced by the base LLM.
Therefore, we believe that caution needs to be exercised if one extends our work to a setting
where humans are directly involved, e.g., in an educational setting.

References

Guillaume Alain and Yoshua Bengio. Understanding intermediate layers using linear
classifier probes. ArXiv, abs/1610.01644, 2017.

Zhangir Azerbayev, Hailey Schoelkopf, Keiran Paster, Marco Dos Santos, Stephen McAleer,
Albert Q Jiang, Jia Deng, Stella Biderman, and Sean Welleck. Llemma: An open language
model for mathematics. arXiv preprint arXiv:2310.10631, 2023.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al.
Language models are few-shot learners. Advances in neural information processing systems,
33:1877-1901, 2020.

Aydar Bulatov, Yury Kuratov, and Mikhail Burtsev. Recurrent memory transformer. Advances
in Neural Information Processing Systems, 35:11079-11091, 2022.

Mikhail S Burtsev, Yuri Kuratov, Anton Peganov, and Grigory V Sapunov. Memory trans-
former. arXiv preprint arXiv:2006.11527, 2020.

Ta-Chung Chi, Ting-Han Fan, Alexander I Rudnicky, and Peter] Ramadge. Transformer
working memory enables regular language reasoning and natural language length ex-
trapolation. arXiv preprint arXiv:2305.03796, 2023.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers
to solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

10

Published as a conference paper at COLM 2024

Timothée Darcet, Maxime Oquab, Julien Mairal, and Piotr Bojanowski. Vision transformers
need registers. arXiv preprint arXiv:2309.16588, 2023.

Guhao Feng, Bohang Zhang, Yuntian Gu, Haotian Ye, Di He, and Liwei Wang. Towards
revealing the mystery behind chain of thought: A theoretical perspective. In Thirty-seventh
Conference on Neural Information Processing Systems, 2023. URL https://openreview.net/
forum?id=gHrADgAdYu.

Mor Geva, Daniel Khashabi, Elad Segal, Tushar Khot, Dan Roth, and Jonathan Berant. Did
aristotle use a laptop? a question answering benchmark with implicit reasoning strategies.
Transactions of the Association for Computational Linguistics, 9:346-361, 2021.

Anirudh Goyal, Alessandro Sordoni, Marc-Alexandre Coté, Nan Rosemary Ke, and Yoshua
Bengio. Z-forcing: Training stochastic recurrent networks, 2017.

Sachin Goyal, Ziwei Ji, Ankit Singh Rawat, Aditya Krishna Menon, Sanjiv Kumar, and
Vaishnavh Nagarajan. Think before you speak: Training language models with pause
tokens. arXiv preprint arXiv:2310.02226, 2023.

Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio César Teodoro Mendes, Allie Del Giorno,
Sivakanth Gopi, Mojan Javaheripi, Piero Kauffmann, Gustavo de Rosa, Olli Saarikivi,
et al. Textbooks are all you need. arXiv preprint arXiv:2306.11644, 2023.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. In International
Conference on Learning Representations, 2020.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang,
Dawn Song, and Jacob Steinhardt. Measuring mathematical problem solving with the
MATH dataset. CoRR, abs/2103.03874,2021a. URL https://arxiv.org/abs/2103.03874.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang,
Dawn Song, and Jacob Steinhardt. Measuring mathematical problem solving with the
math dataset. arXiv preprint arXiv:2103.03874, 2021b.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, and Weizhu Chen. Lora: Low-rank adaptation of large language models. 6
2021. URL http://arxiv.org/abs/2106.09685.

