A Task-Level Explanation Framework for Meta-Learning Algorithms

Yoshihiro Mitsuka'",

Shadan Golestan?, Zahin Sufiyan’, Shotaro Miwa* Osmar R. Zaiane*

! Information Technology R&D Center, Mitsubishi Electric
2 Alberta Machine Intelligence Institute

3 Department of Computing Science, University of Alberta

4 Advanced Technology R&D Center, Mitsubishi Electric

Abstract

Meta-learning enables models to rapidly adapt to new tasks
by leveraging prior experience, but its adaptation mecha-
nisms remain opaque, especially regarding how past train-
ing tasks influence future predictions. We introduce TLXML
(Task-Level eXplanation of Meta-Learning), a novel frame-
work that extends influence functions to meta-learning set-
tings, enabling task-level explanations of adaptation and in-
ference. By reformulating influence functions for bi-level op-
timization, TLXML quantifies the contribution of each meta-
training task to the adapted model’s behaviour. To ensure
scalability, we propose a Gauss-Newton-based approxima-
tion that significantly reduces computational complexity from
O(pg®) to O(pq), where p and q denote model and meta
parameters, respectively. Empirical results demonstrate that
TLXML effectively ranks training tasks by their influence
on downstream performance, offering concise and intuitive
explanations aligned with user-level abstraction. This work
provides a critical step toward interpretable and trustworthy
meta-learning systems.

1 Introduction

Meta-learning, or “learning to learn,” equips models with the
ability to rapidly adapt to unseen tasks, addressing limita-
tions in generalization caused by data scarcity during train-
ing (Song and Jeong 2024; Li et al. 2018; Shu et al. 2021;
Lu et al. 2021) and distribution shifts in deployment en-
vironments (Mann et al. 2021; Mouli, Alam, and Ribeiro
2024; Lin et al. 2020). Despite its growing success and fast
adaptation scenarios, meta-learning remains largely opaque.
Current approaches offer limited insight into which training
tasks influence the adaptation process and final predictions,
creating significant barriers for transparency, trust, and safe
deployment in real-world applications (Zhang et al. 2020;
Khattar et al. 2024; Wen et al. 2022; Yao et al. 2024). Conse-
quently, robust explanation methods are required to enhance
transparency and ensure the safe and reliable deployment of
autonomous systems.

Most explanation methods in machine learning focus on
local interpretability, aiming to understand model behaviour
around individual input examples (Figure 1a). While such

*Mitsuka. Yoshihiro @bp.MitsubishiElectric.co.jp
Copyright © 2026, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

a) Without TLXML:

I Meta-learning Training Tasks

" Given New Task % influence

i already
firetruck vs. truck ) i considered

2
5
2
&
e
?
8
i
S
<3
I
5
%]

(a) Without TLXML, model behaviour is usually explained only
by local saliency on the support/query images.

b) With TLXML: )

Influence Measurement

Meta-learning Training Tasks

i ;" Given New Task
i Actionable !

' : Insight: !
: cat vs. dog bicycle vs. bike car vs. ambulance
(_l *‘ :
i .‘i I .\ \E
o9 :

1 1 re-weight |

firetruck vs. truck

=&

Actionable Insight:
1 discard

(b) TLXML ranks meta-training tasks by their influence on the
new task, providing actionable insights.

Figure 1: Key insights of TLXML.

methods can be adapted to explain meta-learners’ post-
adaptation, they fall short of capturing the unique character-
istics of meta-learning. Notably, the final model behaviour in
meta-learning is shaped not only by the test-time support set
but also by the collection of prior training tasks. This results
in high adaptation sensitivity, as highlighted by Agarwal et
al. (Agarwal, Yurochkin, and Sun 2021) , who showed that
accuracy on CIFAR-FS can range from 4% to 95% depend-
ing solely on the choice of support images—even when the
model remains unchanged.

Furthermore, local explanations often require technical
expertise to interpret (Adebayo et al. 2022) , and may not be
helpful for end-users seeking actionable or intuitive insights.
In contrast, task-level explanations—those that attribute pre-
dictions to previously encountered tasks—align more natu-
rally with how meta-learning models are trained and how
humans reason about prior experience (Figure 1b). Under-
standing how individual tasks contribute to model behaviour
is especially important as meta-learning systems increas-
ingly operate across heterogeneous, multi-domain datasets.
Task-level insights can improve both the interpretability and
safety of such systems by identifying which training con-



texts are most responsible for specific behaviours, making it
possible to re-weight helpful influences and discard harmful
ones, ultimately improving the performance and reliability
of deployed systems.

Influence functions (Hampel 1974; Cook and Weisberg
1980) provide a powerful tool for tracing model predic-
tions back to training data, and have been successfully used
in standard supervised learning to identify influential data
points (Koh and Liang 2017; Koh et al. 2019), assess robust-
ness (Cohen, Sapiro, and Giryes 2020), detect bias (Han
and Tsvetkov 2020), and improve interpretability (Chhabra
et al. 2024). However, influence functions have not yet been
extended to meta-learning, where the training examples are
tasks, not data points.

In this paper, we propose TLXML, a framework for Task-
Level eXplanation of Meta Learning via influence functions.
TLXML quantifies the impact of individual meta-training
tasks on the model’s adaptation and inference behaviour. We
reformulate influence functions to accommodate the bi-level
optimization structure inherent in meta-learning algorithms.
Our approach enables users to understand how prior tasks
shape the learning process in a principled and interpretable
way.

Contributions. Our main contributions are as follows: 1)
Task-Level Explanations for Meta-Learning: We introduce
TLXML, a principled method for quantifying the influence
of meta-training tasks on adaptation and prediction in meta-
learning. It offers concise, interpretable explanations aligned
with user abstraction levels. 2) Scalable Influence Computa-
tion: We analyze the computational cost of TLXML, show-
ing that the exact method scales poorly with O(pq?), where
p and q are the number of model and meta-parameters. We
propose a Gauss-Newton-based approximation that reduces
the cost to O(pq), making TLXML feasible for practical use.
3) Empirical Validation: We empirically demonstrate that
TLXML can meaningfully rank meta-training tasks by their
influence on adaptation and performance, successfully iden-
tifying helpful versus unhelpful training tasks across several
benchmarks, and it can be utilized for improving the adapta-
tion ability of meta-trained models.

2 Related work

Influence functions for machine learning. The primary fo-
cus of existing research is the use of influence functions
in supervised learning initiated by Koh and Liang (2017).
Influence functions have been successfully used for multi-
ple purposes, such as explaining model behavior with re-
spect to training data in various tasks (Barshan, Brunet, and
Dziugaite 2020; Koh and Liang 2017; Han, Wallace, and
Tsvetkov 2020), quantifying model uncertainty (Alaa and
Van Der Schaar 2020), crafting/detecting adversarial train-
ing examples (Cohen, Sapiro, and Giryes 2020). These ap-
proaches focus on data-level explanations, rendering them
of limited practical value in meta-learning settings. TLXML
leverages influence functions for task-level explanations, of-
fering more effective insights into how training tasks influ-
ence the model’s behavior. However, as noted in Alaa and
Van Der Schaar (2020), computing the Hessian matrix is ex-

pensive. To scale the methods of influence functions to more
complex networks and larger datasets, TLXML uses an ap-
proximation method for faster computation of the matrix.

Explainable AI (XAI) for meta-learning. Naturally, XAI
methods that are agnostic to the learning process are applica-
ble for explaining inference in meta-learning. Although this
area is still in its early stages, several research examples ex-
ist (WoZnica and Biecek 2021; Sijben et al. 2024; Shao et al.
2023). The closest work to ours is by Woznica and Biecek
(2021) who quantified the importance of meta-features, i.e.,
high-level characteristics of a dataset such as size, number
of features and number of classes. However, we emphasize
that the goal of meta-learning is to train models that gener-
alize across fasks, and understanding the impact of training
tasks is crucial for evaluating a model’s adaptability.

Impact of training data. The robustness of machine
learning models is another area where the impact of train-
ing data is frequently discussed (Khanna et al. 2019; Ribeiro,
Singh, and Guestrin 2016). This topic has also been explored
in the context of meta-learning such as creating training-
time adversarial attacks via meta-learning (Ziigner and
Gilinnemann 2019; Xu et al. 2021), training robust meta-
learning models by exposing models to adversarial attacks
during the query step of meta-learning (Goldblum, Fowl,
and Goldstein 2020), and data augmentation for enhanc-
ing the performance of meta-learning algorithms (Ni et al.
2021a). However, influence functions have not been utilized
for meta-learning to date. Similar to Khanna et al. (2019);
Barshan, Brunet, and Dziugaite (2020) in the case of super-
vised learning, TLXML also leverages Fisher information
metrics, which provides a valuable geometric viewpoint for
analyzing the model’s parameter space.

Novelty of this work. We frame task-level explanation
in meta-learning as estimating the influence of each meta-
learning training task exerts on adaptation and inference. We
introduce TLXML, a task-level influence framework that as-
signs the highest influence to training tasks most similar to
the test task and, elevates the scores of tasks from the same
sub-distribution, separating useful from less useful meta-
learning training tasks, and ultimately improving the perfor-
mance of downstream classification tasks.

3 Preliminaries

Influence functions. Koh and Liang (2017) proposed in-
fluence functions for measuring the impact of training data
on the outcomes of supervised learning, under the assump-

tion that the trained weights # minimize the empirical risk:
1 n
0 = argmin L (D", f,) = argmin — 1(z, fo
in (D, ) = argin . 315,10

where fy is the model to be trained, Dt#"={z;}" | is the
training dataset consisting of n pairs of an input z; and a
label y;, i.e., z;=(x;,y;), and the total loss L is the sum of
the losses [ of each data point. The influence functions are



defined with a perturbation ¢ for each data point z;:

0. ; = argmin L ; (Dtrai“, fg)
0

D1l = €
- arg;nlnﬁizzll(zwfe) + ﬁl(zjan)a

which is considered as a shift of the probability that z; oc-
curs in the data distribution. The influence of the data z; on
the model parameter 6 is defined as its increase rate with
respect to this perturbation:

def dbc;

_ 7EH7181 (zjvfo)
de

Jparam ( ]) _ - 50

ey

6=0

e=0

where the Hessian is given by H= 0p0yL|,_;. The influ-
ence on a differentiable function of 6 is defined through the
chain rule. For example, the influence on the loss of a test
data zies; 18 calculated to be

di (ztes‘m fé )
Iperf(ztestaj) o TZJ

dl (Ztest7 f@)
N df

e=0

) .Iparam(j).
0=0

See Supplement A.2 for the derivation of Eq. 1. An un-
derlying assumption is that the Hessian matrix is invertible,
which is not always true. Typically, in over-parameterized
networks, the loss function often has non-unique minima
with flat directions around them. In this paper, we examine
how the definition of influence functions extends to cases
with a non-invertible Hessian matrix.

