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ABSTRACT

Federated unsupervised learning enables collaborative model training on decen-
tralized unlabeled data but faces critical challenges under data heterogeneity,
which often leads to representation collapse from weak supervisory signals and
semantic misalignment across clients. Without a consistent semantic structure
constraints, local models learn disparate feature spaces, and conventional param-
eter averaging fails to produce a coherent global model. To address these issues,
we propose Federated unsupervised learning with Prototype Anchored Consensus
(FedPAC), a novel framework that establishes a consistent representation space
via a set of learnable prototypes. FedPAC introduces a dual-alignment objec-
tive during local training: a semantic alignment loss that steers local models
towards a prototype-anchored consensus to ensure cross-client semantic consis-
tency, coupled with a representation alignment loss that promotes the learning of
discriminative and stable features. On the server, prototypes are aggregated by
an optimization-based strategy that preserves semantic knowledge and ensure the
prototypes remain representative. We provide a rigorous convergence analysis for
our method, formally proving its convergence under mild assumptions. Exten-
sive experiments on benchmarks including CIFAR-10 and CIFAR-100 demon-
strate that FedPAC significantly outperforms state-of-the-art methods across a
wide range of heterogeneous settings.

1 INTRODUCTION

Federated learning (FL) (McMahan et al., |2017) enables a set of distributed clients to collabora-
tively train a shared model without exchanging raw data, thereby providing privacy preservation.
A central challenge in FL is data heterogeneity: clients typically hold non-IID local datasets, and
such distributional skew can make local updates to conflict, degrade the aggregated global model,
and destabilize convergence. Existing FL algorithms generally assume supervised local training
with abundant, high-quality labels. However, it is often impractical to collect large-scale, accurately
annotated datasets in many practical applications. This pervasive label scarcity not only limits at-
tainable performance but also undermines generalization to new domains, motivating methods that
exploit the large volumes of unlabeled data distributed across clients. In this work, we study repre-
sentation learning for federated unsupervised learning with non-IID data, aiming to extract robust
and generalizable representations from distributed, unlabeled, and imbalanced data.

Federated unsupervised learning currently faces two fundamental challenges that impede the train-
ing of a high-quality global model. The first is representation collapse, where the weak supervisory
signals from unlabeled data can lead to degenerate features with limited discriminability. Data het-
erogeneity further exacerbates training instability, increasing the risk of representation collapse. The
second, and more complex challenge is cross-client semantic misalignment. Data heterogeneity
across clients undermines the objective of learning a unified global representation, as each client
learns distinct feature spaces tailored to its local data distribution. This causes representations of
semantically similar samples to drift to disparate regions of the global feature space. This misalign-
ment is often exacerbated by simple parameter averaging, which can blur semantic boundaries and
paradoxically degrade the performance of global model. These issues expose a fundamental tension,
i.e., how to learn representations that are both locally discriminative and globally coherent.
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Several prior works have attempted to apply self-supervised learning (SSL) methods that have
proven effective in centralized settings, e.g., SimCLR(Chen et al., 2020), BYOL(Grill et al., 2020),
and SimSiam(Chen & Hel,|2021)), to client-side local training within FL frameworks. However, these
approaches often rely on large batch sizes or extensive negative samples, which are not applicable
in resource-constrained FL environments. Crucially, as client heterogeneity increases, straightfor-
ward extensions of centralized SSL methods to FL scenarios often results in degraded performance.
Alternative strategies have been proposed, including aggregating models via knowledge distilla-
tion(Han et al., 2022), local clustering (Lubana et al., 2022), and promoting unified representation
by constraining consistent client model updating(Liao et al., 2024). While these methods have made
partial strides, they primarily focus on preventing local representation collapse and lack explicit
mechanisms to enforce semantic consistency across clients, rendering them vulnerable to represen-
tation drift under data heterogeneity. No existing approach adequately addresses both representation
collapse and semantic misalignment in a unified manner so far, highlighting the need for a more
principled approach to semantic-aware federated representation learning.

To bridge this critical gap, we propose Federated Unsupervised Learning with Prototype Anchored
Consensus (FedPAC), a framework that resolves the tension between local learning and global con-
sistency through a set of globally shared, learnable prototypes. On the client-side, we introduce a
dual-alignment learning objective. At the representation level, we leverage self-supervised learning
to promote discriminative feature learning and preventing collapse. At the semantic level, each client
aligns local features to the prototypes, ensuring that representations corresponding to the similar con-
cept are mapped to a globally consistent representation space regardless of local data distribution,
significantly mitigating representation drift. On the server-side, we design a prototype aggregation
strategy that refines the global prototypes by integrating semantic insights from clients, ensuring the
prototypes remain diverse and globally representative throughout training. Through the interplay
of local dual-alignment and server aggregation, FedPAC learns a unified representation space that
is both locally discriminative and globally coherent, overcoming the limitations of prior federated
unsupervised learning methods.

In summary, in this work we propose FedPAC to to tackle the key challenges of representation col-
lapse and counteracts semantic misalignment in federated unsupervised learning. The core of our
approach is a prototype-based semantic anchoring mechanism that establishes a globally consistent
feature space across clients under non-IID data. (1) We propose a synergistic architecture that com-
bines a dual-alignment learning objective for clients’ local unsupervised learning and a prototype
aggregation strategy refining global prototypes on the server. (2) We provide a rigorous conver-
gence analysis that theoretically establishes the stability and soundness of our proposed method. (3)
Empirically, we validate FedPAC through extensive experiments on two benchmark datasets. The
results show that our framework significantly outperforms state-of-the-art methods, confirming the
practical effectiveness of our semantic alignment strategy.

2 RELATED WORK

2.1 SELF-SUPERVISED LEARNING

SSL has advanced rapidly in recent years, enabling the learning of transferable representations with-
out manual annotation. Current SSL methods are broadly categorized into discriminative and pre-
dictive approaches. Discriminative methods learn representations by enforcing invariance at the
instance or cluster level. While effective in centralized settings, these methods face significant chal-
lenges under the constraints of federated learning. Contrastive learning, e.g., SimCLR(Chen et al.,
2020), MoCo(He et al., [2020), are hampered by their reliance on large batch sizes or substantial
negative samples, which are impractical on resource-constrained clients. Non-contrastive bootstrap
methods like BYOL(Grill et al., |2020) and SimSiam(Chen & He} [2021), which typically depend
on batch statistics for normalization and stabilization, are sensitive to data heterogeneity and can
exacerbate client drift. Similarly, clustering approaches such as DeepCluster(Caron et al.|[2018) and
SwAV (Caron et al., [2020) often impose equipartition constraints to prevent collapse, which is inef-
fective under the imbalanced class distributions of non-IID data. Predictive methods, which learn
through reconstruction (He et al.l 2022) or pretext tasks (Gidaris et al.| 2018]), are less suitable for
federated settings due to their high computational and communication costs.
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2.2 FEDERATED UNSUPERVISED LEARNING

