Knowledge Tagging on Math Questions via LLLMs with
Flexible Sequential Demonstration Retriever

Anonymous ACL submission

Abstract

Knowledge tagging for questions plays a cru-
cial role in intelligent educational applications.
Traditionally, these annotations are always con-
ducted by pedagogical experts, as the task re-
quires deep insights into connecting question-
solving logic with corresponding knowledge
concepts. With the recent emergence of ad-
vanced text encoding algorithms, such as pre-
trained language models (PLMs), many re-
searchers have developed automatic knowledge
tagging systems based on deep semantic em-
beddings. In this paper, we explore automating
the task using Large Language Models (LLMs),
in response to the inability of prior encoding-
based methods to deal with the hard cases
which involve strong domain knowledge and
complicated concept definitions. By showing
the strong performance of zero- and few-shot
results over math questions knowledge tagging
tasks, we demonstrate LLMs’ great potential in
conquering the challenges faced by prior meth-
ods. Furthermore, by proposing a reinforce-
ment learning-based demonstration retriever,
we successfully exploit the great potential of
different-sized LLMs in achieving better per-
formance results while keeping the in-context
demonstration usage efficiency high'.

1 Introduction

Knowledge tagging aims to generate a precise
knowledge index to educational materials. It has
been recognized as an important factor of current
intelligent education systems in providing high-
quality educational content to educators and learn-
ers during the practice (Chen et al., 2014). For
example, with well-annotated education materials,
teachers can enjoy great conveniences in organiz-
ing coursing content through searching concept
keywords index (Sun et al., 2018). Among the tag-
ging objects, concept tagging over math questions

'Data and code is available in https://anonymous.
4open.science/r/KnowTS-0563

has attracted greatly attention because of the recent
successes of applying intelligent tutoring systems
(ITS) in mathematical education (Burns and Capps,
2013). Traditionally, the questions’ concept tags
are annotated by the pedagogical experts. However,
the rapid growth of the Internet has caused conven-
tional manual methods to be insufficient to meet
the demand for handling large volumes of online
question data or updating existing concept tags in
a timely fashion.

To solve the above issues, existing works (Sun
et al., 2018; Zhang et al., 2021) have tried to au-
tomate the tagging process with different natural
language processing (NLP) algorithms. For exam-
ple, Du et al. (2021) use text embedding techniques
to convert the knowledge definitions and question
stems into dense vectors, and then train machine
learning classifiers based on the embedding similar-
ities. However, such practice focuses only on com-
paring the explicit text semantic information but
dismisses the implicit relationship in question solu-
tions and knowledge concepts. It can cause unsatis-
factory performance when faced with complicated
knowledge descriptions and questions. One recent
study attempts to improve the tagging performance
by leveraging pre-trained language models (PLMs)
and fusing external information, such as solution
text and conceptual ontology, with original ques-
tion contents during the judging process (Huang
et al., 2023a). Although this new trial demonstrates
its effectiveness in solving the challenges faced
by prior embedding-based methods, it introduces
additional data requirements, e.g., complementary
solution text to questions and conceptual ontology
information between knowledge concepts, to the
knowledge tagging model, which restrict the wide
applications of the algorithm to questions with lim-
ited external resources.

In this work, we propose a novel knowledge
tagging framework KnowTS. It can leverage the
advanced mathematical and logical inference capa-

https://anonymous.4open.science/r/KnowTS-0563
https://anonymous.4open.science/r/KnowTS-0563

bilities (Achiam et al., 2023) of LLMs to enable
knowledge tagging with only knowledge definition
text. In addition, owing to the strong in-context
learning ability of LLMs, KnowTS has the poten-
tial to be swiftly applied with a few annotation
samples, setting it apart from all previous training-
based algorithms. This feature allows KnowTS to
be rapidly adapted for annotating works encom-
passing nearly all knowledge concepts and ques-
tions. Furthermore, due to the huge performance
gap among using different sets of demonstration
samples (Wang et al., 2023), we propose a novel re-
inforcement learning (RL) based demonstration re-
triever focusing on dynamically providing flexible
lengths of demonstration samples to every question
knowledge matching queries. To validate the effec-
tiveness of KnowTS, we experiment with an expert-
annotated knowledge concept question dataset col-
lected from a public K-12 education platform. Ex-
perimental results demonstrate that KnowTS can
achieve the best in-context learning performance
while using fewer demonstrations.

2 Related Work
2.1 Knowledge Concept Tagging

The major challenge of knowledge tagging tasks
is how to construct a meaningful link in between
the knowledge concepts and the problems, either
through the description of the problem themselves
or through solutions. The task formulation can
primarily be categorized into two directions: re-
trieval and matrix decomposition. The former re-
lies heavily on training a semantic representation.
Sun et al. (2018) employs simple backbone mod-
els such as long short-term memory (LSTM) and
some attention mechanisms to learn short-range
dependency embeddings, where the questions are
fed into LSTM layers and are ultimately connected
to cross-entropy functions that indicate whether or
not a tagging concept belongs to a given problem.
Liu et al. (2019a) devised an exercise-enhanced
recurrent neural network with Markov property
and Attention mechanism to extract rich knowl-
edge concepts information in the exercise’s content.
Similarly but with enriched data source such as text,
multi-modal data (Yin et al., 2019) as well as latex
formula combined data (Huang et al., 2021), seman-
tic representations learned with LSTM have been
improved to capture more implicit contexts. Huang
et al. (2020) fills knowledge graph information into
the embedding layers and achieves better mathe-

matical semantic understanding. To take advantage
of the robust transformers framework, Zemlyan-
skiy et al. (2021) pretrained a BERT model to learn
jointly predicting words and entities as movie tags
given the reviews of movies. Huang et al. (2023b)
proposes an improved pretrained bidirectional en-
coder representation from transformers (BERT) for
concept tagging with both questions and solutions.

2.2 In-context Learning Retriever

Few-shot in-context learning (ICL) is the ability
of large language models (LLMs) to perform a
new task when a few input-output examples or
demonstrations for the new task are given along-
side the actual task input (Brown et al., 2020). Im-
portantly, the model parameters do not have to be
fine-tuned towards the new task. However, the per-
formance of ICL varies significantly based on the
choice of demonstrations (Wang et al., 2023; Chen
et al., 2024, 2023). In order to keep the stability
of ICL performance and exploit the potential of
LLMs, many ICL methods have been proposed
in recent studies. Rubin et al. (2021) investigated
using SBERT (Reimers and Gurevych, 2019) em-
beddings for demonstration retrieval and show that
retrieving demonstrations based on SBERT em-
beddings often provides a boost in performance
compared to zero-shot or random few-shot selec-
tion. Liu et al. (2021) found that fine-tuning pre-
trrained language models on task-related datasets
offered further empirical gains. Besides using em-
bedding to recall relevant demonstrations, recent
works tried to build a proxy scoring model to score
each candidate’s demonstration. Then, a retriever is
trained, which separates top-score examples from
bottom-score examples (Rubin et al., 2021). At last,
Scarlatos and Lan (2023) and Lu et al. (2022) di-
rectly use response correctness as the reward func-
tion and train policy network with RL-method to
decide the best demonstration for different samples
dynamically.

