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Abstract

Knowledge tagging for questions plays a cru-001
cial role in intelligent educational applications.002
Traditionally, these annotations are always con-003
ducted by pedagogical experts, as the task re-004
quires deep insights into connecting question-005
solving logic with corresponding knowledge006
concepts. With the recent emergence of ad-007
vanced text encoding algorithms, such as pre-008
trained language models (PLMs), many re-009
searchers have developed automatic knowledge010
tagging systems based on deep semantic em-011
beddings. In this paper, we explore automating012
the task using Large Language Models (LLMs),013
in response to the inability of prior encoding-014
based methods to deal with the hard cases015
which involve strong domain knowledge and016
complicated concept definitions. By showing017
the strong performance of zero- and few-shot018
results over math questions knowledge tagging019
tasks, we demonstrate LLMs’ great potential in020
conquering the challenges faced by prior meth-021
ods. Furthermore, by proposing a reinforce-022
ment learning-based demonstration retriever,023
we successfully exploit the great potential of024
different-sized LLMs in achieving better per-025
formance results while keeping the in-context026
demonstration usage efficiency high1.027

1 Introduction028

Knowledge tagging aims to generate a precise029

knowledge index to educational materials. It has030

been recognized as an important factor of current031

intelligent education systems in providing high-032

quality educational content to educators and learn-033

ers during the practice (Chen et al., 2014). For034

example, with well-annotated education materials,035

teachers can enjoy great conveniences in organiz-036

ing coursing content through searching concept037

keywords index (Sun et al., 2018). Among the tag-038

ging objects, concept tagging over math questions039

1Data and code is available in https://anonymous.
4open.science/r/KnowTS-0563

has attracted greatly attention because of the recent 040

successes of applying intelligent tutoring systems 041

(ITS) in mathematical education (Burns and Capps, 042

2013). Traditionally, the questions’ concept tags 043

are annotated by the pedagogical experts. However, 044

the rapid growth of the Internet has caused conven- 045

tional manual methods to be insufficient to meet 046

the demand for handling large volumes of online 047

question data or updating existing concept tags in 048

a timely fashion. 049

To solve the above issues, existing works (Sun 050

et al., 2018; Zhang et al., 2021) have tried to au- 051

tomate the tagging process with different natural 052

language processing (NLP) algorithms. For exam- 053

ple, Du et al. (2021) use text embedding techniques 054

to convert the knowledge definitions and question 055

stems into dense vectors, and then train machine 056

learning classifiers based on the embedding similar- 057

ities. However, such practice focuses only on com- 058

paring the explicit text semantic information but 059

dismisses the implicit relationship in question solu- 060

tions and knowledge concepts. It can cause unsatis- 061

factory performance when faced with complicated 062

knowledge descriptions and questions. One recent 063

study attempts to improve the tagging performance 064

by leveraging pre-trained language models (PLMs) 065

and fusing external information, such as solution 066

text and conceptual ontology, with original ques- 067

tion contents during the judging process (Huang 068

et al., 2023a). Although this new trial demonstrates 069

its effectiveness in solving the challenges faced 070

by prior embedding-based methods, it introduces 071

additional data requirements, e.g., complementary 072

solution text to questions and conceptual ontology 073

information between knowledge concepts, to the 074

knowledge tagging model, which restrict the wide 075

applications of the algorithm to questions with lim- 076

ited external resources. 077

In this work, we propose a novel knowledge 078

tagging framework KnowTS. It can leverage the 079

advanced mathematical and logical inference capa- 080
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bilities (Achiam et al., 2023) of LLMs to enable081

