
Logical Credal Networks

Radu Marinescu
IBM Research

radu.marinescu@ie.ibm.com

Haifeng Qian
AWS AI Labs

qianhf@amazon.com

Alexander Gray
IBM Research

alexander.gray@ibm.com

Debarun Bhattacharjya
IBM Research

debarunb@us.ibm.com

Francisco Barahona
IBM Research

barahon@us.ibm.com

Tian Gao
IBM Research

tgao@us.ibm.com

Ryan Riegel
IBM Research

ryan.riegel@ibm.com

Pravinda Sahu
IBM Consulting

pravisah@in.ibm.com

Abstract

We introduce Logical Credal Networks (or LCNs for short) – an expressive proba-
bilistic logic that generalizes prior formalisms that combine logic and probability.
Given imprecise information represented by probability bounds and conditional
probability bounds on logic formulas, an LCN specifies a set of probability distribu-
tions over all its interpretations. Our approach allows propositional and first-order
logic formulas with few restrictions, e.g., without requiring acyclicity. We also de-
fine a generalized Markov condition that allows us to identify implicit independence
relations between atomic formulas. We evaluate our method on benchmark prob-
lems such as random networks, Mastermind games with uncertainty and credit card
fraud detection. Our results show that the LCN outperforms existing approaches;
its advantage lies in aggregating multiple sources of imprecise information.

1 Introduction

Graphical models provide a powerful framework for reasoning about conditional dependency struc-
tures over many variables. Bayesian networks [26, 19], for example, rely on precise probabilistic
information and, therefore, encode a single distribution over the variables of interest, while credal
networks and their variants [7, 3, 8, 9], which encode sets of probability distributions, are able to
reason effectively with imprecise information represented by sets of probability values or intervals.

Many (if not all) real-world applications require efficient handling of uncertainty and a compact
representation of a wide variety of knowledge. Indeed, complex concepts and relationships that
typically comprise expert knowledge may be difficult to express in graphical models but can be
represented compactly using classical logic. Consequently, probabilistic logic which combines
probability and logic in a principled manner has emerged over the years as a unified framework to
deal effectively with these complex domains [23, 12, 16, 17, 1, 5, 11, 29, 15, 27, 28]. While some of
these formalisms (e.g., [29, 15, 27]) associate a single real value to the logical formulas to represent
the uncertainty around their truth values, others (e.g., [23, 12, 24]) relax this requirement and allow
specifying lower and upper probability bounds on logical formulas.

In practice, knowledge is typically imprecise and it is often the case that multiple sources of knowledge
need to be combined effectively to improve the solution quality of the problem at hand. For example, in
a practical credit card fraud detection application, it would be desirable to combine a statistical model

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

(a) Bayesian network (b) Credal network

Figure 1: Examples of simple Bayesian and credal networks.

capturing the uncertainty around historical transaction data with probabilistic logic rules expressing
imprecise expert knowledge about the domain in order to predict future fraudulent transactions
more accurately. Existing formalisms such as [23, 12, 24] allow bounds on logic formulas to model
imprecise knowledge. They also impose few restrictions on logic formulas for increased expressivity
but lack independence declarations which typically leads to excessively wide posterior probability
intervals in the inference results and that may not be very useful for the decision maker.

Contribution: In this paper, we present Logical Credal Networks (LCN), a new probabilistic logic
model that allows probability bounds and conditional probability bounds on arbitrary propositional
and first-order logic formulas without requiring acyclicity and other strong restrictions. In addition,
we define a generalized Markov condition for LCNs that allows us to make some independence
assumptions between the atoms occurring in the logic formulas. Specifically, this allows atomic
formulas in an LCN to be treated as independent unless there is information saying otherwise. The
independence assumptions in LCNs mirror similar assumptions present in probabilistic databases
[4] where for example tuples are considered independent of each other unless certain constraints
that encode correlation are violated [14, 30, 20]. Furthermore, we show that even though LCNs
allow cyclic dependencies between variables, our proposed Markov condition matches the Markov
condition in Bayesian and credal networks for acyclic graphs. Subsequently, we describe an exact
inference algorithm to compute lower and upper bounds on the posterior probability of a query
formula (optionally, in the presence of evidence). We experiment with random LCNs as well as
with benchmark problems derived from Mastermind games with uncertainty and a realistic credit
card fraud detection application. Our results are quite promising and show that LCNs outperform
significantly existing approaches, especially in terms of solution quality. In particular, the results
highlight the ability of LCNs to effectively aggregate multiple sources of imprecise information.

The supplementary material includes additional technical details and examples.

2 Background

2.1 Bayesian and Credal Networks

A Bayesian network (BN) [26] is defined by a tuple ⟨X,D,P, G⟩, where X = {X1, . . . , Xn} is
a set of variables over multi-valued domains D = {D1, . . . , Dn}, G is a directed acyclic graph
(DAG) over X as nodes, and P = {Pi} where Pi = P (Xi|pa(Xi)) are conditional probability
distributions (CPDs) associated with each variable Xi and its parents pa(Xi) in G. The Bayesian
network represents a joint probability over X, P (X1, . . . , Xn) =

∏n
i=1 P (Xi|pa(Xi)).

Credal networks (CN) [6, 3] extend Bayesian networks to deal with imprecise probabilities. More
specifically, each variable Xi and each configuration πik of its parents pa(Xi) in a credal network is
associated with a conditional credal set K(Xi|pa(Xi) = πik) which is specified separately from all
others and is assumed to be closed and convex (e.g., probability intervals). The strong extension of a
credal network is the convex hull of all joint distributions that satisfy the property that every variable
is strongly independent of its non-descendants conditional on its parents [6].