3 Method

Before diving into the details of the method, we
first give a formal problem definition to the knowl-
edge tagging task as follows: Given a pair of knowl-
edge definition text k£ and a question’s stem text g,
the objective of a concept tagging model is to pro-
duce a binary judgment y € {0, 1}, where 1 means
k and g are matching, O otherwise. In the follow-
ing subsections, we first present an overview of our
proposed framework, KnowTS. Then, we introduce

s \

Knowledge Definition: Learn the relationship between the changes
in the numerator and denominator of a fraction while keeping the
value unchanged ... and division operations between integers.

Knowledge Definition

Unlabeled Sample: Fill it out. 8 square meters = square
decimeters; 6 square decimeters = square centimeters; 70,000
square centimeters = square meters.

Test Sample

r \
Question: Fill it out. 8 square meters =____ square decimeters; 6
square decimeters = square centimeters; 70,000 square
centimeters = square meters.

Expert Judgement:

. J

Demonstration Sample

_—
Zero-shot Inference

Zero-shot Prompt

Demonstration
Retriever (FlexSDR)

G |
&)

Large Language Models
(LLMs)

Few-shot Inference

Figure 1: An overview of the workflow of the proposed KnowTS system.

details about the implementations of KnowTS with
zero-shot and few-shot inference pipelines. Lastly,
to further boost the performance of KnowTS with
demonstration samples, we propose FlexSDR, an
RL-based retriever algorithm, to achieve efficient
and high-performance knowledge tagging.

3.1 An Overview

An overview of KnowTS is demonstrated in Fig. 1.
It consists of three key components: (1) zero-shot
inference, (2) few-shot inference, and (3) adap-
tive demonstration retriever. Each component in
KnowTS plays different roles to accommodate dif-
ferent knowledge tagging scenarios. When there
is no available annotated data, KnowTS will lever-
age a zero-shot pipeline to generate the judgment
directly. And, when there are limited available
demonstration examples, KnowTS will use the few-
shot inference via its in-context learning capability.
When the demonstration samples are needed to
select for demonstration, KnowTS will utilize a
demonstration retriever to adaptively select effec-
tive demonstrations for different (k, ¢) pairs.

3.2 Zero-shot Pipeline

One key difference between KnowTS and other
prior machine learning models is its strong perfor-
mance while facing limited or even no annotated
data for each knowledge k. Such advantages con-
tribute to the powerful zero-shot inference capa-
bility of LLMs, which is empowered by its huge
size model parameter and the extensive pre-training
on diverse and vast datasets. Prior studies by Wei
et al. (2021) demonstrate that LLMs have strengths
in comprehending instructions in natural language
and applying learned knowledge to new problems
with limited or even no training data specific to
these tasks. In our problem, we leverage this capa-
bility by composing a zero-shot prompt as follows:
we first describe the goal of the tagging task as

"You are a knowledge concept annotator. Your job
is to judge whether the <Question> is concern-
ing the <Knowledge>." Then, for the convenience
of the processing procedure, we add a response
format instruction in the prompt: "The judgment to-
ken: <Yes> or <No> should be provided at the end
of the response." At last, as the prior studies like
Chain-of-Thought (COT) (Wei et al., 2022) have
discovered, instructing LLMs to generate step-by-
step problem-solving solutions will be helpful for
the LLMs to draw the correct conclusions, we ask
LLMs to not only provide their positive or negative
predictions but also present the reason at first: "You
should first provide the reasons before giving your
judgement." The detailed zero-shot task instruction
prompt engineering can be found in Appx. E.

3.3 Few-shot Pipeline

Although the zero-shot prompt provides a promis-
ing solution without using any annotated samples,
the knowledge definition text £ may sometimes
not be specific enough for complicated judgments.
For instance, there is a knowledge concept named
consecutive carry in multiplication, which occurs
when the product of two digits, along with any
carry from the previous calculation, results in a
number greater than 9, thus requiring another carry
to be added to the next column in the calculation.
It is hard for many LLMs to catch that key point
during the judging process without any hints. To
overcome this problem, KnowTS can leverage a
few-shot inference pipeline when there are avail-
able demonstration samples associated with the
given knowledge k. Contributing to LLMs’ strong
in-context learning (ICL) capability, KnowTS can
imitate the judging logic of the given demonstra-
tions and achieve significant performance gain even
with limited samples provided. Detailed compar-
isons between zero-shot and few-shot responses
are shown in Section 4.5.

<System Text>
<Knowledge Definition>

<System Text>
<Knowledge Definition>

<Demonstration Question 1>

<Demonstration Judgement 1> <System Text>

<Demonstration Question 1> <Knowledge Definition>
<Demonstration Question T> <Demonstration Judgement 1>
<Demonstration Judgement T>
<Test Question>

<Test Question> <Test Question>

<Demonstration Question 1>
<Demonstration Judgement 1>

[LLM (Envrionement) ,é}

rr=-1

X R(p) =-1

=41,
VR =1+YR(Teer)

n=-1
X R@)=-1+yR()

[3_

Demonstration Bank — [*1
(D) (D) t t (T)
o xyg) (5 ®
Pl] |
o) - @8-G0 - () - -0

Figure 2: The framework of the proposed FlexSDR.

3.4 FlexSDR

Although incorporating available demonstrations
has the potential to bring LLMs performance gain
compared to the zero-shot setting, the effective-
ness of each demonstration varies (Liu et al., 2021).
Moreover, different input pairs (k, ¢) may prefer to
different combinations of demonstrations. To fully
exploit the potential of KnowTS, we propose a re-
inforcement learning (RL) based demonstration se-
lection method, termed Flexible Sequential Demon-
stration Retriever (FlexSDR), aiming to help LLMs
exploit their potential from the demonstration sam-
ples while keeping only the necessary demonstra-
tions as input for each input query. Formally, we
define the key components of Markov Decision
Process (MDP) in our problem as follows: Given
the ¢ step’s status s; = {k,q,e1,..,e—1}, where
(k, q) are the input knowledge and question pair
and €;);<;<;_ are the demonstrations selected in
prior ¢ — 1 steps, we hope to use the policy 7 to
generate the subsequent action a;, which selects
one demonstration sample e; € Ep, where Ep is
the demonstration bank or choose the stop signal
eg. This process’s reward is finding the best demon-
stration sequence (action trajectory 7) which helps
LLMs correctly judge the knowledge matching
(k, q) while keeping the |7| small. To be noticed
although there are several RL-based methods, we
point out that FlexSDR has its novelty in two per-
spectives: (1) we introduce the "early stop” option
to each interactive step and use the stop bonus re-
ward to guide the policy network 7 to learn when to
stop during the reinforcing process. With such de-
sign, FlexSDR avoids retrieving redundant demon-
strations because of the prefixed demonstration size
parameter and reduces the risk of sub-optimal few-
shot inference performance (Zhao et al., 2023);
and (2) We incorporate each intermediate step as

an individual training sample and help the policy
network learn to conduct the best action decision
based on each step’s response correctness status.
More details about the effectiveness of each design
are discussed in Sec 4.6. In the following subsec-
tions, we introduce both the policy network and
reward design of FlexSDR in details.