knowledge tagging with only knowledge definition082

text. In addition, owing to the strong in-context083

learning ability of LLMs, KnowTS has the poten-084

tial to be swiftly applied with a few annotation085

samples, setting it apart from all previous training-086

based algorithms. This feature allows KnowTS to087

be rapidly adapted for annotating works encom-088

passing nearly all knowledge concepts and ques-089

tions. Furthermore, due to the huge performance090

gap among using different sets of demonstration091

samples (Wang et al., 2023), we propose a novel re-092

inforcement learning (RL) based demonstration re-093

triever focusing on dynamically providing flexible094

lengths of demonstration samples to every question095

knowledge matching queries. To validate the effec-096

tiveness of KnowTS, we experiment with an expert-097

annotated knowledge concept question dataset col-098

lected from a public K-12 education platform. Ex-099

perimental results demonstrate that KnowTS can100

achieve the best in-context learning performance101

while using fewer demonstrations.102

2 Related Work103

2.1 Knowledge Concept Tagging104

The major challenge of knowledge tagging tasks105

is how to construct a meaningful link in between106

the knowledge concepts and the problems, either107

through the description of the problem themselves108

or through solutions. The task formulation can109

primarily be categorized into two directions: re-110

trieval and matrix decomposition. The former re-111

lies heavily on training a semantic representation.112

Sun et al. (2018) employs simple backbone mod-113

els such as long short-term memory (LSTM) and114

some attention mechanisms to learn short-range115

dependency embeddings, where the questions are116

fed into LSTM layers and are ultimately connected117

to cross-entropy functions that indicate whether or118

not a tagging concept belongs to a given problem.119

Liu et al. (2019a) devised an exercise-enhanced120

recurrent neural network with Markov property121

and Attention mechanism to extract rich knowl-122

edge concepts information in the exercise’s content.123

Similarly but with enriched data source such as text,124

multi-modal data (Yin et al., 2019) as well as latex125

formula combined data (Huang et al., 2021), seman-126

tic representations learned with LSTM have been127

improved to capture more implicit contexts. Huang128

et al. (2020) fills knowledge graph information into129

the embedding layers and achieves better mathe-130

matical semantic understanding. To take advantage 131

of the robust transformers framework, Zemlyan- 132

skiy et al. (2021) pretrained a BERT model to learn 133

jointly predicting words and entities as movie tags 134

given the reviews of movies. Huang et al. (2023b) 135

proposes an improved pretrained bidirectional en- 136

coder representation from transformers (BERT) for 137

concept tagging with both questions and solutions. 138

2.2 In-context Learning Retriever 139

Few-shot in-context learning (ICL) is the ability 140

of large language models (LLMs) to perform a 141

new task when a few input-output examples or 142

demonstrations for the new task are given along- 143

side the actual task input (Brown et al., 2020). Im- 144

portantly, the model parameters do not have to be 145

fine-tuned towards the new task. However, the per- 146

formance of ICL varies significantly based on the 147

choice of demonstrations (Wang et al., 2023; Chen 148

et al., 2024, 2023). In order to keep the stability 149

of ICL performance and exploit the potential of 150

LLMs, many ICL methods have been proposed 151

in recent studies. Rubin et al. (2021) investigated 152

using SBERT (Reimers and Gurevych, 2019) em- 153

beddings for demonstration retrieval and show that 154

retrieving demonstrations based on SBERT em- 155

beddings often provides a boost in performance 156

compared to zero-shot or random few-shot selec- 157

tion. Liu et al. (2021) found that fine-tuning pre- 158

trrained language models on task-related datasets 159

offered further empirical gains. Besides using em- 160

bedding to recall relevant demonstrations, recent 161

works tried to build a proxy scoring model to score 162

each candidate’s demonstration. Then, a retriever is 163

trained, which separates top-score examples from 164

bottom-score examples (Rubin et al., 2021). At last, 165

Scarlatos and Lan (2023) and Lu et al. (2022) di- 166

rectly use response correctness as the reward func- 167

tion and train policy network with RL-method to 168

decide the best demonstration for different samples 169

dynamically. 170

3 Method 171

Before diving into the details of the method, we 172

first give a formal problem definition to the knowl- 173

edge tagging task as follows: Given a pair of knowl- 174

edge definition text k and a question’s stem text q, 175

the objective of a concept tagging model is to pro- 176

duce a binary judgment y ∈ {0, 1}, where 1 means 177

k and q are matching, 0 otherwise. In the follow- 178

ing subsections, we first present an overview of our 179

proposed framework, KnowTS. Then, we introduce 180
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Knowledge Definition: Learn the relationship between the changes 
in the numerator and denominator of a fraction while keeping the 
value unchanged ... and division operations between integers.

Large Language Models
(LLMs)

Demonstration 
Retriever (FlexSDR)

Knowledge Definition

Unlabeled Sample: Fill it out. 8 square meters = ____ square 
decimeters; 6 square decimeters = ____ square centimeters; 70,000 
square centimeters = ____ square meters.

Test Sample

Question: Fill it out. 8 square meters = ____ square decimeters; 6 
square decimeters = ____ square centimeters; 70,000 square 
centimeters = ____ square meters. 
Expert Judgement: 
...

Demonstration Sample

Zero-shot Prompt

Few-shot Inference

Zero-shot Inference

Figure 1: An overview of the workflow of the proposed KnowTS system.

details about the implementations of KnowTS with181

zero-shot and few-shot inference pipelines. Lastly,182

to further boost the performance of KnowTS with183

demonstration samples, we propose FlexSDR, an184

RL-based retriever algorithm, to achieve efficient185

and high-performance knowledge tagging.186

3.1 An Overview187

An overview of KnowTS is demonstrated in Fig. 1.188

It consists of three key components: (1) zero-shot189

inference, (2) few-shot inference, and (3) adap-190

tive demonstration retriever. Each component in191

KnowTS plays different roles to accommodate dif-192

ferent knowledge tagging scenarios. When there193

is no available annotated data, KnowTS will lever-194

age a zero-shot pipeline to generate the judgment195

directly. And, when there are limited available196

demonstration examples, KnowTS will use the few-197

shot inference via its in-context learning capability.198

When the demonstration samples are needed to199

select for demonstration, KnowTS will utilize a200

demonstration retriever to adaptively select effec-201

tive demonstrations for different (k, q) pairs.202

3.2 Zero-shot Pipeline203

One key difference between KnowTS and other204

prior machine learning models is its strong perfor-205

mance while facing limited or even no annotated206

data for each knowledge k. Such advantages con-207

tribute to the powerful zero-shot inference capa-208

bility of LLMs, which is empowered by its huge209

size model parameter and the extensive pre-training210

on diverse and vast datasets. Prior studies by Wei211

et al. (2021) demonstrate that LLMs have strengths212

in comprehending instructions in natural language213

and applying learned knowledge to new problems214

with limited or even no training data specific to215

these tasks. In our problem, we leverage this capa-216

bility by composing a zero-shot prompt as follows:217

we first describe the goal of the tagging task as218

"You are a knowledge concept annotator. Your job 219

is to judge whether the <Question> is concern- 220

ing the <Knowledge>." Then, for the convenience 221

of the processing procedure, we add a response 222

format instruction in the prompt: "The judgment to- 223

ken: <Yes> or <No> should be provided at the end 224

of the response." At last, as the prior studies like 225

Chain-of-Thought (COT) (Wei et al., 2022) have 226

discovered, instructing LLMs to generate step-by- 227

step problem-solving solutions will be helpful for 228

the LLMs to draw the correct conclusions, we ask 229

LLMs to not only provide their positive or negative 230

predictions but also present the reason at first: "You 231

should first provide the reasons before giving your 232

judgement." The detailed zero-shot task instruction 233

prompt engineering can be found in Appx. E. 234

3.3 Few-shot Pipeline 235

Although the zero-shot prompt provides a promis- 236

ing solution without using any annotated samples, 237

the knowledge definition text k may sometimes 238

not be specific enough for complicated judgments. 239

For instance, there is a knowledge concept named 240

consecutive carry in multiplication, which occurs 241

when the product of two digits, along with any 242

carry from the previous calculation, results in a 243

number greater than 9, thus requiring another carry 244

to be added to the next column in the calculation. 245

It is hard for many LLMs to catch that key point 246

during the judging process without any hints. To 247

overcome this problem, KnowTS can leverage a 248

few-shot inference pipeline when there are avail- 249

able demonstration samples associated with the 250

given knowledge k. Contributing to LLMs’ strong 251

in-context learning (ICL) capability, KnowTS can 252

imitate the judging logic of the given demonstra- 253

tions and achieve significant performance gain even 254

with limited samples provided. Detailed compar- 255

isons between zero-shot and few-shot responses 256

are shown in Section 4.5. 257
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Figure 2: The framework of the proposed FlexSDR.