Example 1. Figures 1(a) and 1(b) show simple examples of Bayesian and credal networks defined
over five binary variables together with their corresponding conditional probability tables and credal

2

sets, respectively. The lowercase letters denote the domain values of the variables (e.g., A ∈ {a0, a1}).
In this case, the credal sets are given by closed probability intervals (e.g., P (b0) ∈ [0.1, 0.2]).

2.2 Probabilistic Logics

Propositions are denoted by lowercase letters x, y, z, . . . and propositional literals (i.e., x , ¬x) stand
for x being True or x being False. A term is a variable, a constant, or a function applied to terms.
An atom (or atomic formula) is either a proposition or a predicate p(t1, . . . , tk) of arity k where the
ti are terms. A formula is built out of atoms using logical connectives ¬, ∨, ∧ and →, respectively.
For simplicity, we assume that first-order logic (FOL) formulas are universally quantified.

A probabilistic logic is defined by a set of logic formulas1 (q, αq) such that each formula q is
annotated with a probability value αq ∈ [0, 1] representing the probability P (q) of q being true [23].
The semantics of this logic is the set of probability distributions over all interpretations such that
P (q) = αq

2. The αq values can be replaced with intervals to deal with imprecise probabilities. Given
a query formula f , a common inference task is to compute lower and upper probability bounds on
P (f), denoted by P (f) and P (f), respectively.

A major weakness of this probabilistic logic [23] (as well as more recent work on description logic
[16, 17, 22]) is the lack of a Markov condition: there are no independence relations that are implied
by the probabilistic logic. Consider the following simple example:

0.3 ≤P (x) ≤ 0.7 0.3 ≤P (y) ≤ 0.7 (1)

where x, y are atomic formulas. Computing the bounds on P (x ⊕ y)3 results in the interval [0, 1]
[23]. Indeed, there exists a joint distribution over x, y such that (1) is satisfied and that x ⊕ y is
always False, and there exists another such that x⊕ y is always True. The inference result of [0, 1],
however, is not informative for most purposes and often is not the intention when one writes down (1)
for an application. A more practical approach in this case is to assume that x and y are independent of
each other unless there is information saying otherwise. With this independence assumption, solving
the original query P (x⊕ y) results in the interval [0.42, 0.58].

One way to allow for a Markov condition in probabilistic logic is to constrain the logic formulas to a
specific structure such as a Bayesian network [1] or a credal network with probability intervals [8, 9].
However, this representation comes with several restrictions: (1) the only non-atomic logic formulas
allowed are AND over atomic formulas and negation of atomic formulas; (2) there must not be cyclic
dependencies among atomic formulas; (3) an atomic formula must be specified by either a marginal
probability interval or by a set of conditional probability intervals, and not both; (4) the conditions in
the conditional probabilities must enumerate all possible interpretations of the parent variables – we
will refer to the last two requirements as the unique-assessment assumption. In practice, there is often
knowledge that cannot be expressed by a simple AND. Furthermore, there could be multiple sources
of information that, when aggregated, break the acyclicity or unique-assessment requirements.

3 Logical Credal Networks

In this section, we introduce the Logical Credal Network (LCN) – a new probabilistic logic designed
to allow as few restrictions as possible on logic formulas when specifying probability bounds together
with a set of implied independence relations similar to those present in Bayesian and credal networks.

3.1 Syntax

An LCN is defined by a set of probability sentences having one of the following two forms:
lq ≤P (q) ≤ uq (2)

lq|r ≤P (q | r) ≤ uq|r (3)
where q and r can be arbitrary propositional or FOL formulas and 0 ≤ lq ≤ uq ≤ 1, 0 ≤ lq|r ≤
uq|r ≤ 1. Each sentence is further associated with a Boolean parameter τ ∈ {True, False}, which
indicates whether a sentence implies dependence between the atomic formulas occurring in q.

1A logic formula q can be either a propositional formula or a universally quantified first-order logic formula.
2We use P (q) as shorthand notation for P (q is True) and P (q | r) for P (q is True | r is True).
3Symbol ⊕ stands for the logical XOR operator.

3

Figure 2: Stamps of the sentences in LCNs: (a) A sentence (2) with τ = True; (b) A sentence (3)
where q is an atomic formula (τ is either True or False); (c) A sentence (3) where q is a non-atomic
formula and τ = True; (d) A sentence (3) where q is a non-atomic formula and τ = False. The
nodes corresponding to the atomic formulas are shaded.

Example 2. Consider the following Smokers and Friends LCN (adapted from [29]). The predi-
cates Fr(·, ·), Sm(·) and Ca(·) stand for Friends(·, ·), Smokes(·) and Cancer(·), respectively.
Furthermore, predicate Fr(·, ·) is symmetric.

0.5 ≤P (Fr (α, γ) | Fr (α, β) ∧ Fr (β, γ)) ≤ 1, (4)
0 ≤P (Sm (α)⊕ Sm (β) | Fr (α, β)) ≤ 0.2, (5)

0.03 ≤P (Ca (α) | Sm (α)) ≤ 0.04, (6)
0 ≤P (Ca (α) | ¬Sm (α)) ≤ 0.01, (7)

The LCN sentences state the following: friends of friends are likely friends (4); if two people are
friends, they likely either both smoke or neither does (5); smoking likely causes cancer (6) (7).