Recent research has begun to address the challenges of federated unsupervised learning, focusing
on mitigating data heterogeneity and learning consistent representations across clients. A com-
mon strategy combines local SSL method with specialized aggregation mechanism. For instance,
FedCA(Zhang et al., 2023) employs a shared dictionary to aggregate local representations and main-
tain the consistency of representation space, while ProtoFL(Kim et al., [2023)) utilizes prototypical
distillation to enhance global representations. FedU(Zhuang et al.,2021) aggregates only the online
encoder parameters and incorporates a predictor adaptation module based on the divergence caused
by non-IID data. Similarly, FedEMA (Zhuang et al.,[2022)) and FedX(Han et al.,[2022) employ adap-
tive EMA decay based on local-global model divergence and bidirectional knowledge distillation,
respectively, to jointly optimize both local and global models. Despite these advances, such meth-
ods often struggle under highly non-IID conditions and may raise privacy concerns. Beyond these,
Orchestra(Lubana et al., [2022) uses local clustering tasks to learn representations and coordinates
them through a hierarchical structure to enforce globally consistent cluster assignments. Recently,
FedU2(Liao et al.| 2024) alleviates collapse by encouraging uniform distribution of local represen-
tations and promotes uniformity by constraining consistent client model updates. While effectively
mitigating representation collapse, they lack explicit mechanisms to ensure semantic consistency
across clients, leading to persistent representation drift.

2.3 OPTIMAL TRANSPORT

Optimal Transport (OT)(Villani et al., 2008) is a mathematical framework for quantifying the dis-
crepancies between probability distributions by seeking a probabilistic coupling that minimizes the
total cost of transporting mass from one distribution to another. This formulation provides a mech-
anism for enforcing structural alignment between sets of elements such as representations. Conse-
quently, OT has been widely studied and applied in machine learning for tasks like domain adap-
tation, robust clustering, and generative modeling(Courty et al.| [2017; |Tolstikhin et al.; 2017). In
representation learning, SWAV (Caron et al., [2020) leverages an OT-based assignment to perform
online clustering and enable self-supervised learning without contrastive pairs, where entropic reg-
ularization helps prevent degenerate solutions and allows efficient optimization through Sinkhorn
iterations.

3 PRELIMINARIES

Before detailing our methods, we introduce necessary definitions here. We also present Table [3]in
Appendix [A.2] providing a comprehensive explanation of the notations used throughout this paper.

We formulate Federated Unsupervised Learning (FUL) as follows. Consider a federated system
consisting of a central server and N clients. Each client n holds a local unlabeled dataset D,, =

{xnyi}y:)’f‘, where |D,,| is the number of samples on client n. In practice, the data distributions
across different clients are non-IID. A standard FUL problem can be formulated as a distributed

optimization, aiming to collaboratively learn a global model 8 across N clients, i.e.,

N
min F(6) = anFn(é)), with  F,(0) = Epp, [£4(0; 2)], (1)

n=1

where w,, denotes the aggregation weight of client n satisfying w,, > 0 and ) w, = 1, and F,,(0)
is the local objective based on client-specific unsupervised loss L,,(+).

For local unsupervised training we adopt the online-target network design similar to BYOL(Grill
et al.| 2020). The online network, parameterized by 6, decomposes into an encoder fy, a projector
hg and a predictor gy. For an input x the online network outputs representationy = fy(z), projection
z = gp(y) and prediction gy (z). The target network, parameterized by ¢, is an exponential moving
average of the online encoder and projector that receives no gradients and provides stable targets for
the online predictor to match. Our method also relies on learning invariance to data augmentations.
We define a stochastic augmentation function 7 that transforms an input = by randomly sampling
t’ ~ T to produce the augmented view ' = t(z). In our setting, each client applies the same
augmentation pipeline 7 independently to ensure consistency of augmented views across clients.
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Figure 1: Overview of the FedPAC framework. clients perform local learning via a dual-alignment
objective: a representation alignment loss enforces consistency between augmented views, while
a semantic alignment loss that pulls representations toward their assigned prototypes. The server
aggregates client models using Federated Averaging, and refines the global prototypes using an
optimization-based aggregation strategy. This strategy steers each global prototype toward the cen-
troid of local prototypes assigned to it, while preserving separation between each other, thereby
strengthening global semantic consensus for the next round.

J

4 METHOD

4.1 OVERVIEW

To address the challenges of representation learning in federated unsupervised learning under non-
IID data, we propose FedPAC. Our framework introduces two complementary objectives into the
client-side unsupervised training, i.e., (1) a representation alignment loss that promotes the learn-
ing of view-invariant and discriminative features, thereby ensuring robustness against collapse, and
(2) a semantic alignment loss that aligns local representations with a set of globally shared proto-
types, thus enforcing a consistent semantic structure across the entire federation. This dual-pronged
strategy yields a unified feature space that is both locally discriminative and globally consistent.

The overall training pipeline of FedPAC is illustrated in Figure[I] At the beginning of each commu-
nication round, the server broadcasts the current global model parameters and the global prototypes
to the participating clients. Each selected client then perform E epochs of local unsupervised train-
ing by minimizing the local objective Ljoca, Which simultaneously optimizes its model parameters
and local prototypes. Upon completion of local training, clients send their updated model param-
eters and local prototypes to the server for aggregation. Through iterating this process, the global
model and prototypes are jointly refined, learning a effective and consistent representation space
from distributed, unlabeled, and imbalanced data.

4.2 CLIENT-SIDE UNSUPERVISED TRAINING

When performing local unsupervised training, each client is designed to learn representations that
are both discriminative and semantically consistent. For each batch, two augmented views of each
sample are generated and processed by the feature extractor. We then compute the prototype assign-
ments via optimal transport, predicated on the the similarity between projections and prototypes, and
yields the corresponding semantic alignment loss fs,. Concurrently, a representation-alignment
loss {p is employed to align representations between views, supplemented by a rotation predic-
tion task to enhance stability in early training. The comprehensive local objective is formulated as
Liocat = lsem + A lrep, minimized via SGD to jointly optimize model parameters and prototypes,
with \ balancing the two terms. We detail the design of these two loss components below.
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4.2.1 PROTOTYPE-BASED SEMANTIC ALIGNMENT

To facilitate semantic alignment across clients, we introduce a set of learnable prototypes {px -,
that serve as shared semantic anchors. Rather than directly aligning raw feature spaces, clients learn
by mapping their local representations to a probability distribution over these shared prototypes. By
enforcing consistency in these distributions for similar semantics across different views and clients,
we achieve cross-view and cross-client semantic alignment anchored by the global prototypes.