3.4.1 Policy Network

Firstly, we define the policy network as g, and
the policy execution process is to select an ac-
tion a; from the probability distribution calcu-
lated by mp(a|s;). As the action space for our
policy network is decided by the demonstration
bank F'p, we decompose 7y into two components
o = G(F(st), [Eplles]), where F is a status en-
coder function that converts the sequential based
status variable s; into a status vector h;. G is an
action function that calculates each action score for
each available demonstration sample. [-||-] is the
concatenation operation, and eg is the early stop
option. Following the prior work’s setting (Scar-
latos and Lan, 2023), we choose to use the long
short-term memory (LSTM) model (Graves and
Graves, 2012) as F and a bilinear transformation as
G. Overall, the policy execution process is shown
as the right part of Fig. 2, where the input (k, q)
pair is first encoded and used as the initial inputs
for F. Then, the tth-step hidden state output h;
is used by G to calculate the selection score for
each available demonstration and the early stop op-
tion. After that, the action a; will be selected based
on the scores. If the demonstration is selected, it
will be appended to the prompt and interact with
LLMs to calculate the ¢-th step reward score. The
process ends whenever the early stop option is hit
or reaches the max-allowed length. Formally, the

[x1, v, -

0 SR
vl - -

1.5 \\‘J{]' '
Hlv-
1.0 [-’i, v

[X], X, v
LX) v, X

Returns

e 5 v
ol v, &
[%], - -
J»Il] x, -

AR, % X

F e k-

el %, x

T T T
0.4 0.6 0.8

Gamma

T T
0.0 0.2 1.0

() R(7) with vy € (0,1)

Returns

- -

4 =1 1x1v. -
3 i N 7 R
XL wv
2+] v, v
14 [x], %, -
e
XL v X
0 €‘~‘::‘ v X, v
e
-1+ [v] ». X
X1 X, x
24 =1
[v] X, X
=34 =l Gl
Tl x -
-4 4 ~-
T T T T T T [x1, - -

0.0 0.2 0.4 0.6

Gamma

(b) R'(t) withw =1, v € (0,1)

Figure 3: Return functions w/o and w/ stop bonus reward where T' = 2.

procedure can be defined as follows:

ho = tanh(WO[kaxq] + bo),
mo(alst) = Softmax(G(-)),
g(htv [XED||~ng]) = htWCL[XEDszg]T

where x., xj, x4 are the encoding results of knowl-
edge text, question text, and demonstration text. £
is the pre-trained text encoding model. Wy and
bg are the parameters of knowledge and question
information fusing layer, and W, is the parameter
of bilinear transformation.

3.4.2 Learning Rewards

To train the policy network g, we use the proximal
policy optimization (PPO) method (Sutton and
Barto, 2018). To be specific, we define the step-
wised reward function of FlexSDR as follows:

re = EVAL(g,y), € {-1,1} (1)

where EVAL is the evaluation function that com-
pares the judgment response by LLMs g
LLM(k, g, e1, ..., e;) with the expertise judgment
y. If the two judgments are the same, the reward
for timestep ¢ will be +1. Otherwise, the reward
value will be —1. For early-stop actions eg, we
calculate its correctness based on its most recent
step. This reward design differs from previous
RL-based retriever training algorithms (Scarlatos
and Lan, 2023), which calculate the reward only at
the final timestep 7". At this point, the size of the
retrieved demonstration reaches its maximum al-
lowable limit. For FlexSDR, we calculate rewards
r¢ for all the timesteps and use the discounted tra-
jectory return R(s¢, ar) = r¢ + YR(St41, att1),

where v € (0, 1) is the discount factor, to calculate
the action returns along the trajectory 7, presented
in left part of Fig. 2. The final goal of our optimiza-
tion is to maximize the expectation return of the
trajectory 7 generated by the iterative execution on
the optimized policy network mg:

J@ == ET EtR(St,CLt)] (2)

As the instant reward r; can only be two values -1
or +1, and the maximum length of allowed demon-
stration for RL-based retriever training is limited,
we enumerate all the possible cases for different
types of correctness status across the fixed length
trajectory (1" = 2) in Fig 3a. By viewing the corre-
sponding rewards for different trajectories, we can
have the following observation: (1) due to the ex-
isting discount factor v, the trajectory with earlier
steps approaching the correct response will tend to
have a higher reward: ([x], v/, v") > ([x], x, V),
which encourages the policy network to find the
most valid demonstration at each iteration; (2)
when the policy makes an error attempt at the fu-
ture steps, its return R(7) will be decreased, e.g.,
([x],v',v') > ([x],v, X), this instructs the pol-
icy network to avoid appending the inappropriate
demonstrations. In addition to the correct reward,
we introduce another "stop bonus" reward 7} to
each time step:

~prg ()

, 0, as 7+ eg
Tt =
Tt—1, Gt = €¢

The bonus added trajectory return can be written
as R/ (sy,a) = (re + w*rp) + YR (5441, ar41),
where w is a weight parameter balancing the in-
fluence of the stop bonus to the final returns.
The stop bonus trajectory reward function is plot-
ted in Fig 3b. From the plot, we can observe
that R'(7) with the earlier correct stop action

3)

(T, S) will receive a higher return compared to
the ones with keeping selecting the demonstra-
tions: ([v],—,—) > ([V],v,—) > ([vV], v, V).
This reward design will encourage the policy net-
work to stop early when the correct response is
met. For the case when the stop action is given
after an error attempt, the return will be penalized:
([x], = =) < ([x], %, =) < ([x], %, %), since it
stops exploring the other possibility for finding the
correct response.

4 Experiment

In this section, we conduct experiments to validate
the effectiveness of each component in KnowTS.
Through the experiments, we aim to answer the
following research questions:

* RQ1: Can KnowTS outperform prior methods
while facing limited or even no annotated data?

* RQ2: Can FlexSDR further boost the few-shot
pipeline while using fewer demonstrations com-
pared to the other RL-based Retrievers?

* RQ3: Are components of FlexSDR effective?

4.1 Dataset Overview

To answer the research questions above, we col-
lect a knowledge concept tagging dataset, Math-
KnowCT, from an online K-12 math education
platform. The dataset consists of 24 knowledge
concepts, spreading from the math concept learn-
ing goal of Grade 1 to Grade 6 students. For each
knowledge concept, we collect 100 candidate ques-
tions from an unlabeled question database with
the highest text embedding similarity and then ask
at least two pedagogical experts to conduct the
matching annotations. The ratio between matching
and mismatching categories of the whole dataset is
around 1:4. More details about the dataset statistics
and knowledge concept definitions can be found
from Tab. 5 in Appendix A. Before the experiment,
we first split 5 positive samples and 5 negative
samples for each knowledge concept as the train-
ing (demonstration) set. For each sample in the
training (demonstration) set, we ask a pedagogical
expert to complete the reasons for the judgment.

4.2 Baselines

To answer RQ1, we prepare baseline models as
follows:

* Embedding Similarity: we first use two high-

performed long text encoding models, sentence-
BERT(S-BERT) (Reimers and Gurevych, 2019)

and text-embedding-3-small 2, to encode both k
and ¢ into dense embedding vectors zj, and z,
and we calculate the cosine similarity between
them. The judgment of each test sample is de-
termined by the top-K selection or similarity
threshold 1 comparisons. The value of hyper-
parameter K and 7 is determined by performing
a grid search on test data.