3.2 Semantics

An LCN represents the set of all its models. A model4 of an LCN is a probability distribution over
all interpretations such that it satisfies a set of constraints given explicitly by (2)(3) and a set of
independence constraints which are implied by the LCN. The latter involve atomic formulas only
and are similar to the independence relations implied by a Markov condition in graphical models
[19]. Furthermore, we say that an LCN is consistent if it has at least one model. Otherwise, it is
inconsistent.

In contrast to previous work [1, 6, 9], we propose a generalized Markov condition that accommodates
the LCN’s much more relaxed requirements on logic formulas, including cyclic dependencies (i.e.,
specifying sentences involving P (x|y) and P (y|x) is allowed in LCNs because they may come from
different sources of information). We introduce next the stamp of an LCN sentence and, subsequently,
define the primal graph of an LCN which is the basis of our proposed Markov condition.

Definition 1 (stamp). Given an LCN L and a sentence s ∈ L, the stamp G(s) of s is a directed
graph whose nodes correspond to formulas in s, together with all atoms occurring in formulas in
s. The edges of G(s) are determined as follows. For τ = True, (i) if s is (2) such that q has atoms
x1, . . . , xn then G(s) has directed edges from q to each xi, and from each xi to q, respectively, and
(ii) if s is (3) such that x1, . . . , xn (resp. a1, . . . , am) are the atoms in q (resp. r), then G(s) contains
a directed edge from r to q, a set of directed edges from each aj to r, as well as directed edges from
q to each xi and from each xi to q, respectively. For τ = False, (iii) if s is (2) then G(s) has no
edges, and (iv) if s is (3) such that q and r have atoms x1, . . . , xn and a1, . . . , am then G(s) contains
directed edges from each aj to r, from r to q and from q to each xi, respectively.

4The semantics is not model-theoretic because there exist implied constraints that are jointly derived from
multiple sentences.

4

Figure 3: The primal graph of the LCN from Example 2 grounded on the domain {Tim, Tam, Tom}.

Figure 2 shows the stamps corresponding to different sentences in LCNs. The intuition behind the
stamps is the need to capture two types of dependencies. For a sentence (2) with τ = True, the
dependency among atomic formulas in q is similar to a clique in Markov networks (see Figure 2(a)).
For a sentence (3) where q is an atomic formula, the dependency is similar to the dependencies in
Bayesian networks (see Figure 2(b)). The stamp of Figure 2(c) is a composition of the two types. For
a sentence where q is non-atomic, the parameter τ controls whether its stamp includes edges from its
atoms x, y and z to q, and consequently modifies the primal graph and the Markov condition.
Definition 2 (primal graph). The primal graph of an LCN L with n sentences s1, . . . , sn is the
directed graph G representing the union of the stamps associated with the sentences in L, namely
G = G(s1) ∪ · · · ∪G(sn).

Figure 3 illustrates the primal graph of the LCN from Example 2 grounded on a domain of three
people x ∈ {Tim, Tam, Tom}, where we assume τ = True for all sentences. As before, the
symbol ⊕ is XOR and the shaded nodes correspond to atomic formulas.
Definition 3 (parents). The parents of an atomic formula x, denoted by parents(x), is the set of
atomic formulas y such that there exists a directed path (y → z1 → · · · → zk → x) from y to x in
the primal graph where all intermediate nodes zi (if any) are non-atomic.
Definition 4 (descendants). The descendants of an atomic formula x, denoted by descendants(x),
is the set of atomic formulas y such that there exists a directed path (x → z1 → · · · → zk → y) from
x to y in the primal graph where none of the intermediate nodes zi (if any) is in parents(x).
Definition 5 (Markov condition). Let L be an LCN and M be a model of L. Given M , every atomic
formula x is conditionally independent of its non-descendant non-parent variables ndnp (x) given
parents (x), where ndnp (x) ≜ {atomic formulas} \ {parents (x) ∪ descendants (x) ∪ {x}}.

Clearly, the generalized Markov condition allows us to make additional independence assump-
tions by inspecting the primal graph of the LCN. For example, looking at Figure 3 again,
we see that parents(Sm(Tim)) = {Fr(Tim, Tom), F r(Tim, Tam), Sm(Tom), Sm(Tam)}
and ndnp(Sm(Tim)) = {Fr(Tom, Tam), Ca(Tom), Ca(Tam)}. Therefore, Sm(Tim) is
conditionally independent of Fr(Tom, Tam), Ca(Tom) and Ca(Tam) given Fr(Tim, Tom),
Fr(Tim, Tam), Sm(Tom) and Sm(Tam). Similarly, we can determine that Ca(Tim) is condi-
tionally independent of all other variables given Sm(Tim).

Remark Let us consider the case when an LCN is used to represent a Bayesian network B. In
this case, the upper and lower bounds in sentences (2)(3) are equal; formulas involved in (2)(3) are
propositional and atomic; and the LCN sentences specify the prior and conditional probabilities in
the Bayesian network. The primal graph is constructed by stamps only in the form of Figure 2(b) and
is identical with the DAG of B. Consequently, the parents (resp. descendants) of an atomic node x
are the same as the parents (resp. descendants) of x in B. Therefore, the Markov condition of the

5

LCN is identical to that defined for Bayesian networks [26]. The LCN has only one model, which is
the same probability distribution as the one represented by the Bayesian network B.

Similarly, if an LCN is composed of sentences (2) only and τ = True for each sentence then, by our
definitions, the parents of an atomic node x are the same as the Markov blanket of x in a Markov
Logic Network (MLN) with the same logic formulas as the LCN; the descendants of any atomic node
x is always empty; ndnp (x) are simply the atomic nodes not in the Markov blanket. Therefore, our
Markov condition in this case is identical to the independence relations encoded in the MLN [29].

