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Abstract

Long-term time series forecasting (LTSF) represents a critical frontier in time series
analysis, characterized by extensive input sequences, as opposed to the shorter spans
typical of traditional approaches. While longer sequences inherently offer richer
information for enhanced predictive precision, prevailing studies often respond
by escalating model complexity. These intricate models can inflate into millions
of parameters, resulting in prohibitive parameter scales. Our study demonstrates,
through both analytical and empirical evidence, that decomposition is key to
containing excessive model inflation while achieving uniformly superior and robust
results across various datasets. Remarkably, by tailoring decomposition to the
intrinsic dynamics of time series data, our proposed model outperforms existing
benchmarks, using over 99% fewer parameters than the majority of competing
methods. Through this work, we aim to unleash the power of a restricted set
of parameters by capitalizing on domain characteristics—a timely reminder that
in the realm of LTSF, bigger is not invariably better. The code is available at
https://github.com/JLDeng/SSCNN.

1 Introduction

Time series forecasting is a cornerstone in the fields of data mining, machine learning, and statistics,
with wide-ranging applications in finance, meteorology, city management, telecommunications, and
beyond (Jiang et al., 2021; Han et al., 2023a; Zhang et al., 2020; Wu et al., 2020, 2019; Cui et al.,
2023; Zhang et al., 2017; Liang et al., 2018; Zhu et al., 2024; Fan et al., 2022, 2023). Traditional
univariate time series models, such as Auto-Regressive Integrated Moving Average (ARIMA) and
Exponential Smoothing, fail to capture the intricate complexities present in open, dynamic systems.
Fortunately, the advent of deep learning has marked a significant shift in this domain. Recently, the
utilization of the Transformer (Vaswani et al., 2017) model has revolutionized time series forecasting,
setting new benchmarks in the accuracy of forecasting models due to its capability of depicting
intricate pairwise dependencies and extracting multi-level representations from sequences.

Inspired by the extraordinary power exhibited by large language models (LLMs), expanding model
scale has increasingly become the dominant direction in the pursuit of improvement for time series
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forecasting. Currently, the majority of advanced models require millions of parameters (Nie et al.,
2023; Zhang & Yan, 2023; Wu et al., 2023). With the recent introduction of pre-trained large language
models, such as LLaMa and GPT-2, the parameter scale has inflated to billions (Jin et al., 2024; Cao
et al., 2024; Jia et al., 2024a; Zhou et al., 2023; Gruver et al., 2024). Despite the significant increase
in the number of parameters to levels comparable to foundational models for language and image, the
efficacy of these models has seen only marginal improvements. In particular, these large models have
shown up to only a 30% improvement in MSE and MAE, yet at the cost of 100 to 1000 times more
parameters compared to a simple linear model across representative tasks (Nie et al., 2023; Cao et al.,
2024; Jin et al., 2024). Additionally, we have observed a convergence in the abilities demonstrated by
the models since the advent of PatchTST (Nie et al., 2023), with recent advancements achieving only
incremental improvements.

These evidences indicate that a large model may not necessarily be a prerequisite for the future of time
series forecasting, motivating us to explore the opposite trend—minimizing the number of parameters.
Before introducing our design, we reflect on why existing methods struggle to maintain their optimal
effectiveness with a reduced number of parameters. Existing methods predominantly adopt data
patching over either the temporal or spatial dimensions (Zhou et al., 2021; Wu et al., 2021; Zhou
et al., 2022; Nie et al., 2023; Liu et al., 2024a; Zhang & Yan, 2023), which, in conjunction with the
attention mechanism, allows them to capture complex temporal and spatial dependencies. However,
a significant drawback of data patching is the elimination of temporal (or spatial) identities along
with the destruction of temporal (or spatial) correlations, resulting in the potential loss of complex
temporal (or spatial) information. To counteract this undesirable information loss, these methods
establish a high-dimensional latent space to accommodate the encodings of the temporal and spatial
identities in addition to the embeddings of the real-time observations. As a result, the dimensionality
of the latent space typically scales with the number of identities to be encoded, inevitably leading
to the exponential inflation of parameter scale. Moreover, the expansion of model size makes the
models prone to overfitting, a common challenge in time series tasks where data is often limited.

To achieve a capable yet parsimonious model, it is fundamentally paramount to reinvent the paradigm
to maintain and harness the spatial and temporal regularities, eliminating unnecessary and redundant
parameters for encoding them into the latent space. Recent studies (Deng et al., 2021, 2024; Wang
et al., 2024) showcase the potential of feature decomposition in attaining improved efficacy with
limited parameters. While remarkable progress has been made, these methods struggle with long-term
forecasting, especially for datasets exhibiting intricate temporal and spatial correlations, such as the
Traffic and Electricity datasets (Deng et al., 2024). Moreover, the analytical aspect of decomposition
along with its relation to patching is under-explored, hindering further advancements in this line of
research.

In response to these limitations, we propose a Selective Structured Components-based Neural Network
(SSCNN). For the first time, we address the analytical gap in feature decomposition, providing insights
into its rationale for capability and parsimony compared to patching. In addition, SSCNN enhances
plain feature decomposition with a selection mechanism, enabling the model to distinguish fine-
grained dependencies across individual time steps, which is crucial for improving the accuracy of
the decomposed structured components and, ultimately, the overall prediction accuracy. SSCNN has
been benchmarked against state-of-the-art (SOTA) methods, demonstrating consistent improvements
ranging from 2% to 10% in efficacy while using 99% fewer parameters than SOTA LTSF methods,
including PatchTST (Nie et al., 2023) and iTransformer (Liu et al., 2024a). Remarkably, it uses 87%
fewer parameters than DLinear (Zeng et al., 2023) when tasked with extensive long-term forecasting.
Our contributions can be summarized as follows:

1. We introduce SSCNN, a decomposition-based model innovatively enhanced with a selection
mechanism. This model is specifically designed to adeptly capture complex regularities in
data while maintaining a minimal parameter scale.

2. We conduct an in-depth comparison between decomposition and patching, examining both
capability and parsimony.

3. We carry out comprehensive experiments to demonstrate SSCNN’s superior performance
across various dimensions. These extensive evaluations not only prove its effectiveness but
also highlight its versatility in handling diverse time series forecasting scenarios.
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2 Related Work

The field of time series forecasting or spatial-temporal prediction has traditionally leveraged multi-
layer perceptrons (MLPs) (Zhang et al., 2017), recurrent neural networks (RNNs) (BAI et al., 2020;
Zhao et al., 2019; Jiang et al., 2023; Jia et al., 2024b), graph convolution networks (GCNs) (Yu et al.,
2018), and temporal convolution networks (TCNs) (Bai et al., 2018). The recent development of
ST-Norm (Deng et al., 2021), STID (Shao et al., 2022a) and STAEformer (Liu et al., 2023) shows
promise in enhancing model capabilities to distinguish spatial and temporal features more effectively.
Motivated by the success of self-supervised learning and pre-training in natural language processing
(NLP) and computer vision (CV), these two techniques are also gaining attention and application in
this field (Guo et al., 2021; Shao et al., 2022b).