3.4 FlexSDR258

Although incorporating available demonstrations259

has the potential to bring LLMs performance gain260

compared to the zero-shot setting, the effective-261

ness of each demonstration varies (Liu et al., 2021).262

Moreover, different input pairs (k, q) may prefer to263

different combinations of demonstrations. To fully264

exploit the potential of KnowTS, we propose a re-265

inforcement learning (RL) based demonstration se-266

lection method, termed Flexible Sequential Demon-267

stration Retriever (FlexSDR), aiming to help LLMs268

exploit their potential from the demonstration sam-269

ples while keeping only the necessary demonstra-270

tions as input for each input query. Formally, we271

define the key components of Markov Decision272

Process (MDP) in our problem as follows: Given273

the t step’s status st = {k, q, e1, .., et−1}, where274

(k, q) are the input knowledge and question pair275

and ei|1≤i≤t−1 are the demonstrations selected in276

prior t − 1 steps, we hope to use the policy π to277

generate the subsequent action at, which selects278

one demonstration sample et ∈ ED, where ED is279

the demonstration bank or choose the stop signal280

eE . This process’s reward is finding the best demon-281

stration sequence (action trajectory τ ) which helps282

LLMs correctly judge the knowledge matching283

(k, q) while keeping the |τ | small. To be noticed284

although there are several RL-based methods, we285

point out that FlexSDR has its novelty in two per-286

spectives: (1) we introduce the "early stop" option287

to each interactive step and use the stop bonus re-288

ward to guide the policy network π to learn when to289

stop during the reinforcing process. With such de-290

sign, FlexSDR avoids retrieving redundant demon-291

strations because of the prefixed demonstration size292

parameter and reduces the risk of sub-optimal few-293

shot inference performance (Zhao et al., 2023);294

and (2) We incorporate each intermediate step as295

an individual training sample and help the policy 296

network learn to conduct the best action decision 297

based on each step’s response correctness status. 298

More details about the effectiveness of each design 299

are discussed in Sec 4.6. In the following subsec- 300

tions, we introduce both the policy network and 301

reward design of FlexSDR in details. 302

3.4.1 Policy Network 303

Firstly, we define the policy network as πθ, and 304

the policy execution process is to select an ac- 305

tion at from the probability distribution calcu- 306

lated by πθ(a|st). As the action space for our 307

policy network is decided by the demonstration 308

bank ED, we decompose πθ into two components 309

πθ = G(F(st), [ED∥eE ]), where F is a status en- 310

coder function that converts the sequential based 311

status variable st into a status vector ht. G is an 312

action function that calculates each action score for 313

each available demonstration sample. [·∥·] is the 314

concatenation operation, and eE is the early stop 315

option. Following the prior work’s setting (Scar- 316

latos and Lan, 2023), we choose to use the long 317

short-term memory (LSTM) model (Graves and 318

Graves, 2012) as F and a bilinear transformation as 319

G. Overall, the policy execution process is shown 320

as the right part of Fig. 2, where the input (k, q) 321

pair is first encoded and used as the initial inputs 322

for F . Then, the tth-step hidden state output ht 323

is used by G to calculate the selection score for 324

each available demonstration and the early stop op- 325

tion. After that, the action at will be selected based 326

on the scores. If the demonstration is selected, it 327

will be appended to the prompt and interact with 328

LLMs to calculate the t-th step reward score. The 329

process ends whenever the early stop option is hit 330

or reaches the max-allowed length. Formally, the 331
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(a) R(τ) with γ ∈ (0, 1) (b) R′(τ) with ω = 1, γ ∈ (0, 1)

Figure 3: Return functions w/o and w/ stop bonus reward where T = 2.

