
FlashTP: Fused, Sparsity-Aware Tensor Product for
Machine Learning Interatomic Potentials

Seung Yul Lee 1 Hojoon Kim 1 Yutack Park 1 Dawoon Jeong 1 Seungwu Han 1 2 Yeonhong Park 1 Jae W. Lee 1

Abstract
Machine Learning Interatomic Potentials (MLIPs)
enable efficient molecular dynamics (MD) sim-
ulations with high accuracy. While equivariant
MLIPs achieve state-of-the-art accuracy, they face
significant computational bottlenecks centered
around their Tensor-Product layer, which account
for up to 75% of training time and cause substan-
tial memory overhead. We present FlashTP, a
highly optimized tensor-product library that ad-
dresses these inefficiencies through kernel fusion,
sparse computation, and path-aggregated execu-
tion. FlashTP achieves up to 41.6× and 60.8×
kernel speedups over e3nn and NVIDIA cuEquiv-
ariance, respectively. For SevenNet-l3i5, it deliv-
ers 4.2× and 3.5× speedup while reducing peak
memory usage by 6.3× and 6.2× for inference
and training, respectively. The code is available
at https://github.com/SNU-ARC/flashTP.

1. Introduction
Machine learning interatomic potential (MLIP) is a method
to predict energy and forces given atom positions and atomic
numbers with machine learning models. It is gaining signif-
icant attention as a means to accelerate molecular dynamics
(MD) simulations, which play a crucial role in computa-
tional materials science and chemistry. MLIP enables sim-
ulations to run orders of magnitude faster than quantum
mechanical methods while preserving their accuracy (Unke
et al., 2021; Deringer et al., 2021; Ko & Ong, 2023).

Among the various types of MLIPs, equivariant
MLIPs (Thomas et al., 2018; Batzner et al., 2022;
Batatia et al., 2022; Musaelian et al., 2023; Liao et al.,
2024) have demonstrated superior performance across
complex benchmarks that assess not only energy and

1Seoul National University 2Korea Institute for Advanced Study.
Correspondence to: Jae W. Lee <jaewlee@snu.ac.kr>, Yeonhong
Park <ilil96@snu.ac.kr>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

force errors but also real physical observables derived
from MD simulations (Fu et al., 2022; Kim et al., 2023).
Equivariant MLIPs typically follow the principles of graph
neural networks, taking as input a graph where atoms are
represented as nodes and their interactions as edges.

Equivariant MLIP models, however, suffer from slow in-
ference and training speeds, as well as high memory re-
quirements (Passaro & Zitnick, 2023; Luo & Krishnapriyan,
2024; Zhang et al., 2024; Xie et al., 2024). The key bottle-
neck of equivariant MLIP model lies in its Tensor-Product
layers, which serves as the core operation responsible for up-
dating the hidden states of nodes while incorporating inter-
actions with neighboring nodes. For instance, in SevenNet-
l3i5 (Park et al., 2024a;b), a state-of-the-art equivariant
MLIP model, the Tensor-Product layer accounts for 89% of
the inference time and 75% of training time. Moreover, the
Tensor-Product layer operates on edges rather than nodes,
leading to a colossal memory footprint since the number
of edges far exceeds the number of nodes (e.g., 37× more
edges on average for SevenNet on MPF dataset (Chen &
Ong, 2022)).

The inefficiency of the Tensor-Product layer stems from
three sources. First, the Tensor-Product layer consists
of multiple distinct kernels, and the intermediate data ex-
changed between these kernels generate substantial memory
traffic. Second, the output data produced by the Tensor-
Product layer is significantly large, leading to memory
spikes that limit the scalability of MD simulations. Lastly,
a large amount of ineffectual computation arises from the
high sparsity of the Clebsch-Gordan (CG) coefficient ma-
trix (Varshalovich et al., 1988), a constant matrix that en-
sures equivariance of updated node hidden states after their
tensor product with connected edges and neighbors.

To address the aforementioned issues, we present FlashTP, a
specialized Tensor-Product library designed to enhance the
efficiency of equivariant MLIP model by both accelerating
its speed and reducing memory requirements. FlashTP fully
fuses all operations within the Tensor-Product layer, signifi-
cantly reducing the memory traffic caused by intermediate
data. Additionally, the fully fused Tensor-Product layer
is again fused with its subsequent layer, eliminating mem-
ory spikes that would otherwise be caused by large output

1

FlashTP: Fused, Sparsity-Aware Tensor Product for Machine Learning Interatomic Potentials

❸ Double-Backward❷ Backward
Force ℒForce

❹ Backward
Inference

Training

❶ Forward
ℒEnergy Energy

Figure 1. Overview of MLIP model inference and training pipeline.
LForce and LEnergy indicates the loss of the predicted forces and
energy, respectively.

tensors. FlashTP also optimizes computation by skipping
ineffectual operations. Lastly, as an additional optimization,
FlashTP introduces path-aggregation, a technique that in-
creases input reuse within the Tensor-Product layer, further
accelerating the execution speed.

Through these optimizations, when applied to the state-
of-the-art SevenNet-l3i5 model on MPF dataset, FlashTP
achieves 4.2× faster inference and 3.5× faster training com-
pared to e3nn (Geiger & Smidt, 2022; Geiger et al., 2022),
a widely used framework for building equivariant MLIP
models, while reducing peak memory usage by 6.3× and
6.2× for inference and training, respectively.

Summary of Contributions.

• We identify memory traffic, memory consumption, and
ineffectual computations as the key bottlenecks in the
Tensor-Product layer.

• We develop novel optimization techniques including
kernel fusion, sparse computation skipping, and path-
aggregated execution to address these bottlenecks.

• We demonstrate that FlashTP accelerates both infer-
ence (4.2×) and training (3.5×) for a state-of-the-art
equivariant MLIP model.

• We show that FlashTP reduces peak memory usage by
6.3× for inference and 6.2× for training in equivariant
MLIP model.

2. Background
2.1. Machine Learning Interatomic Potential (MLIP)

MLIP Basics. Energy and atomic forces estimated using
interatomic potentials govern the reliability of molecular
dynamics (MD) simulations, which are widely used in ma-
terials science and chemistry. Recently, machine learning
interatomic potentials (MLIPs) have gained significant atten-
tion as a promising solution for these estimations. Trained
on high-accuracy data generated using quantum mechanical
methods, MLIP models predict energy, from which forces
can be derived by computing gradients, achieving both high
accuracy and computational efficiency. MLIP models have

proven to be effective in a wide range of applications, in-
cluding the discovery of new materials (Hwang et al., 2023;
Kruglov et al., 2023), simulations of semiconductor pro-
cesses (Hong et al., 2024), and modeling of solid-state elec-
trolytes (Wang et al., 2022; Lee et al., 2024) for safer and
more energy-efficient batteries.

MLIP Inference and Training Pipeline. Figure 1 illus-
trates the inference and training pipeline of MLIP models.
Inference of MLIP models consists of two phases. The first
phase involves the forward computation of the model to pre-
dict the total energy (1). The second phase follows, during
which the forces are computed by taking the gradient of the
energy (2). This corresponds to the backward computation
of the first phase. It is important to note that this backward
computation is performed with respect to the result of the
first phase (energy) and not its loss, making it distinct from
backpropagation used for parameter updates.

For training, two additional phases are performed to update
the model parameters. These correspond to the backward
computations of the two inference phases. First, a backward-
of-backward or double-backward computation is performed
with respect to the loss of the predicted forces (3). Fol-
lowing this, the backward computation is performed with
respect to the loss of the predicted energy (4). While phases
2 and 4 are computationally identical, they differ in their

inputs: phase 2 takes the energy as input, while phase 4
takes the loss of energy as input.

2.2. Equivariant MLIP

Equivariant MLIPs (Batzner et al., 2022; Batatia et al., 2022;
Musaelian et al., 2023; Passaro & Zitnick, 2023; Liao et al.,
2024; Park et al., 2024b) are a class of interatomic potentials
where both the predicted atomic forces and all intermediate
layer outputs transform consistently with rotations of the
molecular system (Thomas et al., 2018). These models
have proven to be more data-efficient (Cohen & Welling,
2016; Batzner et al., 2022) and excel at predicting physical
properties in MD simulations (Fu et al., 2022; Kim et al.,
2023). While non-equivariant models exist (Schütt et al.,
2017; Chen et al., 2019; Gasteiger et al., 2020; 2021), we
focus on equivariant MLIPs due to their superior accuracy
and widespread adoption in the field.