Over the last few years, the focus has shifted to long-term sequence forecasting (LTSF). The majority
of studies have concentrated on adapting the Transformer (Vaswani et al., 2017), successful in NLP
(Devlin et al., 2018) and CV (Khan et al., 2022), for LTSF tasks. Pioneering works like LogTrans
(Li et al., 2019) addressed the computational challenges of long sequences through sparse attention
mechanisms. Subsequent developments, such as Informer (Zhou et al., 2021), Autoformer (Wu
et al., 2021), and Fedformer (Zhou et al., 2022), introduced innovative approaches to improve
predictive accuracy with temporal feature characterization, autocorrelation-based series similarities,
and frequency domain conversions, respectively. Other notable contributions include the Non-
stationary Transformer (Liu et al., 2022) and Triformer (Cirstea et al., 2022). Furthermore, diverse
normalization techniques have been developed to mitigate the distribution shift present in time series
data (Liu et al., 2024b; Kim et al., 2021). Probabilistic forecasting (Kollovieh et al., 2024) and
irregular time series forecasting (Chen et al., 2024; Ansari et al., 2023) are two growing subfields
receiving increasing attention.

A significant shift in LTSF research occurred with DLinear (Zeng et al., 2023), an embarrassingly
simple linear model. DLinear highlighted the limitation of Transformers in capturing the unique
ordering information of time series data (Zeng et al., 2023). To overcome this limitation, recent
methods like PatchTST (Nie et al., 2023), TimesNet (Wu et al., 2023), Crossformer (Zhang & Yan,
2023), and iTransformer (Liu et al., 2024a) blend the global dependency capabilities of Transformers
with the local order modeling strengths of MLPs. However, the success of these methods is achieved
at the cost of an enormous number of parameters.

A handful of emerging studies have sought to reduce parameter usage in pursuit of a parsimonious
model (Lin et al., 2024; Xu et al., 2024; Wang et al., 2024; Deng et al., 2024). The techniques
they employed to remove redundancies fall into three categories: downsampling (Lin et al., 2024),
decomposition (Deng et al., 2024; Wang et al., 2024), and Fourier transform (Xu et al., 2024; Yi et al.,
2024). Despite efficient parameter usage, these methods often compromise accuracy for specific
datasets, especially those presenting complex yet predictable patterns, such as Traffic (Deng et al.,
2024; Xu et al., 2024). Our study, as far as we know, is the first to realize a parsimonious model
without any sacrifice of capability.

3 Selective Structured Components-based Neural Network

In multivariate time series forecasting, given historical observations X = {x1, · · · ,xN} ∈ RN×Tin

with N variates and Tin time steps, we predict the future Tout time steps X̂ ∈ RN×Tout . The input data
goes through the processing, visualized in Fig. 1, for predicting the unknown, future data. Over the
course of prediction, a sequence of intermediate representations are yielded. Essentially, SSCNN is
structured into two distinct branches: the top branch illustrates the inference process used to derive the
components accompanied by the residuals, while the bottom branch depicts the extrapolation process,
forecasting the potential evolution of these components. The components and residuals obtained are
combined into a wide vector, which is then input into a polynomial regression layer to capture their
complex interrelations. In the following sections, we detail the inference and extrapolation processes
for these components, respectively.

3.1 Temporal Component

We invent temporal attention-based normalization (T-AttnNorm) to decompose the temporal compo-
nents, consisting of the long-term component, the seasonal component, and the short-term component,
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Figure 1: An overview of the SSCNN. The grids are used to exemplify the selection maps I∗ and E∗

as defined in the main text, with Tin, Tout and N instantiated as 4, 4 and 3, respectively.

in a sequential manner. The inference for each of these three components is applied to the repre-
sentation of each series individually along the temporal dimension, with a selection/attention map
characterizing the dynamics of the component of interest. Upon inference, our model disentangles the
derived structured component from the data, resulting in a residual term summarizing other remaining
components. The initial representation of the time series, the derived structured component, and the
residual term are denoted as H∗, µ∗,R∗ ∈ RN×Tin×d, respectively. The selection map is denoted as
I∗ ∈ RTin×Tin . T-AttnNorm is formulated as follows:

µ∗
i ,R

∗
i = T-AttnNorm(H∗

i ; I∗), (1)

where µ∗
i = I∗H∗

i , σ
∗
i
2 = I∗H∗

i
2 − µ∗

i
2 + ϵ, R∗

i =
H∗

i −µ∗
i

σ∗
i

. To ensure the unbiasedness of µ∗
i and

σ∗
i , the sum of each row of I∗ is constrained to 1. The distinction between the three components is

the realization of I∗. The residual term resulting from the current block is taken as the input for the
subsequent block, e.g., Hse = Rlt.

Then, the component series and the residual series are respectively extrapolated to forward horizons
by a mapping parameterized with E∗ ∈ RTout×Tin :

µ̂∗
i , R̂

∗
i = Extrapolate(µ∗

i ,R
∗
i ; E∗), (2)

where µ̂∗
i = E∗µ∗

i and R̂∗
i = E∗R∗

i , with µ̂∗
i , R̂

∗
i ∈ RTout×d, leading to R̂∗, µ̂∗ ∈ RN×T out×d.

Similar to I∗, E∗ is also defined as a matrix with the sum of each row equal to 1. Next, we introduce
how to realize I∗ and E∗ to extract and simulate the dynamics of the considered components,
respectively.

Long-Term Component The long-term component aims to characterize the trend patterns of the
time series data. To acquire an estimation of the long-term component with less bias, we aggregate
the samples collected across multiple seasons, eliminating the seasonal and short-term impacts
that impose only local effects. The realizations of the inference and extrapolation matrices for the
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long-term component are given by:

I lt(i, j) =
1

Tin
, E lt(i, j) =

1

Tin
. (3)

The attention mechanism is excluded from the long-term component as it does not improve forecasting
accuracy in our datasets. The attention mechanism is beneficial when a component’s distribution
changes significantly over time, helping to reduce estimation bias. However, for our long-term
component, the distribution remains stable throughout the input period. In such cases, the attention
mechanism adds no value, making it redundant and unnecessary.

Seasonal Component The seasonal component is created to model the seasonal fluctuation. In-
ference of the seasonal component operates under the assumption of a consistent cycle duration to
streamline the detection of seasonal trends. We introduce c to indicate the length of a cycle, τin to
signify the maximal count of cycles encompassed by the input sequence, i.e., τinc ≤ Tin, and τout to
denote the minimal number of cycles covering the output sequence, i.e., τoutc ≥ Tout. To simplify the
notation, we assume that Tin is a multiple of c, i.e., Tin = τin · c.
To acquire unbiased and precise seasonal components, we introduce a parameter matrix Wse ∈
Rτin×τin , allocating distinct weights to each pair of periods to represent the inter-cycle correlations.
The matrix undergoes row-wise normalization via a softmax operation to satisfy the constraint on the
sum of 1. The selection map for inferring the seasonal component is defined as:

Ise(i, j) =

{
exp(Wse

u,v)∑τin−1

k=0 exp(Wse
u,k)

u = ⌊ i
c⌋, v = ⌊ j

c⌋, i− j ≡ 0 (mod c)

0 Otherwise
, (4)

where ⌊·⌋ denotes the floor function.