Daniel Khashabi, Shane Lyu, Sewon Min, Lianhui Qin, Kyle Richardson, Sean Welleck,
Hannaneh Hajishirzi, Tushar Khot, Ashish Sabharwal, Sameer Singh, et al. Prompt
waywardness: The curious case of discretized interpretation of continuous prompts. arXiv
preprint arXiv:2112.08348, 2021.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Diederik P. Kingma and Max Welling. Auto-Encoding Variational Bayes. In 2nd International
Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, April 14-16, 2014,
Conference Track Proceedings, 2014.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient
prompt tuning. In Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-
tau Yih (eds.), Proceedings of the 2021 Conference on Empirical Methods in Natural Language
Processing, pp. 3045-3059, Online and Punta Cana, Dominican Republic, November 2021.
Association for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.243. URL
https://aclanthology.org/2021.emnlp-main.243.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation.
In Chengging Zong, Fei Xia, Wenjie Li, and Roberto Navigli (eds.), Proceedings of the 59th
Annual Meeting of the Association for Computational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Volume 1: Long Papers), pp. 4582-4597, Online,
August 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.acl-long.
353. URL https://aclanthology.org/2021.acl-1long.353.

11

https://openreview.net/forum?id=qHrADgAdYu
https://openreview.net/forum?id=qHrADgAdYu
https://arxiv.org/abs/2103.03874
http://arxiv.org/abs/2106.09685
https://aclanthology.org/2021.emnlp-main.243
https://aclanthology.org/2021.acl-long.353

Published as a conference paper at COLM 2024

Yifei Li, Zeqi Lin, Shizhuo Zhang, Qiang Fu, Bei Chen, Jian-Guang Lou, and Weizhu Chen.
Making language models better reasoners with step-aware verifier. In Proceedings of the
61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
pp. 5315-5333, Toronto, Canada, July 2023. Association for Computational Linguistics. doi:
10.18653/v1/2023.acl-long.291. URL https://aclanthology.org/2023.acl-1long.291.

Wang Ling, Dani Yogatama, Chris Dyer, and Phil Blunsom. Program induction by rationale
generation: Learning to solve and explain algebraic word problems. In Proceedings of the
55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
pp- 158-167, Vancouver, Canada, July 2017. Association for Computational Linguistics.
doi: 10.18653/v1/P17-1015. URL https://aclanthology.org/P17-1015.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Jianguang Lou, Chongyang Tao, Xiubo
Geng, Qingwei Lin, Shifeng Chen, and Dongmei Zhang. Wizardmath: Empowering
mathematical reasoning for large language models via reinforced evol-instruct. arXiv
preprint arXiv:2308.09583, 2023.

Yishu Miao, Edward Grefenstette, and Phil Blunsom. Discovering discrete latent topics with
neural variational inference. In International conference on machine learning, pp. 2410-2419.
PMLR, 2017.

Jesse Mu, Xiang Lisa Li, and Noah Goodman. Learning to compress prompts with gist
tokens. arXiv preprint arXiv:2304.08467, 2023.

Subhabrata Mukherjee, Arindam Mitra, Ganesh Jawahar, Sahaj Agarwal, Hamid Palangi,
and Ahmed Awadallah. Orca: Progressive learning from complex explanation traces of
gpt-4, 2023.

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom
Henighan, Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, et al. In-context learning
and induction heads. arXiv preprint arXiv:2209.11895, 2022.

Liangming Pan, Alon Albalak, Xinyi Wang, and William Wang. Logic-LM: Empowering
large language models with symbolic solvers for faithful logical reasoning. In Houda
Bouamor, Juan Pino, and Kalika Bali (eds.), Findings of the Association for Computational
Linguistics: EMINLP 2023, pp. 3806-3824, Singapore, December 2023. Association for
Computational Linguistics. doi: 10.18653/v1/2023.findings-emnlp.248. URL https:
//aclanthology.org/2023.findings-emnlp.248.

Guanghui Qin and Jason Eisner. Learning how to ask: Querying LMs with mixtures of soft
prompts. In Kristina Toutanova, Anna Rumshisky, Luke Zettlemoyer, Dilek Hakkani-
Tur, 1z Beltagy, Steven Bethard, Ryan Cotterell, Tanmoy Chakraborty, and Yichao Zhou
(eds.), Proceedings of the 2021 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, pp. 52035212, Online, June 2021.
Association for Computational Linguistics. doi: 10.18653/v1/2021.naacl-main.410. URL
https://aclanthology.org/2021.naacl-main.410.

Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-
networks. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language
Processing. Association for Computational Linguistics, 11 2019. URL https://arxiv.org/
abs/1908.10084.

Noam Shazeer and Mitchell Stern. Adafactor: Adaptive learning rates with sublinear
memory cost. In International Conference on Machine Learning, pp. 4596-4604. PMLR, 2018.

Taylor Shin, Yasaman Razeghi, Robert L Logan IV, Eric Wallace, and Sameer Singh. Au-
toprompt: Eliciting knowledge from language models with automatically generated
prompts. arXiv preprint arXiv:2010.15980, 2020.

12

https://aclanthology.org/2023.acl-long.291
https://aclanthology.org/P17-1015
https://aclanthology.org/2023.findings-emnlp.248
https://aclanthology.org/2023.findings-emnlp.248
https://aclanthology.org/2021.naacl-main.410
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084

Published as a conference paper at COLM 2024

Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-Yan Liu. Mpnet: Masked and permuted
pre-training for language understanding. Advances in Neural Information Processing Systems,
33:16857-16867, 2020.

Alessandro Sordoni, Xingdi Yuan, Marc-Alexandre Coté, Matheus Pereira, Adam Trischler,
Ziang Xiao, Arian Hosseini, Friederike Niedtner, and Nicolas Le Roux. Deep language
networks: Joint prompt training of stacked llms using variational inference. arXiv preprint
arXiv:2306.12509, 2023.

Mirac Suzgun, Nathan Scales, Nathanael Schérli, Sebastian Gehrmann, Yi Tay, Hyung Won
Chung, Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny Zhou, et al. Challenging big-
bench tasks and whether chain-of-thought can solve them. arXiv preprint arXiv:2210.09261,
2022.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux,
Timothée Lacroix, Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal Azhar, et al.
Llama: Open and efficient foundation language models. arXiv preprint arXiv:2302.13971,
2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2:
Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023b.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in
language models. arXiv preprint arXiv:2203.11171, 2022.

Zhenhailong Wang, Shaoguang Mao, Wenshan Wu, Tao Ge, Furu Wei, and Heng Ji. Un-
leashing cognitive synergy in large language models: A task-solving agent through
multi-persona self-collaboration. arXiv preprint arXiv:2307.05300, 2023.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V
Le, Denny Zhou, et al. Chain-of-thought prompting elicits reasoning in large language
models. Advances in Neural Information Processing Systems, 35:24824-24837, 2022.

Kaiyu Yang, Aidan M Swope, Alex Gu, Rahul Chalamala, Peiyang Song, Shixing Yu, Saad
Godil, Ryan Prenger, and Anima Anandkumar. Leandojo: Theorem proving with retrieval-
augmented language models. arXiv preprint arXiv:2306.15626, 2023.

Zheng Yuan, Hongyi Yuan, Chengpeng Li, Guanting Dong, Chuangi Tan, and Chang Zhou.
Scaling relationship on learning mathematical reasoning with large language models. 8
2023. URL http://arxiv.org/abs/2308.01825.

Xiang Yue, Xingwei Qu, Ge Zhang, Yao Fu, Wenhao Huang, Huan Sun, Yu Su, and Wenhu
Chen. Mammoth: Building math generalist models through hybrid instruction tuning.
arXiv preprint arXiv:2309.05653, 2023.

JD Zamfirescu-Pereira, Richmond Y Wong, Bjoern Hartmann, and Qian Yang. Why johnny
can’t prompt: how non-ai experts try (and fail) to design llm prompts. In Proceedings of
the 2023 CHI Conference on Human Factors in Computing Systems, pp. 1-21, 2023.

Mengxue Zhang, Zichao Wang, Zhichao Yang, Weiqi Feng, and Andrew Lan. Interpretable
math word problem solution generation via step-by-step planning. 6 2023. URL http:
//arxiv.org/abs/2306.00784.

