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ABSTRACT

Data imputation and data generation are crucial tasks in various domains, ranging
from healthcare to finance, where incomplete or missing data can hinder accurate
analysis and decision-making. In this paper, we explore the use of diffusion models
with transformer conditioning for both data imputation and data generation tasks.
Diffusion models have recently emerged as powerful generative models capable of
capturing complex data distributions. By incorporating transformer conditioning,
we harness the ability of transformers to model dependencies and cross-feature
interactions within tabular data. We conduct a comprehensive evaluation by com-
paring the performance of diffusion models with transformer conditioning against
state of the art techniques such as Variational Autoencoders (VAEs) and Generative
Adversarial Networks (GANs) on benchmark datasets. The benchmark focuses
on the assessment of generated samples with respect to Machine Learning (ML)
utility, statistical similarity, and privacy risk. For the task of data imputation, our
evaluation centers on the utility of the generated samples across different levels of
missing features.

1 INTRODUCTION

Recent advancements in deep generative models, particularly Generative Adversarial Networks
(GANs) (Goodfellow et al., 2014) and Diffusion Models (Sohl-Dickstein et al., 2015; Ho et al.,
2020), now provide the ability to both model complex probability distributions and draw high-quality
samples. Such capabilities have found applications in domains like image and audio processing
(Zhang et al., 2022; Rombach et al., 2022; Liu et al., 2023) and have extended their utility to tabular
data generation (Xu et al., 2019; Kotelnikov et al., 2023).

Particularly for tabular data, synthetic data stands out as a privacy-preserving alternative to real data.
It enables the generation of datasets that emulate the statistical properties of their original counterparts,
all while reducing the risk of individual privacy leakage. This generation of new samples can provide
value by improving existing databases, like for example rectifying class imbalances, reducing biases,
or expanding the size of smaller datasets. Moreover, integrating methods for differential privacy
(Dwork, 2006; Jälkö et al., 2021) with generative models for tabular data makes it possible for
organizations to distribute synthetic user data amongst their teams without legal concerns.

In this study, we consider synthetic data generation as a general case of data imputation. In instances
where every column in a sample has missing values, the task of data imputation naturally transitions
to synthesizing new data. We introduce TabGenDDPM , a new conditioning in diffusion model for
tabular data using a transformer and special masking mechanism that makes it possible to tackle both
tasks with a single model.

The key contributions of this work include:

• incorporation of a transformer within the diffusion model to model inter-feature interactions
better within tabular data.

• an innovative masking and conditioning strategy on features, enabling both data imputation
and generation with a single model.

• our approach outperforms state-of-the-art baselines in evaluation of the generated data
regarding Machine Learning (ML) utility and statistical similarity with comparable privacy
risk.
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2 RELATED WORK

Diffusion Models First introduced by Sohl-Dickstein et al. (2015); Ho et al. (2020), diffusion
models utilize a two-step generative approach. Initially, they degrade a data distribution using a
forward diffusion process by continuously introducing noise from a known distribution. Following
this, they employ a reverse process to restore the data’s original structure. At their core, these
models leverage parameterized Markov chains, starting typically from a foundational distribution
such as a standard Gaussian, and use deep neural networks to reverse the diffusion. As evidenced
by recent advancements (Nichol & Dhariwal, 2021; Dhariwal & Nichol, 2021), diffusion models
have showcased their capability, potentially surpassing GANs in image generation capabilities. The
specialized adaptation of this approach, TabDDPM (Kotelnikov et al., 2023), focuses on tabular data
generation.

Data Imputation Handling missing values in datasets is a significant challenge. Traditional ap-
proaches might involve removing rows or columns with missing entries or filling gaps with average
values for a particular feature. However, recent trends are shifting towards ML techniques (Van Bu-
uren & Groothuis-Oudshoorn, 2011; Bertsimas et al., 2017) and deep generative models (Yoon et al.,
2018; Biessmann et al., 2019; Wang et al., 2021b; Ipsen et al., 2022) for this purpose.

Generative models for tabular data are getting more attention in ML (Xu et al., 2019; Engelmann
& Lessmann, 2021; Jordon et al., 2018; Fan et al., 2020; Torfi et al., 2022; Zhao et al., 2021; Kim
et al., 2021; Zhang et al., 2021; Nock & Guillame-Bert, 2022; Wen et al., 2022). Notably, tabular
VAEs (Xu et al., 2019) and GANs (Xu et al., 2019; Engelmann & Lessmann, 2021; Jordon et al.,
2018; Fan et al., 2020; Torfi et al., 2022; Zhao et al., 2021; Kim et al., 2021; Zhang et al., 2021; Nock
& Guillame-Bert, 2022; Wen et al., 2022) have shown promise in this field. Recently, TabDDPM
has emerged as a powerful method for tabular data generation, leveraging the strengths of Diffusion
Models. Our research builds upon TabDDPM, targeting both tabular data generation and imputation.