Computing prototype assignments under heterogeneity. Given a batch of projections Z €
RE*4 and the prototypes P € R¥*9, our objective is to compute the prototype assignment ma-
trix Q € RBXK where Q,  represents the probability mass assigned from sample sample i to
prototype k. This both mitigates trivial collapse that arises from assigning each sample to its near-
est prototype and provides a smooth training target for the cross-view prediction loss. We obtain
the optimal Q by solving an optimal transport problem. In heterogeneous settings, clients often
hold highly imbalanced data distributions. While enforcing a uniform distribution over prototype
selections, as done in some clustering methods, is effective at preventing collapse, it can lead to
inappropriate assignments and consequently degrade the quality of the learned representation. To
address this challenge, we employ Unbalanced Optimal Transport (UOT) to compute the soft as-
signments. UOT allows the marginals to deviate from a strictly uniform distribution, thereby better
accommodating scenarios where clients lack certain classes. In our setting we employ a UOT variant
that replaces hard marginal equalities with KL penalties while retaining an entropic regularizer, i.e.,

1 1
in Tr(—-Q'ZP")—eH KL(Q 15| =1 1 Qlg =—1 2
QB r(-Q ) —eH(Q)+pKL(Q 15 || £1k) st Qlx=5lz, ()
which can be efficiently solved using Sinkhorn iterations. Here, H(Q) = — >, . Q; and the

entropic parameter ¢ controls the smoothness of the assignment. KL(-||-) is the Kullback-Leibler
divergence penalizing the deviation of prototype marginal Q15 € RX from uniform distribu-
tion. A hard uniform constraint is enforced on sample marginal Q1 to ensure equal assignment
across samples, while the KL penalty with strength parameter p > 0 softly encourages balanced
prototype usage. This asymmetric constraint design prevents trivial collapse while allowing proto-
type marginals to deviate from strict uniformity, thereby producing more reliable assignments under
non-IID data and still promoting balanced prototype utilization. We can solve the above formula by
using a sinkhorn-like iteration.

Swap loss with global prototypes. For each batch of samples, we generate two augmented views,
yielding projections Z(") and Z(®). We first compute the optimal soft assignment Q(*) from Z (1)
using the above procedure, and similarly Q®) from Z(?). Then we require the projections obtained
from one view to predict the assignment of the other. Since projections lack interaction with the
prototypes, we compute a similarity probability matrix and the semantic alignment loss is then
defined as as the sum of cross-entropy between the assignment and similarity in both directions, i.e,

K
1 (1) (2) 2) (1)
lsem = 5B - ;(Q@k log Si7k; + Qi,k log SiJc )7 3

exp(z{ px/T)

>, exp(z{ py/7)
projections from different views of the same image to share the same prototype assignment. This
objective jointly optimizes both representations and prototypes, simultaneously pulling each feature
towards its assigned prototypes while also moving each prototype towards the centroid of its as-
signed features. Through this co-optimization, model structures the feature space into semantically
distinct clusters anchored by prototypes, thereby promoting both view invariance and cross-client
semantic alignment even under significant data heterogeneity.

where S; , = with 7 controlling the sharpness. Minimizing this loss encourages

4.2.2 CONTRASTIVE REPRESENTATION ALIGNMENT AND STABILIZATION

In federated unsupervised learning, the lack of ground truth labels often leads to weak supervisory
signals, increasing the risk of representation collapse. Self-supervised learning mitigates this by en-
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forcing augmentation invariance to promote compact and well-separated feature clusters. Integrated
with our proposed semantic alignment loss, SSL methods not only align representations across dif-
ferent views to stabilize local training, but also yield discriminative features that facilitate semantic
alignment. In our work, we adopt the similar architecture as BYOL for its stable and negative-free
learning signal, which is well suited to resource-constrained FL environments. However, during the
initial stages of training, prototypes may correspond to random or weakly discriminative features and
thus provide unstable supervisory signals. Inspired by (Lubana et al., 2022) and other works that
add inexpensive predictive tasks to stabilize early training, we introduce a rotation prediction task to
encourage the formation of stable and meaningful representations before prototype stabilization.

Concretely, for each sample = we generate two augmented views z(1), z(2) ~ T (x) along with
rotated versions Z. Rotation angles are randomly sampled from {0°,90°, 180°,270°}, with corre-
sponding label ¢ € {0, 1,2, 3}. Following (Grill et al., 2020), we use an online and a target network
to extract features from different views of the same sample, then a predictor maps the online projec-
tion to align with the target projection. Meanwhile, we attach a linear classification head w € R¥*4
to the online projection of & to predict its rotation label, trained via the cross-entropy between the
output logits and the true label . The representation alignment loss is therefore formulated as

B 2
ben = 35 23 (o) =l + CB(ll?). ) ) @

where v/ = 3 — v denotes the other augmented view, Z denotes the projection outputted by target
network with stop-gradient applied, and CE(-, -) is the cross-entropy function. This combined ob-
jective encourages the online network to learn view-invariant and discriminative features, while the
rotation prediction task provides an additional supervisory signal to mitigate collapse in early stage.

4.3 SERVER-SIDE MODEL AGGREGATION

In each communication round, once participating clients complete local training they upload both
model parameters and local prototypes to the server. Model parameters are aggregated via weighted
averaging, using each client’s number of local samples as the aggregation weight. Local prototypes
represent semantic centers specific to local data distribution, simply averaging would blur these
distinct semantic clusters and destroy the learned structure. Therefore, we propose an optimization-
based aggregation aggregation mechanism designed to consolidate local prototypes into an updated
set of global prototypes, thereby preserving a coherent cross-client semantic structure.

Let the current global prototypes P, € R¥*4 serve as fixed semantic anchors, and the collection
of all local prototypes from participating clients P; € R*9 (typically I > K) be the set to be
assigned over anchors. We compute a similarity matrix S between P; and P4, and a soft assignment
matrix Q that indicates how strongly each local prototype is assigned to each global prototype via
the balanced version of equation |2} i.e., with strict equipartition constraints on both marginals. We
formulate the aggregation of local prototypes as an optimization objective with two complementary
losses. The first term, an assignment fidelity loss, is formulated as the cross-entropy between the

assignment and similarity:
I K
1
Lieqg = o Z: 2—:1 Qi logS; k, (3)

which encourages consistency between the similarity and the soft assignment. Minimizing Lseq
pulls each global prototype towards the centroid of local prototypes that are strongly assigned to it,
ensuring the updated global prototypes reflect the consensus of the local semantic centers. And the
second term, a prototype uniformity loss that penalizes excessive proximity between prototypes via
pairwise repulsion, serves as as a regularizer to encourage the updated global prototypes to remain
well separated. This prevents the prototypes from collapsing into a few redundant clusters and
preserves the overall semantic diversity. It is defined as

1
Ly = log (M_I);QXP(—Q’YM —Pj||2)>a (6)
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where v > 0 controls the sharpness of the exponential weighting. The server updates the global
prototypes by minimizing the combined objective Lyrowo = £ieq + B Luni,» Where 3 is a trade-off coef-
ficient. The composite objective encourages global prototypes to align with the representative local
semantics while preserving sufficient separation, thereby capturing cross-client semantic structure
and preventing collapse. After aggregation, the updated global prototypes are distributed to clients
for next round of training, providing a refined and globally consistent semantic guidance.

5 CONVERGENCE ANALYSIS

In this section, we provide a convergence analysis for our proposed federated unsupervised learning
framework. We first detail the assumptions that underpin our analysis and then present our main the-
orems: one characterizing the sufficient decrease achieved by our prototype aggregation method and
the other guaranteeing the global convergence rate of the entire algorithm. Our analysis quantita-
tively demonstrates how factors influence the final solution quality and precise bounds are provided
in theorems below.