Supervised meta-learning. In supervised meta-learning
(See Hospedales et al. (2021) for a review), a task 7T is de-
fined as a pair (D7, L£7) where D7 represents the dataset
and L7 is the associated loss function for the learning task.
The occurrence of each task follows a distribution 7 ~p (7).
An adaptation algorithm A takes as input a task 7 and meta-
parameters w, and outputs the weights 6 of the model fo. The
learning objective is stated as the optimization of w with re-
spect to the test loss averaged over the task distribution:

[ET(IDT,tcst ’ fé‘l‘ )}

w=argmin F
w T~p(T)

with 87 = A(T,w)
The formulation of empirical risk minimization uses sam-
pled tasks as building blocks, which are divided into a
taskset for training (source taskset) D¥"¢={7<()}M and

a taskset for testing (target taskset) D"&={7 &)} M The
learning objective is stated as:

M
w = argmin i Z ﬁbrc(l)(DbrC(z)test’ fgi) @
“ i=1
with éz — A(Dsrc(i)train’ Esrc(i),w)

One performance metric in meta-testing
is the test loss Lts()(prrelitest £y where
gi=A(Dtre(train pira() ) We  experiment  with
MAML (Finn, Abbeel, and Levine 2017), and Prototypical
Network (Protonet) (Snell, Swersky, and Zemel 2017),
two widely used meta-learning methods. Supplement A.1
provides the explicit forms of .4 for them.

4 Proposed Method
4.1 Task-level Influence Functions

We now describe our method. TLXML measures the influ-
ence of training tasks on the adaptation and inference pro-
cesses in meta-learning. To measure the influence of a train-
ing task 77 on the model’s behaviors, we consider the task-
level perturbation of the empirical risk defined in Eq. 2:

M

. 1 ;1 (i) tes
L:)g —arg min M Z Lt ('D(l)tebt’ féz) (3)
“ i=1
€ . . .
+ M‘C] (D(J)tebt7 f(;j) @)

with §i=A(D@train £i ;) The influence on & is given by:

dar) 1 QLI (DUWtest | £5.)
Jmeta déf € — 7H—1 063
() de |._, M Ow .
(5
where the Hessian matrix H is defined as follows:
M B .
1 o2t fD(z)test7 5
go L ( fa0) ©
M < Jwow
i=1 w=w

See Supplement A.2 for the derivation of Eq. 5. The
model’s behavior is affected by the perturbation through the

adapted parameters 07 = A(D®ain £i (7). The influ-
ence of the training task 77 on model parameters 6 =
A(DWtrain £i 5) is measured by:

def day

Iadpt T
(0,5) = —2

(7

e=0
B OA (D(i)train’ ﬁi’ w)
N Ow

Imeta (J) (8)

w=w

The influence of the training task 77 on the loss of a test
task 7" is measured by:

AL (D(i)tcst’ féij)
de

et (g, ) 9)
e=0
_ oLt (fD(i)tes‘c7 f@)

adpt (; -
5 1"%(i,5)  (10)

0=0(%)

The training tasks are used only for evaluating 1™°*2, This
means that we can obtain other explanation data without re-
quiring access to the original raw data. By retaining only



the calculated /™°** from the meta-learning process, we can
mitigate storage concerns, making this approach suitable for
devices with limited storage capacity. We note that the above
method can be extended to a higher level of abstraction
than task-level for situations where task-level explanations
are insufficient, a direction left for future work. See Supple-
ment A.3 for details.

4.2 Approximation via Gauss-Newton matrix

TLXML faces computational barriers when applied to large
models, due to the cost of handling the Hessian in Eq. 6. Al-
though the Hessian is defined as the second-order tensor of
the meta parameters, the bi-level structure of meta-learning
raises a third-order tensor in the form 9,,0,,0 appears during
its computation, resulting in a computational cost of at least
O(pq?) for a model with p weights and ¢ meta-parameters.
(see A.4 for details). Furthermore, as is common in matrix
inversion issues, inverting the Hessian incurs a computa-
tional cost of O(q®), which one of the subjects addressed
by Koh and Liang (2017) for supervised learning.

We use the Gauss-Newton matrix (GN matrix) to approx-
imate the Hessian matrix. For specific loss functions, e.g.,
mean squared error and cross-entropy, the Hessian can be
decomposed into a sum of outer products of two vectors
along with terms containing second-order derivatives. In this
work, we only focus on the case of cross-entropy with the
softmax function, which leads to:

2
oL = positive constant X 1D
Owiw
0 n 0 nj
D 0k () (5 — 0 (wa) "5 5
njk
0y,
=Dt G =0k () e (12)
njk

where y is the output of the last layer, ¢ is the softmax func-
tion, ¢ is the one-hot vector of the target label, j, k are class
indices, and n is the index specifying tasks and input tensors
in them. The first term of Eq. 13 is the GN matrix or the
Fisher information metric. Since the second-order deriva-
tives in the second term give rise to third-order tensors, we
focus on cases where these derivatives are uncorrelated with
their coefficients, allowing the Hessian to be approximated
by the first term alone.

Approximating the Hessian using the GN matrix is well-
established in supervised learning (see for example Martens
(2020)). In supervised learning, both L and y are func-
tions of the model’s weights #; in our setting, they are
functions of the meta-parameters w. This difference does
not affect the argument. Using basic facts regarding cross-
entropy (see Supplement A.5), we show that when the train-
ing taskset closely approximates a distribution P (X |w™*)
and the learned w is close to w*, the first term in Eq. 12
dominates. As the term is positive-semidefinite, we use its
factorized form:

0L
0w, 0w,

nj

Wini
A . ="
W = argmin L,(w) e smm === oo m"" /
_ ’
— v ,
die| 4 T ’

de | — HYH % ,
(1—H+H)% ¢l g
/Vﬁ ~ T il
W= argmin L(w) (A

Figure 2: Diagram of the projected influence function, which
measures the influence of a training task on the meta-
parameters with the Hessian flat directions projected out.

where the parameter index p as a row index and (nj) as a
column index. In the case of ¢ meta-parameters, M tasks,
n data points per task, and c target classes, the shape of V'
is ¢ X enM, meaning that, if ¢ > cnlM, the approximated
Hessian has zero eigenvalues. This also happens for smaller
q if the columns of V are not independent of each other.

4.3 Influence Functions with Flat Directions

Figure 2 depicts a generic case where flat directions of the
Hessian appear in the parameter space. When the number
of parameters is sufficiently large, the points that satisfy the
minimization condition, & = argmin L(w), form a hyper-
surface, resulting in flat directions of the Hessian. The same
holds for the perturbed loss L.(w) used for defining the in-
fluence functions. The position along the flat directions re-
sulting from minimization depends on the initial conditions
and the learning algorithm. We do not explore this depen-
dency in our paper. Instead, we employ a geometric defini-
tion of influence functions: we take the partial inverse H* of
H in the subspace perpendicular to the flat directions, known
as the pseudo-inverse matrix. With this approach, we modify
the definitions of influence functions as:

disd

de |._,

1 QLI (DUtest | £
=— —Ht A . (14
M Ow (14

Imeta(j) déf H+H

w=w

See Supplement A.2 for the derivation of the second equa-
tion. H' H represents the projection that drops the flat di-
rections. When the Fisher information metric approximates
the Hessian, those are viewed as the direction in which the
data distribution remains unchanged. The influence func-
tion, projected by HTH, expresses the sensitivity of & in
the steepest direction of the distribution change.

Note that H' can be computed without diagonalizing
H = VVT, Instead, this can be achieved by first find-
ing an orthogonal matrix O that diagonalizes VTV, i..,
VIV =0AOT. Then, VVT is implemented as a sequence
of unnormalized projections in the direction of the column
vectors of VO = [vy,va,---],ie., VVT = 3 vvl. Since
v;s are orthogonal to each other, the pseudo-inverse of V'V 7



is given by adjusting the norms of the projections associ-
ated with non-vanishing vectors, i.e., v;v] — v;vl /|v;|* for
|v;| > 0. See Supplement B.1 for implementation details.

4.4 One-step Update via TLXML

We explore how TLXML can be used to enhance the per-
formance of meta-learners. For utilizing influence functions
for supervised learning, Koh and Liang (2017) employed
a leave-out approach, in which the network is retrained af-
ter removing training data with low influence scores. Apply-
ing this approach to improve meta-learning seems reason-
able, but it digresses from our theoretical argument. Since
the influence functions are defined based solely on the local
structure around the convergence point, it is not guaranteed
that tasks or data with low scores exert negative influences
throughout the entire training process.

Recalling that /™ represents the derivative of the meta-
parameters with respect to the perturbation € in the training
task distribution, we can regard it as a linear approximation
of the parameter shifts caused by that distribution change:

o
dw?

de

8w ~ & % = & x ™% (5) (15)

e=0

where we rename the non-zero perturbation parameter to £
to avoid confusion with the differential variable. The case
of £&= — 1 corresponds to removing task j during leave-out
retraining. This equation allows us to adjust the parameters
w to account for the distribution change without rerunning
the training. This approach can be used not only to block
the influence of low-scored tasks with negative £ but also to
amplify the influence of high-scored tasks with positive &.

S Experiments

In this section, we first examine whether TLXML provides
adequate explanations that attribute the model’s behavior to
the influence of meta-learning training tasks; and second, we
investigate whether incorporating TLXML into the training
process can improve the performance of meta-learners.

5.1 Validation of TLXML

We empirically investigate whether the proposed method
satisfy two fundamental properties: 1) If the network mem-
orizes a training task, its influence on a test task with simi-
lar characteristics should be scored higher than the influence
of other training tasks; and 2) if the network encodes gen-
eralizable information about the task distribution, training
tasks that belong to a subpopulation sharing salient features
with the test task, should receive higher influence scores than
tasks outside that subpopulation. Both properties are natural
requirements for an explanation method to be regarded as
a method based on past experiences, as training tasks that
resemble the test task generally boost test performance.

Setup We employ MAML and Protonet as meta-learning
algorithms and conduct experiments with few-shot learning
problems taken from the Minilmagenet (Vinyals et al. 2016)
and Ominiglot (Lake, Salakhutdinov, and Tenenbaum 2015)
datasets. In addition to them, we use two datasets created

ccunt

—0.2 —0.1 . ) ¥ 0.3 0.4

(a) Example of training task score distribution in a single test.
Highlighted is the training task identical to the test task.