procedure can be defined as follows:332

xe = E(e), xk = E(k),333

xq = E(q), XED = E(ED),334

ht = F(st) = LSTM(h0;xe1 , ..., xet−1),335

h0 = tanh(W0[xk∥xq] + b0),336

πθ(a|st) = Softmax(G(·)),337

G(ht, [XED∥xxE ]) = htWa[XED∥xxE ]
T338

where xe, xk, xq are the encoding results of knowl-339

edge text, question text, and demonstration text. E340

is the pre-trained text encoding model. W0 and341

b0 are the parameters of knowledge and question342

information fusing layer, and Wa is the parameter343

of bilinear transformation.344

3.4.2 Learning Rewards345

To train the policy network πθ, we use the proximal346

policy optimization (PPO) method (Sutton and347

Barto, 2018). To be specific, we define the step-348

wised reward function of FlexSDR as follows:349

rt = EVAL(ŷt, y), rt ∈ {−1, 1} (1)350

where EVAL is the evaluation function that com-351

pares the judgment response by LLMs ŷ =352

LLM(k, q, e1, ..., et) with the expertise judgment353

y. If the two judgments are the same, the reward354

for timestep t will be +1. Otherwise, the reward355

value will be −1. For early-stop actions eE , we356

calculate its correctness based on its most recent357

step. This reward design differs from previous358

RL-based retriever training algorithms (Scarlatos359

and Lan, 2023), which calculate the reward only at360

the final timestep T . At this point, the size of the361

retrieved demonstration reaches its maximum al-362

lowable limit. For FlexSDR, we calculate rewards363

rt for all the timesteps and use the discounted tra-364

jectory return R(st, at) = rt + γR(st+1, at+1),365

where γ ∈ (0, 1) is the discount factor, to calculate 366

the action returns along the trajectory τ , presented 367

in left part of Fig. 2. The final goal of our optimiza- 368

tion is to maximize the expectation return of the 369

trajectory τ generated by the iterative execution on 370

the optimized policy network πθ: 371

Jθ = Eτ∼pπθ (τ)
[ΣtR(st, at)] (2) 372

As the instant reward rt can only be two values -1 373

or +1, and the maximum length of allowed demon- 374

stration for RL-based retriever training is limited, 375

we enumerate all the possible cases for different 376

types of correctness status across the fixed length 377

trajectory (T = 2) in Fig 3a. By viewing the corre- 378

sponding rewards for different trajectories, we can 379

have the following observation: (1) due to the ex- 380

isting discount factor γ, the trajectory with earlier 381

steps approaching the correct response will tend to 382

have a higher reward: ([×],✓,✓) > ([×],×,✓), 383

which encourages the policy network to find the 384

most valid demonstration at each iteration; (2) 385

when the policy makes an error attempt at the fu- 386

ture steps, its return R(τ) will be decreased, e.g., 387

([×],✓,✓) > ([×],✓,×), this instructs the pol- 388

icy network to avoid appending the inappropriate 389

demonstrations. In addition to the correct reward, 390

we introduce another "stop bonus" reward r′t to 391

each time step: 392

r′t =

{
0, at ̸= eE

rt−1, at = eE
(3) 393

The bonus added trajectory return can be written 394

as R′(st, at) = (rt + ω ∗ r′t) + γR′(st+1, at+1), 395

where ω is a weight parameter balancing the in- 396

fluence of the stop bonus to the final returns. 397

The stop bonus trajectory reward function is plot- 398

ted in Fig 3b. From the plot, we can observe 399

that R′(τ) with the earlier correct stop action 400
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(T, S) will receive a higher return compared to401

the ones with keeping selecting the demonstra-402

tions: ([✓],−,−) > ([✓],✓,−) > ([✓],✓,✓).403

This reward design will encourage the policy net-404

work to stop early when the correct response is405

met. For the case when the stop action is given406

after an error attempt, the return will be penalized:407

([×],−,−) < ([×],×,−) < ([×],×,×), since it408

stops exploring the other possibility for finding the409

correct response.410

4 Experiment411

In this section, we conduct experiments to validate412

the effectiveness of each component in KnowTS.413

Through the experiments, we aim to answer the414

following research questions:415

• RQ1: Can KnowTS outperform prior methods416

while facing limited or even no annotated data?417

• RQ2: Can FlexSDR further boost the few-shot418

pipeline while using fewer demonstrations com-419

pared to the other RL-based Retrievers?420

• RQ3: Are components of FlexSDR effective?421

4.1 Dataset Overview422

To answer the research questions above, we col-423

lect a knowledge concept tagging dataset, Math-424

KnowCT, from an online K-12 math education425

platform. The dataset consists of 24 knowledge426

concepts, spreading from the math concept learn-427

ing goal of Grade 1 to Grade 6 students. For each428

knowledge concept, we collect 100 candidate ques-429

tions from an unlabeled question database with430

the highest text embedding similarity and then ask431

at least two pedagogical experts to conduct the432

matching annotations. The ratio between matching433

and mismatching categories of the whole dataset is434

around 1:4. More details about the dataset statistics435

and knowledge concept definitions can be found436

from Tab. 5 in Appendix A. Before the experiment,437

we first split 5 positive samples and 5 negative438

samples for each knowledge concept as the train-439

ing (demonstration) set. For each sample in the440

training (demonstration) set, we ask a pedagogical441

expert to complete the reasons for the judgment.442

4.2 Baselines443

To answer RQ1, we prepare baseline models as444

follows:445

• Embedding Similarity: we first use two high-446

performed long text encoding models, sentence-447

BERT(S-BERT) (Reimers and Gurevych, 2019)448

and text-embedding-3-small 2, to encode both k 449

and q into dense embedding vectors xk and xq 450

and we calculate the cosine similarity between 451

them. The judgment of each test sample is de- 452

termined by the top-K selection or similarity 453

threshold η comparisons. The value of hyper- 454

parameter K and η is determined by performing 455

a grid search on test data. 456

• PLM Fine-tuning: We add a binary classifi- 457

cation layer to the top of <BOS> tokens out- 458

puts and fine-tune the parameter of the whole 459

model with the binary entropy loss calculated 460

on the samples in the training set. The PLMs 461

we use in our experiment include BERT (De- 462

vlin et al., 2018), T5 (Raffel et al., 2020), and 463

RoBERTa (Liu et al., 2019b) and the learning 464

rate during the fine-tuning process is tuned from 465

1e-3 to 1e-5. 466

To answer RQ2, we compare it with two prior 467

SOTA RL-retrievers. 468

• PromptPG (Lu et al., 2022): We implement 469

PromptPG from the public available source code 470
3. During the retrieval process, we input the 471

embedding of both input and demonstration 472

into the retriever and optimize the policy net- 473

work with the REINFORCE policy gradient algo- 474

rithm (Williams, 1992) suggested by the paper. 475

• RetICL (Scarlatos and Lan, 2023): RetICL can 476

be viewed as a special case of FlexSDR, where 477

no early stop is added to the demonstration se- 478

lection space, decay factor γ is set to 1 during 479

the training, and the reward loss will only be 480

calculated for the last step T ’s result, we imple- 481

ment the algorithm based on changing the setting 482

parameter of FlexSDR. 483

4.3 LLMs and FlexSDR Settings 484

To validate the generosity of our proposed algo- 485

rithm, we experiment with 3 representative LLMs 486

frameworks including GPT (Brown et al., 2020), 487

LLAMA3 (Touvron et al., 2023), Mistral and Mix- 488

tral (Jiang et al., 2024). Details about LLM’s imple- 489

mentation can be found in Appendix B. During the 490

implementation of FlexSDR, we employed training 491

tricks, such as actor-critic optimization (Konda and 492

Tsitsiklis, 1999), off-policy learning to improve 493

convergence of the training process and data usage 494

efficiency during the training. More details about 495

FlexSDR settings are presented in Appendix C. 496

2https://platform.openai.com/docs/guides/
embeddings/embedding-models

3https://github.com/lupantech/PromptPG
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Table 1: Comparison between PLM Embedding Similarity, PLM Fine-tune, LLM 0-shot Inference. The best result
under the comparable settings is marked with underline, and the best result among all settings is marked with bold.