3 BACKGROUND

Diffusion models, as introduced by (Sohl-Dickstein et al., 2015; Ho et al., 2020), involve a two-step
process: first degrading a data distribution using a forward diffusion process and then restoring its
structure through a reverse process. Drawing insights from non-equilibrium statistical physics, these
models employ a forward Markov process which converts a complex unknown data distribution into
a simple known distribution (e.g., a Gaussian) and vice-versa a generative reverse Markov process
that gradually transforms a simple known distribution into a complex data distribution.

More formally, the forward Markov process q (x1:T |x0)=
∏T

t=1 q (xt|xt−1) gradually adds noise to
an initial sample x0 from the data distribution q (x0) sampling noise from the predefined distributions
q (xt|xt−1) with variances {β1, . . . , βT }. Here t ∈ [1, T ] is the timestep, T is the total number of
timesteps used in the forward/reverse diffusion processes and 1 : T means the range of timesteps
from t = 1 to t = T .

The reverse diffusion process p (x0:T )=
∏T

t=1 p (xt−1|xt) gradually denoises a latent variable
xT∼q (xT ) and allows generating new synthetic data. Distributions p (xt−1|xt) are approximated by
a neural network with parameters θ. The parameters are learned optimizing a variational lower bound
(VLB):

Lvlb := L0 + L1 + ...+ LT−1 + LT (1)
L0 := − log pθ(x0|x1) (2)

Lt−1 := DKL(q(xt−1|xt, x0) || pθ(xt−1|xt)) (3)
LT := DKL(q(xT |x0) || p(xT )) (4)

The term q (xt−1|xt, x0) is the forward process posterior distribution conditioned on xt and on the
initial sample x0. Lt−1 is the Kullback-Leibler divergence between the posterior of the forward
process and the parameterized reverse diffusion process pθ (xt−1|xt).

Gaussian diffusion models operate in continuous spaces (xt ∈ Rn) and in this case the aim of the
forward Markov process is to convert the complex unknown data distribution into a known Gaussian
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distribution. This is achieved by defining a forward noising process q that given a data distribution
x0 ∼ q(x0), produces latents x1 through xT by adding Gaussian noise at time t with variance
βt ∈ (0, 1).

q (xt|xt−1) := N
(
xt;
√

1− βtxt−1, βtI
)

q (xT ) := N (xT ; 0, I)
(5)

If we know the exact reverse distribution q(xt−1|xt), by sampling from xT ∼ N (0, I), we can
execute the process backward to obtain a sample from q(x0). However, given that q(xt−1|xt) is
influenced by the complete data distribution, we employ a neural network for its estimation:

pθ (xt−1|xt) := N (xt−1;µθ (xt, t) ,Σθ (xt, t)) (6)

Ho et al. (2020) suggests a simplification of Eq. 6 by employing a diagonal variance Σθ (xt, t) = σtI ,
where σt are constants dependent on time. This narrows down the prediction task to µθ (xt, t). While
a direct prediction of this term via a neural network seems the most intuitive, another method could
involve predicting x0 and then leveraging earlier equations to determine µθ (xt, t). Another possible
method is inferring it by predicting the noise ϵ. Indeed, (Ho et al., 2020) discovered that predicting
the noise proved most effective. They propose the following parameterization:

µθ (xt, t) =
1

√
αt

(
xt −

βt√
1− ᾱt

ϵθ (xt, t)

)
(7)

where ϵθ (xt, t) is the prediction of the noise component ϵ used in the forward diffusion process
between the timesteps t− 1 and t, and αt := 1− βt, ᾱt :=

∏
i≤t αi.

The objective Eq. 1 can be finally simplified to the sum of mean-squared errors between ϵθ (xt, t)
and ϵ over all timesteps t:

Lsimple = Et,x0,ϵ

[
||ϵ− ϵθ(xt, t)||2

]
(8)

For a detailed derivation of these formulas and a deeper understanding of the methodologies, readers
are encouraged to refer to the original paper (Ho et al., 2020; Nichol & Dhariwal, 2021).