When dealing with extrapolation, we define Ŵse ∈ Rτout×τin as the parameter matrix capturing the
correlations between each pair of cycles encompassed by the input and output sequences, respectively.
The selection map for extrapolating the seasonal component is written as follows:

E se(i, j) =

{
exp(Ŵse

u,v)∑τin−1

k=0 exp(Ŵse
u,k)

u = ⌊ i
c⌋, v = ⌊ j

c⌋, i− j ≡ 0 (mod c)

0 Otherwise
. (5)

Short-Term Component The short-term component discerns irregularities and ephemeral phe-
nomena unaccounted for by the seasonal and long-term components. In contrast to the long-term
component, it necessitates only a limited window size, δ, encapsulating recent observations with
immediate relevance. Moreover, these observations exhibit varying degrees of correlation depending
on the associated lag. Therefore, the inference of the short-term component involves a parameter
vector wst ∈ Rδ , and is expressed mathematically as:

Ist(i, j) =

{
exp(wst

i )∑δ−1
i=0 exp(wst

i )
(i− j >= 0) ∧ (i− j < δ)

0 Otherwise
. (6)

The extrapolation of the short-term component bifurcates based on the targeted horizon. Immediate
horizons retain correlations with preceding estimations of the short-term component, prompting
regression-based forecasting with a parameter vector ŵst ∈ Rδ×δ . Conversely, as the horizon extends
ahead, it accumulates compounded uncertainties, decreasing the predictability. Herein, we opt for
zero-padding to eliminate unnecessary parameters. The entire extrapolation is formalized as follows:

E st(i, j) =

{
exp(ŵst

i,j)∑δ−1
k=0 exp(ŵst

i,k)
. (i < δ) ∧ (j > Tin − δ − 1)

0 Otherwise
. (7)

3.2 Spatial Component

The spatial component refers to the component that is temporally irregular, i.e., cannot be captured
by the aforementioned three temporal components, but spatially regular, i.e., showing consistent
behavior across a group of residual series. The inference of the spatial component, referred to
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as spatial attention-based normalization (S-AttnNorm), shares a similar formula representation as
the temporal component, except that it is applied to each frame independently along the spatial
dimension:

µ∗
:,t,R

∗
:,t = S-AttnNorm(H∗

:,t; I∗), (8)

where µ∗
:,t = I∗H∗

:,t, σ∗
:,t

2 = I∗H∗
:,t

2 − µ∗
:,t

2 + ϵ, R∗
:,t =

H∗
:,t−µ∗

:,t

σ∗
:,t

. We acquire the similarities
among the series in terms of the spatial component by applying correlation to the residuals post
controlling the long-term, seasonal, and short-term components. Given that each series is represented
by a Tin × d matrix in the hidden layer, we vectorize them before performing the measurement. This
results in a similarity matrix Isi ∈ RN×N , with each entry Isi(i, j) representing the conditional
correlation between the ith series and jth series:

Isi(i, j) =
exp(vec(Hsi

i )
⊤ vec(Hsi

j ))∑N
k=1 exp(vec(H

si
i )

⊤ vec(Hsi
k))

. (9)

Considering the erratic and unpredictable nature of the spatial component along time, we simply
realize component extrapolation with zero-padding: µ̂ = 0 and R̂ = 0.

3.3 Component Fusion

The Polynomial Regression layer is inspired by the work of Deng et al. (2024), where we extend the
original module to include both additive and multiplicative relations. This extension allows us to
model more complex interactions between the decomposed components.

Hi = Convk=1 (Convk(Si)⊗ Convk(Si)) + Convk(Si), (10)

where

Si =
[
Rlt

i , µ
lt
i ,R

se
i , µ

se
i ,R

st
i , µ

st
i ,R

si
i , µ

si
i

]
.

The resulting Hi is fed to the next layer as Hlt
i for further manipulation.

4 Comparison Between Decomposition and Patching

Capability Analysis We first demonstrate that the representation space accommodating only a
plain single-step observation is ill-structured due to the entanglement of diverse component signals.
Then, we elucidate how patching and decomposition adjust the structure of the representation space,
facilitating the capture of faithful and reliable relations among the samples. The detailed derivations
for this section are provided in Appendix A.

For simplicity, we assume that time series x is driven by two distinct components a and b, but the
analysis can be trivially extended to cases with multiple components. Consider a triplet (xt1 , xt2 , xt3)
collected at three time steps t1, t2, and t3, respectively, where xti = ati + bti for i = 1, 2, 3, subject
to at1 = at2 , bt2 = bt3 , and at1 ̸= at3 . We expect that xt1 should be closer to xt2 than xt3 , given
∥at1 − at2∥ < ∥at1 − at3∥ along with ∥bt1 − bt2∥ = ∥bt1 − bt3∥. However, this relationship may
not necessarily hold with step-wise observations, i.e., there exist specified triplets (x̂t1 , x̂t2 , x̂t3) such
that ∥x̂t1 − x̂t2∥ > ∥x̂t1 − x̂t3∥, due to the entanglement of a and b.

Patching can rectify sample relations by creating orthogonality between distinct components, resulting
in a well-structured representation space. By incrementally augmenting the time series represen-
tation with preceding observations, i.e., [xt−p, · · · , xt], the a-component ([at−p, · · · , at]) and the
b-component ([bt−p, · · · , bt]) become increasingly orthogonal, reducing negative interference caused
by their interactions. It is worth noting that while patching is widely acknowledged for enriching the
semantic information of step-wise data (Nie et al., 2023), no formal explanation from the perspective
of disentanglement has been offered yet.

Distinct from patching, which implicitly attenuates the interactions among distinct components,
decomposition can explicitly avert any interactions. This is done by first recovering and subsequently
distributing different components into disjoint sets of dimensions, completely isolating them in
independent subspaces. Specifically, this involves finding a decomposition mapping D : ati + bti →
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(ati , bti)
⊤ such that ∥D(xt1)−D(xt2)∥ ≤ ∥D(xt1)−D(xt3)∥. The effectiveness of decomposition

depends on how accurately the model can recover a and b. Thus, it is paramount to ensure that no
irrelevant information is included in estimating the component of interest, suggesting the necessity of
using a selection mechanism. The above analysis is based on deterministic data, but similar results
can be obtained if the data possesses stochasticity, which is the case for real-world applications. See
detailed discussion in Appendix A.

Parsimony Analysis To justify that SSCNN is fundamentally more parameter-efficient than
patching-based methods, we analyze how the number of required parameters scales with Tin, Tout,
and dpatch/dstep, where dpatch and dstep represent the dimensionalities of the representation spaces for
patching-based and decomposition-based methods, respectively.

Patching-based methods establish intense connections from backward variables to forward variables
via multiple layers of patch-wise fully-connected networks, typically necessitating O(dpatchTinTout +
d2patch) parameters (Nie et al., 2023). Empirically, the optimal performance of these models is achieved
when dpatch is adjusted within the range of 64 and 256, resulting in an explosion in the total number
of parameters, especially for large Tin and Tout.

