
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

FINEDITS : PRECISE IMAGE EDITING WITH INFERRED
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(a) A full edit sequence on a sample from our proposed EditFFHQ dataset using our editing method: dark hair,
add earings, remove glasses, add a hat, smile.

Figure 1: Edit sequence demonstrations from our proposed EditFFHQ dataset

ABSTRACT

In image editing with diffusion models, it is a difficult challenge to achieve a bal-
ance between edit fidelity and preservation of the content which is unrelated to the
editing objective. Training-free methods often suffer from imperfect inversion that
degrades reconstruction quality, while training-based approaches require substan-
tial computational resources and carefully curated datasets. We present FINEd-
its, a method that addresses these limitations through two key contributions: (1)
we exploit cross-attention maps to define a mask which explicitly preserves non-
edited regions, and (2) we use lightweight fine-tuning to improve inversion qual-
ity without semantic drift. Our masking approach leverages transformer attention
mechanisms to automatically identify editing regions using a parameter-free K-
means clustering method, eliminating the need for manual hyperparameter tuning.
To handle the inversion quality degradation at early timesteps required for large
edits, we introduce a light fine-tuning strategy that balances reconstruction fidelity
with semantic preservation. Furthermore, we introduce EditFFHQ, a new bench-
mark dataset of 2000 face images with sequential editing instructions, enabling
quantitative evaluation of identity preservation and edit quality. Extensive exper-
iments demonstrate that FINEdits achieves superior identity preservation while
maintaining competitive edit fidelity and image quality. Our method provides an
effective solution for precise image editing that preserves visual consistency with-
out requiring extensive retraining or manual parameter adjustment.

1 INTRODUCTION

Image synthesis from text prompts has taken incredible strides forward in recent years, with ever-
increasing quality and high-level semantic control. The most recent generative models are based on
diffusion (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2021b) and flow-matching meth-
ods (Liu et al., 2022; Lipman et al., 2023), using transformer-based techniques to further improve
quality (Peebles & Xie, 2023; Esser et al., 2024; Labs, 2024). Diffusion-type generative models
rely on a forward process which progressively adds noise to an image, and a learned reverse pro-
cess which removes it. Thus, starting from pure random noise, it is possible to synthesize a random
image. Text prompts are added as conditions to the generation.

These models were subsequently repurposed with great success for image editing. One such ap-
proach is a technique called image inversion (Song et al., 2021b;a). This consists in carrying out the
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forward process to a certain degree of noise (also referred to as noise strength), and then proceeding
with the reverse process, but then changing the condition, to achieve the final editing task. Intu-
itively, the noise strength must be chosen according to the amplitude of the edit: larger edits require
greater strength. Unfortunately, this can have the undesired effect of removing structures/content
which we do not wish to modify. Thus, there is a fundamental tradeoff between editing, which may
require strong noise, and fidelity to the original image (also referred to as “reconstruction”), which
on the contrary requires less strong noise. We refer to this tradeoff as the editability/reconstruction
tradeoff, and addressing this issue is at the heart of our proposed method.

In this paper, we propose an inversion-based editing method that relies on fine-tuning and masking
based on attention maps. Fine-tuning enables better fidelity (reconstruction) to the source image, and
masking allows localized editing, ensuring better preservation of the essential elements of the origi-
nal image. The FINEdits method is tested here on face editing. To quantitatively evaluate FINEdits
on a significant dataset, we propose a labeled dataset EditFFHQ. FINEdits compares favorably to
state-of-the-art methods; in particular, it demonstrates better identity preservation capability than
other methods such as Kontext Batifol et al. (2025) while ensuring high editing success rates.

2 RELATED WORK

Research on image editing with diffusion and flow matching models has developed along two com-
plementary directions. Training-free methods achieve editing by manipulating the generation dy-
namics of pre-trained models, requiring no additional training. On the other hand, training-based
methods expand the model’s capabilities by optimizing new parameters, either through fine-tuning
or the introduction of adapter networks.