Multinomial diffusion models (Hoogeboom et al., 2021) are designed to generate categorical data
where xt ∈ {0, 1}Cl is a one-hot encoded categorical variable with Cl classes. In this case the
aim of the forward Markov process is to convert the complex unknown data distribution into a
known uniform distribution. The multinomial forward diffusion process q (xt|xt−1) is a categorical
distribution that corrupts the data by uniform noise over Cl classes:

q (xt|xt−1) := Cat (xt; (1− βt)xt−1 + βt/Cl)

q (xT ) := Cat (xT ; 1/Cl)

q (xt|x0) := Cat (xt; ᾱtx0 + (1− ᾱt) /Cl)

(9)

Intuitively, for each next timestep, a little amount of uniform noise βt over the Cl classes is introduced,
and with a large probability (1− βt) the previous value xt−1. From the equations above, the forward
process posterior distribution q(xt−1|xt, x0) can be derived:

q (xt−1|xt, x0) = Cat

(
xt−1;π/

Cl∑
k=1

πk

)
(10)

where π = [αtxt + (1− αt)/Cl]⊙ [ᾱt−1x0 + (1− ᾱt−1)/Cl].

The reverse distribution pθ (xt−1|xt) is parameterized as q (xt−1|xt, x̂0(xt, t)), where x̂0 is predicted
by a neural network. Specifically, in this approach, rather than directly estimating the noise component
ϵ, we predict x0 which is then used to compute the reverse distribution. Then, the model is trained to
maximize the variational lower bound Eq. 1.

4 TABGENDDPM

TabGenDDPM builds upon the principles of TabDDPM (Kotelnikov et al., 2023), primarily improving
its capabilities in data imputation and synthetic data generation. The key distinctions lie in the denois-
ing model and conditioning mechanism. While TabDDPM leverages a simple MLP architecture for
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Figure 1: TabGenDDPM flow for the classification case

denoising, TabGenDDPM employs an encoder-decoder structure, introducing columnar embedding
and transformer architecture. These modifications not only boost synthetic data quality but also
offer improved conditioning for the reverse diffusion process. The resulting model is able to perform
conditioned data generation and data imputation.

4.1 PROBLEM DEFINITION

We focus on tabular datasets for supervised tasks D =
{
xjc
i , xjn

i , yi

}N

i=1
where xjn

i with jn ∈

[1,Knum] is the set of numerical features, xjc
i with jc ∈ [1,Kcat] is the set of categorical features, yi

is the label, i ∈ [1, N ] counts the dataset rows, N is the total number of rows and K = Knum+Kcat

is total number of features.

We apply a consistent preprocessing procedure across our benchmark datasets, using the Gaussian
quantile transformation from the scikit-learn library (Pedregosa et al., 2011) on numerical features
and ordinal encoding for categorical ones. Missing values are replaced with zeros. In our approach
we model numerical features with Gaussian diffusion and categorical features with multinomial
diffusion. Each feature is subjected to a distinct forward diffusion procedure, which means that the
noise components for each feature are sampled individually.

TabGenDDPM generalizes the approach of TabDDPM where the model learns p (xt−1|xt, y), i.e.
the probability distribution of xt−1 given xt and the target y. We extend this by allowing condi-
tioning on a target variable y and a subset of input features, aligning with the strategies in Zheng &
Charoenphakdee (2022) and Tashiro et al. (2021). Specifically, we partition variable x into xM and
x̄M . Here, xM refers to the masked variables set, those perturbed by the forward diffusion process,
while x̄M represents the untouched variable subset that conditions the reverse diffusion. This setup
models p

(
xM
t−1

∣∣xM
t , x̄M , y

)
, with x̄M remaining constant across timesteps t. This approach not only

enhances model performance in data generation and but it also enables the possibility of performing
data imputation with the same model.

The reverse diffusion process p
(
xM
t−1

∣∣xM
t , x̄M , y

)
is parameterized by the neural network shown in

Figs. 1 and 2. In the case of numerical features, the denoising model has to estimate the amount of
noise added between steps t− 1 and t in the forward diffusion process, and in the case of categorical
features, it must predict the (logit of) distribution of the categorical variable a t = 0. The model
outputs has therefore dimensionality of Knum +

∑Kcat

i=1 Cli where Cli is the number of classes of
i-th categorical feature.

4.2 MODEL OVERVIEW

The denoising model has an encoder-decoder structure as show in Fig. 1. The encoder obtains a
representation of each features in two step: first a columnar embedding individually projects all the
heterogeneous features (continuous or categorical) in the same homogeneous and dense latent space.
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Figure 2: Conditional Transformer Encoder

Then a conditional transformer embedding enhances the features latent representation by accounting
for their inter-feature interaction.