13

http://arxiv.org/abs/2308.01825
http://arxiv.org/abs/2306.00784
http://arxiv.org/abs/2306.00784

Published as a conference paper at COLM 2024

A Appendix

A generation example

Question: Every day, Wendi feeds each of her chickens three cups of mixed chicken feed, containing
seeds, mealworms and vegetables to help keep them healthy. She gives the chickens their feed in three
separate meals. In the morning, she gives her flock of chickens 15 cups of feed. Inthe afternoon, she
gives her chickens another 25 cups of feed. How many cups of feed does she need to give her
chickens in the final meal of the day if the size of Wendi's flockis 20 chickens?

Vanilla supervised fine-tuning Fine-tuning with arithmetic planning tokens

Every day, Wendi gives her chickens 15
cups of feed in the morning + 25 cups of
feed in the afternoon = <<15+25=40>>40
cups of feed.

<prefix> <+> Wendi gives her flock 15 cups of feed in the
morning and another 25 cups in the afternoon, for a total
of 15+25 = <<15+25=40>>40 cups of feed.

prefix> <*> If Wendi has 20 chickens, then she needs
0*3 = <<20*3=60>>60 cups of feed to feed her flock.

N A

If she has 20 chickens and she feeds
them 40 cups of feed every day, then
each chicken gets 40/20 =
<<40/20=2>>2 cups of feed per chicken.

prefix> <->If Wendi has already given her flock 40 cups
f feed, then she needs to give her flock 60-40 = <<60-
0=20>>20 more cups of feed.

B O A

) * Drifting away
Theansweris:2 from the correct
reasoning flow | <prefix> <answer> The answer is: 20

Figure 6: An example of a question from the GSM8K dataset, along with two chain-of-
thoughts solutions generated by LLMs. Left: The reasoning chain generated by vanilla
supervised fine-tuning LLM drifts away from correct reasoning flow and leads to a wrong
answer. Right: we use planning tokens to guide an LLM’s generation at every reasoning
step to encourage the correct reasoning flow. For simplicity, we show the variant of our
method which utilizes arithmetic planning tokens: <prefix>, <+>, <x>, <->, <answer> are the
planning tokens added to the original vocabulary.

Training details

Due to excessive computational requirements, in the experiments using Llama?2 as the base
model, we rely on low-rank adapters (LoRAs) (Hu et al., 2021) to fine-tune the base LLM.
We apply LoRAs to the projection parameters of each MLP block in the base LLM. For all
methods, we use a rank of 16, and a dropout of 0.05. To further reduce the memory usage,
we load 13B Llama2 in 8 bits at training time. For Phi-1.5, we perform full-model fine-tuning.
For our variants with planning tokens, we add the embeddings of the planning tokens to
the learnable parameters of the base model, which increases less than 0.001% of the total
trainable parameters. We train all models for 10 epochs, with a learning rate of 2e-5 using
the AdaFactor optimizer (Shazeer & Stern, 2018) for full fine-tuning, and a learning rate
of 2e-4 using the AdamW optimizer (Loshchilov & Hutter, 2017) for parameter efficient
tuning.

Comparison with prompt tuning

In Table 4, We show that the prompting (Lester et al., 2021) /prefix (Li & Liang, 2021) tuning-
based fine-tuning methods are not suitable for complex reasoning problems, compared to
other parameter-efficient fine-tuning methods like LORA. The only way to increase the
capacity of these methods is to add more tunable tokens to the prompt while a large number
of new tokens will significantly increase the inference time and space complexity. Adding a
comparable amount of new tokens to Table 1 yields significantly lower performance than
our method combined with LORA.

Planning token distribution

In Figure 7, we show the frequency of each planning token that appears in the GSM8K test
set. Annotation means the planning type predicted by the SQ-VAE. Generation means the
planning token generated by the fine-tuned language model. As we can see, the marginal
distribution of the planning variable approximately matches between SQ-VAE and the
language model, which means fine-tuning the language model with planning tokens can
effectively learn to infer the correct planning type from the previous steps.