40

30 4

count

20

N
° u_l.ll,|.|.|-..\a.|.,l...,
°

(b) Histogram of the self-ranks. The self-rank is defined as the
rank of the training task identical to each test task.

Figure 3: Test with training tasks with a two-layer fully con-
nected network (1,285 parameters) overfitted to 128 training
tasks in Minilmagenet with MAML.

for our purposes. Unless otherwise stated, experiments use
a 5-way 5-shot configuration. The implementation builds on
the lean2learn meta-learning library (Arnold et al. 2020) and
PyTorch’s automatic-differentiation framework. We train the
meta-parameters with Adam, employing a meta-batch size
of 32, that is, gradients are accumulated over 32 randomly
sampled tasks before each update.

Distinction of Tasks To validate property 1, we generate
pairs of similar training and test tasks by making each test
task identical to one of the training tasks. We then apply
Eq. 10 to the trained network and examine whether it assigns
a higher influence score to the training task identical to each
test task than to any other training task.

Figure 3 presents the results for a two-layer, fully con-
nected network (1,285 parameters) trained with MAML and
overfitted on 128 MinilmageNet training tasks. Figure 3a il-
lustrates a successful case in which the training task identical
to the test task (highlighted in red) is clearly distinguished
from all other training tasks. Figure 3b shows the distribu-
tion of the ranks assigned to the training task identical to the
test task across 128 trials (we call them self-ranks).

Although the self-task often appears near the top of the
ranking, it is not always placed first(it is 12.6 £ 18.9). This
is likely because of the non-convexity of the training loss. In
our case, many of the 1285 Hessian eigenvalues are close
to zero, and 92 are negative, violating the underlying as-
sumption of Eq. 5 (See B.3 for details). The extended influ-
ence function in Eq. 14, which replaces the inverse Hessian
with its pseudo-inverse, circumvents this instability. Pruning



test_task_idx: 79
25 3 —

normal task
=== noise task

204

15

count

10 4

o4
—0.0002 —0.0001 0.0000 0.0001 0.0002
source_task_score

Figure 4: Example of training task score distribution (syn-
thetic dataset).

the 92 negative directions from the Hessian (keeping 1193
positive eigenvalues, setting the others to zero, and invert-
ing only the positive ones) drives the self-rank to a perfect
0.0£0.0. The rank stays perfect as we aggressively truncate
the spectrum down to 1024, 512, 256, 128, and 64. Only
when we keep 32, 16 or 8 eigenvalues does the ranking de-
grade (0.01+0.2,2.04+3.2 and 8.6 £9.1, respectively). Thus,
we observe that discarding too many eigenvalues degrades
the self-rank, underscoring the need for an appropriate es-
timate of the Hessian’s eigenspace to maintain reliable task
discrimination. Also, as a sanity check, we see that reducing
the similarity of training and test tasks leads to a degradation
of the self-ranks (See Supplement B.3 for details).

Distinction of Normal and Noise Task Distributions

To validate property 2, we prepare three training tasksets that
include a subpopulation with greater or less similarity to the
test tasks than the rest of the training tasks. In each case,
we enforce the desired similarity by replacing a subset of
training tasks with tasks consisting of noise data.

Classification of Synthetic Data To examine the method
with the exact form of Eq. 5, we employ a lightweight net-
work and tasksets that the network can learn easily. We cre-
ate tasksets of clustered data points in a two-dimensional
space. Using Gaussian distributions, we first sample cluster
centers around the origin of the plane and then the members
of each cluster around its center and assign a unique label
to each cluster. Noise tasks consist of data points sampled
around the origin and assigned random labels.

Figure 4 shows the results of a 3-layer fully connected net-
work (63 parameters) trained with 1024 training tasks that
include 128 noise tasks in the 3-ways-5-shots problem set-
ting. We observe that the normal and noise tasks follow dif-
ferent distributions. To formalize the intuitive similarity be-
tween two distributions, we define proper order as an order-
ing that preserves that similarity (e.g., subpopulations shar-
ing the same subclass are more similar). Tests that result in
such a relationship are referred to as tests with the proper
order or proper tests. We score the training tasks using the
influence function evaluated over 128 test losses and observe
that 113 tests result in the proper order of the training task
distributions in terms of their mean values. According to the
binomial test, this count exceeds the average count (= 64)

learning method  dataset proper tests

[count] [o]
MAML MI 85.6+11.1 3.842.00
MAML oM 94.0+6.0 53*+l1.10
Protonet MI 95.6+5.3 5.6£0.9 ¢
Protonet oM 81.245.5 3.0£1.00

Table 1: Experiment of distinguishing noise tasks and
normal task distributions. MI and OM represent Mini-
Imagenet and Omniglot respectively. The standard devi-
ation o under the hypothesis of the random ordering is
/0.5 x 0.5 x 128 ~ 5.66. = means the average and stan-
dard deviation across 5 runs of training.

/ Test task 86 \ / Train task 1586 \

(10, 60) (10, 60) (1!

(9,76) (9,76) (¢

&

(15, 78) (15, 78) (1

EEsE

(2,82) (2,82) (2

-

(5,87) (5,87) (5

(3,16) (3.16) (3

(9,17) (9,17) (9

i -

(15, 44) (15, 44) (1!

> leeal

(17, 47) (17, 47) (1

(19, 81) (19, 81) (1¢

G- ) | Bl

Figure 5: Examples of FC60 tasks. Left: A test task (accu-
racy=0.96). Right: the training tasks ranked 1% by TLXML.
The pair of labels on each image represents the semantic la-
bels (superclass, subclass) obtained from CIFAR100.

of the binomial distribution by 8.70, satisfying property 2
statistically. See Supplement B.4 for details.

Minilmagenet and Omniglot. We validate property 2 on
realistic tasks by using a large network with sufficient capac-
ity to generalize. Given the added computational complex-
ity, we adopt the approximation method in Eq. 13. For each
dataset, using 8192 training tasks, We train a network with
3-conv layers using MAML (~20k parameters) and a 4-
conv-layer feature extractor using Protonet (~28k parame-
ters). For each training taskset, we replace the image tensors
of 1024 tasks with uniform noise tensors of the same shape
(noise images). For each training setup, we evaluate the in-
fluence of the training tasks on 128 test loss values using
Eq. 10 with the projected influence on the meta-parameters
(Eq. 14) and the GN matrix approximation (Eq. 13).

Table 1 shows the number of test tasks in which the proper
ordering holds; A two-sided binomial test rejects the null
hypothesis of random ordering, suggesting that our scoring
method satisfies property 2 statistically. See Supplement B.4
for the results with different training settings.

Consistency with Semantic Similarity

We also validate TLXML in terms of semantic similari-
ties between training and test tasks. We define a new im-



learning method  overlap  train tasks  proper tests

filtered
MAML 1 75224314 618 (+6.60)
MAML 2 4781+£718 676 (+10.30)
MAML 3 1508+422 688 (+11.00)
MAML 4 171+£69 637 (+7.80)
Protonet 1 75224314 658 (+9.10)
Protonet 2 4781718 672 (+10.00)
Protonet 3 1508+422 703 (+11.90)
Protonet 4 171£69 644 (+8.30)

Table 2: Experiment of distinguishing training tasks with su-
perclasses shared with test tasks from other training tasks. +
means the average and standard deviation across 1024 tasks.
The standard deviation o under the hypothesis of the random

ordering is /0.5 x 0.5 x 1024 = 16.

age dataset, the FC60 dataset, in which each image is as-
signed hierarchical labels specifying the super- and sub-
class of the image. We use the FC100 dataset (Oreshkin,
Rodriguez Lépez, and Lacoste 2018), which curates meta-
learning task sets from CIFAR-100 (Krizhevsky 2009). The
tasks in FC100 are grouped based on their superclass, and
the train, validation and test splits are constructed so that
no superclass appears in more than one split. We split the
FC100 training taskset by dividing the subclasses of each 12
superclasses into separate training and test splits, resulting in
train/test splits that have 60 subclasses in total and share 12
superclasses. Figure 5 shows examples of a test and training
task in FC60 dataset.

We train a network with 3-conv layers using MAML
and a 4-conv-layer feature extractor using Protonet, using
8192 training tasks from FC60. Table 2 shows the results
of counting the proper tests when the training subpopulation
is defined by how many superclasses it shares with the test
task, illustrating that TLXML distinguishes training tasks
that share semantic properties with test tasks from the other
tasks. See Supplement B.5 for details.

5.2 Post-Convergence One-Step Update

We examine the effect of the one-step update Eq. 15 from the
convergence point of meta-learning. We utilize 8192 training
tasks from FC60 and train a network with 3-conv layers us-
ing MAML. Each training task is scored with the influence
function for the average test loss across 1024 test tasks.

Table 3 shows the effects of blocking training tasks with
one-step updates (and leave-out for comparison) of the
trained parameters on the test accuracies. We observe that
the test accuracies are improved by one-step update with
suitable shift values (&), whereas leave-out retraining fails
to yield a statistically significant gain.

Table 4 shows the effects of both blocking and enhanc-
ing training tasks. The table evaluates the impact on the
test accuracies in two cases: test datasets with and without
shared superclasses (FC60 testset and FC100 testset, respec-
tively). We observe the improvement in those combinations
of blocked/enhanced and the two testsets, except the case
of enhancing the training tasks for the FC100 testset. Even

Dataset (train—test) #tasks  Method Accuracy

FC60—FC60 2048 £=-8 0.659+0.009

(0.663 £ 0.004) 2048 E=—4  0.674+0.007
2048 E=-2 0.672+0.007
2048 E=-1 0.669+0.004
2048 leave-out  0.667+0.01

Table 3: Test accuracies after a single TLXML-guided up-
date to a MAML model with blocked tasks. & means the av-
erage and standard deviation across 5 runs of MAML train-
ing. Bold values outperform the MAML baseline (shown
in the bracket) with a unpaired Welch two-sample t-test,
p < 0.05.

Dataset (train—test) #tasks & = —4 (block)
FC60—FC60 (0.663 £ 0.004) 2048 0.67410.007
FC60—FC100 (0.429 + 0.005) 2048 0.449+0.011

Dataset (train—test) #tasks & = 4 (enhance)

FC60—FC60 (0.663 £ 0.004) 2048 0.676+0.008
FC60—FC100 (0.429 £ 0.05) 2048 0.429+0.010

Table 4: Test accuracies after a single TLXML-guided up-
date to a MAML model with blocked and enhanced tasks.
See Table 3 for notation.

in that case, other one-step update parameters boost perfor-
mance (see Supplement B.6 for details).