For categorical and numerical features, we utilize an Embedding layer and a linear-ReLU activation
layer, respectively. The type of task (regression or classification) dictates the choice of embedding for
the target, y.

The conditional transformer (detailed in Fig. 2) incorporates columnar embeddings through special-
ized masking. With this, the encoder’s attention mask focuses on latent embeddings of variables
x̄M and y, while the decoder attends to xM embeddings. In this setup, the encoder output provides
context from variables not involved in the diffusion, allowing the decoder to derive representations
for those that are. Features involved in the forward diffusion process are denoted with Mask = 1, and
those that aren’t with Mask = 0. Consequently, the encoder takes in 1− Mask while the decoder
works with Mask.

The final latent feature representation is obtained by summing the conditional transformer embedding
output with the timestep embedding, which is derived by projecting the sinusoidal time embedding
(Nichol & Dhariwal, 2021; Dhariwal & Nichol, 2021), into the transformer embedding dimension
using a linear layer followed by the Mish activation function (Misra, 2020).

Finally, this representation is decoded to produce the output. Each feature has its own decoder
consisting of two successive blocks integrating a linear transformation, normalization, and ReLU
activation. Depending on the feature type (numerical or categorical), an additional linear layer is
appended with either a singular output for numerical features or multiple outputs corresponding to
the number of classes for categorical ones.

The model is trained by minimizing a sum of mean-squared error Lsimple
t (Eq. 8) for the Gaussian

diffusion term and the KL divergences Li
t for each multinomial diffusion term (Eq. 1).

LTabGenDDPM
t =

Lsimple
t (Mask)

Knum
+

∑
i≤Kcat

Li
t(Mask)/Cli

Kcat
(11)

where Lsimple
t (Mask) and Li

t(Mask) means that the loss functions are computed taking into account
only the prediction error on variables affected by the forward diffusion process (i.e. xM ), Cli is the
number of classes of the i-th categorical variable.

4.3 DYNAMIC CONDITIONING

A key feature of the current proposal is that the split between xM and x̄M does not have to be
fixed for all the row i in the dataset. Transformer encoder and decoder can manage mask with
an arbitrary number of zeros/ones, so we can dynamically alter the split between xM (decoder
input) and x̄M (encoder input) by just producing a new mask. In the extreme scenario, we can
generate a new mask Maski for each row i. During training, the number of ones in Maski (i. e. the
number of features to be included in the forward diffusion process) is uniformly sampled from the
interval [1,Mnum +Mcat]. A model that has been trained in this manner may then be used for both,

5



generation of synthetic data (Maski = 1 for all the Mnum +Mcat features and for any dataset index
i) and imputation of missing values (for each i, Maski = 1 for the feature to impute).

This setup allows for more flexible conditioning scenarios. Specifically:

• When x̄M = ∅, p
(
xM
t−1

∣∣xM
t , x̄M , y

)
= p (xt−1|xt, y) our model aligns with TabDDPM,

generating synthetic data influenced by the target distribution.
• When x̄M ̸= ∅, the model can generate synthetic data based on the target distribution and

either a fixed or dynamic subset of features. Conditioning on a fixed subset is particularly
beneficial in situations where certain variables are easily accessible, while others are harder
to obtain due to challenges like pricing. In these cases, the scarce data can be synthetically
produced using the known variables. Conversely, when conditioning on a dynamic subset of
features, the model effectively addresses the challenge of imputing gaps within a dataset.

5 EXPERIMENTS

5.1 DATA

The benchmark used to evaluate the model is summarized in Table 1. Detailed descriptions of the
datasets can be found in the Appendix A.

Table 1: Tabular benchmark properties. In the case of categorical features, numbers within parenthesis
indicate the number of categories for each categorical features.

Dataset Rows Num. Feats Cat. Feats Task

HELOC 9871 21 2 Binary
Churn 10000 6 4 Binary
Cal. Hous. 20640 8 0 Regression
House Sales 21613 14 2 Regression
Adult Inc. 32561 6 8 Binary
Cardio 70000 7 4 Binary
Insurance 79900 8 2 Binary
Forest Cov. 581 K 10 2 Multi-Class (7)

5.2 BASELINES

We have selected to evaluate against the foremost representatives from each generative modeling
paradigm, being VAE, GAN or Diffusion Models:

TabDDPM (Kotelnikov et al., 2023): state-of-the-art diffusion model for tabular data generation.
TVAE (Xu et al., 2019): a variational autoencoder adapted for mixed-type tabular data.
CTGAN (Xu et al., 2019): a conditional GAN for synthetic tabular data generator.