To facilitate our theoretical analysis, we introduce the following notation. Let 6 denote the model
parameters and p denote the prototype parameters, and both are optimized jointly during local train-
ing. Thus, we define the combined parameter 1) = (6, p). Any assumption stated for ¢ is understood
to hold for both 6 and p. Clients perform local updates with learning rate 7;, while the server per-
forms U steps of SGD with learning rate 7, on the surrogate objective Fi(-). For brevity, detailed
statements of the assumptions and the complete convergence proof are provided in Appendix

Theorem 1 (Sufficient Decrease of Prototype Aggregation). Let Assumption[l|and[6|holds, and the
server-side learning rate satisfies n, < 1/L, then the proposed prototype optimization step yields

N 2, mUC
E[F (0, pr+1)] < F(0r, pr) — Ep Z E[V,F(0r, pu)||” + pT'
u=0

This theorem formally bridges the gap between the server’s surrogate optimization task and the true
global objective. It guarantees that our prototype aggregation strategy achieves a sufficient decrease
in the global loss each round, thus providing a principled convergence guarantee even when the
server operates with limited information based on not exactly the same objective.

Theorem 2 (Global Convergence). Let Assumptions hold and the server-side learning rate
satisfies m, < 1/L. After R communication rounds, the average expected squared norm of the
global gradient is bounded as follows:

R—-1
1 F(¢g)— F* Ty
— § E|VF@)|? < —22 ~— 4 2=

where F'* is the minimum value of the global objective, I'y = min("”va ;%) and Ty =
2y (L2} E? dE L? L2n?EM SELPMY - u¢?
GNM< B >+<77 4 LIiEM | B )02+np2c )

This theorem demonstrates that our algorithm converges to a neighborhood of a stationary point at a
sublinear rate of (’)(%). Specifically, the size of this neighborhood is influenced by the state of initial
model, data heterogeneity across clients, the number of epochs, learning rates and the error from our

prototype aggregation scheme, quantifying the trade-offs inherent in the federated learning.

6 EXPERIMENTS

6.1 EXPERIMENTAL SETUP

Datasets and partitioning. We conduct experiments on CIFAR-10 and CIFAR-100(Krizhevsky
et al,, [2009). To simulate non-IID data distributions across clients, we partition the training set
among N clients using a Dirichlet distribution(Hsu et al., [2019). Specifically, for each class we
sample a probability vector from Dir(«) and distribute samples to clients accordingly. The concen-
tration parameter « controls the heterogeneity, with a smaller « results in more skewed partitions.
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Table 1: Accuracy (%) on CIFAR10 and CIFAR100 under non-IID (o = 0.1) cross-device (100
clients) and cross-silo (10 clients) settings. FedU2 can be combined with different SSL. methods
and we list the results for all of them(denoted by superscripts). Evaluation is performed via linear
probing and semi-supervised fine-tuning with 1%/10% labelled data.

Dataset CIFAR-10 CIFAR-100

Setting Cross-Device (N=100) Cross-Silo (N=10) Cross-Device (N=100) Cross-Silo (N=10)
Method Linear | 1% 10% | Linear | 1% 10% | Linear | 1% 10% | Linear | 1% 10%
SimCLR 61.70 | 48.76 | 68.82 | 74.63 | 63.34 | 76.25 | 34.42 | 13.25 | 36.61 | 50.42 | 19.25 | 43.61
BYOL 6091 | 5146 | 68.1 | 75.52 | 75.55 | 81.93 | 29.74 | 11.56 | 33.13 | 48.87 | 20.52 | 43.15
SimSiam 63.63 | 54.81 | 71.14 | 78.51 | 70.32 | 78.33 | 32.96 | 12.71 | 35.9 | 50.38 | 23.71 | 43.96
FedU 59.72 | 50.59 | 72.42 | 80.03 | 69.51 | 83.15 | 31.74 | 12.09 | 34.08 | 54.36 | 30.97 | 47.46
FedX 68.38 | 58.55 | 73.59 | 7493 | 67.47 | 81.38 | 35.78 | 1591 | 36.3 | 49.02 | 19.57 | 41.69
FedEMA 63.8 | 53.21 | 73.56 | 78.95 | 68.65 | 81.87 | 32.49 | 12.95 | 36.29 | 51.66 | 32.35 | 47.21
Orchestra | 64.28 | 53.69 | 69.32 | 76.13 | 75.8 | 85.7 | 27.66 | 11.95 | 33.21 | 52.81 | 33.7 | 48.89
FedU2SmCLR | 6558 | 54.5 | 72.44 | 80.43 | 73.47 | 82.66 | 36.07 | 16.25 | 35.77 | 53.55 | 31.98 | 48.71
FedU2SmSiam | 69.01 | 60.71 | 73.97 | 82.19 | 73.6 | 82.48 | 34.18 | 12.81 | 34.25 | 54.05 | 30.57 | 50.93
FedU2BYOL | 68.81 | 56.69 | 72.56 | 82.8 | 75.04 | 84.67 | 36.25 | 17.01 | 38.0 | 54.78 | 32.19 | 52.69
FedPAC 71.36 | 62.17 | 75.03 | 83.56 | 77.59 | 84.47 | 37.32 | 17.68 | 37.64 | 56.33 | 37.23 | 51.98

Evaluation Protocol. We evaluate representation quality using linear probing(Chen et al., |2020),
K-nearest neighbors (KNN) classification(Chen & Hel 2021) and semi-supervised fine-tuning. Lin-
ear probing trains a linear classifier on frozen features to assess the linear separability of the repre-
sentations, while KNN classification on frozen embeddings provides a label-free measure of feature
discriminability. Semi-supervised fine-tuning with 1% or 10% labeled data evaluates representation
transferability in low-label regimes.

Comparative Methods. We compare FedPAC with several relevant baselines: (1) federated adap-
tations of centralized self-supervised learning methods, including SimCLR, BYOL, and SimSiam,
combined with FedAvg, (2) the state-of-the-art federated unsupervised learning methods includ-
ing FedU(Zhuang et al.| 2021), FedX(Han et al.l [2022), FedEMA(Zhuang et al., [2022)), Orches-
tra(Lubana et al.l 2022)), and FedU2(Liao et al. 2024). For fair comparison, all methods use the
same encoder architecture and data partitions. Implementations follow the original papers and,
where available, rely on official codebases. Results are averaged over 3 independent runs with dif-
ferent random seeds.

6.2 EXPERIMENT RESULTS

Representation Evaluation. Following existing methods(Liao et al., 2024} |Lubana et al.,|[2022),
we first assess the quality of the learned representations via linear probing and semi-supervised fine-
tuning. The comprehensive results are presented in Table [T] and key observations are summarized
as follows. First, simply combining centralized SSL methods with FedAvg yields limited accuracy
under high data heterogeneity, confirming their fragility to non-1ID data. Second, FedPAC consis-
tently outperforms all baselines in linear evaluation across both cross-silo and cross-device settings,
demonstrating the superior quality of learned representations. Third, under the challenging 1%
semi-supervised setting, FedPAC achieves a substantial performance margin over compared meth-
ods. This can be attributed to its well-structured feature space, which already exhibits distinct and
semantically coherent clusters. Consequently, downstream adaptation task is simplified to learning
a linear mapping from these clusters to their corresponding labels, requiring minimal supervision.
While this gap narrows as the proportion of labeled data increases to 10%, FedPAC remains highly
competitive. The superior performance of FedPAC reported above underscores its ability to learn
discriminative and transferable representations.