6 Discussion and Conclusion

This paper introduced TLXML, a method for quantifying the
impact of meta-learning tasks. We reduced its computational
cost using the GN matrix approximation and handled flat
directions around the convergence point using the pseudo-
inverse Hessian. Experiments suggest that TLXML provides
proper task-level explanations, leading to actionable insights
and improved performance in downstream tasks. The cur-
rent evaluation is limited to a few-shot classification prob-
lems with small networks, is quantitative, and conducted
primarily using standard benchmark datasets. Confirmation
across diverse, large-scale experimental setups is left for
future work; investigating how non-experts would leverage
TLXML is a worthwhile future direction.

Extending TLXML beyond classification tasks, e.g., re-
gression and Reinforcement Learning (RL), is expected to
be straightforward, as its formulation via gradients is almost
agnostic to the differences in the learning objectives. For
example, it is plausible that an RL policy can be improved
using a similar technique. Moreover, because TLXML pos-
sesses an aspect of task similarity, future work should ex-
plore its relation to general notions, such as task embedding
space, out-of-distribution awareness, or domain adaptations,
not just the usage as a similarity measure between training
and test tasks in each single dataset.

One limitation is the assumption of a local minimum of
the loss function in the definitions of the influence functions.
Future work could aim to design influence functions com-
patible with early stopping techniques.



7 Acknowledgments

The authors thank Sheila Schoepp for helpful discussions at
the early stages of this work.

References

Adebayo, J.; Muelly, M.; Abelson, H.; and Kim, B. 2022.
Post hoc explanations may be ineffective for detecting un-
known spurious correlation. In International conference on
learning representations.

Agarwal, M.; Yurochkin, M.; and Sun, Y. 2021. On sensi-
tivity of meta-learning to support data. In Beygelzimer, A.;
Dauphin, Y.; Liang, P.; and Vaughan, J. W., eds., Advances
in Neural Information Processing Systems.

Alaa, A.; and Van Der Schaar, M. 2020. Discriminative jack-
knife: Quantifying uncertainty in deep learning via higher-
order influence functions. In International Conference on
Machine Learning, 165-174. PMLR.

Arnold, S. M. R.; Mahajan, P; Datta, D.; Bunner, I.; and
Zarkias, K. S. 2020. learn2learn: A Library for Meta-
Learning Research.

Barshan, E.; Brunet, M.-E.; and Dziugaite, G. K. 2020. Re-
latIF: Identifying Explanatory Training Samples via Rela-
tive Influence. In Chiappa, S.; and Calandra, R., eds., Pro-
ceedings of the Twenty Third International Conference on
Artificial Intelligence and Statistics, volume 108 of Proceed-
ings of Machine Learning Research, 1899-1909. PMLR.

Chhabra, A.; Li, P.; Mohapatra, P.; and Liu, H. 2024. ”
What Data Benefits My Classifier?” Enhancing Model Per-
formance and Interpretability through Influence-Based Data
Selection. In The Twelfth International Conference on
Learning Representations.

Cohen, G.; Sapiro, G.; and Giryes, R. 2020. Detecting adver-
sarial samples using influence functions and nearest neigh-
bors. In Proceedings of the IEEE/CVF conference on com-
puter vision and pattern recognition, 14453—-14462.

Cook, R. D.; and Weisberg, S. 1980. Characterizations of an
Empirical Influence Function for Detecting Influential Cases
in Regression. Technometrics: a journal of statistics for the
physical, chemical, and engineering sciences, 22.

Csurka, G.; Dance, C. R.; Fan, L.; Willamowski, J.;
and Bray, C. 2004. Visual categorization with bags of
keypoints. https://people.eecs.berkeley.edu/~efros/courses/
APO6/Papers/csurka-eccv-04.pdf. Accessed: 2024-11-26.

Finn, C.; Abbeel, P.; and Levine, S. 2017. Model-Agnostic
Meta-Learning for Fast Adaptation of Deep Networks. In
Precup, D.; and Teh, Y. W., eds., Proceedings of the 34th
International Conference on Machine Learning, volume 70
of Proceedings of Machine Learning Research, 1126—1135.
PMLR.

Goldblum, M.; Fowl, L.; and Goldstein, T. 2020. Adver-
sarially Robust Few-Shot Learning: A Meta-Learning Ap-
proach. Advances in Neural Information Processing Sys-
tems, 17886—17895.

Hampel, F. R. 1974. The influence curve and its role in ro-
bust estimation. Journal of the american statistical associa-
tion, 69(346): 383-393.

Han, X.; and Tsvetkov, Y. 2020. Fortifying Toxic Speech
Detectors Against Veiled Toxicity. In Proceedings of the
2020 Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), 7732-7739.

Han, X.; Wallace, B. C.; and Tsvetkov, Y. 2020. Explaining
Black Box Predictions and Unveiling Data Artifacts through
Influence Functions. In Jurafsky, D.; Chai, J.; Schluter, N.;
and Tetreault, J. R., eds., Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics,
ACL 2020, Online, July 5-10, 2020, 5553—-5563. Association
for Computational Linguistics.

Hospedales, T. M.; Antoniou, A.; Micaelli, P.; and Storkey,
A.J.2021. Meta-Learning in Neural Networks: A Survey.
IEEE Trans. Pattern Anal. Mach. Intell.

Khanna, R.; Kim, B.; Ghosh, J.; and Koyejo, S. 2019. In-
terpreting Black Box Predictions using Fisher Kernels. In
Chaudhuri, K.; and Sugiyama, M., eds., Proceedings of the
Twenty-Second International Conference on Artificial Intel-

ligence and Statistics, volume 89 of Proceedings of Machine
Learning Research, 3382-3390. PMLR.

Khattar, V.; Ding, Y.; Sel, B.; Lavaei, J.; and Jin, M. 2024.
A CMDP-within-online framework for meta-safe reinforce-
ment learning. arXiv preprint arXiv:2405.16601.

Koh, P. W.; and Liang, P. 2017. Understanding Black-box
Predictions via Influence Functions. Proceedings of the 34th
International Conference on Machine Learning, 70: 1885—
1894.

Koh, P. W. W.; Ang, K.-S.; Teo, H.; and Liang, P. S. 2019.
On the accuracy of influence functions for measuring group
effects. Advances in neural information processing systems,
32.

Krizhevsky, A. 2009. Learning multiple layers of features
from tiny images.

Lake, B. M.; Salakhutdinov, R.; and Tenenbaum, J. B. 2015.
Human-level concept learning through probabilistic pro-
gram induction. Science, 350(6266): 1332-1338.

Li, D.; Yang, Y.; Song, Y.-Z.; and Hospedales, T. 2018.
Learning to generalize: Meta-learning for domain general-
ization. In Proceedings of the AAAI conference on artificial
intelligence, volume 32.

Lin, Z.; Thomas, G.; Yang, G.; and Ma, T. 2020. Model-
based adversarial meta-reinforcement learning. Advances in
Neural Information Processing Systems, 33: 10161-10173.

Lowe, D. G. 1999. Object recognition from local scale-
invariant features. In Proceedings of the Seventh IEEE Inter-
national Conference on Computer Vision, volume 2, 1150—

1157 vol.2. IEEE.

Lowe, D. G. 2004. Distinctive image features from scale-
invariant keypoints. International Journal of Computer Vi-
sion.

Lu, C.; Wu, Y.; Herndndez-Lobato, J. M.; and Scholkopf,
B. 2021. Invariant causal representation learning for out-of-
distribution generalization. In International Conference on
Learning Representations.

Mann, K. S.; Schneider, S.; Chiappa, A.; Lee, J. H.; Bethge,
M.; Mathis, A.; and Mathis, M. W. 2021. Out-of-distribution



generalization of internal models is correlated with reward.
In Self-Supervision for Reinforcement Learning Workshop-
ICLR, volume 2021.

Martens, J. 2020. New Insights and Perspectives on the Nat-
ural Gradient Method. J. Mach. Learn. Res., 21(146): 1-76.

Mouli, S. C.; Alam, M.; and Ribeiro, B. 2024. MetaPhys-
iCa: Improving OOD Robustness in Physics-informed Ma-
chine Learning. In The Twelfth International Conference on
Learning Representations.

Ni, R.; Goldblum, M.; Sharaf, A.; Kong, K.; and Goldstein,
T. 2021a. Data augmentation for meta-learning. In In-
ternational Conference on Machine Learning, 8152-8161.
PMLR.

Ni, R.; Goldblum, M.; Sharaf, A.; Kong, K.; and Gold-
stein, T. 2021b. Data Augmentation for Meta-Learning. In
Meila, M.; and Zhang, T., eds., Proceedings of the 38th In-
ternational Conference on Machine Learning, volume 139
of Proceedings of Machine Learning Research, 8152-8161.
PMLR.

Oreshkin, B.; Rodriguez Lépez, P.; and Lacoste, A. 2018.
TADAM: Task dependent adaptive metric for improved few-
shot learning. In Advances in Neural Information Process-
ing Systems, volume 31. Curran Associates, Inc.

Ribeiro, M. T.; Singh, S.; and Guestrin, C. 2016. ~” Why
should i trust you?” Explaining the predictions of any clas-
sifier. In Proceedings of the 22nd ACM SIGKDD interna-
tional conference on knowledge discovery and data mining,
1135-1144.

Shao, X.; Wang, H.; Zhu, X.; Xiong, F; Mu, T.; and
Zhang, Y. 2023. EFFECT: Explainable framework for meta-
learning in automatic classification algorithm selection. In-
formation Sciences, 622: 211-234.

Shu, Y.; Cao, Z.; Wang, C.; Wang, J.; and Long, M. 2021.
Open domain generalization with domain-augmented meta-
learning. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, 9624-9633.

Sijben, E.; Jansen, J.; Bosman, P.; and Alderliesten, T. 2024.
Function Class Learning with Genetic Programming: To-
wards Explainable Meta Learning for Tumor Growth Func-
tionals. In Proceedings of the Genetic and Evolutionary
Computation Conference, 1354-1362.

Snell, J.; Swersky, K.; and Zemel, R. 2017. Prototypical net-
works for few-shot learning. Advances in neural information
processing systems, 30.

Song, Y.; and Jeong, H. 2024. Towards cross domain gener-
alization of Hamiltonian representation via meta learning. In
ICLR 2024, The Twelfth International Conference on Learn-
ing Representations, 12319—12338. ICLR.