In the case of SSCNN, the portion scaling with Tin, Tout, and dstep contains O(d2step +
1
c2TinTout +

1
c2T

2
in + dstepTout) parameters. These come from three sources: the convolution operators in the

polynomial regression module, the attention map responsible for characterizing seasonal patterns, and
the predictor. In contrast to dpatch, dstep can be assigned a small number, e.g., 8, which is sufficient to
prompt the model to exhibit its full potential, making d2step orders of magnitude smaller than d2patch.
Additionally, SSCNN significantly reduces the number of connections scaling with Tin and Tout from
dpatchTinTout to 1

c2TinTout +
1
c2T

2
in + dstepTout, thanks to the capability of decomposition in eliminating

redundant correlations across variables, as further analyzed in Appendix D. The presence of the
scaling factor 1

c2 makes SSCNN even more parameter-efficient than DLinear (Zeng et al., 2023) for
large Tin and Tout, when the sum of terms related to Tin and Tout dominates O(d2step). The actual
results are presented in Sec. 5.2.

5 Evaluations

In this section, we conduct comprehensive experiments across standard datasets to substantiate from
various perspectives that SSCNN achieves SOTA performance with a minimal parameter count.

5.1 Experiment Setting

Datasets We evaluate the performance of our proposed SSCNN on seven popular datasets with
diverse regularities, including Weather, Traffic, Electricity, and four ETT datasets (ETTh1, ETTh2,
ETTm1, ETTm2). Among these seven datasets, Traffic and Electricity consistently show more regular
patterns over time, while the rest contain more volatile data. Detailed dataset descriptions and data
processing are provided in Appendix B.

Evaluation Metrics In line with established practices in LTSF (Nie et al., 2023; Wu et al., 2021),
we evaluate the model performance using mean squared error (MSE) and mean absolute error (MAE).

Baseline Models We compare SSCNN with the state-of-the-art models, including (1) Transformer-
based methods: Autoformer (Wu et al., 2021), Crossformer (Zhang & Yan, 2023), PatchTST (Nie
et al., 2023) and iTransformer Liu et al. (2024a), (2) Linear-based method: DLinear Zeng et al. (2023);
(3) TCN-based method: TimesNet Wu et al. (2023); (4) Decomposition-based method: TimeMixer
(Wang et al., 2024), SCNN (Deng et al., 2024). For implementing state-of-the-art models (SOTAs),
we adhere to the default settings as provided in the Time-Series-Library 2.

Network Setting All the experiments are implemented in PyTorch and conducted on a single
NVIDIA 2080Ti 11GB GPU. For ECL and Traffic, SSCNN is configured with 4 layers, and the
number of hidden channels d is set to 8. We set δ to a value from {2, 4, 8, 16}. The kernel size for the

2https://github.com/thuml/Time-Series-Library
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Table 1: Multivariate forecasting results with prediction lengths S ∈ {3, 24, 96, 192, 336}. Results
are averaged from all prediction lengths. Full results are listed in Appendix C. The best result is
highlighted in bold, and the second best is highlighted with underline.

Models SSCNN
(Ours)

SCNN
(2024)

iTransformer
(2024)

TimeMixer
(2024)

PatchTST
(2023)

TimesNet
(2023)

Crossformer
(2023)

DLinear
(2023)

Autoformer
(2021)

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
ECL 0.118 0.212 0.128 0.222 0.121 0.216 0.123 0.215 0.125 0.219 0.163 0.267 0.124 0.221 0.141 0.236 0.191 0.308
Traffic 0.338 0.235 0.360 0.254 0.343 0.246 0.387 0.271 0.349 0.241 0.579 0.314 0.375 0.254 0.426 0.290 0.583 0.420
ETTh1 0.330 0.363 0.339 0.368 0.359 0.387 0.348 0.375 0.335 0.372 0.399 0.418 0.349 0.378 0.368 0.393 0.452 0.466
ETTh2 0.255 0.315 0.257 0.315 0.274 0.331 0.264 0.324 0.264 0.322 0.304 0.356 0.289 0.338 0.282 0.338 0.365 0.411
ETTm1 0.242 0.300 0.244 0.302 0.261 0.315 0.258 0.316 0.248 0.305 0.271 0.318 0.272 0.318 0.259 0.312 0.464 0.445
ETTm2 0.158 0.236 0.158 0.235 0.175 0.251 0.164 0.241 0.167 0.240 0.180 0.258 0.168 0.244 0.167 0.251 0.225 0.306
Weather 0.139 0.175 0.140 0.178 0.158 0.190 0.143 0.182 0.153 0.184 0.165 0.206 0.150 0.194 0.161 0.209 0.185 0.231
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Figure 2: Examination of parameter scale and computation scale against the forward window size
and the backward window size on the ECL dataset.

convolution used in polynomial regression is chosen as 2. The total number of parameters resulting
from this configuration is around 25,000. For the other five datasets showing unstable and volatile
patterns, the spatial component is found to be useless due to the absence of spatial correlations, thus
this component is disabled. Additionally, the number of layers is configured as 2, resulting in around
5,000 parameters. During the training phase, we employ L2 loss for model optimization. In addition,
the batch size is set to 8, and an Adam optimizer is used with a learning rate of 0.0005.

5.2 Comparative Analysis with Baselines

Forecasting Accuracy As reported in Table 1, for Electricity and Traffic, SSCNN showcased
remarkable proficiency by achieving the lowest MSE and MAE. Specifically, on the Electricity
dataset, SSCNN outperformed iTransformer and PatchTST, two representative baselines, by 2% and
4%, respectively. On the Traffic dataset, SSCNN again surpassed them by 2% and 3%, respectively.
By comparing SSCNN to SCNN, the benefit of the selection mechanism is evident, leading to
approximate 8% improvement, highlighting the necessity of modeling fine-grained correlations
for complex yet regular patterns. On the other five datasets, we find that the attention mechanism
benefits little, resulting in comparable performance between SSCNN and SCNN. When it comes
to the comparative analysis with three leading Transformer-based models, including iTransformer,
PatchTST, and Crossformer, SSCNN exhibits notable improvements by 8.8%, 4.4%, and 8.3%,
respectively, on average. This suggests the competitiveness of SSCNN in handling irregular dynamics.

Parameter Scale Parameter scale is represented by the number of parameters. This metric varies
with the lookback window size and the forward window size for all models, as illustrated in Fig. 2a
and Fig. 2c, respectively. Apparently, SSCNN and DLinear emerge as the top two parameter-efficient
models, requiring 99% fewer parameters than other models. Remarkably, SSCNN proves to be even
more parsimonious than DLinear when tasked with extensively long-term forecasting, showing a
considerable reduction of 87% in parameter scale at the forward window size of 336.

Computation Scale Computation scale is measured using the number of floating point operations
(FLOPs), as illustrated in Fig. 2b and Fig. 2d, respectively. SSCNN falls short in computation scale
compared to iTransformer. This is because, instead of performing compression using fully connected
layers, it manages and processes the entire sequence at each layer. As a result, the computational
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Figure 4: Sensitivity analysis of hyper-parameters on the ECL and Traffic datasets.

cost scales with the sum of the backward window and forward window sizes, raising an issue to be
addressed in future work. Despite the relatively high computational cost, SSCNN has the potential to
be accelerated through parallel computing.