3.3 Inference

Given an LCN L, a query formula f and, optionally, some evidence E = {e1, . . . , et} (i.e., a subset
of atomic formulas that are true), marginal inference in LCNs calls for computing lower and upper
bounds on the posterior marginal probability P (f |E), denoted by P (f |E) and P (f |E), respectively.

The task entails solving a non-linear program defined over a set of variables representing the proba-
bilities of L’s interpretations and comprising of linear constraints derived from the LCN sentences
as well as non-linear constraints corresponding to the independence assumptions derived from L’s
Markov condition, respectively. The query P (f |E) is translated into a non-linear objective function
which is subsequently minimized and maximized, thus yielding P (f |E) and P (f |E), respectively.

More specifically, if L has n atomic formulas then there are N = 2n possible interpretations
(recall that in the case of FOL, L refers to its grounding on the domains of its variables as shown
in the example of Figure 3). Let p⃗ = (p1, . . . , pN) be the vector of their probabilities and let
A⃗α = (aα1 , . . . , a

α
N) be a binary vector, called an indicator vector, such that aαj is 1 if formula α is

true in the j-th interpretation and 0 otherwise. Firstly, p⃗ must be a valid probability distribution:

N∑
j=1

pj = 1 and pj ≥ 0,∀j = 1, . . . , N (8)

Since the probability of a formula is the sum of the probabilities of the interpretations in which the
formula is true, sentences (2) and (3) in L are encoded by constraints (9) and (10), respectively:

A⃗q ⊙ p⃗ ≥ lq and A⃗q ⊙ p⃗ ≤ uq (9)

A⃗q∧r ⊙ p⃗− lq|r · A⃗r ⊙ p⃗ ≥ 0 and A⃗q∧r ⊙ p⃗− uq|r · A⃗r ⊙ p⃗ ≤ 0 (10)

where ⊙ is the dot product of two vectors (i.e., a⃗⊙ b⃗ =
∑n

j=1 aj · bj), A⃗q and A⃗q∧r are the indicator
vectors for the interpretations where formulas q and q ∧ r are true, respectively.

The independence assumptions implied by Definition 5 have the form:

P (xi|Si, Ti) = P (xi|Ti) or, equivalently, P (xi, Si, Ti) · P (Ti) = P (xi, Ti) · P (Si, Ti) (11)

where xi is an atomic formula, Si = {si1, . . . , sik} and Ti = {ti1, . . . , til} are xi’s parents and
non-descendants in the primal graph of L. It is important to note that Equation 11 must hold for
all truth values of its atomic formulas, namely when each atomic formula y ∈ {{xi} ∪ Si ∪ Ti} is
replaced by y or ¬y. Therefore, it can be encoded by 21+k+l non-linear constraints5 as follows:

(A⃗α ⊙ p⃗) · (A⃗β ⊙ p⃗)− (A⃗γ ⊙ p⃗) · (A⃗δ · p⃗) = 0 (12)

where k and l are the sizes of the parent and non-descendant sets, A⃗α, A⃗β , A⃗γ and A⃗δ are the indicator
vectors corresponding to the formulas α = (xi ∧ si1 ∧ · · · ∧ sik ∧ ti1 ∧ · · · ∧ til), β = (ti1 ∧ · · · ∧ til),
γ = (xi ∧ ti1 ∧ · · · ∧ til), and δ = (si1 ∧ · · · ∧ sik ∧ ti1 ∧ · · · ∧ til), respectively.

The objective P (f |E) is encoded by A⃗ω⊙p⃗

A⃗ϵ⊙p⃗
, where A⃗ω and A⃗ϵ are the indicator vectors of ω =

(f ∧ e1 ∧ · · · ∧ et) and ϵ = (e1 ∧ · · · ∧ et), respectively. We can then obtain the bounds P (f |E) and
P (f |E) by solving min/max A⃗ω⊙p⃗

A⃗ϵ⊙p⃗
subject to the constraints defined by Equations 8, 9, 10 and 12,

respectively. In our experiments, we used a state-of-the-art non-linear solver such as ipopt [31].

5Some of these constraints are actually redundant and can be removed as suggested by [1]

6

Example 3. For illustration, consider the LCN L given by sentences (13)-(17) where τ is true for all
sentences. The primal graph of L is shown below, where shaded nodes correspond to atoms.

0.6 ≤ P (a ∧ b) ≤ 1 (13)
0 ≤ P (a | c) ≤ 0.2 (14)
0 ≤ P (a | ¬c) ≤ 0.8 (15)
0 ≤ P (b | d) ≤ 0.7 (16)
0 ≤ P (b | ¬d) ≤ 0.3 (17)