Metric
Model
Size

Human
Expert

K / Q Similarity Q / Q Similarity PLM Fine-tune LLM Zero-Shot

GPT-Embed SBERT GPT-Embed SBERT BERT RoBERTa T5 GPT Llama-3 Mixtral

Accuracy
Base 91.75 67.43 79.90 78.52 63.58 58.45 35.51 77.18 75.30 58.44 68.60
Large - - - - - 76.64 79.08 79.55 89.00 68.14 74.73

Precision
Base 88.86 52.68 67.66 67.51 49.10 44.03 35.51 64.70 60.09 46.18 53.87
Large - - - - - 63.02 72.61 71.45 78.38 52.58 59.89

Recall
Base 88.16 75.27 82.39 75.40 87.63 62.77 100.0 78.63 89.25 92.37 89.74
Large - - - - - 82.80 65.94 70.62 95.03 98.79 85.89

F1
Base 88.51 61.98 74.30 71.24 62.93 51.75 52.41 70.99 71.82 61.58 67.32
Large - - - - - 71.57 69.12 71.03 85.91 68.63 70.57

Table 2: Comparisons between LLM 2-Shot and 4-Shot Inference. The best result under the comparable settings is
marked with underline, and the best result among all settings is marked with bold.

Metric
Model
Size

2-Shot 4-Shot

Random Heuristic Random Heuristic

GPT Llama-3 Mixtral GPT Llama-3 Mixtral GPT Llama-3 Mixtral GPT Llama-3 Mixtral

Accuracy
Base 76.01 75.64 78.72 72.50 73.15 81.15 77.95 79.25 81.33 79.56 80.74 80.62
Large 89.45 83.45 80.84 90.10 84.26 80.23 90.40 88.00 84.31 91.11 88.57 84.06

Precision
Base 60.33 60.59 65.11 57.22 58.47 68.86 62.65 64.91 68.44 64.98 67.52 67.94
Large 79.86 69.16 67.67 81.86 70.98 67.64 82.56 76.03 73.18 83.86 77.91 73.35

Recall
Base 93.41 89.82 86.31 87.37 84.14 85.64 92.88 90.48 87.98 91.26 88.15 85.98
Large 93.99 95.83 87.50 92.65 93.68 84.27 92.49 96.37 87.63 92.82 94.35 87.63

F1
Base 73.31 72.36 74.23 69.15 68.99 76.34 74.82 75.59 76.99 75.91 76.47 75.90
Large 86.35 80.34 76.32 86.92 80.76 75.04 87.24 85.00 79.76 88.11 85.35 79.86

4.4 Zero-Shot and Naive Few-Shot Results497

In this section, we answer RQ1 with comparisons498

between prior machine learning algorithms, includ-499

ing embedding similarity, PLM fine-tuning, and500

LLM-based methods, e.g., 0-shot, 2-shot, 4-shot in-501

ference. From Tab. 1, we can observe that the prior502

methods present acceptable performance. How-503

ever, the performance of most of these methods got504

trapped at around 71% F1-score. For LLM-based505

methods, we can find even under the zero-shot506

setting, some of the large-sized ones, e.g., GPT-507

4-turbo, present extremely strong task-solving ca-508

pability and achieving 85.9% F1 results, outper-509

forming the non-LLM methods by a great margin.510

This observation proves our hypothesis that con-511

tributes to the broad prior knowledge (math con-512

cepts) learned during the pre-training phase and513

strong problem-solving skills taught in the instruc-514

tion tunning stages, LLMs are good tools for knowl-515

edge tagging tasks with limited or even no anno-516

tation data. The result presented in Tab. 2 demon-517

strates the advantages of LLMs in-context learning518

capability. With the introduction of only 2 to 4519

demonstration samples, most LLMs can achieve520

significantly better performance compared to the521

zero-shot cases, and LLMs with lower performance522

in zero-shot, e.g., Llama-3-70B, receive the perfor- 523

mance boost by 10%. Such observation suggests 524

the great potential of LLM-based algorithms in gen- 525

erating high-performed knowledge tagging results 526

with sufficient demonstration samples. 527

4.5 Retriever Enhanced Few-shot Results 528
In this section, we answer RQ2 by presenting the 529

comparisons between FlexSDR and other base- 530

lines in Tab. 3. From the table, we observe that 531

FlexSDR constantly bring further boosts to the few- 532

shot learning performance compared to the naive 533

few-shot learning results in Tab. 2. Apart from that, 534

as FlexSDR is designed with the early stop mech- 535

anism, the average demonstration length used in 536

few-shot learning FlexSDR is always less than the 537

max-shot size. From the table, we find FlexSDR 538

uses 25% less demonstrations for its few-shot learn- 539

ing inference, which achieves our goal of providing 540

fewer demonstrations but better performance. At 541

last, by observing the positive relationship between 542

the proportional performance gain and length in- 543

crease between 2 and 4 max shots scenarios, we 544

conclude that FlexSDR learns the correct time to 545

end the retrieval process and adaptive incorporates 546

the best demonstration for a good marginal perfor- 547

mance gain. 548
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Table 3: Comparisons between three RL-based retrievers on three LLMs. The best result under the comparable
settings is marked with underline, and the best result among all settings is marked with bold. The number in
(parentheses) for FlexSDR is the mean demonstration size the retriever decides.

Metric
Max-Shot

Size
GPT Base (GPT-3.5-turbo) Llama-3 Base (Llama-3-8B) Mixtral Base (Mistral-7B)

PromptPG RetICL FlexSDR PromptPG RetICL FlexSDR PromptPG RetICL FlexSDR

Accuracy
2 77.32 80.36 81.21 (1.38) 78.75 81.02 81.50 (1.55) 79.03 80.83 82.92 (1.78)
4 80.74 81.97 84.35 (2.10) 82.26 82.83 84.54 (3.65) 82.16 84.16 84.35 (2.82)

Precision
2 62.79 66.99 69.12 (1.38) 65.00 68.15 69.64 (1.55) 66.13 69.69 70.83 (1.78)
4 66.42 69.23 72.92 (2.10) 68.81 69.78 72.46 (3.65) 69.75 74.26 74.05 (2.82)

Recall
2 91.05 89.74 86.58 (1.38) 88.95 88.95 86.32 (1.55) 85.79 82.89 89.47 (1.78)
4 94.21 90.00 90.00 (2.10) 92.89 92.37 92.21 (3.65) 89.21 85.79 87.11 (2.82)