Model Architecture. Figure 2(a) illustrates the architec-
ture of NequIP (Batzner et al., 2022), which serves as the
foundation for typical equivariant MLIP models such as
MACE (Batatia et al., 2022) and SevenNet (Park et al.,
2024b). The model is based on the principles of graph
neural networks (GNNs), taking a graph as input where
nodes correspond to atoms and edges denote atomic interac-
tions (Gilmer et al., 2017; Reiser et al., 2022). These models
aim to generate latent representations for all nodes in the
graph, from which each node’s energy is predicted.

2

FlashTP: Fused, Sparsity-Aware Tensor Product for Machine Learning Interatomic Potentials

Interaction
Block i

Eq-Linear

Scatter

Tensor-Product

Reduce

Eq-Linear

Activation

[𝑛edges, 𝑛ch, 𝑑𝑖
′]

[𝑛edges, 𝑛ch, 𝑛path]

Energy

Atomic Graph

[𝑛edges, 𝑛ch, 𝑑𝑖]

𝐸𝑟 [𝑛edges, 𝑑𝑟]

Eq-MLP

[𝑛nodes, 𝑛ch, 𝑑𝑖
′]

❶ ❸

❷

❹

❺

❼

• 𝑛nodes/edges/ch/path: number of nodes/edges/channels/paths

• 𝑑𝑟/𝜃,𝜙 : dimension of radial/angular feature

• 𝑑𝑖: hidden dimension of i th layer
• 𝑑𝑖

′: intermediate dimension of i th layer (≫ 𝑑𝑖)

Embedding
Layer

MLP

𝐸𝜃,𝜙 [𝑛edges, 𝑑𝜃,𝜙]

𝑋𝑖[𝑛nodes, 𝑛ch, 𝑑𝑖]

+
Eq-Linear

Interaction
Block 2

Interaction
Block k

Interaction
Block 1

𝑋𝑖+1[𝑛nodes, 𝑛ch, 𝑑𝑖+1]

[𝑛nodes, 𝑛ch, 𝑑𝑖]

…
…

𝑘

𝑋2

𝑁 (= 𝑋1)

𝑋𝑖

𝐸
𝑟

 &
 𝐸

𝜃
,𝜙

𝑋𝑘

𝑋final

𝑖

𝑖

❻

𝑖

(b)(a)

Figure 2. Equivariant MLIP model architecture. Assumes all de-
grees of hidden feature to have same number of channel.

The model first passes through an embedding layer, where
each node and edge of the graph are given their own fea-
tures. Node features (N) are trainable parameters spe-
cific to each atomic number. Edge features consist of two
components: one encoding distance information (Er) and
the other capturing angular relationships (Eθ,ϕ) between
connected atoms. It then progresses through multiple in-
teraction blocks that perform message passing, a mecha-
nism for updating node representations by aggregating in-
formation from neighboring nodes (Gilmer et al., 2017).
The first block receives the node features as hidden states,
which are then iteratively updated across subsequent blocks
(N(= X1) → X2 → ... → Xk). Edge features are used in
all blocks. The final hidden states (Xfinal) are used to pre-
dict energy, from which forces can be derived by computing
its gradient.

Figure 2(b) illustrates the operations within each interaction
block. The core of the interaction block is Tensor-Product
layer (4), where the message-passing mechanism is exe-
cuted. Before reaching this layer, hidden states first pass
through the equivariant linear layer (1), which applies a
linear transformation while preserving the input-output di-
mension. The hidden states then undergo a scatter layer
which expands their first dimension from nnodes to nedges

(2). Meanwhile, Eθ,ϕ is directly fed into Tensor-Product
layer while Er passes through an MLP before reaching it
(3). After Tensor-Product layer, the expanded first dimen-

(a) Pseudocode of Tensor-Product Layer

Inputs and Output Feature Definitions
H : Hidden State [n_edges, n_ch, d_i]
E_a : Edge Angular Feature [n_edges, d_a]
E_r : Edge Radial Feature (after Eq-MLP)
[n_edges, n_ch, n_p]
Output : [n_edges, n_ch, d’_i]

Iterate over edges and channels
 1: for edge in range(n_edges):
 2: for channel in range(n_ch):
 3: p = 0 # Tracks valid path indices
 4:
 5: # Iterate over all possible paths
 6: for l_h, l_e, l_out in all_path:
 7: # Perform TensorProduct for valid path
 8: if test_valid(l_h, l_e, l_out, l_max):
 9: # Compute the CG matrix for a given path
10: CG_matrix = CG(l_h, l_e, l_out)
11:
12: # Extract relevant slices
13: h = H[edge, channel, l_h]
14: e = E_a[edge, l_e]
15: r = E_r[edge, channel, p]
16:
17: # Compute output using the TP function
18: out = TP (h, e, r, CG_matrix)
19: Output[edge, channel, p] = out
20: p+= 1

(b) A single tensor-product

𝑜𝑢𝑡

⊗
𝑒

𝑙h=1 𝑙e=2

ℎ
①OuterProduct

×

𝐶𝐺(𝑙h,𝑙e,𝑙out)

②Matrix Multiplication

∗

𝑟
③Vector Scaling

𝑙out=1

𝑧

𝑂𝑃

Figure 3. Overview of operation of Tensor-Product layer and a
single tensor-product.

sion of the hidden states is reduced in a reduce layer (5).
Note that after passing through Tensor-Product layer, the
hidden dimension increases from di to d

′

i, which is an order
of magnitude larger. The hidden states then pass through
another equivariant linear layer with a residual connection
(6), followed by an activation function (7), producing the
output of the block (or the input to the next block).

2.3. Tensor-Product Layer in Equivariant MLIP

Operations in Tensor-Product Layer. Figure 3(a)
presents the pseudo-code for the Tensor-Product layer. The
Tensor-Product layer performs a large number of tensor-
products. Note that we distinguish the tensor-product (low-
ercase), which is an operation within the Tensor-Product
layer, from the Tensor-Product layer itself (capitalized).
Specifically, the tensor-product is carried out for each edge
(nedges), channel (nch) and path (npath), resulting in a total
of nedges × nch × npath tensor-products (Line 1-6).

A path is defined by a combination of hidden, edge, and out-
put degrees (lh, le, lout). Each of these degrees can take any
value from 0 to lmax, meaning that the total possible number
of paths is (lmax + 1)3. lmax is a user-defined parameter that
controls the trade-off between model quality and computa-
tional cost. A larger lmax improves accuracy (Batzner et al.,
2022) but results in an exponential increase in computation
due to the growing number of paths (Passaro & Zitnick,
2023; Luo & Krishnapriyan, 2024).

Meanwhile, when physical constraints are considered, some
of (lmax + 1)3 path are considered to be invalid, as the
tensor-product of these paths always results in 0. Only paths

3

FlashTP: Fused, Sparsity-Aware Tensor Product for Machine Learning Interatomic Potentials

0% 20% 40% 60% 80% 100%
Training

Inference
75.2% 24.8%

88.9% 11.1%

TP Non-TP

Figure 4. Portion of Tensor-Product layer in inference and training
of SevenNet-l3i5.

satisfying Inequality 1 produce non-zero output (Line 8).

|lh − le| ≤ lout ≤ lh + le (1)

Computations in Single Path A tensor-product for a sin-
gle path, defined by a 3-tuple (lh, le, lout) (Line 18), is illus-
trated in Figure 3(b). It receives a subvector of hidden states
(h) and a subvector of angular features (e) as inputs, whose
sizes are (2× lh + 1) and (2× le + 1), respectively. It then
produces an output (out) whose size is (2× lout + 1).

The computations proceed as follows: First, an outer prod-
uct between h and e is performed, producing OP . This
tensor is then multiplied by CGlh,le,lout , a Clebsch-Gordan
(CG) coefficient matrix (Varshalovich et al., 1988) corre-
sponding to this path. CG coefficient matrix encapsulates
the interaction principles between node and edge tensors
preserving the equivariance of the output. Finally, the result
of the matrix multiplication, denoted as z, is scaled by r,
an element of the radial edge feature (Er) after Eq-MLP, to
produce the final output, out.