* PLM Fine-tuning: We add a binary classifi-
cation layer to the top of <BOS> tokens out-
puts and fine-tune the parameter of the whole
model with the binary entropy loss calculated
on the samples in the training set. The PLMs
we use in our experiment include BERT (De-
vlin et al., 2018), T5 (Raffel et al., 2020), and
RoBERTa (Liu et al., 2019b) and the learning
rate during the fine-tuning process is tuned from
le-3 to le-5.

To answer RQ2, we compare it with two prior

SOTA RL-retrievers.

* PromptPG (Lu et al., 2022): We implement
PromptPG from the public available source code
3. During the retrieval process, we input the
embedding of both input and demonstration
into the retriever and optimize the policy net-
work with the REINFORCE policy gradient algo-
rithm (Williams, 1992) suggested by the paper.

¢ RetICL (Scarlatos and Lan, 2023): RetICL can
be viewed as a special case of FlexSDR, where
no early stop is added to the demonstration se-
lection space, decay factor « is set to 1 during
the training, and the reward loss will only be
calculated for the last step 1"s result, we imple-
ment the algorithm based on changing the setting
parameter of FlexSDR.

4.3 LLMs and FlexSDR Settings

To validate the generosity of our proposed algo-
rithm, we experiment with 3 representative LLMs
frameworks including GPT (Brown et al., 2020),
LLAMA3 (Touvron et al., 2023), Mistral and Mix-
tral (Jiang et al., 2024). Details about LLM’s imple-
mentation can be found in Appendix B. During the
implementation of FlexSDR, we employed training
tricks, such as actor-critic optimization (Konda and
Tsitsiklis, 1999), off-policy learning to improve
convergence of the training process and data usage
efficiency during the training. More details about
FlexSDR settings are presented in Appendix C.
Zhttps://platform.openai.com/docs/guides/

embeddings/embedding-models
Shttps://github.com/lupantech/PromptPG

https://platform.openai.com/docs/guides/embeddings/embedding-models
https://platform.openai.com/docs/guides/embeddings/embedding-models
https://github.com/lupantech/PromptPG

Table 1: Comparison between PLM Embedding Similarity, PLM Fine-tune, LLM 0-shot Inference. The best result
under the comparable settings is marked with underline, and the best result among all settings is marked with bold.

Metric Model ‘ Human ‘ K/ Q Similarity Q/ Q Similarity PLM Fine-tune LLM Zero-Shot
Size | EXpert | GpT.Embed SBERT | GPT-Embed SBERT | BERT RoBERTa TS5 | GPT Llama-3 Mixtral
Accuracy | BESE | 9175 67.43 79.90 78.52 63.58 | 5845 3551 77.18 | 7530 5844 68.60
WY Large - - - - - 76.64 79.08 79.55 | 89.00 68.14 74.73
Precision B¢ | 88.86 52.68 67.66 67.51 49.10 | 44.03 3551 6470 | 60.09 46.18 53.87
Large - - - - - 63.02 7261 7145|7838 5258 59.89
Recall | Base | 88.16 75.27 82.39 75.40 87.63 | 6277 100.0 78.63 | 89.25 9237 89.74
Large - - - - - 82.80 6594 70.62 | 95.03 98.79 85.89
Fl Base | 88.51 61.98 74.30 71.24 6293 | 51.75 5241 7099 | 71.82 61.58 67.32
Large - - - - - 7157 69.12 71.03 | 8591 68.63 70.57

Table 2: Comparisons between LLLM 2-Shot and 4-Shot Inference. The best result under the comparable settings is
marked with underline, and the best result among all settings is marked with bold.

s Mode \ 2-Shot 4-Shot

etric Size ‘ Random Heuristic Random Heuristic
‘ GPT Llama-3 Mixtral ‘ GPT Llama-3 Mixtral | GPT Llama-3 Mixtral | GPT Llama-3 Mixtral
Aceurac Base | 76.01 75.64 7872 7250 73.15 81.15 | 77.95 79.25 81.33 | 79.56 80.74 80.62
¥ Large | 89.45 83.45 80.84 ‘ 90.10 84.26 80.23 | 90.40 88.00 84.31 | 91.11 88.57 84.06
Precision Base | 60.33 60.59 65.11 57.22 58.47 68.86 | 62.65 6491 68.44 | 6498 67.52 67.94
Large | 79.86 69.16 67.67 ‘ 81.86 70.98 67.64 | 82.56 76.03 73.18 | 83.86 7791 73.35
Recall Base | 93.41 89.82 86.31 87.37 84.14 85.64 | 92.88 90.48 87.98 | 91.26 88.15 85.98
Large | 93.99 95.83 87.50 ‘ 92.65 93.68 84.27 | 9249 96.37 87.63 | 92.82 94.35 87.63
FI Base | 73.31 72.36 7423 69.15 68.99 76.34 | 74.82 75.59 76.99 | 7591 76.47 75.90
Large | 86.35 80.34 76.32 ‘ 86.92 80.76 75.04 | 87.24 85.00 79.76 | 88.11 85.35 79.86

4.4 Zero-Shot and Naive Few-Shot Results

In this section, we answer RQ1 with comparisons
between prior machine learning algorithms, includ-
ing embedding similarity, PLM fine-tuning, and
LLM-based methods, e.g., 0-shot, 2-shot, 4-shot in-
ference. From Tab. 1, we can observe that the prior
methods present acceptable performance. How-
ever, the performance of most of these methods got
trapped at around 71% F1-score. For LLM-based
methods, we can find even under the zero-shot
setting, some of the large-sized ones, e.g., GPT-
4-turbo, present extremely strong task-solving ca-
pability and achieving 85.9% F1 results, outper-
forming the non-LLM methods by a great margin.
This observation proves our hypothesis that con-
tributes to the broad prior knowledge (math con-
cepts) learned during the pre-training phase and
strong problem-solving skills taught in the instruc-
tion tunning stages, LLMs are good tools for knowl-
edge tagging tasks with limited or even no anno-
tation data. The result presented in Tab. 2 demon-
strates the advantages of LLMs in-context learning
capability. With the introduction of only 2 to 4
demonstration samples, most LLMs can achieve
significantly better performance compared to the
zero-shot cases, and LLMs with lower performance

in zero-shot, e.g., Llama-3-70B, receive the perfor-
mance boost by 10%. Such observation suggests
the great potential of LLM-based algorithms in gen-
erating high-performed knowledge tagging results
with sufficient demonstration samples.

4.5 Retriever Enhanced Few-shot Results

In this section, we answer RQ2 by presenting the
comparisons between FlexSDR and other base-
lines in Tab. 3. From the table, we observe that
FlexSDR constantly bring further boosts to the few-
shot learning performance compared to the naive
few-shot learning results in Tab. 2. Apart from that,
as FlexSDR is designed with the early stop mech-
anism, the average demonstration length used in
few-shot learning FlexSDR is always less than the
max-shot size. From the table, we find FlexSDR
uses 25% less demonstrations for its few-shot learn-
ing inference, which achieves our goal of providing
fewer demonstrations but better performance. At
last, by observing the positive relationship between
the proportional performance gain and length in-
crease between 2 and 4 max shots scenarios, we
conclude that FlexSDR learns the correct time to
end the retrieval process and adaptive incorporates
the best demonstration for a good marginal perfor-
mance gain.