Since L has 4 atomic formulas {a, b, c, d} there are 16 interpretations. For simplicity, we represent
their probabilities explicitly as {p0,0,0,0, p0,0,0,1, · · · , p1,1,1,1} where p0,0,0,0 is the probability that
a, b, c, and d are all false, p0,0,0,1 is the probability that a, b, c are false and d is true, and so on. We
enforce pi,j,l,k to be a valid probability distribution by the following constraints:

pi,j,k,l ≥ 0,∀i, j, k, l ∈ {0, 1} and
∑

i,j,k,l∈{0,1}

pi,j,k,l = 1

Sentences (13) and (14), for example, correspond to the following two linear inequality constraints:∑
k,l∈{0,1}

p1,1,k,l ≥ 0.6 and
∑

j,l∈{0,1}

p1,j,1,l − 0.2 ·
∑

i,j,l∈{0,1}

pi,j,1,l ≤ 0

Looking at the primal graph, the Markov condition implies that, c and d are independent, b is
conditionally independent of c given {a, d} and a is conditionally independent of d given {b, c},
respectively. The latter independence assumption means that P (a|b, c, d) = P (a|b, c) which must
hold for all truth values of its atoms. Following the reduction technique suggested by [1], it
corresponds to P (a|b, c, d) = P (a|b, c), P (a|b,¬c, d) = P (a|b,¬c, P (a|¬b, c, d) = P (a|¬b, c)
and P (a|¬b,¬c, d) = P (a|¬b,¬c) which can be encoded by four quadratic equality constraints:

p1,1,1,1 ·
∑

i,l∈{0,1}

pi,1,1,l −
∑

i∈{0,1}

pi,1,1,1 ·
∑

l∈{0,1}

p1,1,1,l = 0

p1,1,0,1 ·
∑

i,l∈{0,1}

pi,1,0,l −
∑

i∈{0,1}

pi,1,0,1 ·
∑

l∈{0,1}

p1,1,0,l = 0

p1,0,1,1 ·
∑

i,l∈{0,1}

pi,0,1,l −
∑

i∈{0,1}

pi,0,1,1 ·
∑

l∈{0,1}

p1,0,1,l = 0

p1,0,0,1 ·
∑

i,l∈{0,1}

pi,0,0,l −
∑

i∈{0,1}

pi,0,0,1 ·
∑

l∈{0,1}

p1,0,0,l = 0

The query P (c) corresponds to min/max
∑

i,j,l∈{0,1} pi,j,1,l and results in the interval [0, 0.33].

Similarly, for the query P (a|b), we use the objective
∑

k,l∈{0,1} p1,1,k,l∑
i,k,l∈{0,1} pi,1,k,l

and obtain [0.85, 1].

Complexity The non-linear programs associated with LCNs are non-convex, thus NP-hard to solve
in general [25]. One difficulty comes from the large number of quadratic equations involved. The
complexity of exact marginal inference in LCNs can be bounded by O(exp(N)), where N is the
number of interpretations. Therefore, the scalability of exact inference is limited by the size of the
LCN. One way to address this issue is to employ state-of-the-art approximate non-linear programming
algorithms [2, 32], or to rely on more recent column generation techniques [1]. However, another
important direction of our future work is pursuing a belief propagation [26, 19] based scheme for
approximate inference in LCNs which will allow us to scale to much larger problems.

4 Experiments

We evaluate our proposed approach on random LCNs as well as benchmark problems derived from
Mastermind puzzles with uncertainty and a realistic credit card fraud detection application. All our
experiments were run on a 2.6GHz CPU with 32GB of RAM.

7

4.1 Random LCNs

Table 1: Results for random LCNs.
Size (n) Runtime (sec)

5 0.04 ± 0.03
6 0.42 ± 1.34
7 19.68 ± 65.2
8 14.96 ± 28.9
9 73.95 ± 79.2
10 387.55 ± 457.1
11 16794.36 ± 24852
12 -

For our purpose, we generate random LCNs with n propo-
sitional variables {x1, . . . , xn} and n+ 3 sentences of the
form l ≤ P (xi) ≤ u and l ≤ P (xi|xj) ≤ u, where
l, u ∈ [0, 1] and u − l ≥ 0.3. For each problem size n,
we generate 10 random instances and for each instance we
select 5 different pairs of variables (xi ̸= xj) to formulate
4 queries per pair: P (xi ∧ xj), P (xi ∧¬xj), P (¬xi ∧ xj)
and P (¬xi ∧ ¬xj), respectively. Table 1 reports the aver-
age runtime and standard deviation obtained for solving
problems with n ∈ {5, 6, . . . , 12} (200 data points for
each value of n). We can see that, as expected, the runtime
increases exponentially with the problem size due to the
complexity of the non-linear programs involved. There-
fore, solving random problems with more than 12 variables
(over 4096 interpretations) becomes infeasible (i.e., exceeded a 24 hour time limit).

4.2 Mastermind Puzzles with Uncertainty

We consider a variant of the popular Mastermind code breaking puzzle [18] in which the code-maker
lies randomly at each round. A puzzle with n rounds can be specified by a Bayesian network with
4 hidden code variables {h1, h2, h3, h4}, n variables {e1, . . . , en} corresponding to the feedback
received in each round and n variables {l1, . . . , ln} indicating whether the code maker lied or not
when he provided the feedback. We assume that imprecise information about the probability of lying
is given by Equations (18)-(21).

Assuming 6 different colors for the hidden code variables (i.e., cj ∈ {1, . . . , 6},∀j ∈ {1, . . . , 4}) and
given the code-maker feedback as evidence, the task is to find the color assignment to the hidden code
variables such that its posterior marginal probability interval has the largest upper bound (maximax)
or, alternatively, the largest lower bound (maximin). Namely, we compute:

H∗ = argmax
c1,c2,c3,c4

P (q|e) and H∗ = argmax
c1,c2,c3,c4

P (q|e)

where q ≜ q1 ∧ q2 ∧ q3 ∧ q4 such that qj is the color assignment to the jth code variable hj = cj ,
and e encodes the feedback (see the supplementary material for more details).