Vinyals, O.; Blundell, C.; Lillicrap, T.; Kavukcuoglu, K.;
and Wierstra, D. 2016. Matching networks for one shot
learning. Adv. Neural Inf. Process. Syst., 3630-3638.

Wen, L.; Zhang, S.; Tseng, H. E.; Singh, B.; Filev, D.; and
Peng, H. 2022. Improved Robustness and Safety for Pre-
Adaptation of Meta Reinforcement Learning with Prior Reg-
ularization. In 2022 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 8987-8994. IEEE.

Woznica, K.; and Biecek, P. 2021. Towards Explainable
Meta-learning. In Machine Learning and Principles and
Practice of Knowledge Discovery in Databases, 505-520.
Springer International Publishing.

Xu, H.; Li, Y.; Liu, X.; Liu, H.; and Tang, J. 2021. Yet
Meta Learning Can Adapt Fast, it Can Also Break Easily.
In Proceedings of the 2021 SIAM International Conference
on Data Mining.

Yao, Y.; Liu, Z.; Cen, Z.; Zhu, J.; Yu, W.; Zhang, T.; and
Zhao, D. 2024. Constraint-conditioned policy optimization
for versatile safe reinforcement learning. Advances in Neu-
ral Information Processing Systems, 36.

Zhang, J.; Cheung, B.; Finn, C.; Levine, S.; and Jayaraman,
D. 2020. Cautious adaptation for reinforcement learning in

safety-critical settings. In International Conference on Ma-
chine Learning, 11055-11065. PMLR.

Ziigner, D.; and Giinnemann, S. 2019. Adversarial Attacks
on Graph Neural Networks via Meta Learning. In Interna-
tional Conference on Learning Representations.

Technical appendices

A Method details
A.1 Meta-learning Algorithms

We present the explicit forms of the adaptation algorithm A
used for MAML and Protonet.

In MAML, the initial values 6, of the network weights
serve as the meta-parameters, and A represents a one-step
gradient descent update of the weights with a fixed learning
rate o

A(D(i)train7£i79()) _ 90 —a a@ﬁi(D(i)train7‘f9) o
=Yo
In Protonet, the meta-parameters are the weights of a fea-
ture extractor fy and the adaptation A does not involve the
loss function. It passes the weights 6 without any modifica-
tion and calculates the feature centroid c;, for each class k
based on the support set Sy, € D:

0= A (D(i)trauin7 Ei, 9),
Cp = Ak(D(i)train’ Ei’ 9) —

> fol).

(@)
1557 (@y)esy)
The class prediction for each data point x is given by:

L expd(fo(x),ci)
Polile) = S o d(fa(a), o)

where d is a distance measure(e.g. Euclidean distance).

A.2  Implicit differentiation
The second equation in each of Eq. 1, Eq. 5, and Eq. 14 are
derived immediately from the following property.

Property I: If a vector parameter 6, is parametrized by a

scalar parameter € in a way that the local maximum or the
local minimum condition of a second-order differentiable



function L(f,¢) is satisfied for each value of e, then the
derivative of 6. with respect to € satisfies:

0?L(0,¢)

db.  OL(0,¢)
0000 -

909 (16)

o—j, de 0=0,
The proof is done almost trivially by differentiating the local
maximum or minimum condition

OL (0,¢€)

o =0 (17)

0=0.

with respect to € and apply the chain rule. Note that if the
matrix 0L in Eq. 16 is invertible, we can solve the equation
to obtain the e-derivative of ée. Note also that we do not
assume 0, to be the unique solution of Eq. 17 and Eq. 16 is
true for any parametrization of € with e that satisfies Eq. 17.

A.3 Task Grouping

In some cases, the abstraction of task-level explanations is
insufficient, and explanations based on task groups are more
suitable. This requirement occurs when the tasks used in the
training are similar to each other for human intuition. For ex-
ample, when an image recognition model is trained with task
augmentation(see Ni et al. (2021b) for terminologies of data
augmentation for meta-learning), e.g., flipping, rotating, or
distorting the images in original tasks, the influence of each
deformed task is not of interest; rather, the influence of the
task group generated from each original task is of interest.
We extend the definition of influence functions to the task-
group level by considering a common perturbation € in the
losses of tasks within a task group G7/={770 T ...}

~J L
wy = argimn i [
Z[-:Z(ID(l)tCSt7féi) +e Z LI (D(])tCSt7féj)
=1 Tieg!

(18)
with éi:A(’D(i)trai’“7 L w),

which modifies the influence function in Eq. 5 as:

def dw!

Imeta(J) ph

= > IR 19

=0 Tiegs

Eq. 8 and Eq. 10 are only affected by replacing the task index
7 with the task-group index J. The derivation of Eq. 19 is
done by directly applying the argument in A.2

A.4 Third-order tensors in influence functions

Here, we explain how the computational cost of O(pg?)
arises in evaluating the influence function in Eq. 5. This is
due to the third-order tensors which appear in the intermedi-

ate process of evaluating the Hessian:

1 M 82£i(D(i)teSt,f§i(w))

H=— 20
M ~ Owow 0)
M
1
=7 >
i=1
A T . . Py
00" (w) Q2L (DWrest | fy) 00" (w)
ow 0000 0—ii(w) Ow
i((i)test 2 7yi
00 0=ii(w) OwOw
where 6° = A(L®Wain L1 0) Because ¢ and w are

p-dimensional and g-dimensional respectively, the second-
order derivative 999 in the last term is the third-order tensor
of pg? elements. This tensor also appears in the evaluation
of the second-order derivative of the network output with re-
spect to w. In the case of MAML, this tensor is in the form
of a third-order derivative:

920" (Ao) 0?2 A
_ D(z)tram ip
00,00, 690890“4( £, 60)
83
= Y 90,00,00,

ri (D(i)train’ f%) _

A.5 Relations Among KL-divergence,
Cross-Entropy, and Fisher Information
Metric

For the reader’s convenience, we present basic facts related
to the approximation method argued in Section 4.2.

Variant expressions of Hessian The cross-entropy L be-
tween two probability distributions P (X|w*), P (X|w)
parametrized by w* and w, is equivalent to the Kull-
back—Leibler (KL) divergence up to a w-independent term:

Dir (P (X|w*), P (X|w))
= L(P(X|w*),P(X|w))+/P(X|w*)1ogP(X|w*)dX.

Therefore, the second-order derivatives of them with respect
to w are identical:

0? 0?
Owow D1 = Owow L



Furthermore, considering the Taylor expansion of D, with
Aw=w—w*

Drr (P (X[w"), P(X|w))

~ =Y Awk U OMP(X|w*)dX}
+ % D Awt AW |

P (X|w*) 8, P (X|w*)?
P (X|w*)

L Awt Aw”
n%

XEXNP(X‘W* [8 logP(X|w*)8UlogP(X|w*)]

dX]

Z G (W) Aw" Aw”,
5%
we see that
02 0?
Ow,, 0w, KL e OwuOw, | . Guw (&)
(22)

approximations by empirical sums Let us consider the
case that X = (x,¢) is the pair of a network input z,, and
a class label c,, and P is the composition of soft-max func-
tion o and the network output y,, = f.,(z,). Assuming that
sampled data accurately approximate the distributions, we
obtain the expressions of the Fisher information metric in
the form of an empirical sum:

Guv (W*)
= EXNP(X\w*) [au log P (X|w™) 0, log P (X |w")]
= E(c0)~ Py (clz) P(a) |
9y log (P, (clx) P(x)) 8, log (P, (c|lz) P(x))]|,_,-
= E(c,)~ P (clz) P(a) |

Oy log (P, (c|z)) 0, log (P (clx))]|,—,-

~ Z i (Yy) [0, 10g (0 (y,,)) Oy 1og (05 (y,,))]

= Z i (yn) (
nijk
8ynk ayn]
ﬁwu ow,

*

Sir. — ok (Y,)) (035 — 05 (y,,))

w=w*

— Zo'k (yn) (6k‘j -0 (yn)) 8ynk: (“)ynj

Ow,, Ow,

w=w

nkj

To express the Hessian in a similar way, we denote the target
vector of a sample z,, as t,;. Then:

82
Owiw L

- 5w3wZ/P (clz) P(x)log [P, (c|z) P(x)] dx

8w8 Z fni log [

(23)

= 6003 Z tnz 1Og 0 (yn)

ni

OYnk
Ztnz ik — yn)] awk

-3 tnj:kwn) (5t — () s O g
nijk
- 3 o =t T
= 3 0wy Oty — () 2t O 03)
njik
3t~ o) 5
- Z tni [Oik — 0i(Yn)] giya'g (26)

nik

The second-to-last equation proves Eq. 12. From the last
equation, we see that if the distributions P(X|w*) and
P(X|w) are accurately approximated by the training data
samples and the model’s outputs, respectively, the first term
in Eq. 12 becomes equivalent to the Fisher information met-
ric evaluated at w. By comparing Eq. 22 and Eq. 26, we see
that if w is near to w*, the second term of Eq. 26 drops, and
the Hessian is well approximated by the Fisher information
metric.

B Experimental details
B.1 Implementation

We comment on the implementation for computing the
pseudo-inverse H* in Eq. 14 using the approximated Hes-
sian (Eq. 13):

=yvvT 27)

where we define the matrix V' as the horizontal concatnation
of Vs, and each block V satifies

J

=Y ok (Y,) (6r 0
ik

for Vn.

W) 5 50



As explained in the main paper, there exists an orthogonal
system of vectors {v; } such that this matrix can be written as
the summation of unnormalized projections associated with
them: VVT = 3" v;0], and the pseudo-inverse of this sum-
mation is computed by adjusting the normalizations of the
elements satisfying |v;| > 0.

Note that this method is feasible if the number of in-
dependent columns in V' is small. Although the Gauss-
Newton matrix approximation avoids the O(pg?) compu-
tational cost, the large size of V' leads to storage/memory
cost. ! Fortunately, the number of independent columns in
V is expected to be small, and most columns are dropped as
zero vectors. This number corresponds to the non-flat direc-
tions, representing the constraints imposed by the loss mini-
mization condition, and typically, it is at most the number of
training tasks. Therefore, we can implement the accumula-
tion of the vector product elements in Eq. 27 by preparing a
buffer and sequentially adding the elements v;v} from each
training task to it, orthogonalizing the elements inside it, and
dropping zero elements.

In the experiments of Section 5.1, and 5.2 , in accumula-
tion of the vector product elements, 8192 independent vec-
tors are collected, and at each time when the number of vec-
tors exceeds 8192 x 2 the columns of V' are orthogonalized,
the vectors with the largest 8192 norms are kept, and the
other vectors are dropped.