Table 3: Comparisons between three RL-based retrievers on three LLMs. The best result under the comparable
settings is marked with underline, and the best result among all settings is marked with bold. The number in
(parentheses) for FlexSDR is the mean demonstration size the retriever decides.

Metric Max-Shot ‘ GPT Base (GPT-3.5-turbo) Llama-3 Base (Llama-3-8B) Mixtral Base (Mistral-7B)
SiZ€ | promptPG RelICL FlexSDR | PromptPG RetiCL FIexSDR | PromptPG RetlCL FlexSDR

Accurac 2 7732 8036 81.21(138)| 7875 81.02 8L50(155) | 79.03 80.83 82.92(1.78)
Y 4 80.74 8197 84.35(2.10) | 8226 8283 84.54(3.65 | 8216 8416 84.35(2.82)
Precision 2 6279 6699 69.12(1.38) | 6500 68.15 69.64(1.55 | 66.13 69.69 70.83(1.78)
4 6642 69.23 7292(2.10) | 6881 69.78 7246(3.65 | 6975 7426 74.05(2.82)
Recall 2 91.05 89.74 8658(138)| 8895 8895 86.32(1.55 | 8579 8289 89.47(1.78)
4 9421 90.00 90.00(2.10) | 9289 9237 9221(3.65 | 8921 8579 87.11(2.82)
- 2 7433 7672 7687(1.38)| 7511 7707 77.09(155) | 7468 7572 79.07 (1.78)
4 7791 7826 80.57(2.10) | 79.06 7950 8L11(3.65) | 7829 79.61 80.05(2.82)

4.6 Ablation Studies

To answer RQ3, we ablate the intermediate reward
design from FlexSDR and name the new model
as FlexRetICR. From the performance comparison
between the three models, shown as in Fig. 5 in
Appx. D, we observe that FlexRetICR outperforms
RetICR in 4 out of 6 cases. It indicates that intro-
ducing early stop rewards not only helps to use less
demonstrations but also could be beneficial to the
final performance. Finally, by comparing FlexSDR
with the other two RL-Retrivers, we find that it
achieves the best performance in 5 out of 6 scenar-
ios, which proves the effectiveness of the step-wise
reward design. More details about our ablation
study implementation can be found in Appx. D.

4.7 Case Studies

In addition to RQs above, we further conduct
experiments to study behaviors of FlexSDR and
KnowTS. First, we present FlexSDR’s behavior
while facing to knowledge concepts with differ-
ent zero-shot accuracy. The negative relationship
between zero-shot performance and number of
demonstrations retrieved in Fig. 6 in Appx. F indi-
cates that FlexSDR learns to retrieve fewer demon-
strations for knowledge points that already perform
well with no demonstration samples. Second, we
categorize the error cases of KnowTS into four ma-
jor types in Tab. 9 in Appx. G. By analyzing each
error type, we conclude that errors, such as restric-
tion dismiss, task distraction, are related with the in-
struction following issue of LLMs, which indicates
the knowledge tagging specific instruction-tuning
could be a potential way to further improve the
performance of KnowTS. Besides, concept misin-
terpretation is caused by hallucination shortages of
LLMs. To mitigate that, injecting authentic knowl-
edge definition with retrieval augmented generation
(RAG) (Gao et al., 2023) will be a good solution.

At last, the wrong fact errors reflect LLMs’ weak-
ness in deal with quantity constraints, and the re-
cent emerging tool-use LLMs (Zhuang et al., 2024)
will be a promising improvement direction.

4.8 General Application of FlexSDR

To explore the general effectiveness of FlexSDR
in other few-shot learning scenarios, we applied
it with dataset GSM8K (Cobbe et al., 2021). Our
experiment compares the effectiveness of different
retrieving algorithms in helping LLMs generate
correct solutions to questions, and we test all the
models using the standard test split of GSMS8K.
The metric in this experiment is solution accuracy.
From Tab. 8 in Appx. H, we can find FlexSDR
always outperforms the other retrievers while us-
ing fewer demonstrations. Based on this fact, we
demonstrate the effectiveness of FlexSDR in gener-
ous few-shot learning scenarios.

5 Conclusion

In this paper, we present, KnowTS, a LLMs based
knowledge-tagging system, which differs from
prior machine learning models in its strong per-
formance while facing limited or even annotated
data for knowledge-tagging tasks. Besides that,
we further propose a novel RL-based demonstra-
tion retriever, FlexSDR, focusing on dynamically
providing flexible lengths of demonstration sam-
ples to every question knowledge-matching query.
To validate the effectiveness of KnowTS, we ex-
periment with an expertly annotated knowledge
concept question dataset, MathKnowCT. The ex-
periment results demonstrate the effectiveness of
FlexSDR, which enables KnowTS to achieve the
best few-shot learning performance while using
fewer demonstrations. At last, through the ablation
study and case analyzing results, we demonstrate
the effectiveness of each component in FlexSDR.

Limitation

In this work, we explore the usage of LLMs for
knowledge tagging task. Although we have suc-
cessfully demonstrated that KnowTS is a powerful
system for knowledge tagging task while compar-
ing to the previous SOTA algorithms, especially
facing to complicated tagging scenarios, we have
to admitted that the computation resource consump-
tion of KnowTS is relatively much larger than the
traditional methods. During practice, we choose to
integrate traditional method with the KnowTS and
always use KnowTS for processing the challenging
matching cases. Apart from that, in our error anal-
ysis section, we observe KnowTS sometimes make
simple errors during the judgement while dealing
with complicated domain concepts or strict quantity
constraint in math. To fully exploit the potential
of LLMs on knowledge tagging, more complicated
techniques like as RAG and Tool-use LLMs are
also deserved to be explored in the future studies.

References

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877-1901.

Hugh L Burns and Charles G Capps. 2013. Intelligent
tutoring systems: an introduction. Foundations of
intelligent tutoring systems, 1.

Jiuhai Chen, Lichang Chen, Chen Zhu, and Tianyi Zhou.
2023. How many demonstrations do you need for
in-context learning? In Findings of the Association
for Computational Linguistics: EMNLP 2023, pages
11149-11159.

Jun-Ming Chen, Meng-Chang Chen, and Yeali S Sun.
2014. A tag based learning approach to knowledge
acquisition for constructing prior knowledge and en-
hancing student reading comprehension. Computers
& Education, 70:256-268.

Pei Chen, Shuai Zhang, and Boran Han. 2024.
Comm: Collaborative multi-agent, multi-reasoning-
path prompting for complex problem solving. In

Findings of the Association for Computational Lin-
guistics: NAACL 2024, pages 1720-1738.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias

Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, et al. 2021. Training verifiers to solve math
word problems. arXiv preprint arXiv:2110.14168.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Wei Du, Haiyan Zhu, and Teeraporn Sacheaw. 2021.
Application of the lda model to semantic annotation
of web-based english educational resources. Journal
of web engineering, 20(4):1113-1136.