Analysis of Sensitivity to hyper-parameters. We begin by evaluating the sensitivity of differ-
ent methods to data heterogeneity, controlling « = {0.1,0.5,1.0}. Results in Figure [2| show that
FedPAC maintains stable performance even under severe non-IID settings, whereas the accuracy
of baseline methods degrades, particularly on the more complex CIFAR-100 dataset. This demon-
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Figure 2: Sensitivity to data heterogeneity on CIFAR-10 (left) and CIFAR-100 (right). FedPAC is
more robust to data heterogeneity.

strates the robustness of our prototype-anchored consensus against skewed data distributions. For
additional experiments analyzing the effects of other parameters, please refer to the Appendix [C]

Ablation Study We conduct an ablation study under cross-device setting to evaluate the contri-
bution of each component in FedPAC. As shown in Table [2] both the semantic alignment loss and
the representation alignment loss are essential for achieving optimal performance. The semantic
alignment loss contributes the most to cross-client consistency, while the representation alignment
loss is critical in preventing representation collapse. The prototype aggregation strategy is also nec-
essary for maintaining global semantic consensus. Removing any component leads to performance
degradation, which validates our design choices. We also plot the convergence curves of FedPAC
and FedU2 in Figure[3] Compared to FedU2, our method exhibits faster convergence and a more
stable training process with less oscillations throughout. In contrast, the varian of FedPAC without
{rep shows slower accuracy improvement during early training and suffers from instability, further
confirming its importance in improving representation quality and stabilizing training.

USSP SV

Table 2: Comparison of FedPAC and its ablated P
variants on CIFAR10 and CIFAR100 under non- I
IID (o = 0.1) cross-device settings.

Dataset | Method | FedPAC | w/0 lgem | W/O lrep | W/O Lyroro 5
KNN | 6399 | 5591 | 59.87 | 6148 <
Linear | 7136 | 6255 | 684 | 69.22
CIFAR-10 —— Fedu2
1% | 6217 | 5336 | 604 | 60.62 e F:gEAC
10% | 7503 | 7137 | 7355 | 73.09 —— FedPAC w/o |_rep
KNN 2741 19.68 20.16 23.02 i) 2 30 W E) £ 70 80 s‘o_ 100
CIFAR-100 Linear 37.32 304 30.33 33.54 . Communication Rounds
1% | 17.68 | 1299 | 1201 | 1401 Figure 3: Convergence curve of KNN accuracy
10% | 3764 | 3028 | 3086 | 3145 versus communication rounds on CIFAR-10.

7 CONCLUSION

In this work, we propose FedPAC to address the critical challenges of representation collapse and se-
mantic misalignment in federated unsupervised learning under non-IID data. It leverages prototypes
as semantic anchors to establish a semantic consensus among clients, enables learning discrimina-
tive and semantically consistent representations from distributed, unlabeled, and imbalanced data.
Theoretically we provides a rigorous convergence analysis, and empirically, we conduct experiments
on CIFAR10 and CIFAR100 to validate the superior performance of FedPAC.
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A METHOD DETAILS

A.1 COMPUTING PROTOTYPE ASSIGNMENTS

We now describe the process of computing prototype assignments in more detail. Given batch
projections Z € RB*? and the prototypes P € R¥ >4, we seek the prototype assignment matrix Q €
REXK where Q. denotes the mass that sample ¢ places on prototype k. Such a soft coupling both
mitigates trivial collapse that arises from assigning each sample to its nearest prototype and supplies
a smooth training target for cross-view prediction losses. We obtain the optimal Q by solving
an optimal transport problem. In heterogeneous settings, clients may hold very different numbers
and categories of samples, or lack certain categories. Strictly enforcing even selection of samples
and prototypes, although effective at preventing collapse, can force inappropriate assignments that
reduce fidelity. Unbalanced optimal transport (UOT) relaxes marginal equalities while penalizing
the deviation via a divergence and is more suitable for solving this problem. In our setting we
employ a UOT variant that replaces hard marginal equalities with KL penalties while retaining an
entropic regularizer, i.e.,

i, (@ C) = 2H(Q) +pKL(QTLs || ) + KL (Qc | b) @)

where cost matrix C = —ZP . Here Qlx € R® and Q"1 € RX are the sample and prototype
side marginals respectively, while a € R® and b € R¥ are their target margins. p, 1 > 0 weight the
marginal matching strength on the sample and prototype sides. To address the heterogeneous setting,
we preserve a hard marginal on the sample side to ensure that each sample is equally assigned. This
is implemented by taking @ — oo and hence imposing Qlx = a = %1 5. And we relax the

prototype-side marginal via a KL penalty with target b = % 1, we can rewrite equation |7|as:

1 1
: TopT T _
QEIE%HXK Tr(-Q'ZP") - cH(Q) + pKL(Q 1BH?1K) st. Qlx = 2l (8)

Compared with strict equipartition, the one-sided unbalanced marginal constraint prevents trivial
collapse while allowing prototype marginals to deviate from exact uniformity. This flexibility avoids
spurious assignments when clients lack certain classes, produces more reliable assignments under
non-IID data and still encourages balanced prototype utilization.

With entropy regularization and KL relaxation, the solution of equation [2admits a Gibbs-like factor-
ization Q* = diag(u) G diag(v) with the Gibbs kernel matrix G = exp(ZP T /). For numerical
stability, we compute the multiplicative renormalizers u, v by iterating the following calculations in
the logarithmic domain:

11



Under review as a conference paper at ICLR 2026

logu « loga — log(Gv), logv + r(logb — log(GTu)), )
where k = p/(p + €). After convergence we plug u and v back into the original factorization to
obtain Q*. Optionally one may obtain a discrete assignment from Q* by a rounding procedure,
but we retain the continuous soft assignment in training because it provides smoother gradients and
better numerical stability.

Working on small batches. When the batch size B is much smaller than the number of prototypes
K, an equal partitioning of the batch samples across K prototypes is infeasible. To mitigate this
issue, we augment the current batch with a memory queue containing the projections from recent
training samples. We solve the UOT problem over this augmented set and only the entries of the
assignment matrix corresponding to the samples from the current batch are utilized to compute
the semantic alignment loss. This memory-augmented strategy enables the estimation of stable
assignments with small batch sizes, while imposing minimal computational and memory overhead.

A.2 NOTATION AND ALGORITHM

We present Table [3] to better summarize and explain the notations used in this paper. And we also
summarize the entire framework in Algorithm [I]that better illustrates the entire training process.