Training-Free Methods mostly rely on perturbing the source image via a forward noising process
to project it to a more editable state, and then applying a reverse denoising process to guide the
image towards a target edit. SDEdit Meng et al. (2022) was the first to demonstrate this idea to
produce edits where coarse sketches were transformed into realistic samples. However, large edits
require sending the source image to strong noise levels to be faithfuly applied, which significantly
diminishes the fidelity to the input. A major step forward came with the introduction of determin-
istic solvers, such as in (Song et al., 2021b) and DDIM (Song et al., 2021a). Beyond accelerating
sampling, these solvers allow for image inversion, that is, mapping the image back to its latent rep-
resentation by reversing the denoising process. When the image is well aligned with the model
distribution, inversion yields a likely generation trajectory that can be reused for editing, and this
principle has since become the foundation of many training-free approaches. Building on this, sev-
eral work refine inversion for editing. DiffEdit (Couairon et al., 2022) combines automatic mask
generation with DDIM inversion, ensuring perfect reconstruction in unedited regions. Other meth-
ods exploit reference cross-attention maps to better control the layout during editing : (Parmar et al.,
2023) aligns attention maps through gradient steps, while Prompt-to-Prompt (Hertz et al., 2022)
directly substitutes maps from the reference prompt. Null-Text Inversion (Mokady et al., 2023) ex-
tends these techniques to real images by optimizing null embeddings during DDIM inversion. More
recent approaches further improve fidelity: DDPM inversion (Huberman-Spiegelglas et al., 2024)
achieves exact reconstruction by storing noise maps, while LEdits++ (Brack et al., 2024) restricts
edits using masks derived from cross-attention. RFSolver (Wang et al., 2024a) increases inversion
accuracy by employing higher-order ODE solvers, albeit at higher computational cost. Despite
their effectiveness, training-free methods often require careful hyperparameter tuning and remain
sensitive to inversion quality, which can limit their robustness and reliability in practice. FINEd-
its addresses the issue of inversion quality with a light single-image fine-tuning, achieving a better
balance between editability and preservation of the original image, while retaining a relatively low
hyperparameter count.

Training-Based Methods take a different approach by directly learning the parameters of the model
dedicated to image editing, which generally translate to better editing performance. ICEdit (Zhang
et al., 2025) leverages the inherent capability of modern text-to-image DiTs (Esser et al., 2024; Labs,
2024) to generate coherent panels and further improves the editing performance by learning LoRA
Hu et al. (2022) parameters to better follow editing instructions. Another research direction fo-
cuses on instruction-based image editing. InstructPix2Pix (Brooks et al., 2023), EmuEdit (Sheynin
et al., 2024), and UltraEdit (Zhao et al., 2024) curate large datasets of source images, target im-
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ages, and edit instructions, allowing diffusion models to incorporate editing prompts directly during
training. Flux-Kontext (Batifol et al., 2025) extends this strategy with a rectified flow transformer
and concatenates text tokens from the instruction prompt with image tokens from the source im-
age, thus allowing mutual interaction during the joint-attention operation. Finally, some methods
adapt the model at edit time to better align with a specific source image. Unitune (Valevski et al.,
2023) fine-tunes the noise predictor on the source image and accompanying text description, and
then applies SDEdit for editing. Imagic (Kawar et al., 2023) optimizes both the prompt embed-
ding and the model weights, enabling smooth interpolation between the source and target prompts.
Training-based methods often achieve stronger semantic control and sometimes higher edit fidelity
than training-free methods, but require additional training, heavier computation and rely on efficient
data collection or carefully designed strategies to construct pairs of source images, edited images,
and editing instructions, which further limits their scalability. Our method overcomes such burdens
by fine-tuning on a single image, ensuring a well-integrated edit.

3 METHOD

3.1 BACKGROUND

Flow matching models. Modern text-to-image flow matching models generate samples from a data
distribution p0 by iteratively denoising a Gaussian noise sample zt. This process is described by the
probability flow ODE:

dzt
dt

= v(zt, t) (1)

where the right-hand term, called the velocity, can be learned via the conditional flow matching
objective:

LCFM = Et,z0,ϵ∥vθ(zt, t)− (α̇tz0 + σ̇tϵ)∥22 (2)

where vθ denotes the learned velocity, ϵ ∼ N (0, Id), and zt = αtz0+σtϵ is an interpolation between
ϵ and z0. For the linear interpolant αt = 1 − t and σt = t, which is the most commonly used, the
target velocity simplifies to ϵ − z0. The aformentioned processes are carried out in the latent space
of a VAE with encoder E and decoder D, such that for a given image I , z0 = E(I) and I = D(z0).
Additionaly, the velocity prediction vθ(zt, t) can be influenced by supplementary conditions such as
class information or text, which we denote as c.