Overhead of Tensor-Product Layer. Due to its large
amount of computations, which scale exponentially with
lmax, the Tensor-Product layer represents the primary bottle-
neck in the equivariant MLIP model architecture. Figure 4
shows the breakdown of inference and training time for
SevenNet-l3i5 (Park et al., 2024b) on the MPF dataset (Chen
& Ong, 2022). The Tensor-Product layer accounts for ap-
proximately 89% and 75% of the inference and training
time, respectively.

3. Inefficiency in Tensor-Product Layer
In this section, we highlight three major sources of ineffi-
ciencies in the Tensor-Product layer: 1) memory traffic from
intermediate data, 2) peak memory spikes due to output data
and 3) sparsity in the CG coefficient matrix.

3.1. Memory Traffic from Intermediate Data

A substantial amount of intermediate data is generated
within the Tensor-Product layer. Figure 5 illustrates how
memory accesses occur during the forward, backward, and
double-backward phases for a single path of the tensor-

Table 1. Sparsity in CG coefficient matrix for varying lmax

lmax 1 2 3 4 5
Sparsity (%) 71 78 82 84 86

product, where the hidden degree dimension is 3, the edge
degree dimension is 5, and the number of edges is 1K. Each
phase consists of multiple separate kernels (3 for forward,
5 for backward, and 13 for double-backward), in which
intermediate data are generated. Among these, the primary
bottleneck is the outer product result generated during the
forward phase (1 → 2), along with the data associated
this outer product result in the backward phase (2 → 3 / 4)
and the double-backward phase (1 / 2 → 3 and 3 → 4).
These intermediate data, highlighted in red in Figure 5, scale
linearly with the product of the node degree dimension and
the edge degree dimension, making them significantly larger
than the input degrees.

Profiling Results. Figure 6 illustrates the compute and
DRAM bandwidth utilization during the forward, backward,
and double-backward phases of a Tensor-Product layer of
SevenNet-l3i5. The backward and double-backward phases
take a significantly longer time than the forward phase, and
they are largely memory-bound. This emphasizes the need
to reduce memory bandwidth bottlenecks by minimizing
intermediate data.

3.2. Peak Memory Spikes due to Output Data

In addition to the intermediate data, the output of the Tensor-
Product layer presents a significant challenge, this time in
terms of peak memory usage rather than memory bandwidth.
This issue stems from the substantial increase in hidden di-
mension after passing through the Tensor-Product layer,
growing from di to d

′

i. As mentioned earlier, d
′

i is usually
an order of magnitude larger than di, making the output size
nedges × nch × d′i considerably large. Although the subse-
quent reduce layer immediately consumes and compresses
this data, the full output must still be stored in memory
beforehand, leading to memory spikes. In fact, this alone
can increase peak memory consumption by a factor of four,
severely limiting the number of atoms that can be included
in simulations and posing a major scalability challenge.

3.3. Ineffectual Computation due to Sparsity

In the forward phase of the Tensor-Product layer, the outer
product of input degrees (hidden degree and edge degree) is
multiplied by the CG coefficient matrix (2 in Figure 5(a)).
Meanwhile, this matrix is highly sparse, with a sparsity rang-
ing from approximately 71% to 86%, as shown in Table 1.
This implies that the matrix multiplication between the outer
product result and the CG coefficient matrix involves a sig-
nificant amount of ineffectual computation. These inefficien-

4

FlashTP: Fused, Sparsity-Aware Tensor Product for Machine Learning Interatomic Potentials

×
BACKWARDBACKWARD

(b)Backward

⊗

DRAM

DRAM DRAM
3K 5K 4515K 1K 3K 3K 3K 1K 453K 30K 3K 3K 1K

8K 45 1K 60K

8K

1K 3K 1K 3K 3K 3K 15K 30K

(c)Double-Backward

(a)Forward

CG

⊗
1K 1K

× CG ∗

1K
1K

∗

1K
1K

× CGT

1K

×

1K 1K

∗

1K
1K

∗
1K

1K1K1K

1K ⊗

1K

1K

1K 1K

1K

1K

1K 1K

1K

×

1K

𝒙
1K

×

1K

𝒙
1K

1K

×

1K
1K

1K

×

1K
1K

30K
1K

8K

8K

✚

8K 8K

①
② ③

① ②

③

④
⑤

1K

① ② ③ ④ ⑤

8K

⑥

⑦

⑧

15K

15K 15K 15K 3K

3K 3K 30K

24K

Figure 5. Kernels for the three phases (forward, backward, double-backward) of a tensor-product. Arrows represent memory traffic,
with the numbers indicating the amount of traffic (in elements), calculated for the tensor-product with 1K edges. The Clebsch-Gordan
(CG) coefficient matrix are reused across all edges, contributing only 45 elements to the total memory traffic. Elements placed inside the
DRAM indicates the output of the tensor-product.

U
ti

liz
at

io
n

(%
)

Compute DRAM Bandwidth

Forward
Backward Double-Backward Backward

100

80

60

40

20

0

Figure 6. Compute and DRAM bandwidth utilization of a Tensor-
Product layer in SevenNet-l3i5 on an NVIDIA A100 GPU. Time
regions of forward, backward and double-backward are labeled.

cies propagate also to the backward and double-backward
phases, particularly in the backward and double-backward
kernels corresponding to this matrix multiplication (3 / 4
in Figure 5(b) and 4 in Figure 5(c)).

4. FlashTP
4.1. Overview

Addressing the inefficiencies identified in Section 3, we
introduce FlashTP, a tensor-product GPU library for equiv-
ariant MLIP. To mitigate the first two inefficiencies—
intermediate data and output data—FlashTP fully fuses all
kernels within the Tensor-Product layer, as well as its sub-
sequent layer, into a single kernel (Section 4.2). Addition-
ally, it exploits the sparsity of the CG coefficient matrix

to eliminate redundant computations, addressing the third
inefficiency (Section 4.3). Finally, FlashTP introduces a
technique to reduce memory traffic associated with tensor-
product input data, which emerges as a new bottleneck after
resolving the three aforementioned issues (Section 4.4).

4.2. Kernel Fusion

Kernel fusion is a widely used technique that combines mul-
tiple kernels into a single kernel to eliminate data movement
between them (Dao et al., 2022). FlashTP employs kernel
fusion for the Tensor-Product layer at two levels: intra-layer
kernel fusion and inter-layer kernel fusion. The former ad-
dresses overhead from intermediate data, while the latter
addresses overhead from output data.

Intra-Layer Kernel Fusion. A key strategy for fusing
kernels in the Tensor-Product layer—which involves execut-
ing many computation kernels—is to divide them into two
phases: those up to and including multiplication by the CG
coefficient matrix, and those that follow.

In the first phase, FlashTP fuses kernels by handling all
operations associated with each non-zero element in the CG
coefficient matrix in a single pass. For instance, for the
entry at index (1, 1, 0), it multiplies the h[1] by the e[1]
and then by that CG coefficient. Because each pass yields
only a partial sum, any operations depending on those CG
coefficient matrix products must wait until the partial sums
are fully accumulated. Once accumulation is complete, the
second phase of fused computations can proceed. This two-
phase approach eliminates redundant work and streamlines
fusion in the later phase.

5

FlashTP: Fused, Sparsity-Aware Tensor Product for Machine Learning Interatomic Potentials

Worker 0

Atomic
Reduce

Worker 1

…

Edge
(src, dst)

(0, 3)

(4, 3)

Worker 0

Reduce

Worker 1

Tensor
Product

…

(a) Sperate Reduce

Tensor
Product

(b) Fused Reduce

Edge
(src, dst)

(0, 3)

(4, 3)

Figure 7. Comparison of the output stage of the Tensor-Product
layer (a) before and (b) after inter-layer kernel fusion, assuming
two worker outputs share the same destination node (dst). In (a),
each output is stored in memory before reduction. In (b), Each
output is directly accumulated using an atomic reduction.