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia,
Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, and Haofen
Wang. 2023. Retrieval-augmented generation for
large language models: A survey. arXiv preprint
arXiv:2312.10997.

Alex Graves and Alex Graves. 2012. Long short-term
memory. Supervised sequence labelling with recur-
rent neural networks, pages 37-45.

T. Huang, M. Liang, H. Yang, Z. Li, T. Yu, and S. Hu.
2021. Context-aware knowledge tracing integrated
with the exercise representation and association in
mathematics. In Proceedings of the International
Educational Data Mining Society, volume 1, pages
360-366.

Tao Huang, Shengze Hu, Huali Yang, Jing Geng, San-
nyuya Liu, Hao Zhang, and Zongkai Yang. 2023a.
Pgsct: Pseudo-siamese bert for concept tagging with
both questions and solutions. IEEE Transactions on
Learning Technologies.

Tao Huang, Shengze Hu, Huali Yang, Jing Geng, San-
nyuya Liu, Hao Zhang, and Zongkai Yang. 2023b.
Pgsct: Pseudo-siamese bert for concept tagging with
both questions and solutions. IEEE Transactions on
Learning Technologies, 16(5):831-846.

Zhenya Huang, Qi Liu, Weibo Gao, Jinze Wu, Yu Yin,
Hao Wang, and Enhong Chen. 2020. Neural mathe-
matical solver with enhanced formula structure. In
Proceedings of the 43rd International ACM SIGIR
Conference on Research and Development in Infor-
mation Retrieval, SIGIR °20, page 1729-1732, New
York, NY, USA. Association for Computing Machin-
ery.

Albert Q Jiang, Alexandre Sablayrolles, Antoine
Roux, Arthur Mensch, Blanche Savary, Chris Bam-
ford, Devendra Singh Chaplot, Diego de las Casas,
Emma Bou Hanna, Florian Bressand, et al. 2024.
Mixtral of experts. arXiv preprint arXiv:2401.04088.

Vijay Konda and John Tsitsiklis. 1999. Actor-critic al-
gorithms. Advances in neural information processing
systems, 12.

Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan,
Lawrence Carin, and Weizhu Chen. 2021. What
makes good in-context examples for gpt-3?7 arXiv
preprint arXiv:2101.06804.

https://doi.org/10.1109/TLT.2023.3275707
https://doi.org/10.1109/TLT.2023.3275707
https://doi.org/10.1109/TLT.2023.3275707

Qi Liu, Zhenya Huang, Yu Yin, Enhong Chen, Hui
Xiong, Yu Su, and Guoping Hu. 2019a. Ekt:
Exercise-aware knowledge tracing for student per-
formance prediction. Preprint, arXiv:1906.05658.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Dangi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019b.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Pan Lu, Liang Qiu, Kai-Wei Chang, Ying Nian Wu,
Song-Chun Zhu, Tanmay Rajpurohit, Peter Clark,
and Ashwin Kalyan. 2022. Dynamic prompt learning
via policy gradient for semi-structured mathematical
reasoning. arXiv preprint arXiv:2209.14610.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the lim-
its of transfer learning with a unified text-to-text

transformer. Journal of machine learning research,
21(140):1-67.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
arXiv preprint arXiv:1908.10084.

Ohad Rubin, Jonathan Herzig, and Jonathan Berant.
2021. Learning to retrieve prompts for in-context
learning. arXiv preprint arXiv:2112.08633.

Alexander Scarlatos and Andrew Lan. 2023. Ret-
icl: Sequential retrieval of in-context examples

with reinforcement learning. arXiv preprint
arXiv:2305.14502.

Bo Sun, Yunzong Zhu, Yongkang Xiao, Rong Xiao,
and Yungang Wei. 2018. Automatic question tagging
with deep neural networks. IEEE Transactions on
Learning Technologies, 12(1):29-43.

Richard S Sutton and Andrew G Barto. 2018. Reinforce-
ment learning: An introduction. MIT press.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Xinyi Wang, Wanrong Zhu, Michael Saxon, Mark
Steyvers, and William Yang Wang. 2023. Large lan-
guage models are implicitly topic models: Explaining
and finding good demonstrations for in-context learn-
ing. In Workshop on Efficient Systems for Foundation
Models@ ICML2023.

Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin
Guu, Adams Wei Yu, Brian Lester, Nan Du, An-
drew M Dai, and Quoc V Le. 2021. Finetuned lan-
guage models are zero-shot learners. arXiv preprint
arXiv:2109.01652.

10

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in Neural
Information Processing Systems, 35:24824-24837.

Ronald J Williams. 1992. Simple statistical gradient-
following algorithms for connectionist reinforcement
learning. Machine learning, 8:229-256.

Yu Yin, Qi Liu, Zhenya Huang, Enhong Chen, Wei
Tong, Shijin Wang, and Yu Su. 2019. Quesnet: A
unified representation for heterogeneous test ques-
tions. In Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery
amp; Data Mining, KDD *19. ACM.

Yury Zemlyanskiy, Sudeep Gandhe, Ruining He, Bhar-
gav Kanagal, Anirudh Ravula, Juraj Gottweis, Fei
Sha, and Ilya Eckstein. 2021. Docent: Learning
self-supervised entity representations from large doc-
ument collections. Preprint, arXiv:2102.13247.

Xiao Zhang, Meng Liu, Jianhua Yin, Zhaochun Ren,
and Ligiang Nie. 2021. Question tagging via graph-
guided ranking. ACM Transactions on Information
Systems (TOIS), 40(1):1-23.

Fei Zhao, Taotian Pang, Zhen Wu, Zheng Ma, Shujian
Huang, and Xinyu Dai. 2023. Dynamic demonstra-
tions controller for in-context learning.

Yuchen Zhuang, Yue Yu, Kuan Wang, Haotian Sun,
and Chao Zhang. 2024. Toolqa: A dataset for 1lm
question answering with external tools. Advances in
Neural Information Processing Systems, 36.

A MathKnowCT Dataset

The detailed statistics about MathKnowCT is
shown in Tabel 5. Overall, there are 2,349 samples
covering 24 knowledge concepts of math study for
student from Grade 1 to Grade 6. Some exampling
knowledge definitions and questions are presented
in Table 4. During the data collecting phase, we
first ask two pedagogical experts to annotate each
knowledge-question sample pair, and if a conflict
happens, we ask the third expert to give the final
judgment. The Cohen’s kappa value of the first
round of annotation is 0.9321, and about 3.1% of
samples are submitted to the third judger for annota-
tion. In Tab. 4, we present the example knowledge
concepts. Please find more details from the link.