F1
2 74.33 76.72 76.87 (1.38) 75.11 77.17 77.09 (1.55) 74.68 75.72 79.07 (1.78)
4 77.91 78.26 80.57 (2.10) 79.06 79.50 81.11 (3.65) 78.29 79.61 80.05 (2.82)

4.6 Ablation Studies549

To answer RQ3, we ablate the intermediate reward550

design from FlexSDR and name the new model551

as FlexRetICR. From the performance comparison552

between the three models, shown as in Fig. 5 in553

Appx. D, we observe that FlexRetICR outperforms554

RetICR in 4 out of 6 cases. It indicates that intro-555

ducing early stop rewards not only helps to use less556

demonstrations but also could be beneficial to the557

final performance. Finally, by comparing FlexSDR558

with the other two RL-Retrivers, we find that it559

achieves the best performance in 5 out of 6 scenar-560

ios, which proves the effectiveness of the step-wise561

reward design. More details about our ablation562

study implementation can be found in Appx. D.563

4.7 Case Studies564

In addition to RQs above, we further conduct565

experiments to study behaviors of FlexSDR and566

KnowTS. First, we present FlexSDR’s behavior567

while facing to knowledge concepts with differ-568

ent zero-shot accuracy. The negative relationship569

between zero-shot performance and number of570

demonstrations retrieved in Fig. 6 in Appx. F indi-571

cates that FlexSDR learns to retrieve fewer demon-572

strations for knowledge points that already perform573

well with no demonstration samples. Second, we574

categorize the error cases of KnowTS into four ma-575

jor types in Tab. 9 in Appx. G. By analyzing each576

error type, we conclude that errors, such as restric-577

tion dismiss, task distraction, are related with the in-578

struction following issue of LLMs, which indicates579

the knowledge tagging specific instruction-tuning580

could be a potential way to further improve the581

performance of KnowTS. Besides, concept misin-582

terpretation is caused by hallucination shortages of583

LLMs. To mitigate that, injecting authentic knowl-584

edge definition with retrieval augmented generation585

(RAG) (Gao et al., 2023) will be a good solution.586

At last, the wrong fact errors reflect LLMs’ weak- 587

ness in deal with quantity constraints, and the re- 588

cent emerging tool-use LLMs (Zhuang et al., 2024) 589

will be a promising improvement direction. 590

4.8 General Application of FlexSDR 591

To explore the general effectiveness of FlexSDR 592

in other few-shot learning scenarios, we applied 593

it with dataset GSM8K (Cobbe et al., 2021). Our 594

experiment compares the effectiveness of different 595

retrieving algorithms in helping LLMs generate 596

correct solutions to questions, and we test all the 597

models using the standard test split of GSM8K. 598

The metric in this experiment is solution accuracy. 599

From Tab. 8 in Appx. H, we can find FlexSDR 600

always outperforms the other retrievers while us- 601

ing fewer demonstrations. Based on this fact, we 602

demonstrate the effectiveness of FlexSDR in gener- 603

ous few-shot learning scenarios. 604

5 Conclusion 605

In this paper, we present, KnowTS, a LLMs based 606

knowledge-tagging system, which differs from 607

prior machine learning models in its strong per- 608

formance while facing limited or even annotated 609

data for knowledge-tagging tasks. Besides that, 610

we further propose a novel RL-based demonstra- 611

tion retriever, FlexSDR, focusing on dynamically 612

providing flexible lengths of demonstration sam- 613

ples to every question knowledge-matching query. 614

To validate the effectiveness of KnowTS, we ex- 615

periment with an expertly annotated knowledge 616

concept question dataset, MathKnowCT. The ex- 617

periment results demonstrate the effectiveness of 618

FlexSDR, which enables KnowTS to achieve the 619

best few-shot learning performance while using 620

fewer demonstrations. At last, through the ablation 621

study and case analyzing results, we demonstrate 622

the effectiveness of each component in FlexSDR. 623
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Limitation624

In this work, we explore the usage of LLMs for625

knowledge tagging task. Although we have suc-626

cessfully demonstrated that KnowTS is a powerful627

system for knowledge tagging task while compar-628

ing to the previous SOTA algorithms, especially629

facing to complicated tagging scenarios, we have630

to admitted that the computation resource consump-631

tion of KnowTS is relatively much larger than the632

traditional methods. During practice, we choose to633

integrate traditional method with the KnowTS and634

always use KnowTS for processing the challenging635

matching cases. Apart from that, in our error anal-636

ysis section, we observe KnowTS sometimes make637

simple errors during the judgement while dealing638

with complicated domain concepts or strict quantity639

constraint in math. To fully exploit the potential640

of LLMs on knowledge tagging, more complicated641

techniques like as RAG and Tool-use LLMs are642

also deserved to be explored in the future studies.643
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A MathKnowCT Dataset 814

The detailed statistics about MathKnowCT is 815

shown in Tabel 5. Overall, there are 2,349 samples 816

covering 24 knowledge concepts of math study for 817

student from Grade 1 to Grade 6. Some exampling 818

knowledge definitions and questions are presented 819

in Table 4. During the data collecting phase, we 820

first ask two pedagogical experts to annotate each 821

knowledge-question sample pair, and if a conflict 822

happens, we ask the third expert to give the final 823

judgment. The Cohen’s kappa value of the first 824

round of annotation is 0.9321, and about 3.1% of 825

samples are submitted to the third judger for annota- 826

tion. In Tab. 4, we present the example knowledge 827

concepts. Please find more details from the link. 828

B LLMs Implementation 829

To be noticed in this paper, we choose to experi- 830

ment only with each LLM’s instruct-tuned (chat- 831

tuned) version as we observe that the instruct- 832

tuned LLMs can better follow the given annotat- 833

ing instructions and generate the correct format 834
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Table 4: Example knowledge definitions

Knowledge ID Knowledge Definition

x01010201 Learn the definitions of following types
of numbers, including integers, odd num-
bers, even numbers, fractions, decimals,
positive numbers, negative numbers, and
natural numbers. Common related ques-
tion types include the following: (1) Select
a number of a specified type from a given
set of numbers; (2) Determine whether a
number is within the defined range; (3) De-
termine whether a proposition about the
classification of numbers is true.