14

Published as a conference paper at COLM 2024

LM Method GSM8K MATH AQUA Avg

Llama2 Prefix 8.9 3.6 329 15.1
(7B) Prompt 15.2 53 26.8 15.8
LORA 38.2 6.5 36.6 27.1

Llama2 Prefix 16.0 3.2 30.3 16.5
(13B) Prompt 27.8 6.4 26.0 20.1
LORA 44.6 7.2 41.3 31.0

Table 4: Comparison between LORA and soft prompt tuning based method. We use a
similar number of tokens for Prefix tuning and Prompt tuning as our methods in Table 1 to
keep the inference time complexity the same.

W Annotation ® Generation

13001382
747 745 765 805
577
== H= 0N 1D II
E= HN
<vae_1> <vae_2> <vae_3> <vae_4> <vae_5>

Figure 7: The marginal distribution (count) of the SQ-VAE planning tokens over the GSM8K
test set.

Planning token attention head

We find the attention head with the largest difference between planning tokens and normal
tokens as shown in Figure 8 as the attention head that strongest corresponds to the planning
token mechanism.

Head corresponding to planning tokens

0.0038
0.0036
0.0034

0.0032

Planning tokens Normal tokens

Figure 8: Heat maps of averaged attention on all attention heads of Llama 2 (7B) fine-tuned
with SQ-VAE planning tokens on GSM8K.

GPT4 prompting details for error type classification

Here is the prompt we used for error type classification:

15

Published as a conference paper at COLM 2024

Error Classification Prompts

Your goal is to identify the error type in reasoning steps of an Al agent in response
to a question.

You are given the corresponding question, the reasoning steps generated by an Al model
and the ground truth reasoning steps in the format:

#H#HH#Question: [question]
##HH#+Generated Answer: [reasoning]
#HH#HGT reasoning: [ground truth reasoning].

Your task is to identify the error type in Al's reasoning. There are 5 different error
types: (1) Misunderstanding of question, (2) Computation errors, (3) Inaccurate
extraction of question information, (4) Wrong application of math knowledge, (5)
Wrong logic/unreasonable step.

Here are some examples of each of the error types:

1 Misunderstanding of question: ask about total number of cups in the final meal,
answer about number of cups each chicken get.: Question: Every day, Wendi feeds
each of her chickens three cups of mixed chicken feed, containing seeds,
mealworms and vegetables to help keep them healthy. She gives the chickens their
feed in three separate meals. In the morning, she gives her flock of chickens 15
cups of feed. In the afternoon, she gives her chickens another 25 cups of feed.

How many cups of feed does she need to give her chickens in the final meal of
the day if the size of Wendi's flock is 20 chickens? Every day, Wendi gives her
chickens 15 cups of feed in the morning + 25 cups of feed in the afternoon =
<<15+25=40>>40 cups of feed. If she has 20 chickens and she feeds them 40 cups of
feed every day, then each chicken gets 40/20 = <<40/20=2>>2 cups of feed per
chicken. The answer is: 2

2 Computation errors: 7 + 3301x != 3371x: Question: What is the smallest positive
integer N such that the value $7 + (30 \times N)$ is not a prime number? We
have $7 + (30 \times N) = 7 + 30 + 300 + 3000 + \dots + (30) \times N = 7 + 3301x
= 3371x$ We write $3371x$ as $3300+71x$, in order to factor out a multiple of 33
We can try adding one to $71%$ and subtracting it from $3300% If we add 2, we get
$73%, but $73% is prime If we add 4, we get $75%, but $75% is prime If we add 8,
we get $83%, but $83% is prime If we add 16, we get $99%, but $99% is prime If
we add 32, we get $131%, but $131% is prime If we add 64, we get $195%, but $195%
is prime If we add 128, we get $323%, but $323% is prime If we add 256, we get
$581%, but $581% is prime If we add 512, we get $803%, but $803% is prime If we
add 1024, we get $1127%, but 1127% is prime If we add 2048, we get $1335%, but
$1335% is prime If we add 4096, we get $1544%, but $1544% is prime If we add
8192, we get $1763%, but $1763% is prime If we add 16384, we get $2401%, but
$2401% is prime If we add 32768, we get 2777%, but 2777 is prime Therefore,
the smallest integer N is $\boxed{2777}$. The answer is: 2777

16

Published as a conference paper at COLM 2024

Error Classification Prompts (Cont’d)