Sensitivity to Lookback Window Size As shown in Fig. 3, for ECL data, although SSCNN
initially lags behind other state-of-the-art models at a window size of 96, it progressively outperforms
them as more historical data is included. In contrast, iTransformer and Crossformer achieve advanta-
geous performance with shorter input ranges but exhibit diminished gains from extended historical
data. Furthermore, when handling the volatile fluctuations of ETTh2 data, SSCNN demonstrates
indisputably enhanced capability with respect to the lookback window size compared to competing
methods, some of which even show degraded performance due to the overfitting problem.

5.3 Comparative Analysis of Model Configurations

Analysis of Hyper-parameters As shown in Fig. 4, the efficacy of SSCNN is impacted by
adjustments to the five considered hyperparameters, showing up to a 10% difference between the best
and the worst records. Focusing on the performance change against cycle length, we find that the
misalignment between the configured value and the authentic value of 24 results in a significant drop in
effectiveness, verifying our presumption. Additionally, the short-term span also has a non-negligible
influence on the outcome.
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Figure 5: Performance comparison with various component
in ECL and Traffic dataset.

Ablation Study We create seven
variants: The first six variants are used
to assess the individual contributions
of the four components as well as the
two introduced attention maps, respec-
tively. The last variant, represented as
’w FCN’, is constructed by inserting
an additional fully-connected network
(FCN) between backward variables
and forward variables to verify the re-
dundancy of the FCN, which is preva-
lently adopted by previous works (Liu
et al., 2024a; Nie et al., 2023) to cap-
ture temporal correlations, under the
framework of SSCNN. It is evident
from Fig. 5 that all these components
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are vital, with the seasonal component being the most prominently important. Interestingly, our
approach shows that basing dependencies on the evaluation of inter-channel conditional correlations
actually enhances outcomes, contradicting the evidence delivered by Han et al. (2023b); Nie et al.
(2023), where a channel-dependent strategy was seen as detrimental to model performance. Fur-
thermore, we note that ’w FCN’ does not bring any benefit, proving the sufficiency of the proposed
inference and extrapolation operations for characterizing useful dynamics.

6 Conclusions, Limitations and Broader Impacts

In this research, we developed SSCNN, a structured component-based neural network augmented
with a selection mechanism, adept at capturing complex data regularities with a reduced parameter
scale. Through extensive experimentation, SSCNN has demonstrated exceptional performance and
versatility, effectively handling a variety of time series forecasting scenarios and proving its efficacy.

While the proposed SSCNN model achieves satisfactory results in reducing parameter usage, it
falls short in terms of computational complexity, as shown in Fig. 2b and Fig. 2d. This drawback,
however, has the potential to be mitigated in future work by identifying and eliminating redundant
computations with down-sampling techniques. Moreover, our future research will explore the
potential for automating the process of identifying the optimal neural architecture, using these
fundamental modules and operations as building blocks. This approach promises to alleviate the
laborious task of manually testing various combinations in search of the optimal architecture for each
new dataset encountered.

Time series forecasting can significantly benefit various sectors, including meteorology, economics,
traffic management, and healthcare. However, it also poses potential negative impacts. Inaccurate
forecasts can lead to significant economic or operational disruptions. Additionally, the large amounts
of data required for accurate forecasting may include personal or sensitive information, raising
concerns about data privacy and potential misuse.
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A Additional Materials for Section 4

Suppose the time series x is driven by two distinct vector components a and b. Considering a triplet
(xt1 , xt2 , xt3) sampled from three time steps t1, t2 and t3, respectively, where xti = ati + bti for
i = 1, 2, 3, subjecting to at1 = at2 , bt2 = bt3 and at1 ̸= at3 . To examine the relationship between
∥xt1 − xt2∥ and ∥xt1 − xt3∥, we analyze the difference between the squares of them:

∥xt1 − xt2∥2 − ∥xt1 − xt3∥2 = ∥at1 + bt1 − at2 − bt2∥2 − ∥at1 + bt1 − at3 − bt3∥2

= ∥bt1 − bt2∥2 − ∥at1 + bt1 − at3 − bt2∥2

= −∥at1 − at3∥2 − 2⟨at1 − at3 , bt1 − bt2⟩. (11)

Therefore, the sign of the difference is determined by the relation between at1 − at3 and bt1 − bt3 .
If at1 − at3 and bt1 − bt3 are orthogonal, implying that their inner product is zero, then Eq. (11)
can be further reduced to −∥at1 − at3∥2, resulting in a rigorously negative number, which means
that xt1 is constantly closer to xt2 than xt3 . Whereas, if they are not perpendicular to each other,
which is the case for the step-wise representations of time series data, the sign can be arbitrary. To
make it more accessible, we express bt1 − bt3 as the addition of two components, i.e., v1 + v2, where
v1 = λ(at1 − at3), representing the projection of bt1 − bt3 on at1 − at3 , and v2 = bt1 − bt3 − v1,
explaining the residual part. Substituting this expression of bt1 − bt3 into Eq. (11), we obtain
−(1 + 2λ)∥at1 − at3∥2. At this point, it is easy to capture that the relationship between ∥xt1 − xt2∥
and ∥xt1 − xt3∥ depends on the value taken by λ. Therefore, xt1 is likely to be farther to xt2 than
xt3 , even xt1 and xt2 share one same component.

The patching operation, i.e., P : xt → (xt−p, · · · , xt)
⊤, restructures the representation space by

adjusting the distances among the samples. In particular, the difference between ∥xt1 − xt2∥ and
∥xt1 − xt3∥ is transformed into the following form:

∥P (xt1)− P (xt2)∥2 − ∥P (xt1)− P (xt3)∥2

= ∥(xt1−p − xt2−p, · · · , xt1 − xt2)∥2 − ∥(xt1−p − xt3−p, · · · , xt1 − xt3)∥2

= ∥(at1−p − at2−p, · · · , at1 − at2)∥2 + ∥(bt1−p − bt2−p, · · · , bt1 − bt2)∥2

+ 2⟨(at1−p − at2−p, · · · , at1 − at2), (bt1−p − bt2−p, · · · , bt1 − bt2)⟩
− ∥(at1−p − at3−p, · · · , at1 − at3)∥2 − ∥(bt1−p − bt3−p, · · · , bt1 − bt3)∥2

− 2⟨(at1−p − at3−p, · · · , at1 − at3), (bt1−p − bt3−p, · · · , bt1 − bt3)⟩. (12)

Given that a and b display independent dynamics, the correlation between (at−p, · · · , at) and
(bt−p, · · · , bt) is increasingly approaching zero as p grows. Therefore, any terms involving the inner
product between a and b can be ignored. However, another critical prerequisite needs to be additionally
satisfied for the success of rectification: [at1−p, · · · , at1 ] should be closer to [at2−p, · · · , at2 ] than
[at3−p, · · · , at3 ] provided that at1 = at2 and at1 ̸= at3 . This also applies to the b-component. For
components showing stable and consistent behaviors, such as long-term and seasonal components,
this prerequisite readily holds for arbitrarily large patch sizes. In contrast, for volatile components,
such as the short-term component, the patch is likely to contain increasingly irrelevant information as
p grows, resulting in an adversely increased disparity between x1 and x2. Therefore, patching-based
methods fall short in capturing the short-term component.