x02040502 Learn the composition of two-digit num-
bers less than or equal to 100 (how many
tens and how many ones). Common re-
lated question types include the following:
(1) Convert a two-digit number into a com-
bination of tens and ones; (2) Fill in the
corresponding two-digit number based on
the combination of tens and ones.

x02061003 Learn to use 3 or 4 digits to form a three-
digit or four-digit number, and judge the
size relationship between the digits. Re-
lated question types are limited to the fol-
lowing: (1) Use 3 digits to form a three-
digit number smaller than a certain num-
ber. Find the total number of such three-
digit numbers, the largest number, and the
smallest number. Each digit can only be
used once in the combination process. (2)
Knowing that the sum of the digits in each
digit of a four-digit number is a certain
number, find the largest number and the
smallest number of this four-digit number.

x04030501 Learn to calculate the reciprocal of a num-
ber. Common related question types in-
clude the following: (1) Calculate the re-
ciprocal of one or more given numbers; (2)
Given an equation where the product of a
number and a blank is 1, find the value of
the number that can be filled in the blank.

x48040202 Learn how to estimate the total purchase
price of three items in a shopping scenario.
Common related question types include
the following: (1) Given the prices of three
items (each item can be a three-digit or
two-digit price), but at least one of the
items has a three-digit price, calculate the
approximate total purchase price of the
three items; (2) Calculate both the approx-
imate and exact total purchase price of the
three items;

Table 5: Detailed sample statistics for different knowl-
edge concepts in MathKnowCT.

Knowledge ID Total Size Positive Negative

x02030701 100 25 75

x02021101 100 40 60

x06020104 100 40 60

x02061003 100 16 84

x48040202 100 29 71

x11041602 100 24 76

x04030501 100 48 52

x04030601 100 23 77

x07010103 100 50 50

x06030101 100 44 56

x57130902 100 35 65

x20041003 62 50 12

x07020402 87 29 58

x07020502 100 50 50

x20050401 100 50 50

x09020509 100 50 50

x07020314 100 30 70

x01010201 100 50 50

x11040205 100 26 74

x11040203 100 22 78

x11040202 100 25 75

x02040502 100 44 56

x47060201 100 17 83

x20070401 100 47 53

Table 6: Details about LLM implementation in this
paper and source file links.

LLM Name Model ID

GPT-Large gpt-4-turbo-2024-04-09
GPT-Base gpt-3.5-turbo-0125

Llama3-Large Llama-3-70B-Instruct
Llama3-Base Llama-3-8B-Instruct
Mixtral-Large Mixtral-8x7B-Instruct-v0.1
Mixtral-Base Mistral-7B-Instruct-v0.2

Qwen1.5-Large Qwen1.5-72B-Chat
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responses. For each framework, we experiment835

with two-sized versions (small and large) and the836

prompt text is adjusted based on the preference of837

each LLM. We run our experiment with 8 * Nvidia838

A100 80G GPUs.839

C FlexSDR Implementation840

To implement FlexSDR, we choose to use a 2-layer841

LSTM with 64 hidden neurons for each layer, and842

the text encoder E is text-embedding-3-small, the843

early-stop bonus weight ω = 1. The discount844

factor γ = 0.99. To improve the convergence of845

the whole training process, we employ the actor-846

critic optimization framework (Konda and Tsitsik-847

lis, 1999) during training. We train the value func-848

tion estimator using mean squared error (MSE)849

based on each step’s hidden state V(ht), the weight850

for the loss of value function is set as 0.5. Besides,851

to further improve the data usage efficiency, we852

also incorporated off-policy learning epochs during853

the training, and the off-policy epochs we set in our854

experiment is 80. Finally, to encourage exploration855

during the reinforcement steps, we add the nega-856

tive entropy of the policy to each time step’s loss,857

and the weight is set as 0.01. During the inference858

time, we use the greedy decoding method at each859

timestep t, and once the early stop option is hit, the860

demonstration retrieval procedure stops.861

(a) R(τ) with γ ∈ (0, 1)

(b) R′′(τ) with ω = 1
2
, γ ∈ (0, 1)

Figure 4: Return functions w/o and w/ stop bonus re-
ward for FlexRetICR where T = 2.

(a) GPT-3.5-turbo

(b) Llama3-8B

(c) Mistral-7B

Figure 5: Performance of RetICL, FlexRetICL and
FlexSDR with different LLMs.

D Ablation Study 862

We ablate the intermediate reward design from 863

FlexSDR and name the new model as FlexRetICR 864

since it is similar to RetICL but can perform the 865

early stop action. We train FlexRetICR with both 866

rewards rt and r′t and set weight parameter ω = 1
T 867

since we do not want the accumulated stop bonus 868

reward to become larger than the correctness re- 869

ward. The return function R′′(τ) for this model 870

is shown as Fig. 4. For the fair comparison be- 871

tween FlexRetICR and RetICR, we set γ = 1 for 872

FlexRetICR. 873

The performance comparison between the three 874

models is shown as Figure 5. From the figure, we 875
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can observe that FlexRetICR outperforms RetICR876

in 4 out of 6 cases, which indicates that introducing877

early stop rewards not only helps to use less demon-878

strations but also could be beneficial to the final879

performance. Finally, by comparing FlexSDR with880

the other two RL-Retrivers, we find that it achieves881

the best performance in 5 out of 6 scenarios, which882

proves the effectiveness of the step-wise reward883

design.884

E Instruction Prompt Engineering885

During the initial explorations, we tried tuning the886

prompt for the task and decided to use the prompt887

presented in the paper based on their empirical888

performance. The prompts below are the three889

ones that we explored:890

• Type I (Naive Judgment): You are a knowl-891

edge concept annotator. Your job is to judge892

whether the <Question> is concerning the893

<Knowledge>. The judgment token: ’<Yes>’894

or ’<No>’ should be provided at the start of895

the response.896

• Type II (Judgment + Reason): You are a897

knowledge concept annotator. Your job is898

to judge whether the <Question> is concern-899

ing the <Knowledge>. The judgment token:900

’<Yes>’ or ’<No>’ should be provided at the901

start of the response. You should also provide902

the judging reasons for your judgment.903

• Type III (Reason + Judgment): You are a904

knowledge concept annotator. Your job is to905

judge whether the <Question> is concerning906

the <Knowledge>. You should first provide907

the judging reasons before giving your judg-908

ment. The judgment token: ’<Yes>’ or ’<No>’909

should be provided at the end of the response.910

In short, Type I prompt asks LLMs to provide911

judgment without providing a reason, and Type912

II prompt requests LLMs to provide both judgment913

and explanation, but the explanation is given after914

the judgment. Type III prompt instructs LLMs to915

give their judging reason before arriving at the final916

conclusion. The performance of the three types is917

shown in Tab. 7, and experiments are conducted us-918

ing zero-shot settings. Based on the results below,919

we chose Type III prompts as our default prompt920

for the following experiments in our paper.921

Table 7: Comparison between different instruction
prompts. The best performance of each metric with
different models is marked with bold, and the second
best one is marked with underline.