Inversion. A common strategy for image editing with text-conditioned flow matching models relies
on inversion. In this setting, one can solve equation 1 forward in time, starting from t = 0, with the
source latent zs0 and the source description cs, up to a timestep ts, referred to as the strength. Then,
editing can be achieved by solving equation 1 again, in reverse time, starting from zts and using the
target textual conditioning ct to obtain the edited latent zt0.

Identity preservation. For image editing on human subjects, preserving the identity is a crucial
success factor. We propose to quantify this notion by leveraging embeddings produced by Arcface
Deng et al. (2019), an identity classification model, which we denote as A. Identity embeddings
for an image I are obtained by removing the classification MLP at the end of the model and taking
the output of A(I). The proximity of two identity embeddings can be measured by computing
their cosine similarity Thus, for a source image Is and an edited image It we define the Identity
Preservation (IP) metric as:

IP = sim(A(Is),A(It)) (3)

3.2 LIGHT FINE-TUNING FOR IMPROVED INVERSION

Editing large regions using inversion-based methods requires integrating equation 1 up to a large
ts. As previously described, this poses the problem of error accumulation when using numerical
ODE solvers for the inversion. If the inversion is imperfect, crucial identity information is lost and
cannot be recovered during reconstruction. We argue that part of the error induced in the inversion
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Figure 2: Impact of fine-tuning on reconstruction and editing. Inversion is applied on the input with
maximum strength, using the conditioning source prompt: ”A blonde woman, smiling”. Top: Re-
construction using the same prompt.Bottom : Editing with the prompt”A blonde woman, smiling,
wearing a hat”. Fine-tuning greatly improves identity preservation, without harming editing perfor-
mance.

stems from the fact that the image to edit is not a sample generated by the model and the seman-
tic alignment between the inversion prompt and the image is suboptimal. Our method begins with
single-image fine-tuning on the user-supplied image and prompt. This procedure adjusts the model
such that the provided image becomes a more probable sample under the conditioning prompt. Tech-
nically, this amounts to applying the usual flow-matching objective (Eq. 2) to just one image–prompt
pair.

Figure 2 demonstrates the impact of fine-tuning prior to inversion and reconstruction. The example
shows both reconstruction and editing results for an image inverted with maximal strength (ts = 1),
as the number of fine-tuning steps increases. We observe a clear trend: additional training steps
consistently enhance identity preservation, which is evident both qualitatively and through the Iden-
tity Preservation metric. Importantly, this adaptation remains lightweight and does not compromise
semantic accuracy, as illustrated by the correct placement of the hat in the edited image even after
N = 1000 steps.

3.3 LOCALIZED EDITING WITH INFERRED MASKS

While fine-tuning substantially improves inversion and yields a sharp increase in editing perfor-
mance, it remains imperfect and introduces residual reconstruction errors. High-frequency details
such as skin texture are often lost, and slight geometric variations can still appear, leading to sub-
optimal identity preservation. For instance, at N=1000 in the bottom row of Figure 2, the recon-
structed face closely resembles the input, yet the skin tone is marginally lighter and the person on
the left is missing. Comparable effects can be observed in Figure 3(a).

To address these limitations, our approach incorporates localized editing, which explicitly preserves
regions of the image that should remain unchanged. Deciding which areas to protect and which to
modify is a non-trivial challenge, particularly when relying only on textual prompts. To overcome
this, we exploit internal signals from the model itself. FINEdits leverages the attention maps of
the generative model to construct the mask M . Prior work has shown that the intermediate layers
of transformer blocks capture rich semantic information (Tumanyan et al., 2023; Luo et al., 2023;
Epstein et al., 2023; Helbling et al., 2025), which can be repurposed to guide image editing (Hertz
et al., 2022; Parmar et al., 2023; Epstein et al., 2023; Brack et al., 2024).
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Input (a) wo/ Masking (b) wo/ Max pooling (c) w/ Max pooling

Figure 3: Impact of masking on edit quality. Bottom : (a) Baseline inversion with fine-tuning 3.2
allows for a faithful edit but loses details in unedited regions, such as skin grain and the person in
the background. (b) Baseline masking preserves unedited regions but slightly undershoots the area
to be edited. (c) Our masking component yields faithful edits while preserving unedited regions.
Top corresponding masks: (a) No mask (b) Mask binarized with K-means (c) Mask binarized with
K-means, on top of which maxpooling and gaussian blur are applied.