By using the decomposition mapping D : ati + bti → (ati , bti), we have ∥D(xt1) − D(xt2)∥ =
∥(0, bt1 − bt2)∥ ≤ ∥(at1 − at3 , bt1 − bt2)∥ = ∥D(xt1)−D(xt2)∥. Therefore, we obtain ∥D(xt1)−
D(xt2)∥ ≤ ∥D(xt1)−D(xt3)∥. We now extend our analysis to the case where the time series x is
sampled from different data distributions, e.g., Gaussian mixture models. Specifically, we consider a
triplet (xt1 , xt2 , xt3), where xti is sampled from the distribution λ1N (µa,i, σaI) + λ2N (µb,i, σbI).
Here, the Gaussian distributions N (µa,i, σaI) and N (µb,i, σbI) represent two different components
for xti , and λi represents the weights for the Gaussian mixture model. The goal of the decomposition
approach is to decouple each component. Therefore, the decomposition projection will take the form
of D : λ1Na + λ2Nb → (λ1Na, λ2Nb)

⊤. This decomposition projection can adjust the structure of
the representation space and better separate data with different distributions. To show this, we suppose
that µa,1 = µa,2 holds. Then for any x3 sampled from λ1N (µa,3, σaI) + λ2N (µb,3, σbI) where
µb,3 = µb,2 holds, we expect that the distance between x1 and x2 is more likely to be closer than
the distance between x1 and x3, since x1 and x2 have the same distribution component. However,
the original representation cannot guarantee that the inequality E∥x1 − x2∥2 ≤ E∥x3 − x1∥2
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holds. By using the decomposition mapping, xti is mapped to the vector (λ1ati , λ2bti)
⊤, where

ati and bti follow the distributions N (µa,i, σaI) and N (µb,i, σbI), respectively. Then we have
E∥D(xt1) − D(xt2)∥2 = λ2

1E∥at1 − at2∥2 + λ2
2E∥bt1 − bt2∥2. Since µa,1 = µa,2, we have

E∥at1 − at2∥2 ≤ E∥at1 − at3∥2. It follows that E∥D(xt1) − D(xt2)∥2 ≤ λ2
1E∥at1 − at3∥2 +

λ2
2E∥bt1 − bt3∥2 = E∥D(xt1) − D(xt3)∥2. Therefore, the decomposition mapping ensures that

the inequality E∥D(x1)−D(x2)∥2 ≤ E∥D(x1)−D(x3)∥2 holds. This helps rectify the incorrect
relations between data.

B Data Details

B.1 Dataset Description

We evaluate the performance of our proposed SSCNN on 7 popular datasets with diverse regularities,
including Weather, Traffic, Electricity and 4 ETT datasets (ETTh1, ETTh2, ETTm1, ETTm2). Among
these 7 datasets, Traffic and Electricity consistently show more regular patterns over time, while
the rest datasets contain more volatile data. Weather dataset collects 21 meteorological indicators
in Germany, such as humidity and air temperature. Traffic dataset records the road occupancy
rates from different sensors on San Francisco freeways. Electricity is a dataset that describes 321
customers’ hourly electricity consumption. ETT (Electricity Transformer Temperature) datasets are
collected from two different electric transformers labeled with 1 and 2, and each of them contains 2
different resolutions (15 minutes and 1 hour) denoted with m and h. Thus, in total we have 4 ETT
datasets: ETTm1, ETTm2, ETTh1, and ETTh2. These datasets have been extensively utilized for
benchmarking and publicly available on Time-Series-Library3.

B.2 Data Preprocessing

For the datasets with a 1-hour sampling rate—Electricity, Traffic, ETTh1, and ETTh2—the input
length Tin is uniformly set at 168 for all models.Conversely, for datasets with a 10-minute or 15-
minute sampling rate, Tin is adjusted to 432 or 384, respectively, to ensure coverage of multiple
periods. The output length varies among {3, 24, 96, 192, 336}, accommodating both short-term
and long-term forecasts. To ensure fairness in the comparison, all competing methods adopt this
window size configuration. Additionally, data are pre-processed by normalization and post-processed
by de-normalization across all baselines.

C Full Results

The full multivariate forecasting results are provided in the following section due to the space limita-
tion of the main text. We extensively evaluate competitive counterparts on challenging forecasting
tasks. Table 2 contains the detailed results of all prediction lengths of the seven well-acknowledged
forecasting benchmarks. The proposed model achieves comprehensive state-of-the-art in real-world
forecasting applications. We also report the standard deviation of SSCNN performance under five
runs with different random seeds in Table 3, which exhibits that the performance of SSCNN is stable.

D Implications of Decomposition on Spatial-Temporal Correlations

We showcase that decomposition facilitates to wipe out redundant correlations, leading to sparse
temporal and spatial correlation maps. We first define two concepts, namely the conditional correlation
and conditional auto-correlation. Then, we utilize these two concepts to analyze the temporal
correlations and spatial correlations, respectively.

D.1 Conditional Correlation and Conditional Auto-correlation

Conditional correlation, or also known as partial correlation, refers to the degree of association
between two series, with the effect of a set of controlling series removed, while conditional auto-
correlation refers to the correlation of a series with a delayed copy of itself, given a specific set of
controlling series.

3https://github.com/thuml/Time-Series-Library
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Table 2: Long-term forecasting results on 7 real-world datasets in MSE and MAE. The best result is
highlighted in bold, and the second best is highlighted with underline.

Models SSCNN
(Ours)

SCNN
(2024)

iTransformer
(2024)

TimeMixer
(2024)

PatchTST
(2023)

TimesNet
(2023)

Crossformer
(2023)

DLinear
(2023)

Autoformer
(2021)

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
E

L
C

3 0.057 0.149 0.059 0.152 0.059 0.152 0.060 0.153 0.063 0.160 0.119 0.232 0.058 0.151 0.077 0.175 0.147 0.273
24 0.093 0.187 0.096 0.192 0.094 0.189 0.097 0.191 0.100 0.197 0.135 0.245 0.098 0.195 0.122 0.221 0.168 0.286
96 0.128 0.221 0.148 0.241 0.133 0.229 0.134 0.226 0.136 0.230 0.169 0.272 0.136 0.238 0.154 0.248 0.186 0.301

192 0.151 0.243 0.160 0.252 0.154 0.247 0.152 0.244 0.152 0.244 0.191 0.288 0.158 0.255 0.168 0.260 0.218 0.328
336 0.165 0.261 0.181 0.274 0.169 0.263 0.171 0.262 0.172 0.264 0.203 0.300 0.173 0.268 0.186 0.277 0.238 0.351

Tr
af

fic

3 0.241 0.189 0.246 0.194 0.250 0.197 0.265 0.198 0.252 0.195 0.510 0.283 0.289 0.210 0.331 0.255 0.524 0.344
24 0.310 0.223 0.316 0.234 0.316 0.234 0.343 0.246 0.323 0.229 0.531 0.293 0.335 0.231 0.402 0.281 0.548 0.335
96 0.358 0.244 0.386 0.271 0.364 0.258 0.407 0.278 0.371 0.251 0.602 0.319 0.392 0.272 0.452 0.302 0.603 0.368