[i, j, k, val]

…

COO Format

(a) Sparse-formatted CG coefficient matrix

(b) Computation with sparse-formatted CG coefficient matrix

val
[0, 0, 2, 2]
[0, 1, 1, 2]
[2, 4, 2, 1]
[0, 4, 0, 0]
[1, 1, 0, 2]
[1, 2, 1, 3]
[2, 0, 0, 1]

[0, 0, 2, 2]
[0, 1, 1, 2]
[2, 4, 2, 1]
[0, 4, 0, 0]
[1, 1, 0, 2]
[1, 2, 1, 3]
[2, 0, 0, 1]…

[i, j, k, val]

Ex
ec

u
ti

o
n

Unique CG
Value Array

CG ②①
𝑘

𝑗𝑖

𝑒ℎ 𝑢_𝑐𝑔

𝑢_𝑐𝑔

𝑧

𝑧 0 += ℎ 2 ⋅ 𝑒 0 ⋅ 𝑢_𝑐𝑔[1]

Figure 8. Implementation of sparse tensor-product in FlashTP.

Inter-Layer Kernel Fusion. Figure 7 illustrates how the
Tensor-Product layer is fused with subsequent layer, the re-
duce layer. The reduce layer accumulates tensor-product re-
sults for edges that share the same destination nodes. Since
tensor-products for different edges are likely to be executed
by different workers on GPUs (e.g., thread blocks in CUDA),
synchronization issues may arise during fusion when mul-
tiple edges map to the same destination node. To address
this, FlashTP employs atomic add operations in such cases
to ensure correct reduction.

4.3. Applying Sparsity in Tensor-Product

In order to exploit the sparsity of CG coefficient matrix,
FlashTP stores CG coefficient matrix in sparse data format.
Figure 8(a) shows sparse data format used in FlashTP. The
coordinate format (COO) is employed, where each nonzero
value is represented as a 4-tuple: three indices correspond-
ing to each dimension (i, j, k) and the index of non-zero
value (val). To further enhance storage efficiency, FlashTP
exploits the fact that the CG coefficient matrix contains
many duplicated values. Specifically, FlashTP creates an

Redundant Input Load Maximize Reuse
(a) Without Path-Aggregation (b) With Path-Aggregation

Edge

Output

HiddenHidden Edge

Output

Figure 9. Visualization of the effect of path-aggregation.

array of unique CG coefficient values (u cg) and stores only
the index of each value within this array in the val field of
the tuple instead of the original value. This index can be
represented with fewer bits (e.g., 8 bits) rather than storing
the original 32-bit value. When performing computations
with this sparse-formatted CG coefficient matrix, FlashTP
iteratively processes each tuple one by one, as illustrated in
Figure 8(b).

4.4. Path-Aggregation

FlashTP introduces path-aggregation, a technique designed
to mitigate the new bottleneck—input load traffic in tensor
products—that arises after the integration of kernel fusion
and sparse computation. By grouping tensor-product paths
that share the same input and executing them within a single
kernel, this method reduces memory traffic.

Figure 9 illustrates the path-aggregation by visualizing con-
nection between inputs and outputs involved in each path.
Without path-aggregation, multiple paths may redundantly
read the same input data (Figure 9(a)). For example, the
degree-1 subvector of hidden states is read five times, and
the degree-1 subvector of edge features is read three times.
On the other hand, with path-aggregation, hidden states and
edge features are read from memory only once, reducing
memory traffic by factors of five and three, respectively, in
this example (Figure 9(b)). In FlashTP, paths are grouped
by the hidden subvector they use, as shown in Figure 9(b).

5. Implementation
Programming Interface. FlashTP provides programming
interface that is easily compatible with e3nn (Geiger &
Smidt, 2022; Geiger et al., 2022), a PyTorch-based frame-
work for equivariant operations which is widely used for
building equivariant MLIP models. Specifically, the inter-
face of FlashTP well aligns with the implementation of Ten-
sorProduct class in e3nn as can be seen in Figure 10. This
allows programmers to integrate FlashTP with a minimal

6

FlashTP: Fused, Sparsity-Aware Tensor Product for Machine Learning Interatomic Potentials

Initialize
tp = e3nn.o3.TensorProduct(
i_in1, i_in2, i_out, inst_tuple)

Initialize
flashtp = flashTP_e3nn.uvu_TP(
i_in1, i_in2, i_out, inst_tuple)

e3nn FlashTP

Forward
1: x = input[edge_src]
2: y= tp(x, e, w)
3: output = reduce(y, edge_dst)

Forward
1: output = flashtp(input, e, w,
edge_src, edge_dst)

Figure 10. Code change necessary to integrate FlashTP into the
existing implementation based on the e3nn framework.

code change. In addition, FlashTP preserves the same ma-
trix storage ordering and model structure as e3nn, ensuring
consistency and ease of adoption.

Preprocessing. Before performing inference or training,
during model initialization, FlashTP requires preprocessing
for two purposes. First, it identifies paths to aggregate by
examining model configurations. Second, it constructs the
CG coefficient matrix in a sparse format.

GPU Parallelization Scheme. The tensor-product opera-
tion in FlashTP is parallelized across three dimensions: the
number of edges, the number of aggregated paths, and the
channel dimension associated with the node degree for each
path. For a single warp, FlashTP assigns tensor-product
computations with the same path but of different channel
and edge index.

This ensures that all threads access the same CG coeffi-
cient matrix metadata simultaneously allowing FlashTP to
fully leverage constant memory for storing the metadata for
sparse CG coefficient matrix. However, if multiple paths
execute on a single compute unit using different CG co-
efficient matrices, cache evictions can occur in constant
memory, leading to long cache miss stalls. FlashTP pre-
vents this by assigns a single path to each thread block
and maximizes its size. FlashTP automatically selects the
block size by maximizing it while ensuring efficient shared
memory utilization, thereby improving GPU occupancy.

6. Evaluation
We evaluate FlashTP against two comparison base-
lines: e3nn (Geiger et al., 2022) and cuEquivariance
(cuEq) (Geiger et al., 2024). e3nn is a widely used frame-
work for building equivariant MLIP models, while cuEq is a
recently released CUDA library by NVIDIA that accelerates
equivariant operations, such as tensor products. We first
evaluate how much FlashTP accelerates each tensor-product
operations (Section 6.1) and present how it translates into
end-to-end speedup (Section 6.2). All evaluations, except
for multi-GPU training, are conducted on a single NVIDIA
A100 80GB GPU. Further details on the evaluation setup
are provided in Appendix A.

Forward Backward Double
Backward

0x1x

4x

8x

12x

16x

20x

Sp
ee

du
p(

vs
 e

3n
n)

lmax = 2

2.0x

2.3x

2.3x

Forward Backward Double
Backward

0x1x

5x

10x

15x

20x

25x

lmax = 3

2.5x

2.9x

2.6x

fused fused+sparsity fused + sparsity + path-aggregation

Figure 11. Ablation study result of three optimization techniques
introduced by FlashTP. The speedup over e3nn is reported.

6.1. Kernel Microbenchmark

Table 2 presents latency for three phase (forward, back-
ward, and double-backward) of tensor-product across vary-
ing lmax configuration. For both single and double preci-
sion, FlashTP significantly outperforms e3nn for all cases.
On average, for single precision, FlashTP achieves 6.75×,
14.37×, and 26.54× speedups for the forward, backward,
and double-backward phase, respectively. Similarly, for
double precision (fp64), it achieves 6.38×, 16.26×, and
25.98×, respectively. The speedup is particularly notable in
the backward and double-backward phases, as they benefit
the most from reduced memory traffic due to kernel fusion
and path aggregation, given their highly memory-bound
nature.

Compared to cuEq, FlashTP is also consistently faster in
all cases. While cuEq demonstrates impressive results (e.g.,
cases 1 and 2) and occasionally comes close to FlashTP
in performance, its efficiency diminishes as lmax increases,
limiting its applicability to high-precision MD simulations.
This is because cuEq’s efficiency is primarily attributed to its
effective use of shared memory, which becomes infeasible
for large lmax due to its substantial memory footprint.

Ablation Study. Figure 11 presents how kernel perfor-
mance improves with the introduction of each of the three
optimization techniques of FlashTP: 1) kernel fusion, 2)
sparse computation and 3) path-aggregation. For this evalu-
ation, we use the case of lmax = 2 and lmax = 3. Results
for other lmax values are provided in Appendix A.3. All
three optimization techniques significantly enhance kernel
performance.