0.3 ≤P (li) ≤ 0.7 , ∀1 ≤ i ≤ n (18)
0.245 ≤P (l1 ∧ l2) ≤ 0.360 (19)
0.795 ≤P (l2 ∨ l3) ≤ 0.903 (20)
0.207 ≤P (l3 ∧ l4) ≤ 0.273 (21)

· · ·

Table 2: Results for Mastermind puzzles.
Method Accuracy Runtime (sec)

BN 65.7% ± 2.2% 0.4 ± 0.5
CN (maximax) 60.3% ± 2.3% 17.0 ± 0.0
CN (maximin) 64.4% ± 2.2% 16.8 ± 0.6
ProbLog 65.7% ± 2.2% 0.4 ± 0.5
MLN 65.3% ± 2.1% 0.5 ± 0.5
Nilsson (maximax) intractable -
Nilsson (maximin) 0% -
LCN (maximax) 69.2% ± 1.8% 684.4 ± 54.1
LCN (maximin) 71.1% ± 1.9% 1029.3 ± 68.9
LCN (maxent) 72.5% ± 1.7% 85.0 ± 6.3

We evaluate the following competing
methods: (i) the Bayesian network
(BN) of the puzzle where P (li) is
assumed to be the midpoint of the
probability interval specified by (18);
(ii) the credal network (CN) speci-
fied by (18); (iii) the ProbLog [28]
encoding that use the midpoint pmid

of the probability intervals to anno-
tate the logic formulas (18); (iv) the
Markov Logic Network (MLN) repre-
sentation of (18)-(21) using the mid-
points to calculate the weights w =
log(pmid/(1−pmid)) of the formulas.
We note that BN, CN and ProbLog
use only equations (18), while MLN

8

and LCN are able to utilize logic formulas like (19)–(21). For LCN and CN we use both the maximax
and maximin criteria to determine the hidden code. Furthermore, the LCN based formulation assumes
that sentences (19)–(21) are annotated with τ = False so that they do not imply dependency among
the li variables. In addition, we consider LCN(maxent), an LCN variant that computes a joint
distribution of the li variables with the largest entropy and assumes that it is the true distribution of
lies. For reference, we also ran Nilsson’s method [23].

In Table 2 we report the mean accuracy and standard deviation obtained on 10 sets of puzzles, each
set using a different random seed and containing 730 random puzzles. We also record the mean total
runtime and standard deviation. Accuracy is defined as the fraction of puzzles that an algorithm
guessed the ground-truth hidden code correctly. We can see that our proposed LCN approach achieves
the highest accuracy compared with its competitors. This is because the LCN is the only method
able to aggregate multiple sources of imprecise knowledge in the most effective manner without
making any unwarranted independence assumptions among different pieces of knowledge. Although
MLN can exploit additional knowledge, it does not gain accuracy because it treats each logic formula
as a statistically independent factor and the probabilities as factor potentials; in other words, the
probability midpoints are not treated as probabilities in the joint distribution. This is a major weakness
of this method, in addition to its inability to handle intervals. In terms of runtime, LCN is slower than
its competitors because of the far more complex non-linear programs that need to be solved for each
puzzle. However, improving the LCN’s runtime is a direction of our future work.

Finally, we note that although Nilsson’s method is able to utilize all the logic formulas and their
bounds, it does not allow modeling li variables as being independent of each other. Given a
puzzle, each possible hidden code c corresponds to a truth assignment to the li variables; without
independence relations, there always exists a joint probability distribution of the li variables such that
the particular truth assignment has zero probability. Consequently, the lower bound of the posterior
probability given a puzzle is zero for any c, and therefore the maximin criterion has no basis to make
decisions upon. Intuitively, a similar effect should also impair the accuracy of Nilsson(maximax).
However, we are unable to verify this empirically: computing the upper bound of the posterior by
solving Nilsson’s constraint program is computationally prohibitive due to the complexity of the
objective function and the size of the program.

4.3 Credit Card Fraud Detection

We consider a realistic credit card fraud detection task based on the UCSD-FICO Data Mining
Contest dataset [13] which contains 100,000 transactions over a period of 98 days out of which 2,654
are fraudulent. Each transaction is characterized by 16 features, including the transaction amount,
timestamp and hashed email address. We used the email addresses as account IDs and split the
data into two subsets: one containing 55,750 accounts, each with a single transaction, and another
containing 14,374 accounts with multiple transactions, thus totaling 44,250 transactions. These two
subsets were subsequently used as training (T) and test (V) sets, respectively. Additional imprecise
knowledge regarding fraudulent transactions and account history is given by the logic rules (22), (23)
and (24) which were previously suggested in [21]:

For our purpose, we created 10 randomized tasks such that for each task we sampled half of T and
half of V , respectively. We then calculated the lower and upper probability bounds of the logic rules
(22)-(24) as follows. For each formula and each of the 10 test sets, we measured the conditional
probability that the consequent is true given that the antecedent is true. We took the min and max
over the test sets and obtain the following probability intervals for the three rules: [0.65, 0.74] for
(22), [0.31, 0.66] for (23) and [0.44, 0.72] for (24), respectively.

Has-FraudHistory (t′) ∧ Before (t′, t) →Is-Fraud (t) (22)

Has-ZeroAmountHistory (t′) ∧ Before (t′, t) →Is-Fraud (t) (23)

Has-MultiZip (t′) ∧ Before (t′, t) →Is-Fraud (t) (24)

We evaluated the following methods: (i) a NaiveBayes model learned directly from data; (ii) a
Bayesian network (BN) model that expands NaiveBayes by adding the antecedents of the three logic
rules as parents of the Is-Fraud node and uses a noisy-OR model together with the midpoint
of the three probability intervals to represent this conditional probability distribution (the prior

9

probability of the three new nodes is 0.5); (iii) a credal network (CN) model with the same structure
and noisy-OR model as the Bayesian network above but using the three probability intervals as
well as the probability interval [0, 1] for the root nodes; (iv) a ProbLog encoding of the NaiveBayes
model using the midpoints of the three probability intervals to annotate the ProbLog logic rules; (v)
an MLN encoding of the NaiveBayes model extended with the three logic rules and annotated by
weights w = log(pmid/(1− pmid)), where pmid is the midpoint of the respective probability interval.