B LLMs Implementation

To be noticed in this paper, we choose to experi-
ment only with each LLM’s instruct-tuned (chat-
tuned) version as we observe that the instruct-
tuned LLMs can better follow the given annotat-
ing instructions and generate the correct format

https://arxiv.org/abs/1906.05658
https://arxiv.org/abs/1906.05658
https://arxiv.org/abs/1906.05658
https://arxiv.org/abs/1906.05658
https://arxiv.org/abs/1906.05658
https://arxiv.org/abs/2102.13247
https://arxiv.org/abs/2102.13247
https://arxiv.org/abs/2102.13247
https://arxiv.org/abs/2102.13247
https://arxiv.org/abs/2102.13247
https://anonymous.4open.science/r/KnowTS-0563/Data/MathKnowCT.tsv

Table 4: Example knowledge definitions

Knowledge ID Knowledge Definition Table 5: Detailed sample statistics for different knowl-
edge concepts in MathKnowCT.

x01010201 Learn the definitions of following types

of numbers, including integers, odd num- Knowledge ID Total Size Positive Negative
bers, even numbers, fractions, decimals,
.. . x02030701 100 25 75
positive numbers, negative numbers, and
natural numbers. Common related ques- x02021101 100 40 60
tion types include the following: (1) Select <06020104 100 40 60
a number of a specified type from a given
set of numbers; (2) Determine whether a x02061003 100 16 84
number is within the defined range; (3) De- x48040202 100 29 7
termine whether a proposition about the
classification of numbers is true. x11041602 100 24 76
x04030501 100 48 52
x02040502 Learn the composition of two-digit num- x04030601 100 23 77
bers less than or equal to 100 (how many
tens and how many ones). Common re- x07010103 100 20 20
lated question types include the following: x06030101 100 44 56
(1) Convert a two-digit number into a com-
bination of tens and ones; (2) Fill in the X37130902 100 » 65
corresponding two-digit number based on x20041003 62 50 12
the combination of tens and ones. x07020402 87 29 58
x07020502 100 50 50
x02061003 Learn to use 3 or 4 digits to form a three-
digit or four-digit number, and judge the x20050401 100 50 50
size relationship between the digits. Re- x09020509 100 50 50
lated question types are limited to the fol-
lowing: (1) Use 3 digits to form a three- x07020314 100 30 70
digit number smaller than a certain num- x01010201 100 50 50
bér: Find the total number of such three- 11040205 100 % 74
digit numbers, the largest number, and the
smallest number. Each digit can only be x11040203 100 22 78
used once in the combination process. (2) x11040202 100 25 75
Knowing that the sum of the digits in each
digit of a four-digit number is a certain x02040502 100 44 56
number, find the largest number and the x47060201 100 17 83
smallest number of this four-digit number.
x20070401 100 47 53

x04030501 Learn to calculate the reciprocal of a num-
ber. Common related question types in-
clude the following: (1) Calculate the re-
ciprocal of one or more given numbers; (2)
Given an equation where the product of a
number and a blank is 1, find the value of
the number that can be filled in the blank. Table 6: Details about LLM implementation in this
paper and source file links.

x48040202 Learn how to estimate the total purchase
price of three items in a shopping scenario. LLM Name Model ID
Common related question types include GPT-Large gpt-4-turbo-2024-04-09
the following: (1) Given the prices of three GPT-Base gpt-3.5-turbo-0125
items (each item can be a three-digit or Llama3-Large Llama-3-70B-Instruct
two-digit price), but at least one of the Llama3-Base Llama-3-8B-Instruct

items has a three-digit price, calculate the
approximate total purchase price of the
three items; (2) Calculate both the approx-
imate and exact total purchase price of the
three items;

Mixtral-Large Mixtral-8x7B-Instruct-v0.1
Mixtral-Base Mistral-7B-Instruct-v0.2
Qwenl.5-Large Qwen1.5-72B-Chat

11

https://platform.openai.com/docs/models/gpt-4-turbo-and-gpt-4
https://platform.openai.com/docs/models/gpt-3-5-turbo
https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct
https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2
https://huggingface.co/Qwen/Qwen1.5-72B-Chat

responses. For each framework, we experiment
with two-sized versions (small and large) and the
prompt text is adjusted based on the preference of
each LLM. We run our experiment with 8 * Nvidia
A100 80G GPUs.

C FlexSDR Implementation

To implement FlexSDR, we choose to use a 2-layer
LSTM with 64 hidden neurons for each layer, and
the text encoder £ is text-embedding-3-small, the
early-stop bonus weight w 1. The discount
factor v = 0.99. To improve the convergence of
the whole training process, we employ the actor-
critic optimization framework (Konda and Tsitsik-
lis, 1999) during training. We train the value func-
tion estimator using mean squared error (MSE)
based on each step’s hidden state V(h;), the weight
for the loss of value function is set as 0.5. Besides,
to further improve the data usage efficiency, we
also incorporated off-policy learning epochs during
the training, and the off-policy epochs we set in our
experiment is 80. Finally, to encourage exploration
during the reinforcement steps, we add the nega-
tive entropy of the policy to each time step’s loss,
and the weight is set as 0.01. During the inference
time, we use the greedy decoding method at each
timestep ¢, and once the early stop option is hit, the
demonstration retrieval procedure stops.

Retums

-0.25

-0.50

-0.75

-1.00

0.4 0.6

Gamma

02

(a) R(7) with v € (0, 1)

Returns

Gamma

(b) R'(r) withw = %, v € (0,1)

Figure 4: Return functions w/o and w/ stop bonus re-
ward for FlexRetICR where T = 2.

12

RL-Retriever
Emm RetiCL
I FlexRetiCL
W= FlexSDR

F1

2 4
Max Demonstration Length

(a) GPT-3.5-turbo

RL-Retriever
. RetiCL
B FlexRetiCL

o
@
=
@
=]
El

2
Max Demonstration Length

(b) Llama3-8B

RL-Retriever
EEE RetiCL
B FlexRetlCL
B FlexSDR

) 2 4
Max Demonstration Length

(c) Mistral-7B

Figure 5: Performance of RetICL, FlexRetICL and
FlexSDR with different LLMs.

D Ablation Study

We ablate the intermediate reward design from
FlexSDR and name the new model as FlexRetICR
since it is similar to RetICL but can perform the
early stop action. We train FlexRetICR with both
rewards r;, and 7} and set weight parameter w = %
since we do not want the accumulated stop bonus
reward to become larger than the correctness re-
ward. The return function R”(7) for this model
is shown as Fig. 4. For the fair comparison be-
tween FlexRetICR and RetICR, we set v = 1 for
FlexRetICR.

The performance comparison between the three
models is shown as Figure 5. From the figure, we

can observe that FlexRetICR outperforms RetICR
in 4 out of 6 cases, which indicates that introducing
early stop rewards not only helps to use less demon-
strations but also could be beneficial to the final
performance. Finally, by comparing FlexSDR with
the other two RL-Retrivers, we find that it achieves
the best performance in 5 out of 6 scenarios, which
proves the effectiveness of the step-wise reward
design.

E Instruction Prompt Engineering

During the initial explorations, we tried tuning the
prompt for the task and decided to use the prompt
presented in the paper based on their empirical
performance. The prompts below are the three
ones that we explored:

e Type I (Naive Judgment): You are a knowl-
edge concept annotator. Your job is to judge
whether the <Question> is concerning the
<Knowledge>. The judgment token: *<Yes>’
or "<No>’ should be provided at the start of
the response.

Type II (Judgment + Reason): You are a
knowledge concept annotator. Your job is
to judge whether the <Question> is concern-
ing the <Knowledge>. The judgment token:
’<Yes>" or ’<No>’ should be provided at the
start of the response. You should also provide
the judging reasons for your judgment.