Numerical Stability. Since kernel fusion can alter the
order of floating-point operations, it may produce slightly
different results compared to unfused kernels, especially

7

FlashTP: Fused, Sparsity-Aware Tensor Product for Machine Learning Interatomic Potentials

Table 2. Speedup comparison of different tensor-product configurations relative to e3nn baseline for both single (fp32) and double
precision (fp64), measured across varying lmax. Entries marked with * indicate speedup relative to cuEq due to e3nn encountering
out-of-memory (OOM) errors.

fp32

Forward Backward Double-Backward
Latency (ms) (Speedup over e3nn) Latency (ms) (Speedup over e3nn) Latency (ms) (Speedup over e3nn)

lmax e3nn cuEq FlashTP e3nn cuEq FlashTP e3nn cuEq FlashTP
1 2.05 0.61 (3.4x) 0.22 (9.4x) 6.18 0.60 (10.3x) 0.54 (11.4x) 9.13 0.92 (9.9x) 0.83 (11.0x)
2 6.20 1.24 (5.0x) 0.81 (7.7x) 32.26 2.28 (14.2x) 1.86 (17.3x) 63.86 4.28 (14.9x) 2.50 (25.6x)
3 18.40 16.06 (1.1x) 2.54 (7.3x) 85.00 91.68 (0.9x) 6.15 (13.8x) 254.13 204.07 (1.2x) 8.73 (29.1x)
4 45.58 122.20 (0.4x) 9.29 (4.9x) 268.48 835.63 (0.3x) 17.89 (15.0x) 1196.89 1822.67 (0.7x) 29.99 (39.9x)
5 99.01 121.02 (0.8x) 18.22 (5.4x) 779.14 858.95 (0.9x) 51.96 (15.0x) 3752.63 1835.29 (2.0x) 93.11 (40.3x)

fp64

Forward Backward Double-Backward
Latency (ms) (Speedup over e3nn) Latency (ms) (Speedup over e3nn) Latency (ms) (Speedup over e3nn)

lmax e3nn cuEq FlashTP e3nn cuEq FlashTP e3nn cuEq FlashTP
1 2.39 0.76 (3.1x) 0.44 (5.4x) 12.21 0.94 (13.0x) 0.74 (16.4x) 17.96 1.55 (11.6x) 1.19 (15.1x)
2 9.50 2.13 (4.5x) 1.44 (6.6x) 43.63 3.18 (13.7x) 2.86 (15.3x) 95.40 6.66 (14.3x) 4.36 (21.9x)
3 30.10 41.38 (0.7x) 4.00 (7.5x) 178.75 243.59 (0.7x) 10.81 (16.5x) 594.36 532.85 (1.1x) 17.97 (33.1x)
4 74.33 56.33 (1.3x) 11.93 (6.2x) 577.02 441.80 (1.3x) 34.04 (16.9x) 2566.10 1158.80 (2.2x) 61.72 (41.6x)
5 N/A 134.47 30.18 (4.5x)* N/A 1103.31 114.85 (9.6x)* N/A 2861.31 199.18 (14.4x)*

0K 5K 10K 15K 20K 25K
Number of Simulated Atoms

0

1

2

3

M
D

St
ep

 ti
m

e
(s

ec
)

e3nn
cuEq
FlashTP

Figure 12. Comparison of average MD simulation step time across
varying numbers of copper atoms, scaling up until simulations
encounter an Out-of-Memory (OOM) error.

for single-precision case. To quantify this potential error,
we assume the fp64 results from e3nn as the golden refer-
ence and compare the deviations of e3nn fp32 results and
FlashTP fp32 results from it. Across the forward, back-
ward, and double-backward phases, the average root mean
squared error for e3nn fp32 and FlashTP fp32 are compa-
rable (5.64×10−6 vs. 4.60×10−6), indicating that kernel
fusion does not appear to have an adverse impact on numer-
ical stability. Detailed results are in Appendix B.

6.2. End-to-end Speedup

Inference. Figure 12 presents the average time required
for a single step of an MD simulation, which consists of a
single model inference and an atomic position update, using
pre-trained SevenNet-l3i5 model. We evaluate FlashTP
alongside comparison baselines, increasing the number
of atoms until an out-of-memory error occurs. Notably,
FlashTP supports up to 28K atoms, 4.7× and 3.1× more
than the limitations of e3nn and cuEq, respectively. This im-
provement is primarily attributed to FlashTP’s kernel fusion,
which eliminates memory spikes caused by the output data

Table 3. Per-epoch training time of SevenNet models on a GPU
SevenNet-l2i5 SevenNet-l3i5 SevenNet-l4i5

Time
(min)

Peak Mem.
(GB)

Time
(min)

Peak Mem.
(GB)

Time
(min)

Peak Mem.
(GB)

e3nn 31 3.78 76 8.52 213 17.43
cuEq 23 2.56 97 5.23 358 9.97
FlashTP 20 0.89 22 1.37 32 2.07

of the Tensor-Product layer. In terms of simulation time,
FlashTP also outperforms the comparison baselines. For a
system with 4K atoms, FlashTP achieves a 4.2× speedup
over e3nn and a 6.2× speedup over cuEq, while using 6.3×
and 4.3× less memory compared to e3nn and cuEq, respec-
tively.

Single GPU Training. Table 3 presents the training time
per-epoch and peak memory usage for three variants of
SevenNet: l2i5, l3i5, and l4i5, each corresponding to lmax

values of 2, 3, and 4, respectively. FlashTP achieves
speedups of 1.6×, 3.5×, and 6.7× over e3nn for the l2i5,
l3i5, and l4i5 configurations, respectively. Notably, as the
proportion of computation spent on the Tensor-Product layer
increases with lmax, the benefits of FlashTP become more
pronounced. Compared to cuEq, FlashTP is 1.15×, 4.41×,
and 11.19× faster. Consistent with the observations in Sec-
tion 6.1, cuEq demonstrates impressive performance for
lmax = 2 but falls significantly behind for larger lmax val-
ues. In terms of peak memory usage, FlashTP requires
significantly less memory than both comparison baselines,
further emphasizing its efficiency in handling large systems.

Multi-GPU Training. Table 4 shows the per-epoch train-
ing time of the SevenNet-l3i5 model on a multi-GPU sys-
tem. Each GPU node consists of eight NVIDIA A100 80GB
GPUs, interconnected via NVLink and NVSwitch, with
inter-node communication handled over a 100GB/s network.

8

FlashTP: Fused, Sparsity-Aware Tensor Product for Machine Learning Interatomic Potentials

Table 4. Per-epoch training time of SevenNet-l3i5 on multi-GPUs
of Nodes (# of GPUs) 1 (8) 2 (16) 4 (32) 8 (64)
e3nn (sec) 735 399 218 123
FlashTP (sec) 164 87 49 30
Speedup 4.5× 4.6× 4.4× 4.1×

FlashTP demonstrates consistent speedup with an increas-
ing number of GPUs. The slight reduction in speedup at
higher GPU counts is likely due to inter-node communica-
tion overhead, which, in turn, reduces the effective region
of interest for FlashTP —i.e., the portion of the workload
that benefits from its acceleration.

7. Related Work
Acceleration of Clebsch-Gordan Tensor Products. Sev-
eral approaches have been proposed to accelerate the
Clebsch-Gordan Tensor Product (CGTP). One notable ap-
proach is the SO(2) Tensor-Product (Passaro & Zitnick,
2023), which reduces the number of non-zero elements in
the Clebsch-Gordan coefficient matrix by aligning the axis
via rotation, thereby lowering the computational complexity
of CGTP. The SO(2) method is orthogonal to FlashTP and
can be complementary, as FlashTP also benefits from a re-
duced number of non-zero elements in the Clebsch-Gordan
coefficient matrix. Another approach, Fused Tensor Product
(FTP) or FusedTensor (Unke & Maennel, 2024), acceler-
ates CGTP by fusing all irreducible representations (irreps)
into a single tensor that can be processed using standard
matrix multiplication. The output is then decomposed to
recover the original irreps. While this method reduces com-
putational cost compared to traditional CGTPs, it comes at
the expense of reduced expressivity (Xie et al., 2024).