The mask is derived from one of the transformer blocks cross-attention maps linking the subset of
edit-related text tokens to the image tokens. Since not all transformer layers provide equally mean-
ingful attention patterns, we empirically find that layers 8–12 of the Stable Diffusion 3 DiT contain
the most useful semantic information, and we therefore select the 10th layer for mask construction.
Let cq denote the subset of text tokens corresponding to the concept to be modified. To this end,
we compute the attention weights Wcq = softmax(QiKt[c

q]), where Kt[c
q] denotes the keys re-

stricted to the indices of cq . The resulting tensor Wcq has shape N × Si × |cq|, with N the number
of attention heads, Si the sequence length of image tokens, and |cq| the number of selected concept
tokens. These attention maps highlight the spatial regions most associated with the edit concept—
for example, in Figure 3, cq corresponds to the tokens of the word “beard”. We then average the
cross-attention tensor over the heads, yielding a tensor of size Si × St. We then restrict this tensor
to the columns corresponding to the concept tokens cq , and average across them. This produces a
vector of length Si, which encodes the average spatial attention associated with the edit concept.
Reshaping this vector into a

√
Si ×

√
Si grid yields a low-resolution attention map that highlights

the regions of the image most related to the target concept. To binarize this map, we apply k-means
clustering with two centroids, reflecting the binary nature of the editing mask. An illustration of the
mask computation process is shown in Figure 4.

Average 
attention heads Average over

Reshape +
binarize

Figure 4: Mask computation

Recomputing the mask at every generation step proves ineffective, as the signal tends to vanish
toward the end of the backward process. Instead, we compute it once at a specific step tM , chosen
such that tM < ts, ensuring that the object to be edited is not fully visible at the time of mask
estimation. For concept removal tasks, this condition is naturally satisfied since the mask can be
obtained during inversion. For concept addition, however, we proceed differently: the backward
process is first run from ts down to tM without masking, the mask is then computed at tM , and
finally the process is backtracked to ts before resuming the actual editing. Formally, the final binary
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mask is denoted M ∈ {0, 1}
√
Si×

√
Si , where Mu,v = 1 indicates that the spatial position (u, v) is

associated with the concept to be edited, and Mu,v = 0 otherwise.

Couairon et al. (2022) noticed that it is beneficial to have a mask that overshoots the area to be edited.
We provide such property to FINEdits by applying a max pooling operation to make it bigger. The
pasting operation can sometimes leave artifacts in the final image, where the limit of the mask can
be spotted. We counteract this by smoothing the mask, using a Gaussian blur operation, to make the
edited and preserved parts merge more smoothly.

To summarize, let us consider the following reference inversion trajectory under vθ and cs :
{zref0 , zreft1 , . . . , zrefts }. Assuming we have a binary mask M that separates areas that should be
edited from areas that must remain untouched, we propose to follow Couairon et al. (2022) and
paste reference parts on the current ODE solver iterate z′t−1: zt−1 = M ∗ z′t−1 − (1−M) ∗ zreft−1. A
pseudocode for the FINEdits method can be seen in Algorithm 1.

Algorithm 1: FINEdits algorithm
Input: vθ, zs0, cs, ct, ts, {σt}t
Output: zt0
vθ = FINETUNE(vθ, z

s
0, c

s)
zt = zs0
zref0 = zs0
for t = 0, . . . , ts do

zt+1 = (σt+1 − σt)vθ(zt, t, c
s)

zreft+1 = zt+1

end
M = GETMASK({zreft }t, cs, ct)
for t = ts, . . . , t1 do

z′t−1 = (σt−1 − σt)vθ(zt, t, c
t)

zt−1 = M ∗ z′t−1 + (1−M) ∗ zreft−1

end
zt0 = zt
return zt0

4 EXPERIMENTS

In this section, we present a comprehensive evaluation of our proposed framework. We begin by
introducing EditFFHQ, a benchmark specifically designed to measure both fidelity to the original
image and editability across multiple facial attributes. We then apply our method on SD3 and pro-
vide a systematic comparison against recent state-of-the-art editing methods, including UltraEdit,
SDEdit, ICEdit, Kontext-dev, and RFSolver, considering both single-shot edits and sequences of
edits. For methods that contain hyper-parameters, including ours, we select them using a held-out
subset of EditFFHQ. Finally, we report an ablation study to quantify the contribution of each com-
ponent of our approach. Additional hyperparameters and implementation details are provided in
Section A.1.

