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Abstract

Generalization to distribution shifts is a primary goal in mod-
ern machine learning literature. Ensemble methods, includ-
ing both output-space ensemble and weight-space ensemble
(model merging), are renowned for their robust generalization
capabilities over multi-task settings, leveraging the diverse
features from source models to improve cross-task transfer-
ability. While most studies on model merging focus on con-
structing diverse pools of task vectors obtained from foun-
dation models trained on different tasks, we also emphasize
the quality of each source. In this paper, we introduce a novel
method for selectively merging task vectors to achieve supe-
rior generalization on target domains. Our approach uniquely
considers both the diversity and quality of individual mod-
els. Using Determinantal Point Processes (DPP), we propose
a probabilistic framework that optimally selects which mod-
els to average in a plug-and-play manner, ensuring a balanced
consideration of quality and diversity. Theoretical support is
provided for our hypothesis that this dual consideration yields
a tighter generalization error bound for the unified model.
Empirically, we present experiments in an out-of-distribution
setting where there is significant violation in identically dis-
tributed conditions between the source and target domains.

Introduction
In the modern era of machine learning, addressing the chal-
lenge of distribution shift is crucial, as the assumption of
identical distribution between source and target domains
may not hold in real-world scenarios. The importance of this
issue is magnified in the context of large-scale, foundation
models that are typically fine-tuned on diverse sources of
datasets. A promising solution to this challenge is merging
deep learning models together. Deep ensembles, which are
combinations of diverse models, are known for their ability
to generalize well on distribution shifts due to diverse fea-
tures from the source models, enhancing the model’s abil-
ity to transfer across various tasks. In practical settings, we
already possess a variety of fine-tuned models with bless of
foundation models and abundance of datasets. Therefore, se-
lectively averaging weights based on quality and diversity in
a training-free manner becomes essential.

In this paper, we introduce a novel method for selec-
tively averaging neural networks to achieve solutions with
superior generalization on target domains. Unlike existing

methods, our approach explicitly considers both the diver-
sity and quality of individual models. We propose a proba-
bilistic framework that optimally selects models to average,
ensuring a balanced consideration of both quality and diver-
sity. We provide theoretical support for the hypothesis that
considering both quality and diversity yields a tighter gener-
alization error bound for the averaged model.

The contributions of this research are summarized as fol-
lows:
• We introduce a novel model merging strategy to exploit

both the quality and diversity of source models.
• We provide a generalization error bound for ensemble

classifier, supported by theoretical proof.
• Our method demonstrates superior performance in non-

i.i.d. settings where the assumption of identical distribu-
tion in the source domain is violated.

Preliminaries and Related Works
Averaging Model Weights
Averaging the weights of models is a powerful approach
in finding good solution in deep learning. (Izmailov et al.
2018) posits that averaging weights leads to wider optima
in the loss surface, thereby enhancing generalization ability.
By simply averaging multiple checkpoints during the train-
ing process, the solution tends to converge to flatter min-
ima compared to the traditional Stochastic Gradient Descent
solution. Diverse Weight Averaging for Out-of-Distribution
(OOD) Generalization (DiWA) (Rame et al. 2022) averages
weights obtained from independent training runs that share
the same initialization, thereby increasing functional diver-
sity across the averaged models. This work explains the suc-
cess of weight averaging in OOD scenarios by highlighting
the empirical similarity between weight averaging and out-
put ensembling.

Due to the abundance of fine-tuned models and efficiency
of foundation models, modern weight averaging methodolo-
gies utilize diverse fine-tuned models. Model Soup (Worts-
man et al. 2022a) averages diverse fine-tuned weights that
vary across hyperparameter configurations yielding good
generalization ability under distribution shift. Model Rata-
touille (Daheim et al. 2023) recycles diverse fine-tuned mod-
els for OOD generalization. This approach aims to maxi-
mize weight diversity by leveraging the diversity in aux-



iliary tasks. It averages multiple weights fine-tuned from
different initializations, each trained on different auxiliary
tasks. The rationale for this ensemble’s improved general-
ization in OOD scenarios is that fine-tunings of the same
pre-trained foundation model are linearly connected in the
loss landscape, despite different initializations, thus allow-
ing successful averaging and yielding a flatter solution.