Alternatives to Clebsch-Gordan Tensor Products. Al-
ternative approaches have explored using different sets
of bases beyond spherical harmonics to accelerate tensor-
product computations. The Gaunt Tensor Product
(GTP) (Luo & Krishnapriyan, 2024) changes the basis to the
frequency domain and uses Fast Fourier Transforms to speed
up tensor-product computations. While computationally ef-
ficient, this approach trades off some expressivity compared
to CGTP. Additionally, due to the symmetric nature of its
operations, GTP is unable to capture chiral features in 3D
structures (Xie et al., 2024). Another notable direction in-
volves Cartesian-based models, which use Irreducible Carte-
sian Tensors (ICT) instead of spherical harmonics. Recent
studies have demonstrated promising performance in both
accuracy and latency, particularly at lower ranks, when ap-
plied to MLIP tasks (Simeon & De Fabritiis, 2023; Zaverkin
et al., 2024). Nonetheless, CGTP-based models remain the
dominant paradigm for top-performing entries, as widely
used MLIP benchmarks such as OC20 (Chanussot et al.,

2021) and Matbench (Riebesell et al., 2024) continue to
rely on CGTP, underscoring the critical need for further
acceleration of CGTP.

8. Conclusion
In this paper, we presented FlashTP, a solution to two key in-
efficiencies in the Tensor-Product layer of equivariant MLIP
model models: the memory footprint from intermediate
data and the sparsity of the CG coefficient matrix. Through
kernel fusion, sparsity utilization, and path-aggregated ex-
ecution, FlashTP achieved significant speedups in both in-
ference and training of SevenNet-l3i5, a state-of-the-art
equivariant MLIP model.

Acknowledgments
This work was supported by a research grant from Sam-
sung Advanced Institute of Technology (SAIT) and the Na-
tional Research Foundation of Korea (NRF) grant funded by
the Korean Government (MSIT) (RS-2024-00340008). We
thank Saerom Choi and Yongdeok Kim from the Materials
AI Lab at Samsung AI Center for providing GPU resources
and supporting the multi-GPU evaluation of FlashTP on
their server infrastructure.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Batatia, I., Kovacs, D. P., Simm, G., Ortner, C., and Csányi,

G. MACE: Higher Order Equivariant Message Passing
Neural Networks for Fast and Accurate Force Fields. Ad-
vances in Neural Information Processing Systems, 35:
11423–11436, 2022.

Batzner, S., Musaelian, A., Sun, L., Geiger, M., Mailoa, J. P.,
Kornbluth, M., Molinari, N., Smidt, T. E., and Kozinsky,
B. E(3)-Equivariant Graph Neural Networks for Data-
Efficient and Accurate Interatomic Potentials. Nature
communications, 13(1):2453, 2022.

Chanussot, L., Das, A., Goyal, S., Lavril, T., Shuaibi, M.,
Riviere, M., Tran, K., Heras-Domingo, J., Ho, C., Hu,
W., et al. Open Catalyst 2020 (OC20) Dataset and Com-
munity Challenges. Acs Catalysis, 11(10):6059–6072,
2021.

Chen, C. and Ong, S. P. A universal graph deep learning

9

FlashTP: Fused, Sparsity-Aware Tensor Product for Machine Learning Interatomic Potentials

interatomic potential for the periodic table. Nature Com-
putational Science, 2(11):718–728, 2022.

Chen, C., Ye, W., Zuo, Y., Zheng, C., and Ong, S. P. Graph
Networks as a Universal Machine Learning Framework
for Molecules and Crystals. Chemistry of Materials, 31
(9):3564–3572, 2019.

Cohen, T. and Welling, M. Group Equivariant Convolutional
Networks. In Proceedings of the 33rd International Con-
ference on Machine Learning, volume 48, pp. 2990–2999.
PMLR, 2016.

Dao, T., Fu, D. Y., Ermon, S., Rudra, A., and Ré, C. FlashAt-
tention: Fast and memory-efficient exact attention with
IO-awareness. In Advances in Neural Information Pro-
cessing Systems (NeurIPS), 2022.

Deringer, V. L., Bartók, A. P., Bernstein, N., Wilkins, D. M.,
Ceriotti, M., and Csányi, G. Gaussian Process Regression
for Materials and Molecules. Chemical Reviews, 121(16):
10073–10141, 2021.

Fu, X., Wu, Z., Wang, W., Xie, T., Keten, S., Gómez-
Bombarelli, R., and Jaakkola, T. Forces are not Enough:
Benchmark and Critical Evaluation for Machine Learning
Force Fields with Molecular Simulations. Transactions
on Machine Learning Research, 2022.

Gasteiger, J., Groß, J., and Günnemann, S. Directional
Message Passing for Molecular Graphs. In The Eighth
International Conference on Learning Representations,
2020.

Gasteiger, J., Becker, F., and Günnemann, S. GemNet: Uni-
versal Directional Graph Neural Networks for Molecules.
Advances in Neural Information Processing Systems, 34:
6790–6802, 2021.

Geiger, M. and Smidt, T. e3nn: Euclidean Neural Networks.
arXiv preprint arXiv:2207.09453, 2022.

Geiger, M., Smidt, T., M., A., Miller, B. K., Boomsma,
W., Dice, B., Lapchevskyi, K., Weiler, M., Tyszkiewicz,
M., Batzner, S., Madisetti, D., Uhrin, M., Frellsen,
J., Jung, N., Sanborn, S., Wen, M., Rackers, J., Rød,
M., and Bailey, M. Euclidean neural networks: e3nn,
April 2022. URL https://doi.org/10.5281/
zenodo.6459381.

Geiger, M., Kucukbenli, E., Zandstein, B., and Tretina,
K. Accelerate Drug and Material Discovery with
New Math Library NVIDIA cuEquivariance, Novem-
ber 2024. URL https://github.com/NVIDIA/
cuEquivariance.

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and
Dahl, G. E. Neural Message Passing for Quantum Chem-
istry. In Proceedings of the 34th International Conference
on Machine Learning, volume 70, pp. 1263–1272. PMLR,
2017.

Hong, C., Oh, S., An, H., Kim, P.-h., Kim, Y., Ko, J.-H., Sue,
J., Oh, D., Park, S., and Han, S. Atomistic Simulation of
HF Etching Process of Amorphous Si3N4 Using Machine
Learning Potential. ACS Applied Materials & Interfaces,
16(36):48457–48469, 2024.

Hwang, S., Jung, J., Hong, C., Jeong, W., Kang, S., and
Han, S. Stability and Equilibrium Structures of Unknown
Ternary MetalOxides Explored by Machine-Learned Po-
tentials. Journal of the American Chemical Society, 145
(35):19378–19386, 2023.

Kim, G., Na, B., Kim, G., Cho, H., Kang, S., Lee, H. S.,
Choi, S., Kim, H., Lee, S., and Kim, Y. Benchmark of
Machine Learning Force Fields for Semiconductor Sim-
ulations: Datasets, Metrics, and Comparative Analysis.
Advances in Neural Information Processing Systems, 36,
2023.

Ko, T. W. and Ong, S. P. Recent advances and outstanding
challenges for machine learning interatomic potentials.
Nature Computational Science, 3(12):998–1000, 2023.

Kruglov, I. A., Yanilkin, A. V., Propad, Y., Mazitov, A. B.,
Rachitskii, P., and Oganov, A. R. Crystal structure predic-
tion at finite temperatures. npj Computational Materials,
9(1):197, 2023.

Larsen, A. H., Mortensen, J. J., Blomqvist, J., Castelli,
I. E., Christensen, R., Dułak, M., Friis, J., Groves, M. N.,
Hammer, B., Hargus, C., Hermes, E. D., Jennings, P. C.,
Jensen, P. B., Kermode, J., Kitchin, J. R., Kolsbjerg, E. L.,
Kubal, J., Kaasbjerg, K., Lysgaard, S., Maronsson, J. B.,
Maxson, T., Olsen, T., Pastewka, L., Peterson, A., Rost-
gaard, C., Schiøtz, J., Schütt, O., Strange, M., Thygesen,
K. S., Vegge, T., Vilhelmsen, L., Walter, M., Zeng, Z.,
and Jacobsen, K. W. The atomic simulation environ-
ment—a Python library for working with atoms. Journal
of Physics: Condensed Matter, 29(27):273002, 2017.

Lee, J., Ju, S., Hwang, S., You, J., Jung, J., Kang, Y., and
Han, S. Disorder-Dependent Li Diffusion in Li6PS5Cl
Investigated by Machine-Learning Potential. ACS Applied
Materials & Interfaces, 16(35):46442–46453, 2024.