3 Inaccurate extraction of question information:

Question: John drives for 3 hours at a speed of 60 mph and then turns around because
he realizes he forgot something very important at home. He tries to get home in
4 hours but spends the first 2 hours in standstill traffic. He spends the next
half—hour driving at a speed of 30mph, before being able to drive the remaining
time of the 4 hours going at 80 mph. How far is he from home at the end of
those 4 hours? He was driving at 60mph for 3 hours so he traveled
60%3=<<60%x3=180>>180 miles. He was driving for 4 hours and spent 2 hours
standing still so he drove 4-2=<<4-2=2>>2 hours. He drove 2 hours at 30mph so he
traveled 2%30=<<2%30=60>>60 miles. <— should be half hour He drove 2 hours at
80mph so he traveled 2x80=<<2%80=160>>160 miles. <— should be 1.5 hour He drove
180 miles at 60mph, 60 miles at 30mph and 160 miles at 80mph for a total of
180+4-60+160=< <180+60+160=300>>300 miles. <— probably because 180—60—160 does not
make sense so the model change it to a sum The answer is: 300

4 Wrong application of math knowledge: it's not a geometric sequence: Question: An

airplane climbs 100 feet during the first second after takeoff. In each
succeeding second it climbs 100 feet more than it climbed during the previous
second. How many seconds does it take for the plane to reach an altitude of

12,000 feet above its takeoff height? The number of feet the plane is from the
ground is the target of a geometric sequence with first term 0 and common ratio 2
We are asked to find the number of terms of this sequence which have a sum of
12000 The first term is 0, and the common ratio tells us that the second term is
2 more than the first , the third is 2 more than the second, and so on This means
that the product of all the terms is $270\cdot{0}\cdot{2}\cdot{4}\cdot{8}\cdot
{16} \ cdot {32} \ cdot{64}\cdot{128}\ cdot{256}\ cdot{512}\ cdot{1024}\ cdot{2048}\cdot
{4096} \ cdot {8192} \ cdot {16384} \ cdot {32768} \ cdot {65536} \ cdot{131072}\ cdot {262144}\
cdot {524288}\ cdot{1048576}%, and the sum of all these terms is $262144 + 262145 +
\cdots + 1048576 = 2\cdot{270} + 2\cdot{271} + \cdots + 2\cdot{27{63}} = 2\ left
(1 + 2 + \cdots + 2°{63}\right)$ $2°{63}$ is equal to $2°{64} — 1%, so we add 1
to the right hand side to get $2(1 + 2 + \cdots + 2°{64} — 1) = 2\left(2"{64} —
1\right) = 2°{65} — 1$ Finally , we subtract 1 from the right hand side to get $2
{65} — 1 — 1 = 2"{65} — 2°{65} = 1%, so it takes $\boxed{65}% seconds for the
plane to reach an altitude of 12,000 feet. The answer is: 65

5 Wrong logic/unreasonable step: does not make sense to use 6!—4!: Question: In how
many ways can we seat 6 people at a round table if John and Sam insist on sitting
next to each other? (Two seatings are equivalent if one is a rotation of the
other.) The number of all seating arrangements is $6!$% The number of seating
arrangements in which John and Sam are next to each other is $4!$% Therefore,
there are $6!—4!=\boxed{75}$ different ways to seat the group. The answer is: 75
Question: If $2ab = 12$, evaluate $8a"2b"2%. We have $2ab = 12 = 23 \cdot b"2%,
so $8a"2b"2 = 273 \cdot (8a"2)b"2 = 2°3 \cdot 2b"2 = \boxed{8b"2}$. The answer is
$8b"29%

Format the output as follows: ####Type: [only the index of the error type 1—5] ####
Explanation: [short and precise explanation].

Here is an example to analyze:
#HHH*Question :
#HHH#Generated Answer:

H#HHHGT reasoning:

Your response:

17

	Introduction
	Method
	Planning Tokens Inference
	Planning Tokens Parametrization

	Experiments
	Results
	Analysis

	Related Work
	Conclusion
	Ethics Statement
	Appendix