Model Merging for Multi-Task Learning (MTL)
Recently, impressed by arithmetic of embedding vectors in
language models, weight averaging has been extended to
merging task vectors (Ilharco et al. 2022), which are ob-
tained by subtracting pre-trained weight from task-specific
fine-tuned weights. Such extension enabled semantic in-
sights on MTL. Several approaches have extended the idea
of merging task vectors using various heuristics, such as re-
solving interference due to redundant parameter values and
aligning signs of weights (Yadav et al. 2024), or preserv-
ing the important parameters defined via Fisher Informa-
tion Matrix (Matena and Raffel 2022). (Wang et al. 2024)
extended typical 8 computer vision classifications up to 20
tasks, while proposing novel heuristic by eliminating exclu-
sively task-specific weights to improve general performance
in MTL. To overcome its limitation in using equal merging
coefficients, (Yang et al. 2023) introduced test time adapta-
tion and layer-wise merging. (Tang et al. 2024b) introduced
MLP layer of Transformer to flexibly adapt to test tasks and
its experiments extensively discussed the generalization and
robustness capability of merging models in MTL.

Determinantal Point Processes
Determinantal Point Processes (DPP) have gained consid-
erable attention in the machine learning community due to
their ability to model diversity and provide elegant solutions
for subset selection problems. Originally introduced in the
context of quantum physics, DPPs have since found applica-
tions in a variety of fields including computer vision (Elfeki
et al. 2019), information retrieval (Song et al. 2018), and rec-
ommendation systems (Liu, Walder, and Xie 2022). One of
the pioneering works in applying DPPs to machine learning
is done by (Kulesza, Taskar et al. 2012), which provided a
comprehensive framework for DPPs and demonstrated their
effectiveness in diverse subset selection tasks.

Given a set of data Y = x1, . . . , xN , a point process P is
a probability measure over the set of all subsets of Y . P is a
DPP if a random subset Y sampled according to P satisfies:

PL(Y = Y ) =
det(LY )∑

Y⊂Y det(LY )
=

det(LY )

det(L+ I)
∝ det(LY )

The DPP kernel L is characterized by a similarity matrix S,
where Sij defines the similarity between two items (xi,xj).

Methodology
Notation
Let T represent the target or test domain and S represent
the source or train domain. The distribution of the source
domain is denoted as DS = {(xi, yi)} ∼ S. We define h ∈

H as a sampled classifier or hypothesis, where h : X → Y
and h ≈ f(x, θm). Here, f is the labeling function (ground
truth) parametrized by θm.

The classification performance of h for a single data point
(x, y) is measured by ℓ(h(x), y). The expected loss (risk
function) over all data points for an arbitrary data distribu-
tion D is defined as LD(h) = E(x,y)∼D[ℓ(h(x), y)], assum-
ing that L(h) is convex with a range of [0, 1].

The parameter or weight specifying each classifier h is
denoted by θ, thus h = h(·; θ). Finally, ρ represents the en-
semble distribution, or ensemble strategy.
Problem Setup Given N (fine-tuned) models and source
data, we aim to choose M models to generate ensemble that
can generalize well on target domain T .

Generalization Error Bound
We suggest the generalization error bound of selectively
merged neural network classifier as follows:

Proposition 1. Target risk of weight averaged model is
bounded by source risk of individual models and diversity
of softmax outputs.

LT (hWA) = LT (hENS) +O(∆2)

≤ 1

M

M∑
m=1

LSm
(θm)− D(ρ) + d1(DS , DT ) + ν +O(∆2)

• LSm
(θm) is source risk of m-th model.