Type III (Reason + Judgment): You are a
knowledge concept annotator. Your job is to
judge whether the <Question> is concerning
the <Knowledge>. You should first provide
the judging reasons before giving your judg-
ment. The judgment token: *<Yes>" or "<No>’
should be provided at the end of the response.

In short, Type I prompt asks LLMs to provide
judgment without providing a reason, and Type
II prompt requests LLMs to provide both judgment
and explanation, but the explanation is given after
the judgment. Type III prompt instructs LLMs to
give their judging reason before arriving at the final
conclusion. The performance of the three types is
shown in Tab. 7, and experiments are conducted us-
ing zero-shot settings. Based on the results below,
we chose Type III prompts as our default prompt
for the following experiments in our paper.

13

Table 7: Comparison between different instruction
prompts. The best performance of each metric with
different models is marked with bold, and the second
best one is marked with underline.

Model Prompt Accuracy Precision Recall Fl1
Type 1 70.21 55.24 91.58 6891
GPT-Base Type II 63.28 49.50 91.05 64.13
Type 11 76.28 61.73 90.00 73.23
Type 1 64.61 53.04 16.05 24.65
Mixtral-Base ~ Type II 63.47 49.45 58.95 53.78
Type 111 68.60 53.86 90.00 67.39
Type I 63.95 50.00 026 052
Llama-3-Base Type II 58.63 46.48 97.37 62.93
Type 11T 67.17 52.71 87.11 65.67

I Ing e I [ng
1N} kS o o o

Selected Demonstration Number

e
)

e
®

0.7 0.8

Zero-Shot Accuracy

0.6

(a) GPT-3.5-turbo

Selected Demonstration Number

LX)

T T T T
0.5 0.6 0.7 0.8

Zero-Shot Accuracy

T T
0.3 0.4

(b) Llama3-8B

Selected Demonstration Number

0.7 0.8 0.9

Zero-Shot Accuracy

0.5 0.6

(c) Mistral-7B

Figure 6: Zero-shot accuracy of different knowledge
concepts with corresponding demonstration numbers on
different LLMs. Each point in the figure represents a
knowledge concept.

F Case Study

From Figure 6, we observe that there is a signifi-
cant negative relationship between the knowledge-

Table 9: Error category examples, blue text marks the
key parts of knowledge definition and red text indicates
the error reasons in responses returned by LLMs.

level accuracy at zero-shot performance and the E“"r g"ngt?dge Question Stem | LLM Response
. ype efinition
number of demonstrations suggested by FlexSDR. — — -

A . A . Restriction | Learn the | Fill in the | ...specifically "4
This fact indicates that FlexSDR learns to retrieve Dismiss | composition corresponding | tens and 7 ones.”
fewer demonstrations for knowledge points that of two-digit | two-digit num- | This directly aligns

. . numbers less | ber based on 4 | with type 2 of the

already perform well with no demonstration sam- P
) . than or equal to | tens and 7 ones. | common related
ples. Such a phenomenon provides evidence that 20 (how many question types as
FlexSDR learns how to provide an adaptive number tens and h"“)’ Euﬂmle‘; md ﬁ‘h?
K . many ones). nowledge defini-
of demonstrations to different knowledge concepts. Common tion: "Fill in the
related ... corresponding two-
G Error Analysis digit number based
on the combination
To further enhance the depth of our studies, we %i;f;irind Onf;s
sample error samples and categorize the common question is relevant
errors into four categories: restriction dismiss, con- L" ‘iled provided

.. . . nowledge.
cept misinterpretation, wrong fact, and task distrac-

. il 1 . . Concept Learn to com- | Arrange 2.4, | ..However, the
tion. Detailed explanations and representative error Misin- pare the size | 0.9, 1.7, 1.5, | numbers pre-
examp]es for each category are shown in Tab. 9. tepreta- relationship and 0.4 from | sented in the

tion between one- | small to large: | <Question>include
digit decimals. . decimals greater
H Perform FlexSDR on GSMSK Related ques. than one (specifi
. tion types cally, 2.4), which
To demonstrate the generous capability of FlexSDR include the do ot fall under
in dealing with the demonstration selection task, we following:... the category of
. "one-digit deci-
conduct experiments over the GSM8K dataset. Our mals” i s defined
experiment on GSM8K compares the effectiveness in the <Knowl-
of different retrieving algorithms in helping LLMs f}?g”' tTltlereff‘:;e’
K K e content of the

generate correct solutions to questions GSMS8K, <Question>does
and we test all the models using the standard test not align with the

. criteria specified in
split of GSMS8K. The metric in this experiment is the <Knowledge>.
solution accuracy. From Tab. 8, we can see that Wrong | ..Common First, find the | The <Ques.
FlexSDR consistently outperforms the other retriev- Facts related question | sum of 23, 35, | tion>involves
ers by using fewer demonstrations. Based on this types include | and 42. Next, | calculating the sum

R the following: | find the sum of | of three numbers

fact, we demonstrate the general effectiveness of (1) Calculate | the tens digits | (23, 35, and 42)
FlexSDR in generous few-shot learning scenarios. addition or sub- | of - the three | .. This question
traction of three | numbers and | aligns with part

. . . tens; (2) After | the initial sum. | (2) of the <Knowl-

Table 8: Comparison between different retriever over calcul;flti)ng an | What is the (ed)ge> where it
GSMBSK dataset. The best performance of each metric addition or sub- | final sum? involves calculating
with different models is marked with bold, and the sec- traction of three the sum of three
ond best one is marked with underline. single-digit single-digit num-
numbers, ... bers (here, the tens

digits of 23, 35, and

Model Retriver Demonstration Size Accuracy 42)and...

Random 4 72.86 Task Dis- | Learn the | If the numera- To determine if the
Heuristic 4 73.39 traction rbelationship . tor of é ir;— ;talnement is trl;e or
" etween the creases y , alse, we need to
GPT-Base QRERIIDIE & [ERe changes in the | the denomina- | evaluate the situa-
RetICL 4 74.60 numerator and | tor should be in- | tion described in the
FlexSDR 1.85 76.95 denominator creased by 6 to | question about the
Random 4 92.04 of a fraction | keep the size of | fraction %...Thus,
Heuristi 4 92‘1 9 while keep- | the fraction un- | the claim that "the
CIEBIE : ing the value | changed. . | denominator should
GPT-Large PromptPG 4 9272 unchanged. (True or false) | be increased by 6 to
RetICL 4 92.80 Common re- keep the size of the
FlexSDR 1.84 93.10 lated question fraction unchanged"

types include is false. <No>

the following:

14

	Introduction
	Related Work
	Knowledge Concept Tagging
	In-context Learning Retriever

	Method
	An Overview
	Zero-shot Pipeline
	Few-shot Pipeline
	FlexSDR
	Policy Network
	Learning Rewards

	Experiment
	Dataset Overview
	Baselines
	LLMs and FlexSDR Settings
	Zero-Shot and Naive Few-Shot Results
	Retriever Enhanced Few-shot Results
	Ablation Studies
	Case Studies
	General Application of FlexSDR

	Conclusion
	MathKnowCT Dataset
	LLMs Implementation
	FlexSDR Implementation
	Ablation Study
	Instruction Prompt Engineering
	Case Study
	Error Analysis
	Perform FlexSDR on GSM8K