Liao, Y.-L., Wood, B. M., Das, A., and Smidt, T.
EquiformerV2: Improved Equivariant Transformer for
Scaling to Higher-Degree Representations. In The Twelfth
International Conference on Learning Representations,
2024.

10

https://doi.org/10.5281/zenodo.6459381
https://doi.org/10.5281/zenodo.6459381
https://github.com/NVIDIA/cuEquivariance
https://github.com/NVIDIA/cuEquivariance

FlashTP: Fused, Sparsity-Aware Tensor Product for Machine Learning Interatomic Potentials

Luo, S., C. T. and Krishnapriyan, A. S. Enabling Efficient
Equivariant Operations in the Fourier Basis via Gaunt
Tensor Products. In The Twelfth International Conference
on Learning Representations, 2024.

Musaelian, A., Batzner, S., Johansson, A., Sun, L., Owen,
C. J., Kornbluth, M., and Kozinsky, B. Learning Local
Equivariant Representations for Large-Scale Atomistic
Dynamics. Nature Communications, 14(1):579, 2023.

Park, Y., Kim, J., Hwang, S., and Han, S. SevenNet -
a graph neural network interatomic potential package
supporting efficient multi-GPU parallel molecular dy-
namics simulations, December 2024a. URL https:
//github.com/MDIL-SNU/SevenNet.

Park, Y., Kim, J., Hwang, S., and Han, S. Scalable Parallel
Algorithm for Graph Neural Network Interatomic Poten-
tials in Molecular Dynamics Simulations. Journal of
Chemical Theory and Computation, 20(11):4857–4868,
2024b. doi: 10.1021/acs.jctc.4c00190.

Passaro, S. and Zitnick, C. L. Reducing SO(3) Convolutions
to SO(2) for Efficient Equivariant GNNs. In Proceed-
ings of the 40th International Conference on Machine
Learning, volume 202, pp. 27420–27438. PMLR, 2023.

Reiser, P., Neubert, M., Eberhard, A., Torresi, L., Zhou,
C., Shao, C., Metni, H., van Hoesel, C., Schopmans, H.,
Sommer, T., and Friederich, P. Graph neural networks
for materials science and chemistry. Communications
Materials, 3(1):93, 2022.

Riebesell, J., Goodall, R. E. A., Benner, P., Chiang, Y., Deng,
B., Ceder, G., Asta, M., Lee, A. A., Jain, A., and Persson,
K. A. Matbench Discovery – A framework to evaluate
machine learning crystal stability predictions, 2024. URL
https://arxiv.org/abs/2308.14920.

Schütt, K., Kindermans, P.-J., Sauceda Felix, H. E., Chmiela,
S., Tkatchenko, A., and Müller, K.-R. SchNet: A
continuous-filter convolutional neural network for model-
ing quantum interactions. Advances in Neural Informa-
tion Processing Systems, 30, 2017.

Simeon, G. and De Fabritiis, G. TensorNet: Cartesian Ten-
sor Representations for Efficient Learning of Molecular
Potentials. Advances in Neural Information Processing
Systems, 36:37334–37353, 2023.

Thomas, N., Smidt, T., Kearnes, S., Yang, L., Li, L.,
Kohlhoff, K., and Riley, P. Tensor field networks:
Rotation- and translation-equivariant neural networks for
3D point clouds. arXiv preprint arXiv:1802.08219, 2018.

Unke, O. T. and Maennel, H. E3x: E(3)-Equivariant Deep
Learning Made Easy. arXiv preprint arXiv:2401.07595,
2024.

Unke, O. T., Chmiela, S., Sauceda, H. E., Gastegger, M.,
Poltavsky, I., Schutt, K. T., Tkatchenko, A., and Muller,
K.-R. Machine Learning Force Fields. Chemical Reviews,
121(16):10142–10186, 2021.

Varshalovich, D. A., Moskalev, A. N., and Khersonskii,
V. K. Quantum Theory of Angular Momentum. World
Scientific, 1988.

Wang, J., Panchal, A. A., Gautam, G. S., and Canepa, P. The
resistive nature of decomposing interfaces of solid elec-
trolytes with alkali metal electrodes. Journal of Materials
Chemistry A, 10(37):19732–19742, 2022.

Xie, Y., Daigavane, A., Kotak, M., and Smidt, T. The Price
of Freedom: Exploring Tradeoffs between Expressivity
and Computational Efficiency in Equivariant Tensor Prod-
ucts. In ICML 2024 Workshop on Geometry-grounded
Representation Learning and Generative Modeling, 2024.

Zaverkin, V., Alesiani, F., Maruyama, T., Errica, F., Chris-
tiansen, H., Takamoto, M., Weber, N., and Niepert, M.
Higher-Rank Irreducible Cartesian Tensors for Equivari-
ant Message Passing. Advances in Neural Information
Processing Systems, 38, 2024.

Zhang, Y.-W., Sorkin, V., Aitken, Z. H., Politano, A., Behler,
J., Thompson, A., Ko, T. W., Ong, S. P., Chalykh, O.,
Korogod, D., et al. Roadmap for the development of
machine learning-based interatomic potentials. Modelling
and Simulation in Materials Science and Engineering,
2024.

11

https://github.com/MDIL-SNU/SevenNet
https://github.com/MDIL-SNU/SevenNet
https://arxiv.org/abs/2308.14920

FlashTP: Fused, Sparsity-Aware Tensor Product for Machine Learning Interatomic Potentials

A. Evaluation Details
We used pytorch 2.5.1+cu12.4, e3nn 0.5.4 (Geiger et al., 2022), cuEquivariance 0.2.0 (Geiger et al., 2024), Atomic
Simulation Environment (ASE) 3.24.0 (Larsen et al., 2017) for evaluation.

GPU kernel runtime and memory usage measurements are conducted using the PyTorch profiler, leveraging its capability
to track forward and backward connections for precise measurement of backward and double-backward operations. All
evaluations, except for multi-GPU training, are performed on an NVIDIA A100 GPU with 80GB of memory. For multi-GPU
training, GPU nodes that consist of eight NVIDIA A100 GPUs (80GB), interconnected via NVLink and NVSwitch, with
inter-node communication handled over a 100GB/s network was used.

A.1. Kernel Microbenchmark

We benchmark the Tensor-Product layer 4 from NequIP (Batzner et al., 2022) across different values of lmax, keeping the
channel of hidden feature fixed to 32 channels.

Our synthetic input graph has 512 nodes, each with 64 outgoing edges (32K edges in total). To generate connectivity, we
assign each node 64 distinct random destinations drawn uniformly from the other 511 nodes. This exact graph topology is
reused for all kernel implementations (e3nn, cuEq and FlashTP) to ensure fair comparison. All hidden, edge and weight
values are randomly generated.

Table 5. Tensor-Product configurations for kernel microbenchmark
lmax Hidden Edge Output

1 32x0e+32x0o+32x1e+32x1o 1x0e+1x1o 64x0o+64x0e+96x1o+96x1e

2 32x0e+32x0o+32x1e
+32x2e+32x1o+32x2o 1x0e+1x1o+1x2e

96x0o+96x0e+192x1o
+192x1e+192x2o+192x2e

3 32x0e+32x0o+32x1e+32x2e
+32x3e+32x1o+32x2o+32x3o 1x0e+1x1o+1x2e+1x3o

128x0o+128x0e+288x1o+288x1e
+352x2o+352x2e+320x3o+320x3e

4 32x0e+32x0o+32x1e+32x2e+32x3e
+32x4e+32x1o+32x2o+32x3o+32x4o 1x0e+1x1o+1x2e+1x3o+1x4e

160x0o+160x0e+384x1o+384x1e+512x2o
+512x2e+544x3o+544x3e+480x4o+480x4e

5 32x0e+32x0o+32x1e+32x2e+32x3e+32x4e
+32x5e+32x1o+32x2o+32x3o+32x4o+32x5o 1x0e+1x1o+1x2e+1x3o+1x4e+1x5o

192x0o+192x0e+480x1o+480x1e+672x2o+672x2e
+768x3o+768x3e+768x4o+768x4e+672x5o+672x5e

A.2. Channel Scaling

We repeated the kernel microbenchmark for lmax = 3 using hidden-channel dimensions of 64 and 128, reporting kernel
runtimes in milliseconds. Across all channel sizes, FlashTP shows consistent speedup.