Notation Explanation
R, r Total number of communication rounds, current round
N,n Total number of clients, local client index
0, Global model parameters at -th round
fo, g0, qo Online encoder, online projector and predictor parameterized by 6
fos 9 Target encoder and target projector parameterized by ¢
Z Representation vector (output of encoder)
D, Local dataset of client n
T The ¢-th sample of client n (original input)
T Stochastic augmentation function
Z=t(x), t~T Apply a random data transform to x to get the augmented view
E The number of epochs for local training on each client
B Batch size for local training
K Total number of global prototypes
P, p: Global prototype matrix, k-th prototype vector
d Dimensions of representation and prototype vectors
Z The representation matrix of a batch
S Similarity probability matrix
Q Prototype assignments
I Number of local prototypes of the clients participating in the training
P Parameterized representation of prototype vectors
Y= (6,p) Joint parameterized representation of models and prototypes
U The number of epochs for optimizing global prototypes on the server
Fy(+) Server-side surrogate function for optimizing global prototypes
1, Mp Learning rate for clients’ local training, and server-side optimization

Table 3: Caption

IMPLEMENTATION DETAILS

We adopt ResNet-18(He et al., 2016) as the encoder architecture. Projector and predictor designs
and EMA rules follow their original papers. Unless specified, the number of local epochs E to 10,
the total communication rounds R to 100, and the Dirichlet parameter « to 0.1 to simulate high data
heterogeneity. Experiments cover two FL setting: a cross-silo scenario with N = 10 clients and a
participation rate 1.0, and a cross-device scenario with N = 100 clients and a participation rate 0.1.
We use a batch size of 64 and 32 prototypes as semantic anchors for CIFAR-10, and a batch size of
128 and 128 prototypes for CIFAR-100.

12
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Algorithm 1 The FedPAC Framework

1: Input: Number of clients N, communication round R, local training epochs on clients E,

prototypes optimization epochs on server U, local data D,, = {xn,i}g’f‘, trade-off coefficient

Out[;ut: Global model 0.

2:

3: Server executes:

4: Initialize global model 6y and global prototypes P 4;

5: for each communication round » = 0,1,..., R — 1 do

6: Randomly select a subset of clients .S;.;

7: for each client n € S, in parallel do

8: Send 0,., P, to client n;

9: Client executes(n, 0,, P..);
10: Aggregate models parameters: 0,..1 < FedAvg(6,|ncs,);
11: for prototypes optimization epochu = 1,2,...,U do
12: Compute assignment fidelity loss (gq using equation 3}
13: Compute prototype uniformity loss £, using equation [6}
14: Update global prototypes P, by minimizing Lpro0 = fred + B Lunis
15: end for
16: end for
17: end for

18: return 0y

19: Client executes(n, 6,, P,):

20: 0 < 0,, Py <~ Pyg;

21: for each local epoche =1,2,..., E do

22: Sample a mini-batch form D,,;
23: Compute semantic alignment 1oss /4., using equation 3}
24: Compute representation alignment /..., using equation

25: Update local model §,, and prototypes P,, by minimizing Liocat = fsem + A Lreps
26: end for
27: return updated 6,, and P,, back to the server

B PROOF OF THEOREMS

Let 0 denote the model parameters and p denote the prototype parameters, and both are optimized
jointly during local training. Thus, we define the combined parameter ¢ = (6, p). Any assumption
stated for ¢ is understood to hold for both 8 and p. Clients perform local updates with learning rate
i, while the server performs U steps of SGD with learning rate 7, on the surrogate objective H ().

B.1 ASSUMPTIONS

We base our convergence analysis on the following standard assumptions.

Assumption 1 (Smoothness). Local objective functions Fy, Fs, ... ,Fn are all L-smooth, i.e.,
HVFIL(w) - VFn(wl)” < LW - WH forn=1,...,N.

Assumption 2 (Unbiased Gradient). Let £ denotes a batch of samples uniformly sampled at random
from local data. The stochastic gradient is an unbiased estimator of the true local gradient, i.e.,
E[VE,(1,8)] = VE(¥).

Assumption 3 (Bounded Variance). The variance of the stochastic gradient on each client n is
bounded: E||VF,(1,§) — VF,(Y)|> <02 forn=1,...,N.

Assumption 4 (Bounded Gradient Norm). The expected squared norm of any client’s stochastic
gradient is uniformly bounded: E||V F,, (¢, €)||* < G?, forn=1,...,N.

Assumption 5 (Uniform Client Sampling). In each communication round r, a set S, of M clients is
selected uniformly at random from the total N clients. The probability of any client n being selected
isP(n e S,)=M/N.

Assumption 6 (Bounded Prototype Gradient Estimation Error). The gradient of the server-side
surrogate function NV Fs(p,) is an estimator of the true global gradient with bounded variance.
Specifically, at communication round r, we have E||V Fy(p,) — V ,F(0,, p,)||* < ¢%

13
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B.2 CONVERGENCE ANALYSIS

Let pg = p, and pyy = p,4+1 denote the initial and final prototype parameters at round r, respectively.
The update rule for each step w is:

Pu+1 = Pu — nvas(pu)~ (10)

We first prove Theorem 1, which establishes that our prototype aggregation strategy guarantees a
sufficient decrease in the global objective function.

Theorem 1 (Sufficient Decrease Guarantee of Prototype Aggregation). Let Assumption [I| and [6]
holds, and the server-side learning rate satisfies n, < 1/L, then the proposed prototype optimization
step yields

U-1

E[F(0r, prs1)) < F(0r,p7) = 2 3 B[V, (01, 0| +
u=0

npU¢
A

Proof. With Assumption[I]holds, considering 1, as fixed during the server-side prototype aggrega-
tion, it follows that

L
F(@T,pu) < F(orapu) + <VPF(0TaPu)apu+l - pu> + §||pu+1 - pqu' (11)

Then substituting the update difference p,+1 — pu = —1,V Fs(p,,) into equation[I1} we have

Ln?
F(erapu—i-l) S F(‘grvpu) - np<va(9rapu);VFs(pu)> + T’)”VF‘s(pu)H2 (12)

Taking the expectation on both sides of the above formula, we have

L772
]E[F(erapu-i-l)] < F(e'r'apu) —Tp ]E<va(0rapu)a VFs(pu)> +TPE||VFs(pu)H2- (13)

Ay

Using the identity 2(a, b) = ||a||? + [|b]|> — [la — b||* and let a = V ,F (0, p,) and b = V F;(py),
it follows that

Aq E[;(||va(¢rapu)||2 + ||VFs(pu)H2 - HVPF(Grvpu) - st(pu)|2>:|

1
) (EHV,,F(@T,pu)HQ + EHVFS(pu)||2 - EHVPF(97'7pu) - VFs(pu)H2)'

Plugging back into equation [I3] we have

Lﬂﬁ 2
E[F(0r, pu)] < F(0r, pr) + TEHVFS(pu)H

n
— L (EIV,F(Or, pu)|I* + EIVE:(pu) |2 = EIV,F (01, pu) = VE (o))

2
n n,  Lm
= F(0,,pr) = PEIV,F (0, p0)|I* = (% = 52 )EIVE(p,)]*

+ ZE|V,F (0, pu) = VEL(pu) ™ (14)

We choose the server-side learning rate such thatn, <1 /L, which implies that the coefficient of the
E||V Fs(pu)||? term is non-negative. We can thus drop this term to obtain a valid upper bound:

n
E[F(@T,pwl)} < F(0r, pu) — %EvaF(ervl)u)”z + EPE”VpF(empu) - VFs(Pu)||2- (15)

Applying Assumption [6]to bound the last term, we have

anQ

5 (16)

E[F (8, put1)] < F(0r, pu) = "W EIV,F (6, p0)|I” +

14
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Note that Zg;ol (E[F(put+1) — F(pr)] = E[F(pus1)] — F(pr), and summing overu = 0, ..., U —
1, we have
M N U
E[F(0r, pr41)] < F(0r, pr) — Ep Z E”VPF(erapu)Hz + -
u=0

amn

This completes the proof.
O

Before presenting the Theorem 2, we state and prove several lemmas to clearly express our subse-
quent proof clearly.