192 0.384 0.258 0.416 0.280 0.389 0.270 0.452 0.315 0.394 0.260 0.615 0.321 0.423 0.269 0.465 0.304 0.628 0.385
336 0.398 0.264 0.437 0.293 0.398 0.274 0.472 0.321 0.409 0.273 0.640 0.355 0.440 0.299 0.480 0.311 0.616 0.371

E
T

T
h1

3 0.144 0.239 0.146 0.242 0.165 0.262 0.145 0.245 0.148 0.248 0.272 0.337 0.142 0.241 0.170 0.260 0.299 0.382
24 0.297 0.344 0.304 0.353 0.320 0.367 0.299 0.350 0.299 0.355 0.352 0.393 0.318 0.366 0.319 0.362 0.442 0.466
96 0.363 0.386 0.379 0.398 0.388 0.407 0.388 0.400 0.369 0.391 0.402 0.421 0.381 0.405 0.383 0.401 0.456 0.469

192 0.404 0.413 0.427 0.423 0.446 0.444 0.443 0.437 0.413 0.425 0.464 0.459 0.433 0.431 0.429 0.428 0.505 0.491
336 0.435 0.428 0.439 0.424 0.476 0.457 0.476 0.444 0.448 0.441 0.506 0.482 0.471 0.451 0.464 0.444 0.560 0.522

E
T

T
h2

3 0.079 0.177 0.079 0.177 0.088 0.193 0.082 0.179 0.081 0.178 0.119 0.232 0.079 0.176 0.083 0.182 0.203 0.310
24 0.165 0.258 0.163 0.253 0.187 0.278 0.174 0.266 0.176 0.264 0.210 0.301 0.180 0.271 0.167 0.261 0.318 0.393
96 0.285 0.339 0.289 0.340 0.304 0.355 0.302 0.355 0.300 0.348 0.340 0.379 0.328 0.376 0.290 0.349 0.378 0.417

192 0.356 0.385 0.356 0.388 0.378 0.401 0.361 0.392 0.359 0.390 0.402 0.417 0.396 0.416 0.389 0.416 0.437 0.452
336 0.392 0.419 0.395 0.417 0.417 0.428 0.405 0.429 0.404 0.434 0.451 0.454 0.438 0.430 0.484 0.482 0.493 0.486

E
T

T
m

1

3 0.057 0.150 0.058 0.151 0.062 0.161 0.069 0.175 0.056 0.149 0.067 0.168 0.057 0.151 0.062 0.156 0.227 0.315
24 0.185 0.265 0.193 0.270 0.211 0.290 0.204 0.284 0.196 0.277 0.201 0.282 0.209 0.282 0.214 0.288 0.466 0.446
96 0.290 0.339 0.287 0.339 0.305 0.354 0.314 0.355 0.293 0.342 0.324 0.370 0.319 0.355 0.308 0.358 0.471 0.445

192 0.323 0.362 0.327 0.366 0.346 0.377 0.331 0.373 0.335 0.369 0.393 0.413 0.374 0.390 0.341 0.373 0.566 0.498
336 0.357 0.384 0.358 0.385 0.381 0.397 0.373 0.396 0.364 0.389 0.371 0.399 0.405 0.414 0.372 0.388 0.594 0.523

E
T

T
m

2

3 0.041 0.117 0.042 0.119 0.044 0.127 0.043 0.122 0.042 0.120 0.051 0.143 0.042 0.120 0.044 0.125 0.120 0.234
24 0.094 0.190 0.095 0.192 0.102 0.200 0.097 0.195 0.093 0.191 0.108 0.210 0.098 0.197 0.098 0.198 0.151 0.262
96 0.165 0.254 0.163 0.250 0.188 0.274 0.170 0.258 0.171 0.255 0.192 0.278 0.177 0.264 0.177 0.273 0.231 0.317

192 0.221 0.293 0.221 0.292 0.244 0.312 0.229 0.300 0.233 0.296 0.241 0.315 0.231 0.303 0.228 0.306 0.288 0.343
336 0.270 0.326 0.271 0.326 0.299 0.345 0.282 0.333 0.296 0.339 0.309 0.345 0.292 0.339 0.291 0.353 0.339 0.377

W
ea

th
er

3 0.044 0.060 0.046 0.066 0.046 0.062 0.045 0.062 0.045 0.064 0.055 0.091 0.045 0.064 0.048 0.074 0.054 0.087
24 0.087 0.116 0.089 0.120 0.097 0.130 0.092 0.133 0.093 0.121 0.100 0.142 0.093 0.134 0.102 0.147 0.119 0.167
96 0.142 0.196 0.142 0.192 0.168 0.216 0.145 0.198 0.163 0.207 0.173 0.221 0.155 0.212 0.171 0.224 0.201 0.242

192 0.186 0.231 0.186 0.234 0.213 0.252 0.191 0.240 0.203 0.243 0.216 0.266 0.194 0.247 0.219 0.282 0.253 0.311
336 0.238 0.274 0.239 0.276 0.269 0.294 0.243 0.280 0.262 0.287 0.285 0.314 0.264 0.317 0.266 0.321 0.302 0.350

Table 3: Robustness of SSCNN performance. The results are obtained from five random seeds.
Dataset ECL Traffic ETTh1
Metrics MSE MAE MSE MAE MSE MAE

3 0.057±0.000 0.149±0.000 0.241±0.003 0.189±0.001 0.144±0.004 0.239±0.003
24 0.093±0.001 0.187±0.002 0.310±0.004 0.223±0.003 0.297±0.003 0.344±0.003
96 0.128±0.002 0.221±0.003 0.358±0.002 0.244±0.002 0.363±0.002 0.386±0.004

192 0.151±0.000 0.243±0.001 0.384±0.004 0.258±0.002 0.404±0.003 0.413±0.005
336 0.165±0.003 0.261±0.003 0.398±0.002 0.264±0.002 0.435±0.003 0.428±0.004

Datasets ETTh2 ETTm1 ETTm2
Metrics MSE MAE MSE MAE MSE MAE

3 0.079±0.000 0.177±0.001 0.057±0.001 0.150±0.002 0.041±0.002 0.117±0.002
24 0.165±0.001 0.258±0.002 0.185±0.002 0.265±0.003 0.094±0.001 0.190±0.001
96 0.285±0.001 0.339±0.001 0.290±0.003 0.339±0.001 0.165±0.001 0.254±0.002

192 0.356±0.004 0.385±0.004 0.323±0.003 0.362±0.004 0.221±0.001 0.293±0.002
336 0.392±0.004 0.419±0.002 0.357±0.003 0.384±0.001 0.270±0.002 0.326±0.003

Definition 1 (Conditional Correlation). Let X and Y be two real-valued, one-dimensional series,
and Z an n-dimensional control series. Denote Xi, Yi, and Zi as the ith observations of each series,
respectively. The conditional correlation is defined based on the residuals in X and Y that are
unexplained by Z. The residuals are calculated as follows:

RX,i = Xi −wX · zi,
RY,i = Yi −wY · zi,
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where wX and wY are obtained by minimizing the respective squared differences:

wX = argmin
w

{
N∑
i=1

(Xi −w · Zi)
2

}
,

wY = argmin
w

{
N∑
i=1

(Yi −w · Zi)
2

}
.