• D(ρ) is diversity of the ensemble of selected models.
• d1(DS , DT ) is the divergence between source and target

domain.
• ν is the difference in labeling functions across the two

domains.
• O(∆2) is an approximation error between weight-space

averaging and output-space averaging.

We start by approximating weight average hWA with out-
put ensemble hENS. Various researches on weight averaging
including (Izmailov et al. 2018), (Wortsman et al. 2022b),
and (Rame et al. 2022) have shown the relationship between
weight-space averaging and output-space averaging by em-
ploying Taylor expansion.

Lemma 1. Suppose we are given {θm}Mm=1 with M fine-
tuned models.
Denoting ∆θM = maxm ∥θm − θWA∥2, ∀(x, y) ∈ X × Y:

hWA(x) = hENS(x) +O(∆2
θM ),

ℓ(hWA(x), y) = ℓ(hENS(x), y) +O(∆2
θM ).

Then, according to (Ben-David et al. 2010), we bound tar-
get risk with respect to individual source risks and the diver-
gence between two distributions. Here, the divergence and
the constant ν is irreducible.

Lemma 2. For a ensemble classifier (hypothesis) hENS,

LT (hENS) ≤ LS(hENS) + d1(DS , DT ) + ν,

ν = min {EDS
[|fS(x)− fT (x)|] ,EDT

[|fS(x)− fT (x)|]}



Now, adapted from (Ortega, Cabañas, and Masegosa
2022), we decompose the loss of an ensemble classifier
to derive diversity out of the function. Prediction ensem-
ble classifier hENS, is defined using the ρ-weighted model
average predictor and the cross-entropy loss. In this en-
semble, the individual models are probabilistic classifiers
whose output is a conditional distribution over the class la-
bels Y given the sample x, i.e. h(x; θ) = p(·|x). Thus,
for an specific input (x, y), the loss of an individual pre-
dictor is defined as ℓce(x, y; θ) = − log p(y|x; θ) and the
loss of this ensemble is ℓce(x, y; ρ) = − logEρ[p(y|x; θ)] =

− log
1

M

M∑
m=1

p(y|x; θm). Note that in weight averaging

scenario, ensemble distribution ρ indicates discrete uniform
distribution over M fine-tuned models.

Lemma 3. Under the given setting,

LS(hENS) ≤ Eρ[LSm
(θm)]− D(ρ),

where D(ρ) = ED

[
Vρ

( p(y|x; θm)√
2maxθm p(y|x; θm)

)]
The proposed error bound of the weight-averaged classi-

fier implies small individual source risk and high diversity
over ensemble tightens the error bound at the target domain.

Kernel Construction
The core of our methodology involves constructing the like-
lihood kernel of the source models. This kernel explicitly
measures the quality and diversity of each source model.
Given a large pool of fine-tuned models under the non-i.i.d.
assumption, DPP select which weights to average propor-
tional to the determinant of the subset. The decomposition
of the DPP kernel L intuitively constructs diverse subsets
while weighing each model according to a unary metric q.
We define the likelihood kernel L in terms of the Gram ma-
trix L = VTV, where L can be decomposed as a quadratic
form of the quality vector q and the similarity kernel S:

L = diag(q) · S · diag(q)

Li,j = qiSi,jqj

Here, qi represents the quality of the model fine-tuned
with i-th task, and Si,j is the similarity between i-th task
and j-th task.
Quality. We define qi as the relative increase in the valida-
tion accuracy of the fine-tuned model using i-th task com-
pared to the pre-trained model:

qi =
Accuracyift − Accuracypt

Accuracypt

q is normalized to unary metric so that ||q|| = 1.
Similarity. We define Si,j to be the average cosine similar-
ity between representation of entire validation samples ob-
tained from models fine-tuned with i-th task and j-th task.
The quality term and similarity metric are inspired from the
generalization error bound discussed in Proposition 1.