Lemma 1 (Local Model Divergence). Let Assumptions[2|to[|holds, the expected squared deviation
between the the initial global model 1),. and local model parameters VX after E local update steps
is bounded as follows that

E [Ilyy = v,l?] < nfE*G? + niE

Proof. Note that the total change in the local model parameters on client n after F steps is the sum
of the individual updates with local learning rate 7;, we have
E-1

PP == (P —¢f) :fmZVF °.€) (18)

e=0

Taking the expected squared norm, we have
E-1

> VL5, &)

e=0

Ellp} — o> = niE (19)

To analyze the sum of gradients, we decompose each stochastic gradient into the true local gradient
and a zero-mean noise term 6, such that

VE(¥5,6) = VE(¥5) + 0y, (20)
where §¢ = VF, (¢¢,£5) — VF,(¢¢). Plugging it into equation |19 we have
E-1 2
Elley —vrl® = nfE|| > (VEL (W) +67) 2D
e=0

Then we expand the squared norm and get

2 2

E—1 E-1 - E-1
> (VFEL(45) +65) ZVF Wo)|| +(> a5 +2<ZVF ¢E7Z5>.(22)
e=0 e=0 e=0 e=0

Note that the expectation of the cross-term is zero with Assumption [2holds. Thus, we have
E-1 2 BE-1 |2

> VE.W) >0

e=0 e=0

Since the noise terms ¢, are independent across steps and have zero mean conditioned on the history,
their cross terms vanish in expectation. Therefore, we can rewrite the second term as

2
ZJEllé‘sz
E—1

Ellvy — || = +E (23)

2
n

IN

g
e=0
= Eo?

n’

(24)
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where we use Assumption [3] to obtain the upper bound in the second step. By Cauchy-Schwarz
inequality, for the first term we have

ZVF 9

Under Assumption 4, we know that E||VF,(¢¢,£9)? < G2, Since E||VF, (v €e>||2

E—

Z E[|V Ea (¢35, (25)

e=0

E|[VF, (6465 | = E|[VE, (65)]?-+E| 5% |2 and E[[6? |2 > 0. it follows that E[[[V E, (¢4)||”] <
G? and
E-1 2 E-1
E|Y VFE.(g)| <EY G*=EG. (26)
e=0 =
Combing these two bounds with equation[23] we have
Ellvy —¢nl® <P (E*G® + Eoy)
=N E?G? + n}Ec?. (27)
This completes the proof. O

Lemma 2 (Deviation of Local Stochastic Gradients). Let Assumptions[I) Blandf]holds, the deviation
between the average local stochastic gradient over I steps and the true gradient at the initial model
1, is bounded in expectation, i.e.,

E-1
1 202 2
E| 5 Y VE(5.6) - VE(6,)| <t + LGP + Lnf ol E
e=0

Proof. We can decompose the total discrepancy into two terms, C; and Cy:

E-1 1 E-1
ZVF (s &) = VER(br) = 55 D (VEu (5, 6) = VIR (7))
e=0
Cy
1 E-1
+ 3 D (VE()) = VE(¥y)). (28)
e:O
Cy

Using the inequality |la + b]|? < 2||a||* + 2|b||?, we can bound the expected squared norm as

E||Cy + Co||* < 2E[|Ch| + 2E|C|*. (29)

We can rewrite the first term as

ECi|? = E ]§<VFn<¢z,az> - VEW)| = E 26; (0)
Using equation [24] again, and it follows that
E[Cy]? < if’; = % €3]
We can rewrite the second term as
- 2
EICaI = | 5 3 (VF(v1) — V(i) ()
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By Jensen’s inequality, we have
E-1

E|Co|* < ZEHVF (¥r) = VE ()|

e=0

72 Bl
<2 D Elvn —wl?, (33)

e=0

where we apply Assumption [I]to obtain the second inequality.

To bound the term E [[|1g — ¢, [|?] for e < E, we use a result similar to Lemma but for e steps
instead of F, i.e.,
Ellyy, — vr]|* < nfe*G? + feor,. (34)

Plugging this into Eq. equation [33] we have

E|Col* < 2 D (fe’G? + nieay) (35)
e=0
L2 E—1 BE—-1
_ 1 2 2 2
L (@S eea s 0
e=0 e=0
Using the formulas for the sum of integers and sum of squares, i.e., Ze 0t = (E_Ql)E and
ZE Lo _ (BE-DEQRE-1) b
e=0 6 ’
L2n? (FE-1)E_E-1) (F-1)E
ElC 2 < l G2 2
jealP < 58 eED) B
L27712 3 E2
< G27
(08
1
= gL%ﬁG?E? + 5L%yf’agE. (37)

Then we can combing equation [3T]and equation 37 with equation [29]to obtain the bound for initial
decomposition:

2
2
Z VE, (02, €8) — VE,(¥,)|| <2 ("E> 42 (;LanGQEz + ;LQU?UTQLE)

2
% + 3L2 MEG2E? + [*n202E. (38)

This completes the proof. O

Lemma 3 (Expectation of Random Client Sampling). Let Assumption|5|holds and X, be a client-
specific random quantity independent of the client selection process, the expected expectation of the
weighted sum over the randomly selected client set S, satisfies that

M N
Es, [Z wan] =¥ anE X,
n=1

neSs,

Proof. Let I, be a binary random variable indicating the participation of client n in round r, where
I,, = 1if selected and 0 otherwise. With Assumption [5|holds, each client is selected independently
with probability and it follows that E[I,,] = M /N. The weighted sum over the randomly selected
set .S, can be rewritten using these indicators such that

> w X, = ZI wn Xy (39)

nes,
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Take the expectation of the above formula and applying linearity of expectation, we have

]EST [Z wan

nes,

=E

N N
> Inwan] =Y E[Lw,X,]. (40)
n=1 n=1
If the client selection I, is independent of the client-specific quantity X,,, we have
N N u X
E[Ihw, X, = E[L,) - Ew,X,] = — w,E [ X, 41
S Bl ) = Y Bl B ] = 5 > Bl @)

This completes the proof.
O

Theorem 2 (Global Convergence). Let Assumptions hold and the server-side learning rate
satisfies m, < 1/L. After R communication rounds, the average expected squared norm of the
global gradient is bounded as follows:

“ F(6)) — F* Ty

1
—NTE|VE@,)|P < Y~ 22
7 L EIVFOIP < —Hr—+

where F* is the minimum value of the global objective, I'1 and 'y are constants that depend on
problems’ parameters and the algorithm’s hyperparameters, but are independent of the total number
of communication rounds R.