The conditional correlation ρ̂XY |Z is then computed using these residuals:

ρ̂XY |Z =

∑N
i=1 RX,iRY,i√∑N

i=1 R
2
X,i

√∑N
i=1 R

2
Y,i

.

Definition 2 (Conditional Auto-correlation). Extending the concept of conditional correlation to
auto-correlation, we analyze a series’ correlation with its own past values in the context of other
variables. For a time series Y and control variables Z, the residual is computed as:

Ri = Yi −w · Zi,

where w is determined by minimizing the squared differences:

w = argmin
w

{
N∑
i=1

(Yi −w · Zi)
2

}
.

The conditional auto-correlation is then defined as:

ρ̂Y |Z(τ) =

∑N
i=1+τ RiRi−τ√∑N

i=1 R
2
i

√∑N
i=1+τ R

2
i−τ

.

Here, τ represents the time lag. The measure ρ̂Y Y |Z(τ) quantifies the correlation between the time
series and its τ -lagged series, conditional on Z.

Both conditional correlation and conditional auto-correlation offer flexible and diverse instantiation
possibilities, relying on the definition of the conditional set. When this set is null, these measures
simplify to their standard forms of correlation and auto-correlation, respectively. This adaptability
allows for a broad range of analytical applications and interpretations. However, when utilizing
conditional auto-correlation for time series data analysis, we encounter a significant challenge:
the limited information of the controlling variable Z. In practice, identifying and evaluating the
factors influencing our time series often requires external data sources, which are not always available.
Instead, we use the method proposed by SSCNN to approximate the components that can be explained
by factors with specific regularities. Figure 6 showcases the estimated components alongside
the residuals obtained by incrementally controlling the long-term (e.g., resulting from resident
population), seasonal (e.g., resulting from time of day), and short-term (e.g., resulting from occurrence
of an event) components.

D.2 Temporal Regularity

Temporal regularity can be captured by the evolution of conditional auto-correlation, as depicted in
Fig. 7 (a)(b)(c)(d), indicating how the structured components impact the temporal regularity of time
series. We can observe that the original time series degenerates into a sequence of nearly uncorrelated
residuals upon progressively controlling for long-term, seasonal, and short-term components. This
observation implies that these diverse components collectively elucidate the dynamics of time series,
rendering any remaining correlations superfluous. Therefore, isolating these components is imperative
to pinpoint and eliminate potential redundancy. Moreover, employing an operator with an extensive
receptive field, such as the MLP used in ?Nie et al. (2023), becomes unnecessary for processing
decoupled data due to the minimal relevance of current observations to distant lags.

In addition, conditional auto-correlations display variations with increasing lag intervals, likely
attributed to cumulative noise. This fluctuation highlights the necessity for the selection mechanism,
to discern subtle differences, moving beyond basic approaches like moving averages that uniformly
treat all lags.
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Figure 6: Disentangling structured components from the original time series data.

0 10 20 30 40 50 60 70

0.0

0.2

0.4

0.6

0.8

1.0
Autocorrelation

(a) ρ̂Y (τ)

0 10 20 30 40 50 60 70

0.2

0.0

0.2

0.4

0.6

0.8

1.0
Autocorrelation

(b) ρ̂Y |lt(τ) = ρ̂Rlt(τ)

0 10 20 30 40 50 60 70

0.0

0.2

0.4

0.6

0.8

1.0
Autocorrelation

(c) ρ̂Y |lt,se(τ) = ρ̂Rse(τ)

0 10 20 30 40 50 60 70

0.2

0.0

0.2

0.4

0.6

0.8

1.0
Autocorrelation

(d) ρ̂Y |lt,se,st(τ) = ρ̂Rst(τ)
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Figure 7: (a)(b)(c)(d): The evolution of conditional correlation between each pair of series when
progressively controlling for three distinct types of factors. (e)(f)(g)(h):The evolution of conditional
auto-correlation when progressively controlling for three distinct types of factors.

D.3 Spatial Regularity

Spatial regularity is recognized as another vital information source for enhancing prediction accuracy
and reliability in many datasets. However, an long-standing question in spatial regularity research
persists: Why the channel-mixing strategy struggles to capture beneficial spatial regularities Han et al.
(2023b); Nie et al. (2023)?

Our principal discovery is that spatial and temporal correlations frequently intersect, leading to
redundant information. This overlap necessitates the identification of distinct spatial correlations that
augment temporal correlations. We concentrate on conditional correlations, acquired by methodically
controlling for long-term, seasonal, and short-term components. As Fig. 7 (e)(f)(g)(h) illustrates,
spatial correlations gradually wane as more temporal elements are regulated. Eventually, when all
three factors are considered, the majority of series pairs exhibit no significant relation, underscoring
the criticality of discerning genuinely impactful correlations.

This phenomenon is intuitively understood. Temporal influences, such as seasonal trends, commonly
affect multiple time series concurrently, fostering parallel evolutions and visible spatial correlations.
Once these influences are adjusted for, the resulting spatial correlations wane, uncovering less
correlated series. It is the correlations among these residual series that genuinely refine forecasting
by supplying unique spatial insights. Thus, the key insight for spatial modeling is that conditional
correlation is instrumental in highlighting spatial variables that offer information complementary to
temporal data.
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Figure 8: Visualization of input-168-predict-96 results on the Traffic dataset.
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Figure 9: Visualization of input-432-predict-192 results on the Weather dataset.

E Visualization of Prediction Results

To provide a clear comparison among different models, we list supplementary prediction showcases
of two representative datasets in Fig. 8 and Fig. 9, respectively, which are given by the following
models: SSCNN, iTransfomrer (?), PatchTST (Nie et al., 2023), Crossformer (Zhang & Yan, 2023),
TimesNet (Wu et al., 2023), TimeMixer (Wang et al., 2024). Among the various models, SSCNN
predicts the most precise future series variations and exhibits superior performance
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The empirical results and analysis support the claims.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We analyze the limitations of the proposed method in a separate section,
specifically pointing out its disadvantageous computational efficiency compared against
baseline models.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: No new theoretical results are necessary for this work, but we do include a
analysis in the supplemental material. The analysis primarily aims for casting light on the
rationale of the proposed methodology, which may found to be somewhat unlike rigorous
theoretical proofs.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We detail the configurations of the model and the settings of the experimental
environments with the code being made publicly available.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: Please find our code in https://github.com/JLDeng/SSCNN. The
datasets can be downloaded from https://drive.google.com/drive/folders/
13Cg1KYOlzM5C7K8gK8NfC-F3EYxkM3D2, which is maintained by an existing study.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The experimental details are mentioned in the paper, and are also found in the
released code.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We repeated the experiments 5 times with different settings of the random seed
for each dataset, and reported the 1-sigma errors.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We train our model with a single NVIDIA 2080Ti 11GB GPU.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: This work conforms with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We create an individual section to discuss the social impacts.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The study poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: This paper properly cites the related datasets and codes used in our work.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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