Model Prompt Accuracy Precision Recall F1

GPT-Base
Type I 70.21 55.24 91.58 68.91
Type II 63.28 49.50 91.05 64.13
Type III 76.28 61.73 90.00 73.23

Mixtral-Base
Type I 64.61 53.04 16.05 24.65
Type II 63.47 49.45 58.95 53.78
Type III 68.60 53.86 90.00 67.39

Llama-3-Base
Type I 63.95 50.00 0.26 0.52
Type II 58.63 46.48 97.37 62.93
Type III 67.17 52.71 87.11 65.67

(a) GPT-3.5-turbo

(b) Llama3-8B

(c) Mistral-7B

Figure 6: Zero-shot accuracy of different knowledge
concepts with corresponding demonstration numbers on
different LLMs. Each point in the figure represents a
knowledge concept.
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F Case Study922

From Figure 6, we observe that there is a signifi-923

cant negative relationship between the knowledge-924

level accuracy at zero-shot performance and the925

number of demonstrations suggested by FlexSDR.926

This fact indicates that FlexSDR learns to retrieve927

fewer demonstrations for knowledge points that928

already perform well with no demonstration sam-929

ples. Such a phenomenon provides evidence that930

FlexSDR learns how to provide an adaptive number931

of demonstrations to different knowledge concepts.932

G Error Analysis933

To further enhance the depth of our studies, we934

sample error samples and categorize the common935

errors into four categories: restriction dismiss, con-936

cept misinterpretation, wrong fact, and task distrac-937

tion. Detailed explanations and representative error938

examples for each category are shown in Tab. 9.939

H Perform FlexSDR on GSM8K940

To demonstrate the generous capability of FlexSDR941

in dealing with the demonstration selection task, we942

conduct experiments over the GSM8K dataset. Our943

experiment on GSM8K compares the effectiveness944

of different retrieving algorithms in helping LLMs945

generate correct solutions to questions GSM8K,946

and we test all the models using the standard test947

split of GSM8K. The metric in this experiment is948

solution accuracy. From Tab. 8, we can see that949

FlexSDR consistently outperforms the other retriev-950

ers by using fewer demonstrations. Based on this951

fact, we demonstrate the general effectiveness of952

FlexSDR in generous few-shot learning scenarios.953

Table 8: Comparison between different retriever over
GSM8K dataset. The best performance of each metric
with different models is marked with bold, and the sec-
ond best one is marked with underline.

Model Retriver Demonstration Size Accuracy

GPT-Base

Random 4 72.86
Heuristic 4 73.39

PromptPG 4 73.62
RetICL 4 74.60

FlexSDR 1.85 76.95

GPT-Large

Random 4 92.04
Heuristic 4 92.19

PromptPG 4 92.72
RetICL 4 92.80

FlexSDR 1.84 93.10

Table 9: Error category examples, blue text marks the
key parts of knowledge definition and red text indicates
the error reasons in responses returned by LLMs.

Error
Type

Knowledge
Definition

Question Stem LLM Response

Restriction
Dismiss

Learn the
composition
of two-digit
numbers less
than or equal to
20 (how many
tens and how
many ones).
Common
related . . .

Fill in the
corresponding
two-digit num-
ber based on 4
tens and 7 ones.

...specifically "4
tens and 7 ones."
This directly aligns
with type 2 of the
common related
question types as
outlined in the
knowledge defini-
tion: "Fill in the
corresponding two-
digit number based
on the combination
of tens and ones."
Therefore, this
question is relevant
to the provided
knowledge.

Concept
Misin-
tepreta-
tion

Learn to com-
pare the size
relationship
between one-
digit decimals.
Related ques-
tion types
include the
following:. . .

Arrange 2.4,
0.9, 1.7, 1.5,
and 0.4 from
small to large:
____.

...However, the
numbers pre-
sented in the
<Question>include
decimals greater
than one (specifi-
cally, 2.4), which
do not fall under
the category of
"one-digit deci-
mals" as defined
in the <Knowl-
edge>. Therefore,
the content of the
<Question>does
not align with the
criteria specified in
the <Knowledge>.

Wrong
Facts

...Common
related question
types include
the following:
(1) Calculate
addition or sub-
traction of three
tens; (2) After
calculating an
addition or sub-
traction of three
single-digit
numbers, ...

First, find the
sum of 23, 35,
and 42. Next,
find the sum of
the tens digits
of the three
numbers and
the initial sum.
What is the
final sum?

The <Ques-
tion>involves
calculating the sum
of three numbers
(23, 35, and 42)
...This question
aligns with part
(2) of the <Knowl-
edge>, where it
involves calculating
the sum of three
single-digit num-
bers (here, the tens
digits of 23, 35, and
42) and . . .

Task Dis-
traction

Learn the
relationship
between the
changes in the
numerator and
denominator
of a fraction
while keep-
ing the value
unchanged.
Common re-
lated question
types include
the following:
...

If the numera-
tor of 3

11 in-
creases by 6,
the denomina-
tor should be in-
creased by 6 to
keep the size of
the fraction un-
changed. ____.
(True or false)

To determine if the
statement is true or
false, we need to
evaluate the situa-
tion described in the
question about the
fraction 3

11 ...Thus,
the claim that "the
denominator should
be increased by 6 to
keep the size of the
fraction unchanged"
is false. <No>
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