Proof. With Assumption E]holds, we have

E[F(¢7+1)] S E[F('(/)7)] + E<VF(¢T)7¢T+1 - '(/)7> + gEer—i—l - w7'||2~ (42)

Due to our hybrid aggregation strategy, we decompose the update 1, 11— = (041 —0,., pry1—pr)
and the gradient VF (1) = (Vo F (¢r), V,F (1r)), it follows that
E[F(¥r41)] S E[F ()] + E(VoF(Ur), 0r41 = 0r) + E(V,F(¢r), prys — pr)
+ ZEI0,01— 0,0 + S Ellprir — oo
= E[F@)] + (E[F(Or, pri1)] = F (0, pr))

D
L
+ E<VPF(¢T')7P7'+1 —pr) + EEHPT'-H - PT'HQ - (E[F(Q,., /)'r+1)] — F (0, pr))
D»
L 2
+ 5EH9T+1 — 0" +E(VoF (), 011 — 0, . (43)
—_—
D3 Da
By Theorem [T} we know that
U-1 9
Mo 2 TIpUC
Dy <~ ;)JEIIV,)FwT,pu)H + 5 (44)
Under Assumption [I|and assuming 6,. fixed, we have
L
F(Or, pri1) < F(0r, pr) + <VPF(97'7 Pr)s Pra1 — Pr) + §||p7'+1 - p7‘||2' (45)

Take the expectation of both sides and transpose the terms, we have

L
]E<va(9r7pr)7pr+l - Pr> + §E||pr+l - pr||2 - E[F(9T7PT+1)] - F<9'mpr) Z 07 (46)
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which is equivalent to Dy > 0 and we can thus remove it from equation 3] to obtain the upper
bound.

The update in D3 is 041 — 0, = >, wy (YE —1p,.). Using Jensen’s inequality, Lemma and
[Bl we have

2

L M
_ E E 2
Dy = JE Z Wy, (Y, SON Z nEllv, — ¥l
nGST n=1
LM
S Wﬂ 1U/n( l2G2E2 +77120—721E)
L 771 2p2 4 52
= E F 47

_ N
where 52 = 3", w,02.

And we have 0,1 — 0, = > cg wa(VF —r) = = Y, cg, Wn S Vg, (05, £2), using
Assumption 3] we have

E-1
D4 = —771E -E <v9F(w7‘)7 Z Wn, <; ;} VQFn( 2a52)>>

nes,
1 E—-1
= > VoFa fwfz)] > (48)
e=0

n=1

M N
= *anE <V9F(wr)azw"E

Using the identity —(a, b) < %|la — b||? — 1||a||?, we have

E-1
VQF 7/)7“ an (é ; ngn( Z?grez)>

n=1

mEM mEM

SN . (49)

Dy <~ IV (4r) ||+

Using Jensen’s inequality and Lemma[2] we have
2

EM EM
Dy < = VP () + 25 an

1 E—-1
VGF wr - (E Z VOFn(wyemg;;:L))
e=0

EM 2
mEM o~ < o

EM
L o, ==+ L2 MG2E? + LPnfo? E)

<- Vo E (r)II* +

E

n=1

M E 1 1
- = ( T NVOE @) +mo® + S BPLG? + S Lo 2) (50)
Combing equation[#4] equation[#7]and equation 50| with equation 43} we have

U-1

E[F(¢r11)] < E[F ()] - IV F(,)||2 — 22 ZEHV F(6,, pu)|?

2 2 33712 2,,2 32712
G2M ( 2E +nlEL>+<l+LnlEM+nZELM>02

lEM

N 3 2N 2N

2
np,U¢ _ (51)

M

Note that

U-—1
> BV, F(0r, pu)lI” = EBIV,F (0, po)|I” = Vo F (0, p0) | = [V, F(@0)II°,  (52)
u=0
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we can rewrite equation[51]as

EIF(r+1)] < BF ()] — "o [VoF ()7 — 21V, (,) [+

G?M ([ L? 2E2 SE3L2 L?n?EM SE2L2M
( Ui +771 >+(l Ui _|_771 )0_2

N 2 3 2N 2N
U 2
A 2< . (53)
LetT'; = min(”l?I, “2) and T'; collects all constant terms, i.e., 'y = G;,M <L2"2l B + "?E:LZ ) +
(m + & b [EM W?EzL M) 52 4 1Y€ we can rearrange the inequality as
DB VE(,)|I? < E[F ()] — E[F(¢y41)] + Ta. (54)
Summing over r =0, ..., R — 1, we have
R-1 R-1
ST EIVEW)IR < S (EFW)] - BF@ )+ 3 T
=0 —0 =0
= F(1o) — E[F(0r)] + RT,
< F(g) — F*+ RT, (55)

where F'* is the minimum value of the global objective. Dividing by RI'; gives the final result

o)~ F* T

==. 56
RIY Iy (56)

1 R-1
= S E|VE@,)|? <
r=0

This completes the proof.

C ADDITIONAL RESULTS

C.1 SENSITIVITY TO HYPER-PARAMETERS

We now continue that analysis of sensitivity to key federated learning hyper-parameters, most of
the experiments are conducted under cross-device setting on CIFAR-10 and CIFAR-100. First,
regarding the client participation rate, as shown in Figure 4 performance in the cross-silo setting
remained stable with only a marginal drop at lower rates. In the cross-device setting, while all
methods experience performance degradation with lower participation rates, FedPAC exhibited the
highest resilience. Furthermore, we assessed the impact of the total number of clients and plot the
result in Figure[5] It can be viewed that FedU2 achieves highest accuracy in settings with less clients,
while FedPAC demonstrates superior robustness, maintaining more stable performance as the total
number of clients changes. Finally, we analyze the effect of local training epochs in Figure [f] A
reduction in local epochs led to significant performance degradation for all methods. In contrast,
FedPAC maintained high accuracy across different epoch settings and could achieve a comparable
level of accuracy to competing methods but with a reduced number of local epochs. Collectively,
these experiments demonstrate he robustness of FedPAC to variations in the training configuration.

C.2 REPRESENTATION VISUALIZATION

To provide an intuitive and qualitative assessment of the learned representations, we visualize the
feature embeddings using t-SNE. We first examine the problem of semantic misalignment by com-
paring local and global models from both FedU2 and FedPAC. As shown in Figure [/ while local
models in FedU?2 learn locally coherent representations, their feature spaces are misaligned with
one another. Consequently, in the aggregated global model’s feature space, representations from
different categories may become mixed and thus reduce discriminability. In contrast, FedPAC learns
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Figure 4: Sensitivity to participation ratio on cross-device (left) and cross-silo (right) settings. Fed-
PAC maintains stable accuracy even with low participation rates.
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Figure 5: Sensitivity to clients number on CIFAR-10 (left) and CIFAR-100 (right) settings.

maintains semantic consistency across clients, forming a global representation space with enhanced
inter-class separation, demonstrating its ability to mitigate representation drift. Then we compare the
final global representations learned by all methods in Figure [8] This visualization shows that Fed-
PAC learns representations with better intra-class compactness and inter-class separability, providing
further evidence of the high discriminative power of the feature space cultivated by our framework.

D THE USE OF LARGE LANGUAGE MODELS (LLMS)

During the writing process, we used LLMs to identify grammatical errors in the article and polish
some sentences.
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1150 Figure 6: Sensitivity to local epochs on CIFAR-10 (left) and CIFAR-100 (right). FedPAC shows
1151 consistent robustness and efficiency across all settings.
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Figure 8: Visualization of the representation space learned by the global model of different methods.
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