5.3 METRICS

We evaluate the generative models on three different dimensions: 1) ML efficiency, 2) statistical
similarity and 3) privacy risk.

The Machine Learning efficiency measures the performance degradation of classification or regression
models trained on synthetic data and then tested on real data. The basic idea is to use a ML
discriminative model to evaluate the quality of synthetic data provided by a generative model. As
established by Kotelnikov et al. (2023), a strong ML model allows to obtain more stable and consistent
conclusions on the performances of the generative model. For this reason, as a first step, we use
the Optuna library (Akiba et al., 2019) aiming at training the best possible discriminative model.
Optuna is run for 100 iterations to fine-tune the XGBoost (Chen & Guestrin, 2016) hyperparameters
on each dataset’s real data within the benchmark. Every hyperparameter configuration for XGBoost
is crossvalidated with five folds. The complete hyperparameter search space is depicted in appendix
B Table 5.

Once the discriminative model has been optimized for each dataset, the generative model is cross-
validated with five folds using the following procedure. For each fold, the real data is splitted in
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three subsets. The main aim of the first subset is training the generative model. The resultant model
generates a synthetic dataset conditioned by the second subset. The synthetic dataset is then used to
train the discriminative model. The so-obtained XGBoost is finally tested on the third subset that has
never been seen during the training of any model. The procedure is repeated for each fold and the
obtained metric mean is used as a final measure of the generative model ML utility.

Statistical similarity. The comparison between synthetic and real data considers both individual
and joint feature distributions. Adopting the approach described by Zhao et al. (2021), we employ
Wasserstein Wang et al. (2021a) and Jensen-Shannon distances Lin (1991) to analyze numerical and
categorical distributions. Additionally, the square difference between pair-wise correlation matrix
is used to evaluate the preservation of feature interactions in synthetic datasets. Specifically, the
Pearson correlation coefficient measures correlations among numerical features, the Theil uncertainty
coefficient measures correlations among categorical features, and the correlation ratio evaluates
interactions between numerical and categorical features.

The Privacy Risk is evaluated using the Distance to Closest Record (DCR), i.e. the Euclidean distance
between any synthetic record and its closest corresponding real neighbour. Ideally, the higher the
DCR the lesser the risk of privacy breach. It is important to underline that out-of-distribution data, i.e.
random noise, will also provide high DCR. Therefore, DCR needs to be evaluated along with ML
efficiency together.

6 RESULTS

Machine Learning efficiency - Synthetic data generation

The task of the generative model in this context is to produce synthetic data, conditioned exclusively
by the supervised target y. For clarity and to facilitate the comparison of results, two models from
our suite are discussed:

1. TabGenDDPM I: This model consistently includes all dataset features in the diffusion process. It
is specifically designed for this use-case.

2. TabGenDDPM II: During training, this model dynamically selects which features are incorporated
in the diffusion process, making it versatile for both imputing missing data and generating
complete synthetic datasets.

The results, summarized in Tab. 2, demonstrate that when TabGenDDPM II is used for synthetic data
generation, it outperforms existing literature methods like TabDDPM, TVAE, and CTGAN. Only
the specialized TabGenDDPM I achieves superior performance in this scenario of data generation.
The key outcomes of our experiments are as follows: 1) TVAE produces better results than CTGAN,
2) TabDDPM outperforms TVAE and CTGAN in mean, and 3) Our two proposed models systemati-

Table 2: Machine Learning efficiency or utility. Classification tasks use F1-score, and regression tasks use
MSE, indicated by up/down arrows for maximization/minimization of the metric. Cross-validation mean and
standard deviation are shown for each dataset-model pair. Best and second-best results are highlighted in bold
and underline, respectively. Baseline column shows XGBoost performance trained on real data, while other
columns reflect XGBoost trained on synthetic data from specified models. All models are tested on real data.