After that, to calculate the pseudo-inverse of the Hessian,
we choose non-zero vector elements. To determine the num-
ber of vectors treated as non-zero, we calculate the pseudo-
inverses under different assumptions on the number of posi-
tive eigenvalues. We assume that the Hessian has 64, 128,
256, 512, 1024, 2048, 4096, and 8192 positive eigenval-
ues. For each of them, we retain the assumed numbers of
eigenvalues in descending order, treat the other elements as
zero, compute the self-ranks, and choose the assumption that
gives the smallest self-rank. If different numbers provide the
same self-rank, the smallest one is chosen.

B.2 Dataset

In the experiments below, we use the Minilmagenet and Om-
niglot datasets. Both are commonly used datasets for mea-
suring model performance in the few-shot learning problem.
In addition, to fill their shortcomings, we define the follow-
ing two datasets.

Synthetic dataset. To validate the proposed method with
the exact form of Eq. 14, we employ a lightweight network
and a taskset that the network can learn easily. We create
tasksets of clustered data points in a two-dimensional space.
Using Gaussian distributions, we first sample cluster centers
around the origin of the plane with a standard deviation of
1 and then the members of each cluster around its center
with a standard deviation of 0.1, and assign a unique label
to each cluster. We also use noise tasks consisting of data

"For example, if the network has 100k parameters, the
training taskset has 1000 tasks, and each task is a 5-
way-5-shot problem, then the number of matrix elements is
pxenM=105x (5x25x1000)~10'°, which makes it challenging
to use floating-point numbers of 16, 32, or 64-bit precision.

points sampled around the origin with a standard deviation
of 1 and assigned random labels.

Fig. 6 shows examples of a normal task and a noise task
in the 3-way-5-shot problem.

FC60 dataset. To investigate the relation between influ-
ence scores and semantic similarity, we need a dataset in
which training and test tasks share semantic properties. We
define a new image dataset, the FC60 dataset, in which each
image is assigned hierarchical labels specifying the super-
and subclass of the image. This is achieved by utilizing
the FC100 dataset (Oreshkin, Rodriguez Lépez, and Lacoste
2018), which curates few-shot-learning tasks from CIFAR-
100 (Krizhevsky 2009). The tasks in FC100 are grouped
based on the superclasses defined in CIFAR100, and the
train, validation, and test splits are constructed in a way
that no superclass appears in more than one split. We split
the FC100 training taskset by dividing the subclasses of
each 12 superclasses into training and test splits, resulting
in train/test splits that have 60 subclasses in total and share
12 superclasses. This dataset is implemented based on the
FC100 dataset implemented in learn2learn. It is achieved
by applying filters on the superclasses at each acquisition
of data.

Table 5 shows the superclasses and subclasses used in
FC60. Fig. 7 shows examples of a test task and a training
task.

B.3 Distinction of Tasks

Setup We train a two-layer fully connected network with
widths of 32 and 5, ReLLU activations, and batch normaliza-
tion layers(1,285 parameters) using 1000 meta-batches sam-
pled from 128 training tasks using MAML. For the Mini-
Imagenet dataset, the model’s input is a 32-dimensional
feature vector extracted from the image using the Bag-
of-Visual-Words (Csurka et al. 2004) with SIFT descrip-
tors (Lowe 1999, 2004) and k-means clustering. For the Om-
niglot dataset, it is a 36-dimensional feature vector extracted
from the image by applying 2-dimensional FFT and clipping
the 6 x6 image at the center.

Minilmagenet In the experiments in Section 5.1 with
Minilmagenet, we encountered negative eigenvalues of the
Hessian. We provide some details here. Figure 8§ shows 1285
eigenvalues arranged from the largest to the smallest. We
can see that the positive eigenvalues are almost restricted to
the first several hundred elements. We can also see negative
eigenvalues in the tail.

In addition to the result mentioned in the main paper, as
a sanity check, we checked that reducing the similarity of
training and test tasks leads to a degradation of the self-
ranks. We degraded the test tasks by darkening some of
the images in the task and examined whether the ranks and
scores of the originally identical training tasks get worse as
the similarity decreases.

Figure 9 shows examples of the results with Minilma-
genet. We observe that the ranks and scores tend to get worse
as the darkness or the number of dark images in the test task
increases. These are examples in the case of a small amount
of Hessian pruning. We investigate the effects of pruning on



train_task_idx: 2

e
[

(a) A normal task

train_task_idx: 392

15 .

-2.0 =15 -1.0 -0.5 0.0 0.5 10 15 2.0
X

(b) A noise task

Figure 6: Examples of synthetic tasks generated from Gaussian distributions.

superclass subclass

| train test
fish [aquarium fish, flatfish, ray] shark, trout]
flowers [orchids, poppies, roses] sunflowers, tulips]

food containers

fruit and vegetables

household electrical devices
household furniture

large man-made outdoor things
large natural outdoor scenes
reptiles

vehicles 1
vehicles 2

[bottles, bowls, cans]

[apples, mushrooms, oranges]
[clock, keyboard, lamp]

[bed, chair, couch]

[bridge, castle, house]

[cloud, forest, mountain]
[crocodile, dinosaur, lizard]
trees [maple, oak, palm]

[bicycle, bus, motorcycle]
[lawn-mower, rocket, streetcar]

cups, plates]

pears, sweet peppers]
telephone, television]
table, wardrobe]
road, skyscraper]
plain, sea]

snake, turtle]

pine, willow]

pickup truck, train]
tank, tractor]

Table 5: Superclasses and subclasses of FC60 dataset

the relation between degradation and self-rank. The third to
sixth columns of Table 6 show the correlation coefficients
between the degradation parameters and the self-rank and
score of the originally identical training tasks. We observe
that pruning increases the correlation values.

Omniglot We also conducted experiments with the Om-
niglot dataset. In this case, we encountered 428 negative
eigenvalues of the Hessian. The effects of pruning on the
self-rank are shown in the first column of Table 7. Tests
with the degradation of those test tasks were also conducted.
Again, we observe that the values of correlation coefficients
are increased by pruning to some extent. However, those cor-
relations are weaker than in the cases of Minilmagenet (Ta-
ble 6). A possible reason for the weak correlation with «
is that the images of handwritten digits in Omniglot have a
small range of darkness, and the trained model is less sensi-
tive to the darkness. A possible reason for the weak correla-
tion with the ratio is that the tasks in Omniglot are easier to
adapt to than in Minilmagenet.

B.4 Distinction of Normal and Noise Task
Distributions

Setup. For the networks used in the experiments below,
we employ ReLu activation and batch normalization. When
we use a CNN, we choose a network such that its num-
ber of parameters is around ~20,000, and the test accu-
racy does not decrease continuously during the training with
8192 tasks from the dataset of each setting.

When we calculate an approximated Hessian (Eq. 13)
after the training, we accumulate vector products over the
training tasks with the buffer size set to 8192, and then trun-
cate them before evaluating the influence scores. To deter-
mine the truncated number, we calculate the average self-
rank over the training tasks with different assumptions on the
number of elements(64, 128, 256, 512, 1024, 2048, 4096,
and 8192). We select the assumption that gives the best self-
rank. When different values provide the same self-rank (like
0 £ 0), we selected the assumption of the smallest number.

Synthetic dataset To examine the method with the ex-
act form of Eq. 5, we employed a lightweight network and
tasksets that the network can learn easily. Using 1024 train-
ing tasks of the 3-ways-5-shots problem, including 128 noise



(10, 60) (10, 60) (10, 60) (10, 60) (10, 60) (10, 60) (10, 60) (10, 60) (10, 60) (10, 60)

™™ o b

(9,76) (9,76) (9.76) (9,76) (9,76) (9,76) (9,76) (9,76) (9,76) (9,76)

lDllEﬂllll

(15, 78) (15, 78) (15, 78) (15, 78) (15, 78) (15, 78) (15, 78) (15, 73) 115 78) 115 78)

[l

(2,82) (2,82) (2,82) (2,82) (2

(5,87) (5,87) (5.87) (5,87) (5 87) (5 87) (5 87) (5 87) (5 87) (5 87)

EWIEIW!HII

(a) Test task

(3,16) (3,16) (3,16) (3,16) (3,16) (3,16) (3,16) (3,16) (3,616) (3, 16)

bl 2N 2 =~ | - [ES

(9,17) (9,17) (9.17) (9,17) (9,17) (9,17) (9,17) (9,17) (9,17) (9,17)

@WHIMENHHH

(15, 44) (15, 44) (15, 44) (15, 44) (15, 44) (15, 44) (15, 44) (15, 44) (15 44) (15, 44)

(17, 47) (17, 47) (17, 47) (17, 47) (17, 47) (17, 47) (17, 47) (17, 47) (17, 47) (17, 47)

I!Iilﬂllil

(19, 81) (19, 81) (19, 81) (19, 81) (19, 81) (18, 81) (19, 81) (19, 81) (19, 81) (19, 81)

PP Y ol

(b) st training task

Figure 7: Examples of FC60 tasks. Left: A test task (accuracy=0.96). Right: the training tasks ranked 1% by TLXML. The pair
of labels on each image represents the semantic labels (superclass, subclass) obtained from CIFAR100. The superclass 9 (large
man-made outdoor things) and 15 (reptiles) are shared by them.

# eigenvalues  selfrank(avg4std) correlation with degradation(avg=std)

alpha/rank alpha/score  ratio/rank  ratio/score

1285 12.6£18.9 0.51£0.32  -0.41+0.29 0.36+£0.32 -0.1140.31
1193 0.0£0.0 0.69£0.21 -0.69+0.22 0.46+0.30 -0.15+0.34
512 0.0£0.0 0.71+£0.12 -0.96+0.06 0.63+0.09 -0.89+0.13
256 0.0+0.0 0.71+0.11 -0.95+0.08 0.62+0.11 -0.88+0.14
128 0.0£0.0 0.72+0.10  -0.944+0.04 0.63+0.10 -0.86+0.15
64 0.0£0.0 0.71+£0.12 -0.92+0.06 0.66+0.12 -0.77+0.20
32 0.0£0.2 0.72+0.16  -0.85+0.12 0.68+0.14 -0.68+0.22
16 2.0£3.2 0.67+£0.22  -0.69+0.20 0.61+0.22 -0.46+0.27
8 8.6 9.1 0.55+0.26 -0.53+0.23 0.47+0.27 -0.29+0.31

Table 6: Effect of Hessian pruning(Minilmagenet). # eigenvalues” denotes the number of eigenvalues treated as positive in
computing the pseudo-inverse (the 1* row is the original Hessian). The 2" row corresponds to the pruned Hessian, where all
92 negative eigenvalues are set to zero. The 2" column shows the self-ranks in the tests without degradation. and the remaining
columns show correlation coefficients between the two degradation parameters and the self-ranks or self-scores. Values are

reported as means and standard deviations across the 128 tasks.

eigenvalue

Figure 8: Eigenvalues of the Hessian before the pruning in

B.3

2.5 1

2.0

151

104

0.5 1

0.0

—0.54

~1.04

T T T T T T T
0 200 400 600 800 1000 1200

eigenvalue index

tasks, in the synthetic dataset described above, we trained
a 3-layer fully connected network with 2-dimensional in-
put, 4-4 hidden dimensions, 3-dimensional output layers
(63 parameters) with 30,000 meta-batches, and then calcu-
lated /™2, To determine the number of positive eigenvalues
of an exact Hessian, the average self-ranks over the train-
ing tasks were calculated with different assumptions on the
number of positive eigenvalues(4, 8, 16, 32, and 63). 32 was
chosen as the one giving the best average self-rank. The re-
sult is described in the main paper.