EditFFHQ. Most image-editing evaluations focus mainly on how well the edited image aligns with
the prompt and on overall image quality, typically measured with metrics such as CLIP score or FID
Heusel et al. (2017). While useful, these measures ignore fidelity to the original image, making it
difficult to assess whether edits preserve identity and non-edited content. To address this gap, we
introduce EditFFHQ, a benchmark of 2,000 images sampled from FFHQ and annotated for editabil-
ity across seven attributes: beard, hair, earrings, hair color, hat, glasses, and smile. Attribute labels
are obtained automatically using qwen-vl-27B Wang et al. (2024b) vision–language model. We
assign attributes by gender when relevant (e.g., beard and hair for men; hair color and earrings
for women), and apply the remaining attributes to all. To ensure validity, we exclude children, as
many edits do not apply to them. To evaluate editing performance, we report five metrics. Iden-
tity preservation is measured as described in Section 3.2. Edit success is assessed automatically
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(a) Editing success (b) Identity preservation (c) FID

(d) CMMD (e) LPIPS

Figure 5: Quantitative results on consecutive edits on EditFFHQ.

using the VLM as a judge. Finally, we evaluate the quality of successfully edited images with FID
and CMMD Jayasumana et al. (2024), the latter having been shown to correlate more strongly with
human preference.

Single-shot editing. Table 1 reports results on single-shot edits. To ensure a fair evaluation, we
compute IP, FID, CMMD, and LPIPS only over images where the edit was successfully applied.
This is important, as methods that fail to modify the target attribute often leave the image unchanged,
which would trivially yield high identity preservation and low distortion. By filtering to include valid
edits, both success rate and identity preservation reflect meaningful editing rather than artifacts of
failure. Under this setting, our method outperforms all competing approaches by a large margin in
terms of identity preservation, FID, CMMD, and LPIPS, while achieving a success rate nearly on
par with Kontext-dev, a method explicitly trained for editing. These results highlight the efficiency
of our framework, as it consistently surpasses larger Flux-based models despite being built on the
more lightweight SD3 architecture.

Method IP ↑ FID ↓ CMMD ↓ LPIPS ↓ Success rate
UltraEdit 0.46 36.47 0.60 0.24 0.85
SDEdit 0.13 70.73 1.40 0.50 0.57
ICEdit 0.75 35.81 0.42 0.19 0.63
Kontext-dev 0.72 31.23 0.77 0.20 0.96
RFSolver 0.27 50.22 0.97 0.31 0.88
FINEedits (ours) 0.77 29.24 0.20 0.11 0.94

Table 1: Quantitative comparison of different methods on a single edit on EditFFHQ.
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Input + Beard − Hair − Glasses + Hat − Smile

FINEdits

Kontext

ICEdit

RFSolver

UltraEdit

SDEdit

Figure 6: Qualitative comparison of different editing methods

Sequential editing. We further evaluate performance on sequences of five consecutive edits, always
applying attribute modifications in the same fixed order for each identity. To ensure consistency, if
an edit fails the sequence is terminated and we move on to the next identity. Results are shown in
Figure 5. We observe trends consistent with the single-shot setting: our method achieves the best
scores across all metrics, while maintaining a success rate nearly on par with the strongest competi-
tors. Figures 6 provide a qualitative comparison. Our approach better preserves the appearance of
the original identity throughout the sequence, whereas Kontext, although faithful in applying edits,
tends to generate unrealistic textures as edits accumulate—an effect also reflected in its higher FID
values.

Ablation study. To assess the contribution of each component, we perform an ablation study by
removing fine-tuning and masking individually. Results are reported in Table 2. Without fine-
tuning, identity preservation drops sharply (0.52 vs. 0.77), and CMMD increases, indicating weaker
semantic alignment. Removing masking leads to a strong degradation in FID and LPIPS, showing
that uncontrolled edits harm both realism and perceptual quality. When combined, fine-tuning and
masking yield consistent improvements across all metrics, confirming that both components are
essential to the performance of our method. The success rate decreases slightly when masking is
applied, which is a natural trade-off: by constraining the edits to the relevant regions, the model has
less freedom to satisfy the prompt but achieves far better fidelity and perceptual quality.

Method IP ↑ FID ↓ CMMD ↓ LPIPS ↓ Success rate
wo/ fine-tuning 0.52 32.15 0.88 0.15 0.99
wo/ masking 0.62 34.81 0.36 0.24 0.96
w/fine-tuning & masking 0.77 29.24 0.20 0.11 0.94

Table 2: Ablation on the fine-tuning and masking components of our method.