Table 3: Results for fraud detection.
Method F1 score Runtime (sec)

NaiveBayes 0.408 ± 0.110 0.27 ± 0.01
BN 0.090 ± 0.015 0.29 ± 0.02
CN 0.089 ± 0.015 0.28 ± 0.01
ProbLog 0.599 ± 0.048 0.29 ± 0.02
MLN 0.472 ± 0.094 0.29 ± 0.01
Nilsson intractable -
LCN 0.630± 0.046 0.29 ± 0.01

Table 3 reports the mean and standard deviation
of the F1 scores obtained over the 10 random
tasks. In this case, the F1 score (defined as the
harmonic mean of the precision and recall) is a
much better metric than accuracy because the
classification task is imbalanced, namely, the
probability of fraudulent transactions is much
smaller than that of non-fraudulent ones. We
also record the mean total runtime and standard
deviation. We see again that our proposed LCN
method substantially outperforms its competi-
tors in terms of solution quality (F1 score). In
this case, the BN and CN based approaches perform quite poorly because of the unique-assessment
requirement. Specifically, the Is-Fraud node has three parents and therefore we are no longer
allowed to specify P (Is-Fraud). Since P (Is-Fraud) values are measured on the training data (e.g.,
NaiveBayes), this information is lost in the Bayesian and credal models and, consequently, their
false positive predictions increase dramatically. As before, the results demonstrate that LCNs are
able to effectively aggregate and exploit multiple sources of information which leads to significantly
improved performance. Finally, we see that the performance of Nilsson’s method is quite poor in this
case as well.

5 Related Work

Nilsson’s probabilistic logic [23, 24] is perhaps the first system in which the truth values of logical
sentences (or formulas) can range between 0 and 1 and are interpreted as the probability of those
sentences being true but does not permit specifying independence relations. Bayesian logic (BL) [1]
combines probabilistic logic and Bayesian networks in order to capture conditional independence
relations among propositions. Markov Logic Networks (MLN) [29] apply the ideas of a Markov
network to first-order logic where the weights attached to the logic formulas are used to define a
joint probability distribution over all possible interpretations and thus enable uncertain inference.
Probabilistic Soft Logic (PSL) [15] combines Markov networks with soft or real-valued logic (e.g.,
Lukasiewicz logic). Probabilistic Logic Programs (PLP) [27] and Stochastic Logic Programs (SLP)
[10] are logic programs in which some of the facts are annotated with probabilities. We emphasize
that MLN, PSL, PLP, SLP do not allow probability bounds on logic formulas, while BL constrains
the formulas to a specific structure. LCN is the only system that addresses these shortcomings.

6 Conclusions

In this paper we propose a new probabilistic logic that expresses both probability bounds for proposi-
tional and first-order logic formulas with few restrictions and a Markov condition that is similar to
Bayesian networks. The formula bounds allow for flexibility in the form and precision of background
knowledge that can be utilized, while the Markov condition restricts the space of distributions to
enable a meaningful representation of uncertainties. In addition, we show how to perform exact
marginal inference to answer queries for the new formalism. Our empirical evaluation on random
problems as well as more realistic applications shows promising results, particularly in aggregating
multiple sources of imprecise information. Potential future directions include extending to tempo-
ral models, further algorithmic innovations to improve the runtime of exact inference, developing
efficient approximate inference algorithms and experiments on a wider array of applications.

10

References
[1] K. Andersen and J. Hooker. Bayesian logic. Decision Support Systems, 11(2):191–210, 1994.

[2] M. Bazaraa and C. Shetty. Nonlinear Programming: Theory and Algorithms. Wiley, 1979.

[3] A. Cano and S. Moral. Using probability trees to compute marginals with imprecise probabilities.
International Journal of Approximate Reasoning, 29(1):1–46, 2002.

[4] R. Cavallo and M. Pittarelli. The theory of probabilistic databases. In Proceedings of 13th
International Conference on Very Large Data Bases (VLDB), pages 71–81, 1987.

[5] V. Chandru and J. Hooker. Optimization Methods for Logical Inference. John Wiley & Sons,
1999.

[6] F. Cozman. Credal networks. Artificial Intelligence, 120(2):199–233, 2000.

[7] F. Cozman. Generalizing variable-elimination in Bayesian networks. In Workshop on Proba-
bilistic reasoning in Bayesian networks at SBIA/Iberamia 2000, pages 21–26, 2000.

[8] F. Cozman and R. Polastro. Loopy propagation in a probabilistic description logic. In Interna-
tional Conference on Scalable Uncertainty Management, pages 120–133. Springer, 2008.

[9] F. Cozman and R. Polastro. Complexity analysis and variational inference for interpretation-
based probabilistic description logics. In Proceedings of the Conference on Uncertainty in
Artificial Intelligence, pages 117–125, 2009.

[10] J. Cussens. Stochastic logic programs: Sampling, inference and applications. In Uncertainty in
Artificial Intelligence (UAI), pages 115–122, 2000.

[11] M. Dürig and T. Studer. Probabilistic ABox reasoning: Preliminary results. In Description
Logics, pages 104–111, 2005.