In addition, we calculated the scores with an approxi-
mated Hessian. To obtain the Hessian, we accumulated vec-
tor products over the training tasks with the buffer size set
to 32. We obtained a result similar to the one for the exact
Hessian and observed that 124 tests resulted in the proper
order of the training task distributions in terms of their mean
values. This count exceeds the average count (= 64) of the
binomial distribution by 10.6¢0 under the hypothesis of ran-
dom ordering. We also checked the correlations between



# eigenvalues  selfrank(avg=std) correlation with degradation(avg=+std)

alpha/rank alpha/score  ratio/rank ratio/score

1413 66.0 £36.9 0.15 £0.48(21) 0.06 £0.50 0.02 £0.34  0.03 £0.23
985 7.8 £10.0 0.48 £0.12(2) -0.37 £0.33 0.25+£0.28 0.01 +£0.23
512 0.8 £5.0 0.50 £0.00(1)  -0.50 £0.00 0.35 £0.26 -0.15 £0.23
256 1.6 £6.3 0.50 £0.00(1)  -0.50 £0.00 0.34 £0.27 -0.12 £0.25
128 29+£74 0.50 £0.00(1)  -0.50 £0.00 0.36 +£0.27 -0.11 £0.24
64 4.3 £8.0 0.50 £0.00(1)  -0.50 £0.00 0.36 £0.26 -0.13 £0.23
32 6.4 £8.8 0.50 £0.00(1)  -0.49 £0.09 0.33 £0.26 -0.08 +0.24
16 8.4 +£10.0 0.50 £0.00(1)  -0.50 £0.00 0.32 £0.30 -0.08 £0.25
8 11.8 £12.5 0.50 +£0.00(4)  -0.50 £0.00 0.29 +0.29 -0.06 £0.24

Table 7: Effect of pruning the Hessian(Omniglot dataset). See table 6 for notations. The second row is the case that we only
prune the 428 negative eigenvalues. There are cases in which increasing o does not change the ranks of the original training
tasks. The numbers of those cases are shown in the brackets, and they are removed from the statistics because the correlation

coefficients can not be defined for them.

I 0.4 ]
80 0.5
0.3 L
60 0.0
60 4
ro.z2 -0.5
@ @
% 40 4 5 E 40 4 &
e o1 ® [ -1.0 &
q r=15
20 Loo 20
=2.0
0 -0.1 04
0.0 0.2 0.4 0.6 08 1.0 0.0 0.2 0.4 0.6 0.8 1.0
alpha ratio

(a) Example of the effect of increasing a. a=1 means all the (b) Example of the effect of increasing the ratio. ratio=1 means

images in the test task are dark.

all the images in the test task are dark.

Figure 9: Test with degraded training tasks(Minilmagenet). The parameters o and ratio specify the darkness of images, and
the number of dark images in each degraded task, respectively. The red and blue lines represent ranks and scores, respectively.
Both examples were performed with the Hessian pruned to retain only the 1193 most significant eigenvalues.

the scores calculated with the exact and approximated Hes-
sians. The Pearson correlation of the influence scores of the
8192 training tasks calculated for each of the 128 tests was
0.715+£0.092.

Minilmagenet and Omniglot. We trained 3-convx32-
filter + 1-fully-connected layers networks (21,029 parame-
ters for Minilmagenet, 19,178 parameters for Omniglot) us-
ing MAML and 4-conv x32-filter feature extractors (28,896
parameters for Minilmagenet, 28,320 parameters for Om-
niglot) using Protonet. We used 128, 256, 512, 1024, 2048,
4096, and 8192 training tasks for each dataset, and combined
them with 16, 32, 64, 128, 256, 512, and 1024 noise tasks,
respectively, We created noise tasks by replacing the image
tensors in each training task with uniform noise tensors of
the same shape(noise images). In MAML training, the net-
works were trained with 80,000 meta-batches and 40,000
meta-batches for Minilmagenet and Omniglot, respectively.
In Protonet training, the networks were trained with 20,000
meta-batches and 10,000 meta-batches for Minilmagenet
and Omniglot, respectively. We conducted 5 runs of train-
ing with seeds 0, 1, 2, 3, and 42. We evaluated the in-
fluence scores of the training tasks on 128 test tasks, and
counted the number of proper tests based on Eq. 8 , and 10

with the projected influence on the meta-parameters (Eq. 14)
and the Gauss-Newton matrix approximation of the Hessian
(Eq. 13).

Table 8, 9, 10, and 11 show the results of the experiments.
We observe that the number of proper tests with a sufficient
number of training tasks is large, which rejects the hypothe-
sis of random ordering, suggesting that our scoring method
satisfies property 2 statistically. Noting that the statistical
significance is weak in the results of a small number of train-
ing tasks, we can see that Property 2 arises as an effect of
generalization. Fig.10 demonstrates this as the relation be-
tween the test accuracy and the number of proper tests in
the case of MAML and Minilmagenet. In that case, in the
region of 128 and 256 training tasks, the number of proper
tests is exceeded by the number of tests with the opposite
order. This can be interpreted as reflecting the tendency that
when overfitting occurs, only a few training tasks similar to
the test task provide helpful information, and most of the
regular training tasks become detrimental.

B.5 Consistency with Semantics

Using 8192 training tasks in the FC60 dataset, we trained
3-conv x 16-filter + 1-fully-connected layers networks (6469



learning method dataset training tasks accuracy proper tests
total noise test train [count] [o]
MAML MI 128 16  0.314£0.003 1.000£0.000 16.4£129 -844+230¢
MAML MI 256 32 0.323+0.014 1.000£0.000 14.4+7.6 -8.8ft13¢
MAML MI 512 64  0.345+£0.006 0.995+£0.005 51.2+16.5 -2.34+29¢
MAML MI 1024 128  0.368+£0.007 0.902+0.049 99.6+£20.5 6.3+3.60
MAML MI 2048 256  0.435+0.006 0.8284+0.014 73.44+6.0 1.7*l.10
MAML MI 4096 512 0.520£0.012 0.7624+0.008 89.2+10.3 4.5+18¢
MAML MI 8192 1024 0.552+0.012 0.717+0.007 85.6+11.1 3.8+2.00

Table 8: Experiments with a CNN trained by MAML(Minilmagenet dataset, combined with noise image tasks). 128 test tasks
were selected from the test taskset of pure Minilmagenet. The numbers of proper tests are shown in the second-to-last column
for each training setting. The standard deviation o under the null-hypothesis of random ordering is v/128 x 0.52 ~ 5.66. +

means the average and standard deviation across 5 runs of training.

learning method dataset training tasks accuracy proper tests
total noise test train [count] [o]
MAML oM 128 16  0.668+0.017 1.000£0.000 68.6+6.0 0.8+1.1¢
MAML oM 256 32 0.7594+0.009 1.000+0.000 77.0+£7.9 23*+l40o
MAML oM 512 64  0.824+0.010 0.9844+0.032 118.4+£44 9.6+0.8¢
MAML oM 1024 128  0.882£0.032 0.999+0.003 114.847.2 9.0£13 0
MAML OM 2048 256 0.892+0.005 0.9874+0.004 90.0+3.9 4.6+0.7 ¢
MAML OM 4096 512 0.933+0.006 0.9404+0.005 822459 32+1.00
MAML OM 8192 1024 0.960+0.001 0.906£0.003 94.0+6.0 S5.3+1.1¢

Table 9: Experiments with a CNN trained by MAML(Omniglot dataset, combined with noise image tasks). See Table 8 for

notations.

parameters) with 40,000 meta-batches using MAML and 4-
conv x 32-filter feature extractors (28,896 parameters) with
40,000 meta-batches using Protonet.

Table 12 shows the results of counting the proper tests
when the training task subpopulation is defined by how
many superclasses it shares with the test task, illustrating
that TLXML distinguishes the subpopulations that share se-
mantic properties with test tasks from the other training
tasks.

We also considered classifying the labels in a test task
and defining the training subpopulation for each of the clas-
sified groups of labels. Table 13, and 14 show the results of
counting the proper tests when the training subpopulation
is defined with the test labels classified by their recall val-
ues achieved in the tests. Although the classification leads
to a small number of statistics for each condition, the results
show that TLXML distinguishes training tasks that share se-
mantic properties with test tasks from the other tasks. Fur-
thermore, we can observe the tendency that the labels of
low recall values define subpopulations with comparatively
small significance, which implies correlation between the re-
calls and influence scores(i.e., when a label has a good re-
call, training tasks with that label are scored high).

B.6 One-Step Update Using TLXML

We examined the effect of the one-step update Eq. 15 from
the convergence point of meta-learning. We utilized 8192
training tasks from FC60 and trained a 3-conv x 16-filter

network(6469 parameters) with 40,000 meta-bathces using
MAML. We conducted 5 runs of training with seeds 0, 1, 2,
3, and 42. Each training task was scored with the influence
function for the average test loss across 1024 test tasks. For
each setting on the number of blocked and enhanced train-
ing tasks, those tasks were determined by selecting the worst
and best training tasks from the scoring results.