5 LIMITATIONS

The main limitation of our method is its reliance on per-image fine-tuning. Although lightweight,
this step introduces additional computational overhead which can be mitigated with parameter-
efficient techniques such as LoRAs. However, the relative cost diminishes as the edit sequence
grows, since subsequent edits are performed as efficiently as standard text-to-image generation. A
second limitation concerns the mask computation, which depends on hyperparameters chosen based
on average-case performance. While generally robust, this procedure may occasionally fail, leading
to imperfect localization of the edits.
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6 CONCLUSION

In this paper, we proposed FINEdits, an inversion-based method that combines lightweight fine-
tuning with automatic masking, and introduced EditFFHQ, a benchmark for measuring both fidelity
and editability with new metrics for identity preservation and edit success. Our method leverages
attention maps in order to establish a mask to indicate where the editing takes place. This avoids
unwanted edits in other regions, which is a common defect of editing models. FINEedits also
employs a fine-tuning step to ensure high quality editing results. Our experiments on single and
sequential edits show that the approach consistently outperforms recent baselines across all metrics.
Our algorithm yields high quality, consistent, editing results, while maintaining strong idenitity
preservation. We hope that the EditFFHQ benchmark will be a useful resource for providing rigorous
evaluations of editing algorithms.
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A APPENDIX

A.1 IMPLEMENTATION DETAILS

In this section we give additional information on the experimental settings for our EditFFHQ bench-
mark. For instruction-based methods, we constitute a pool of instructions and pick the appropriate
one depending on the current attribute to be edited in the sequence.

FINEdits. For our method, we fine-tune the Stable Diffusion 3 DiT for 1000 steps with a learning
rate of 5e-5. During early experiments we used Adam8bit optimizer so the fine-tuning could run on
a RTX4090, and we kept this optimizer for the benchmark. We used a batch size of 1, with gradients
accumulation of 10, logit-normal timestep sampling and linear interpolant path.

For kernel size of the max pooling operator as well as inversion strength, we find them empirically
on a small subset of EditFFHQ, yielding the following edit-wise hyperparameters.

Edit Type Kernel Size Inversion Strength
Hair color 15 0.92
Hat 15 0.90
Glasses 21 0.80
Hair 11 0.90
Beard 25 0.94
Earrings 11 0.86
Smiling 11 0.72

Table 3: Empirically found kernel size and inversion strength with respect to the edited attribute.

Kontext.

For Kontext we used the following instructions : ”Add hair to this man”, ”Make this man bald”,
”Add a hat to this person”, ”Remove the hat from this person”, ”Add earrings to this person”,
”Remove the earrings off this person”, ”Remove the beard”, ”This person now has a beard”, ”This
person is not smiling anymore”, ”Make this person smile”, ”Take the glasses off this person’s face”,
”This person now wears glasses”, ”This person now has light hair”, ”This person now has dark hair”
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ICEdit.

For ICEdit, we use the following instructions : ”the person now has light hair”, ”the person now has
dark hair”, ”the person does not wear a hat anymore”, ”the person now wears a hat”, ”the person
does not wear glasses anymore”, ”the person now wears glasses”, ”the person is now bald”, ”the
person now has hair”, ”the person does not have a beard anymore”, ”the person now has a beard”,
”the person is not wearing earrings anymore”, ”the person is now wearing earrings”, ”the person is
not smiling anymore”, ”the person is now smiling”

We do not employ the optional inference time scaling with the VLM judge.

UltraEdit.

For UltraEdit, we used exactly the same instructions as for Kontext.

RFSolver.

For RFSolver, we set features injection step to 0 for hair color, hat, hair, smiling and set it to 2
for glasses, beard and earrings. For the solver order we remain at 2 which is the default in the
implementation.

SDEdit.

For SDEdit we use Huggingface’s implementation with flux-dev.1. Regarding noising
strengths, we found the following set of hyperparameters :

Edit Type Noising Strength
Hair color 0.92
Hat 0.90
Glasses (add) 0.80
Hair 0.90
Beard (add) 0.94
Earrings (add) 0.86
Earrings (remove) 0.86
Smiling (add) 0.72

Table 4: Noising strength parameters for different edit operations.

12


	Introduction
	Related Work
	Method
	Background
	Light Fine-tuning for Improved Inversion
	Localized Editing with Inferred Masks

	Experiments
	Limitations
	Conclusion
	Appendix
	Implementation Details