[12] R. Fagin, J. Halpern, and N. Megiddo. A logic for reasoning about probabilities. Information
and Computation, 87(1-2):78–128, 1990.

[13] FICO-UCSD. FICO Credit Card Dataset. 2009. https://ebiquity.umbc.edu/blogger/2009/05/24/
ucsd-data-mining-contest.

[14] S. Flesca, F. Furfaro, and F. Parisi. Consistency checking and querying in probabilistic databases
under integrity constraints. J. Comput. Syst. Sci., 7(80):1448–1489, 2014.

[15] L. Getoor and B. Taskar. Introduction to Statistical Relational Learning (Adaptive Computation
and Machine Learning). MIT Press, 2007.

[16] J. Heinsohn. Probabilistic description logics. In Proceedings of the International Conference
on Uncertainty in Artificial Intelligence, pages 311–318, 1994.

[17] M. Jaeger. Probabilistic reasoning in terminological logics. In Principles of Knowledge
Representation and Reasoning, pages 305–316. Elsevier, 1994.

[18] D. Knuth. The computer as Master Mind. Journal of Recreational Mathematics, 9(1):1–6, 1976.

[19] D. Koller and N. Friedman. Probabilistic Graphical Models: Principles and Techniques. MIT
Press, 2009.

[20] J. Li and A. Deshpande. Consensus answers for queries over probabilistic databases. In
SIGMOD/ACM Symposium on Principles of Database Systems (PODS), pages 259–268, 2009.

[21] S. Li, L. Wang, R. Zhang, X. Chang, X. Liu, Y. Xie, Y. Qi, and L. Song. Temporal logic point
processes. In International Conference on Machine Learning (ICML), pages 5990–6000, 2020.

[22] T. Lukasiewicz. Expressive probabilistic description logics. Artificial Intelligence, 172(6-
7):852–883, 2008.

[23] N. Nilsson. Probabilistic logic. Artificial Intelligence, 28(1):71–87, 1986.

11

https://ebiquity.umbc.edu/blogger/2009/05/24/ucsd-data-mining-contest
https://ebiquity.umbc.edu/blogger/2009/05/24/ucsd-data-mining-contest

[24] N. Nilsson. Probabilistic logic revisited. Artificial Intelligence, 59(1-2):39–42, 1994.

[25] P. Pardalos and S. Vavasis. Quadratic programming with one negative eigenvalue is (strongly)
np-hard. Journal of Global Optimization, 1(1):15–22, 1991.

[26] J. Pearl. Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann, 1988.

[27] L. De Raedt, P. Frasconi, K. Kersting, and S. Muggleton. Probabilistic Inductive Logic
Programming - Theory and Applications. Springer, 2008.

[28] L. De Raedt, A. Kimmig, and H. Toivonen. Problog: A probabilistic prolog and its application
in link discovery. In Proceedings of the International Joint Conference on Artificial Intelligence,
volume 7, pages 2462–2467, 2007.

[29] M. Richardson and P. Domingos. Markov logic networks. Machine Learning, 62(1-2):107–136,
2006.

[30] P. Sen and A. Deshpande. Representing and querying correlated tuples in probabilistic databases.
In International Conference on Data Engineering (ICDE), pages 596–605, 2007.

[31] A. Wächter and L. Biegler. On the implementation of an interior-point filter line-search
algorithm for large-scale nonlinear programming. Mathematical Programming, 106(1):25–57,
2006.

[32] J. Wang. Approximate nonlinear programming algorithms for solving stochastic programs with
recourse. Annals of Operations Research, 31:371–384, 1991.

Checklist

1. Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes] See Sections 3 and 4

2. Did you describe the limitations of your work? [Yes] See Section 3
3. Did you discuss any potential negative societal impacts of your work? [N/A]
4. Have you read the ethics review guidelines and ensured that your paper conforms to them?

[Yes]

If you are including theoretical results...

1. Did you state the full set of assumptions of all theoretical results? [Yes] See Section 3
2. Did you include complete proofs of all theoretical results? [N/A]

If you ran experiments...

1. Did you include the code, data, and instructions needed to reproduce the main experimental
results (either in the supplemental material or as a URL)? [Yes] See supplementary material

2. Did you specify all the training details (e.g., data splits, hyperparameters, how they were
chosen)? [Yes] See Section 4 and supplementary material

3. Did you report error bars (e.g., with respect to the random seed after running experiments
multiple times)? [Yes] See the tables in Section 4

4. Did you include the total amount of compute and the type of resources used (e.g., type of
GPUs, internal cluster, or cloud provider)? [Yes] See Section 4

If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

1. If your work uses existing assets, did you cite the creators? [N/A]
2. Did you mention the license of the assets? [N/A]
3. Did you include any new assets either in the supplemental material or as a URL? [Yes] The

source code is included in the supplementary material

12

4. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

5. Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

If you used crowdsourcing or conducted research with human subjects...

1. Did you include the full text of instructions given to participants and screenshots, if applica-
ble? [N/A]

2. Did you describe any potential participant risks, with links to Institutional Review Board
(IRB) approvals, if applicable? [N/A]

3. Did you include the estimated hourly wage paid to participants and the total amount spent
on participant compensation? [N/A]

13

	Introduction
	Background
	Bayesian and Credal Networks
	Probabilistic Logics

	Logical Credal Networks
	Syntax
	Semantics
	Inference

	Experiments
	Random LCNs
	Mastermind Puzzles with Uncertainty
	Credit Card Fraud Detection

	Related Work
	Conclusions