Table 6. Kernel microbenchmark results for lmax = 3 across different channel sizes
Forward Backward Double-Backward

Channel Size 32 64 128 32 64 128 32 64 128
e3nn 18.4 34.25 66.8 85 163.96 324.73 254.13 503.28 1003.95
FlashTP 2.54 5.02 9.98 6.15 12.14 24.19 8.73 17.41 34.81
Speedup 7.2x 6.8x 6.7x 13.8x 13.5x 13.4x 29.1x 28.9x 28.8x

A.3. Ablation Study

Table 7 reports the ablation results on our kernel microbenchmark, showing the speedup over e3nn for each of the three
optimization strategies—kernel fusion (Fused), sparsity optimization (Sparse), and path aggregation (Path)—as well as their
combined effect (All).

Because the Clebsch–Gordan (CG) coefficient matrix for the non-sparse variants exceeds the capacity of constant memory,
we disabled constant-memory storage for all ablation configurations, including the Sparse variant, to ensure a fair comparison.
Consequently, the cumulative “All” configuration in the ablation study achieves a slightly lower speedup than the full
FlashTP implementation.

12

FlashTP: Fused, Sparsity-Aware Tensor Product for Machine Learning Interatomic Potentials

Table 7. Ablation results on the kernel microbenchmark

lmax

Forward Backward Double-Backward
e3nn Fused Path Sparse All e3nn Fused Path Sparse All e3nn Fused Path Sparse All

1 1× 3.46× 4.37× 4.46× 5.25× 1× 10.95× 15.85× 12.16× 18.41× 1× 9.70× 12.80× 10.87× 14.77×
2 1× 3.30× 4.16× 4.68× 6.60× 1× 5.03× 7.26× 6.63× 11.35× 1× 8.45× 11.85× 11.86× 19.13×
3 1× 2.67× 3.22× 4.79× 6.80× 1× 4.48× 6.32× 7.24× 13.01× 1× 9.79× 12.45× 15.46× 25.82×
4 1× 2.32× 2.47× 4.51× 6.02× 1× 3.97× 4.99× 7.41× 13.16× 1× 11.56× 14.58× 19.89× 30.73×

A.4. Roofline Analysis

We estimate the theoretical performance limits of FlashTP using a roofline analysis, based on the peak capabilities of the
A100 GPU (19.5 TFLOPS and 1.9 TB/s memory bandwidth). According to this analysis, the estimated latencies for the fp32
kernel microbenchmark with lmax = 3 are 0.92 ms for the forward pass, 1.78 ms for the backward pass, and 2.70 ms for the
double-backward pass. The gap between these theoretical bounds and our measured performance in Table 2 (Section 6.1)
indicates that FlashTP has room for further optimization.

A.5. End-to-end Inference

We evaluate end-to-end inference performance by integrating a pre-trained SevenNet-l3i5 model (Park et al., 2024a) into
the ASE framework to run molecular-dynamics (MD) simulations of copper atoms. To gauge memory demands, we also
determine the maximum number of atoms supportable, which correlates directly with peak memory usage. Each simulation
spans 500 timesteps, and our reported runtimes are averaged over the final 100 timesteps for stability.

In our experiments, the out-of-memory (OOM) failures we observed when using FlashTP originate not from the Tensor-
Product layer but from the default e3nn implementation of the Linear layer. This suggests that by optimizing the Linear
layer implementation, FlashTP could scale to even larger atomic systems, highlighting its robustness and scalability for
large-scale MD simulations.

A.6. End-to-end Training

The models SevenNet-l2i5 (which is SevenNet-0) (Park et al., 2024b), SevenNet-13i5, and SevenNet-14i5 are trained using
the same training configuration. The training was conducted using the MPF dataset (Chen & Ong, 2022), which comprises
168,921 samples, with each sample containing an average of 29 atoms. Training time is reported as the duration of a single
epoch, and peak-memory reduction ratios are computed per batch and then averaged across multiple batches. For multi-GPU
experiments, only SevenNet-l3i5 was used, maintaining a per-GPU batch size of 16 to match the single-GPU setup.

Table 8. Training configuration
Training Parameters Model Parameters
Dataset MPF Precision FP32

Batch Size 16 Cutoff 6
Optimizer Adam Cutoff Function XPLOR (5.5)

Learning Rate 0.001 Radial Basis Bessel (8 basis)
Loss Function Huber Loss Activation SiLU (e), tanh (o)

Scheduler Linear

Table 9. SevenNet-l2i5 Tensor-Product layer configuration
SevenNet-l2i5

Hidden Edge Output
Layer 1 128x0e 1x0e+1x1e+1x2e 128x0e+128x1e+128x2e
Layer 2 128x0e+64x1e+32x2e 1x0e+1x1e+1x2e 224x0e+384x1e+352x2e
Layer 3 128x0e+64x1e+32x2e 1x0e+1x1e+1x2e 224x0e+384x1e+352x2e
Layer 4 128x0e+64x1e+32x2e 1x0e+1x1e+1x2e 224x0e+384x1e+352x2e
Layer 5 128x0e+64x1e+32x2e 1x0e+1x1e+1x2e 224x0e

13

FlashTP: Fused, Sparsity-Aware Tensor Product for Machine Learning Interatomic Potentials

Table 10. SevenNet-l3i5 Tensor-Product layer configuration
SevenNet-l3i5

Hidden Edge Output
Layer 1 128x0e 1x0e+1x1e+1x2e+1x3e 128x0e+128x1e+128x2e+128x3e
Layer 2 128x0e+64x1e+32x2e+32x3e 1x0e+1x1e+1x2e+1x3e 256x0e+480x1e+544x2e+480x3e
Layer 3 128x0e+64x1e+32x2e+32x3e 1x0e+1x1e+1x2e+1x3e 256x0e+480x1e+544x2e+480x3e
Layer 4 128x0e+64x1e+32x2e+32x3e 1x0e+1x1e+1x2e+1x3e 256x0e+480x1e+544x2e+480x3e
Layer 5 128x0e+64x1e+32x2e+32x3e 1x0e+1x1e+1x2e+1x3e 256x0e

Table 11. SevenNet-l4i5 Tensor-Product layer configuration
SevenNet-l4i5

Hidden Edge Output
Layer 1 128x0e 1x0e+1x1e+1x2e+1x3e+1x4e 128x0e+128x1e+128x2e+128x3e+128x4e
Layer 2 128x0e+128x1e+128x2e+128x3e+128x4e 1x0e+1x1e+1x2e+1x3e+1x4e 288x0e+576x1e+704x2e+736x3e+640x4e
Layer 3 128x0e+128x1e+128x2e+128x3e+128x4e 1x0e+1x1e+1x2e+1x3e+1x4e 288x0e+576x1e+704x2e+736x3e+640x4e
Layer 4 128x0e+128x1e+128x2e+128x3e+128x4e 1x0e+1x1e+1x2e+1x3e+1x4e 288x0e+576x1e+704x2e+736x3e+640x4e
Layer 5 128x0e+128x1e+128x2e+128x3e+128x4e 1x0e+1x1e+1x2e+1x3e+1x4e 288x0e

B. Numerical Stability
We assessed the numerical stability of FlashTP against the default e3nn implementation as follows. First, we sampled FP32
tensors for the hidden features (h), edge features (e), and weights (r) from a uniform distribution over the interval (0,1). We
then computed the “reference” outputs by running e3nn in fp64 precision. Next, we re-computed the layer outputs using
both FlashTP and e3nn in fp32 precision. Finally, we calculated the root-mean-square error (RMSE) between each fp32
output (and its corresponding gradients) and the fp64 reference to quantify numerical stability.

Overall, results shown in Table 12 indicate that FlashTP offers improved or comparable accuracy in most cases, making it a
reliable alternative.

Table 12. RSME of e3nn, and FlashTP
Stage Tensor e3nn FlashTP

Forward out 9.9565E-07 9.9171E-07
Backward h grad 1.4393E-05 1.4393E-05
Backward e grad 7.2380E-06 5.4978E-06
Backward r grad 6.3440E-08 6.5808E-08

Double-Backward h grad 2.5270E-07 3.5300E-07
Double-Backward e grad 1.6240E-05 9.8454E-06
Double-Backward r grad 1.4850E-07 1.3050E-07
Double-Backward out grad 5.7579E-06 5.5367E-06

14