Experiment
Experimental Setup
Models and Datasets We use the pre-trained CLIP-ViT-
B/32 model (Radford et al. 2021), which has been trained
on a large-scale dataset consisting of image-text pairs. This
model is capable of performing open-vocabulary image clas-
sification. As source datasets, we employed SUN397 (Xiao
et al. 2010), Stanford Cars (Krause et al. 2013), RESISC45
(Cheng, Han, and Lu 2017), DTD (Cimpoi et al. 2014),
SVHN (Netzer et al. 2011), GTSRB (Stallkamp et al. 2012),
MNIST (LeCun et al. 1998), and EuroSAT (Helber et al.
2019) to produce fine-tuned models.
Baselines We compare our approach with the model merg-
ing techniques proposed in Task Arithmetic (Ilharco et al.
2022), and Ties-Merging (Yadav et al. 2024), who did not
adopt test time adaptation setup and chose best scaling co-
efficient over 0.0∼1.0. The experiment was conducted using
Fusion Bench (Tang et al. 2024a) framework.

Results
In this section, we demonstrate that selectively merging
models based on their quality and diversity enhances gen-
eralization and robustness capabilities. The generalization
experiment evaluates the model’s ability to perform well on
unseen domains, while the robustness experiment assesses
the model’s performance under distributional shifts. Test dis-
tribution shifts were introduced following the strategy of
(Hendrycks and Dietterich 2019), incorporating seven dif-
ferent corruptions along with the original (clean) data.
Generalization experiments. To evaluate whether quality-
and diversity-aware selection improves generalization, we
applied the Determinantal Point Process (DPP) heuristic to
select models to merge across six seen tasks. The selected
task vectors were merged using baseline methods in a plug-
and-play manner. For Task Arithmetic, DPP selected five
tasks, excluding SUN397. For TIES-Merging, it selected
five tasks, excluding Stanford Cars. As shown in Table 1,
selectively merging task vectors improved average accuracy
on unseen tasks (EuroSAT and MNIST) for both baselines.
Additionally, the average accuracy across all eight tasks sur-
passed that of baseline methods.
Robustness experiments. To examine the robustness of the
proposed merging strategy, we applied it to datasets with
seven corrupted test conditions to introduce domain shifts.
In this setup, TIES-MERGING (4) denotes merging fine-
tuned task vectors corresponding to four test tasks, while
TIES-MERGING (8) indicates merging vectors from all
eight tasks. Our method, using DPP, selected six task vec-
tors, excluding RESISC45 and Stanford Cars. As shown
in Table 2, selective merging outperformed both merging
all task vectors and merging only in-domain task vectors
consistently in all corrupted setups. This demonstrates that
leveraging selective sources based on quality and diversity
provides a superior strategy, effectively tightening the gen-
eralization error bound.
Additionally, we investigated whether DPP effectively sam-
ples diverse subsets of task vectors for merging. Figure 1



METHOD SEEN TASKS UNSEEN TASKS AVG.SUN397 CARS RESISC45 DTD SVHN GTSRB AVG. MNIST EUROSAT AVG
TASK ARITHMETIC 0.6338 0.6227 0.7532 0.5798 0.8466 0.804 0.7067 0.7727 0.4559 0.6143 0.6836
TASK ARITHMETIC+DPP 0.568 0.6478 0.7775 0.5936 0.8534 0.8238 0.7107 0.773 0.4756 0.6243 0.6891
TIES-MERGING 0.6719 0.6573 0.7737 0.5718 0.8852 0.8445 0.7341 0.7929 0.3670 0.5800 0.6955
TIES-MERGING+DPP 0.6853 0.5504 0.7938 0.5835 0.8922 0.8568 0.727 0.7916 0.4219 0.6067 0.6969

Table 1: Generalization results on two unseen tasks when merging ViT-B/32 models on six tasks.