Table 15 shows the effects of both blocking and enhanc-
ing training tasks, and the impact on the test accuracies in
two cases: test datasets with and without shared superclasses
(FC60 testset and FC100 testset, respectively). For each of
the combinations of blocked/enhanced and the two testsets,
we observe cases of improved test accuracy. The improve-
ment is small in the region of a small absolute value of the
shift parameter £ and a small number of blocked/enhanced
tasks, because that is near the cases of doing nothing. The
improvement is also small in the region of a large abso-
lute value of the shift parameter £ and a large number of
blocked/enhanced tasks, which is considered to be caused
by the deterioration of the linear approximation by the influ-
ence function /™2,

The table also shows the results of leave-out retraining.
For each set of blocked tasks, the network was trained from
scratch with those tasks removed from the dataset. We ob-
serve that the leave-out trainings fail to yield a statistically
significant gain.



learning method dataset training tasks accuracy proper tests
total noise test train [count] [o]
Protonet MI 128 16  0.397£0.016 0.997+0.001 63.0£15.5 -02+27 ¢
Protonet MI 256 32 0.435+0.018 0.7784+0.010 108.2+£9.2 7.8*1.60
Protonet MI 512 64  0.496+0.009 0.608+£0.037 94.44+84 54+150
Protonet MI 1024 128  0.503£0.015 0.570+£0.007 81.8+7.5 3.1+130
Protonet MI 2048 256  0.498+0.007 0.5504+0.008 84.24+7.6 3.6£130
Protonet MI 4096 512 0.497+£0.016 0.537+0.007 96.4+9.9 57170
Protonet MI 8192 1024  0.509+0.007 0.535£0.008 95.6£53  5.6£09 ¢

Table 10: Experiments with a CNN trained by Prototypical Network(Minilmagenet dataset, combined with noise image tasks).

See Table 8 for notations.

learning method dataset training tasks accuracy proper tests
total noise test train [count] [o]
Protonet oM 128 16  0.937+0.007 1.000+0.000 77.4+4.7 244080
Protonet oM 256 32 0.9584+0.003 1.000+0.000 61.0£3.4 -0.5£0.6 ¢
Protonet oM 512 64  0.963+0.004 0.986+0.004 112.6£3.9 8.6+£0.7 ¢
Protonet oM 1024 128  0.973£0.002 0.928+0.002 84.0+4.1 3.5+0.7¢
Protonet OM 2048 256 0.978£0.002 0.901+0.001 81.0£4.1 3.0+£0.7 ¢
Protonet OM 4096 512 0.978£0.003 0.891+0.001 84.0£4.6 3.5£0.8¢
Protonet OM 8192 1024 0.979+0.001 0.8844+0.008 81.24+5.5 3.0£1.00

Table 11: Experiments with a CNN trained by Prototypical Network(Omniglot dataset, combined with noise image tasks). See

Table 8 for notations.

B.7 Computational Resources

The experiments in this paper are carried out in multiple
computing environments. In a typical environment, the ma-
chine is equipped with an Intel Core i7-7567U CPU with a
3.50GHz clock, 32GB RAM, and an NVIDIA GeForce RTX
2070 GPU, and the operating system is Ubuntu 24.04 LTS.

# proper tests

100

80

40 1

201

MAML Minilmagenet

——

Tt

128 tasks
256 tasks
512 tasks
1024 tasks
2048 tasks
4096 tasks
8192 tasks

& & & & @

0.30 0.35

0.40 0.45

0.50 0.55

test accuracy

Figure 10: Effect of generalization with a CNN trained by
MAML(Minilmagenet dataset, combined with noise image
tasks). The solid horizontal line at y=64 represents the mean
value under the hypothesis of random ordering. The dashed
horizontal lines represent the mean value +1¢ and +2¢ un-
der the hypothesis of random ordering.



learning method filter train tasks test tasks o
label overlap  total filtered total proper

MAML 1 8192 75224314 1024 618 (+6.60) 16
MAML 2 8192 4781+718 1024 676 (+1030) 16
MAML 3 8192 1508+422 1024 688 (+11.00) 16
MAML 4 8192 1714+69 1024 637 (+7.80) 16
Protonet 1 8192 75224314 1024 658 (+9.10) 16
Protonet 2 8192 4781+£718 1024 672 (+10.00) 16
Protonet 3 8192 1508+422 1024 703 (+11.90) 16
Protonet 4 8192 171+69 1024 644 (+48.30) 16

Table 12: Experiments of distinguishing a training task subpopulation with superclasses shared with the test task from other
training tasks. The 2nd column specifies the least number of superclasses shared with each test task, which defines the training
tasks ’similar’ to the test task. The 4th column shows the number of training tasks satisfying the condition. The 6th column
shows the counts of proper tests and their statistical significance. + means the average and standard deviations across 1024 test
tasks.

learning method filter train tasks test tasks o
recall label overlap total filtered total proper
MAML 1.0 1 8192 2013£1145 828 440 (+1.80) 144
MAML 1.0 2 8192  785£325 377 205 (+1.70) 9.7
MAML 1.0 3 8192 245453 97 57 (+1.70) 4.9
MAML 0.8 1 8192 1833+1184 819 488 (+5.50) 143
MAML 0.8 2 8192  728+£358 427 255(+4.00) 103
MAML 0.8 3 8192 221481 136 90 (+3.80) 5.8
MAML 0.8 4 8192 43£17 20 17 (+3.10) 2.2
MAML 0.6 1 8192 2187£1105 706 431 (+5.90) 133
MAML 0.6 2 8192 7934319 267 170 (+4.50) 8.2
MAML 0.6 3 8192 217+81 55 37 (+2.60) 3.7
MAML 0.4 1 8192  2485+960 549 319 (+3.80) 11.7
MAML 0.4 2 8192 2664848 138 87 (+3.10) 59
MAML 0.4 3 8192 247441 16 11 (+1.50) 20
MAML 0.2 1 8192 2707764 380 223 (+3.40) 9.7
MAML 0.2 2 8192  906+£226 57 35(+1.70) 3.8
MAML 0.0 1 8192  2888+87 220 133 (+3.10) 7.4

Table 13: Experiments of distinguishing a training task subpopulation with superclasses shared with the test task (classified by
recall values) from other training tasks(MAML). The 2nd column specifies the recall value of each label in the test tasks, and
the 3rd column specifies the least number of labels with that recall value. The 6th column shows the number of test tasks the
labels of which satisfy the conditions. The 5th column shows the number of training tasks ’similar’ to the test task, meaning
that the superlabels in each of them include those in the test task specified by the conditions. The 7th column shows the counts
of proper tests and their statistical significance. & means the average and standard deviations across the test tasks.



filter

train tasks

learning method test tasks o
recall label overlap total filtered total proper

Protonet 1.0 1 8192 222541095 681 396 (+4.30) 13.0
Protonet 1.0 2 8192  804+£326 248 151 (#3.40) 79
Protonet 1.0 3 8192 218+82 56 37 (+240) 3.7
Protonet 0.8 1 8192 1652+1197 838 479 (+4.10) 14.5
Protonet 0.8 2 8192 6794378 492 290 (+4.00) 11.1
Protonet 0.8 3 8192 207+90 184 109 (+2.50) 6.8
Protonet 0.8 4 8192 45415 36 25 (+2.30) 3.0
Protonet 0.6 1 8192 1874£1198 790 478 (+5.90) 14.1
Protonet 0.6 2 8192 6974373 392 233 (#3.70) 99
Protonet 0.6 3 8192 194492 127 68 (+0.80) 5.6
Protonet 0.6 4 8192 33+18 20 12 (+0.90) 22
Protonet 0.4 1 8192 23111075 589 341 (+3.80) 12.1
Protonet 0.4 2 8192  763+344 187 118 (+3.60) 6.8
Protonet 0.4 3 8192 16288 37 21 (+0.80) 3.0
Protonet 0.2 1 8192  2763£718 312 174 (+2.00) 8.8
Protonet 0.2 2 8192  855+244 38 19 (+0.00) 3.1
Protonet 0.0 1 8192 2999+243 74 44 (+1.60) 43

Table 14: Experiments of distinguishing a training task subpopulation with superclasses shared with the test task (classified by
recall values) from other training tasks(Protonet). See Table 13 for notations

Op. Dataset (train—test) # tasks E= -8 E=—-4 E= -2 E=-1 leave-out
FC60—FC60 128 0.670£0.005  0.667+0.004  0.665+£0.004  0.664+0.004  0.662-£0.006"
(MAML: 0.663 + 0.004) 256 0.6724+0.005  0.6704+0.004 0.666+0.004  0.665+0.004  0.66040.007"

512 0.675+£0.006 0.672+0.005 0.6694+0.004  0.666+£0.004  0.663+0.008

» 1024 0.67340.008  0.676+0.005 0.6710.004  0.668+0.004  0.6610.006"

9 2048 0.659£0.009  0.674+0.007 0.672+0.004 0.669+0.004  0.666+0.010

= FC60—FC100 128 0.439+0.007 0.436+0.005 0.4334+0.005  0.431+£0.005 -
(MAML: 0.429 + 0.005) 256 0.443+0.008 0.438+0.006 0.4354+0.006  0.432+0.005 -

512 0.448+0.011  0.443+0.007 0.438+0.005  0.434+0.005 -
1024 0.4524+0.011 0.448+0.009 0.441+0.007  0.43740.006 -
2048 0.447£0.013  0.449+0.011 0.44440.008  0.439+0.007 -

Op. Dataset (train—test) # tasks E=1 E=2 E=4 £E=38
FC60—FC60 128 0.664+0.004 0.666+0.005 0.6684+0.005  0.672-+0.005 -
(MAML: 0.663 =+ 0.004) 256 0.666+£0.005 0.668+0.005 0.672+0.005  0.6760.005 -

512 0.668+0.005 0.672+0.005 0.677+0.006  0.677+0.007 -

8 1024 0.670+0.005  0.676+0.005  0.680+0.006 0.662+0.010 -

g 2048 0.675+0.005  0.680+0.006 0.676--0.008  0.595+0.026 -

E FC60—FC100 128 0.432+£0.005 0.4334+0.004 0.4364+0.005  0.437+0.007 -
(MAML: 0.429 + 0.005) 256 0.434+£0.005 0.436£0.005 0.438+0.007 0.436+0.012 -

512 0.435+£0.005 0.438+0.007 0.4394+0.010  0.430+0.012 -
1024 0.438+0.005 0.441+0.008 0.437+0.011  0.413=£0.0087 -
2048 0.440+£0.007  0.442+0.009 0.4294+0.010  0.390+0.0207} -

Table 15: Test accuracies after a single TLXML-guided update to a MAML model with blocked tasks. £ means the average
and standard deviation across 5 runs of MAML training. Bold values outperform the MAML baseline (shown in the bracket)
with a unpaired Welch two-sample ¢-test, p < 0.05. T means the average is below the baseline value.