METHOD CARS EUROSAT RESISC45 GTSRB AVG. CARS EUROSAT RESISC45 GTSRB AVG.
CLEAN TEST SET CORRUPTED TEST SET (MOTION BLUR)

TIES-MERGING (4) 65.2 83.3 78.1 67.4 73.5 64.4 53.9 76.4 57.1 62.9
TIES-MERGING (8) 63.1 73.1 73.4 76.2 71.5 61.1 47.5 70.3 65.3 61.05
TIES-MERGING+DPP 64.5 77.0 77.4 83.1 75.5 62.3 52.0 74.4 73.6 65.6

CORRUPTED TEST SET (IMPULSE NOISE) CORRUPTED TEST SET (GAUSSIAN NOISE)
TIES-MERGING (4) 60.2 45.6 69.8 38.3 53.5 61.8 47.3 73.1 42.3 56.1
TIES-MERGING (8) 59.5 46.9 65.5 52.6 56.1 61.0 43.6 68.0 56.1 57.17
TIES-MERGING+DPP 59.9 51.2 70.1 59.9 60.3 61.51 48.81 72.43 63.42 61.54

CORRUPTED TEST SET (PIXELATE) CORRUPTED TEST SET (SPATTER)
TIES-MERGING (4) 3.3 31.8 18.0 58.5 27.9 61.3 52.9 70.3 48.1 58.2
TIES-MERGING (8) 2.9 31.7 15.0 72.9 30.62 59.6 52.5 66.2 65.8 61.03
TIES-MERGING+DPP 2.9 34.4 15.4 80.0 33.2 58.6 56.4 68.6 76.9 65.1

CORRUPTED TEST SET (CONTRAST) CORRUPTED TEST SET (JPEG COMPRESSION)
TIES-MERGING (4) 64.2 52.4 74.8 63.5 63.7 65.0 59.5 77.9 53.2 63.9
TIES-MERGING (8) 60.9 47.3 68.4 70.9 61.88 62.9 54.1 73.2 67.0 64.3
TIES-MERGING+DPP 62.4 52.0 72.9 78.9 66.6 64.5 58.3 77.3 73.5 68.4

Table 2: Robustness results on four corrupted tasks when merging ViT-B/32 models.

presents two-dimensional embeddings of eight datasets ob-
tained from models fine-tuned on Figure 1(a) GTSRB and
Figure 1(b) RESISC45. A notable trend is the similarity
in embeddings between RESISC45 (brown) and SUN397
(pink), which largely overlap. The selection of SUN397 but
not RESISC45 by DPP indicates that the heuristic effec-
tively samples diverse subsets of tasks for merging.

(a) (b)

Figure 1: Above figures show 2 dimensional visualization of
embeddings of 8 tasks obtained from (a) GTSRB (b) RE-
SISC45 fine-tuned weight.

Conclusion and Future Works
In this work, we propose a training-free model merging
framework that explicitly considers both the diversity and
quality of source models. To the best of our knowledge,
this is the first approach to incorporate the quality of source
models—beyond merely the diversity of ensemble mem-
bers—and to provide a generalization error bound for the

merged solution. The framework is advantageous in its plug-
and-play compatibility, enabling seamless application to ex-
isting methods.

We validate the effectiveness of our approach both theo-
retically and empirically. By deriving a generalization error
bound and conducting experiments on image classification
tasks, we demonstrate that merging diverse fine-tuned mod-
els (task vectors) of high quality leads to improved general-
ization ability. Furthermore, by strategically selecting mod-
els for averaging, our method achieves superior performance
in generalization and robustness, even under non-i.i.d. set-
tings where the assumption of identically distributed input
data does not hold in the test domain.

Looking ahead, we aim to extend this framework to large
language models, building upon the foundation laid by ex-
isting works in the domain of language foundation models.
Additionally, there is potential to enhance diversity further
by leveraging larger task pools, as suggested by (Wang et al.
2024). Future work will also seek to broaden the theoretical
foundation by incorporating more intuitive measures for the
generalization error bound, such as the flatness of the loss
surface and the diversity of neural network weights, with
connections to linear mode connectivity.
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