Dataset Baseline TVAE CTGAN TabDDPM TabGenDDPM I TabGenDDPM II

HELOC ↑ 83.72± 0.70 79.40± 1.10 77.54± 0.77 76.66± 0.49 83.12± 0.61 82.51± 0.58

Churn ↑ 85.29± 0.37 81.68± 0.69 79.33± 1.10 83.57± 0.56 84.03± 0.39 83.69± 0.38

Cal. Hous. ↓ 0.147± 0.008 0.316± 0.001 0.488± 0.030 0, 272± 0.009 0.214± 0.004 0.226± 0.005

House Sales ↓ 0.095± 0.008 0.209± 0.030 0.335± 0.022 0.145± 0.014 0.121± 0.006 0.141± 0.005

Adult Inc. ↑ 86.99± 0.18 84.35± 0.80 83, 63± 0.40 84.81± 0.20 85.30± 0.20 85.10± 0.15

Cardio ↑ 73.74± 0.14 72.49± 0.35 71.8± 0.45 72.83± 0.25 72.96± 0.24 73.07± 0.19

Insurance ↑ 91.99± 0.25 92.62± 0.26 92.55± 0.19 92.2± 0.30 92.76± 0.12 92.65± 0.14

Forest Cov. ↑ 96.54± 0.08 70.35± 0.67 65.63± 0.35 82.08± 0.19 84.15± 0.39 83.25± 0.33
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cally enhances the performance of TabDDPM, attaining the best results across all datasets included
in our benchmark.

It is worth noting that the size of the generated samples matches the size of the real data for comparison
purposes. However, our preliminary results show that the results smaller datasets could be improved
if the size of synthetic data surpasses the original data size. To obtain the results presented in Table
2, each generative model is optimized with Optuna over 100 trials, with the cross-validated ML
efficiency defined in Section 5 as the objective. The specific hyperparameters search space for each
model is shown in Table 6 in appendix B.

Machine Learning efficiency - Data imputation

These experiments are aimed to evaluate the model ability to impute missing values. In this context,
the generative model utilizes the available data to condition the generation of data for the missing
entries. Assessing the quality of imputed data using ML utility, which is based on XGBoost
performance, requires careful consideration. This is because not all features equally influence the
XGBoost’s output. The impact of imputing a highly significant feature versus one with minimal
impact on XGBoost’s performance can vary greatly. To address this, we propose a randomized
approach for feature selection to be imputed: 1) fix the number of required missing values, 2) using
uniform distribution, pick the features with missing value (i.e change their values to None) for each
row, 3) use the generative model to fill in the missing values, 4) train the XGBoost on the imputed
data 5) evaluate the XGBoost over the real hold-out data 6) Repeat steps 1-5 increasing the amount
of missing from one to Mnum +Mcat.

Our experiments, depicted in Fig. 3, compares the performance of our model compared to a modified
version of TabDDPM such that it may be conditioned by any arbitrary subset of features. We also
incorporate two additional baselines: missForest (Stekhoven & Stekhoven, 2013) and GAIN (Yoon
et al., 2018). Unlike TabDDPM and TabGenDDPM, which are trained once with a number of missing
values uniformly distributed from one to Mnum +Mcat and then applied to various missing data
scenarios, MissForest and GAIN undergo training and imputation separately for different levels of
missing features. Consequently, they tend to underperform when faced with more than 50% missing
data. In contrast, both TabDDPM and TabGenDDPM outperform these baselines across all levels of
missing data, with TabGenDDPM having the best performance, especially as the number of missing
data grows.

Statistical Similarity

The summary of results obtained over our benchmark are shown in Tab. 3. It show the average ranks
computed over all datasets in the benchmark: lower is better. The Wasserstein distance is used to
calculate rank for numerical features whereas the Jensen–Shannon distance is used for the categorical
ones. Finally the L2 distance between correlation matrices is employed to assess how effectively
feature interactions are retained in synthetic datasets. Distances are calculated between synthetic data
and real data.

Table 3: Statistical Similarity between synthetic data and real data.

TabDDPM TabGenDDPM

Wasserstein Distance 1.84 1.16
Jensen-Shannon Distance 1.60 1.40
L2 Dist. Correlation Matrix 2.00 1.00

Privacy risk

In terms of privacy risk, we believe the results displayed in Table 4 are promising. The ML efficiency
is consistently superior, and the generated data more closely follows the original distribution, as
indicated by the L2 distances of the correlation matrix, as well as the Wasserstein and Jensen-Shannon
distances. This increased fidelity contributes to the slightly elevated risk. An example of this is
the HELOC dataset, where the risk is higher than the baseline which is produced by a significant
improvement in ML efficiency. Moreover, we have verified that none of the synthetically generated
samples have a distance of zero from the original samples. If additional privacy measures are
necessary, it is possible to incorporate differential privacy into the generative model (Jälkö et al.,
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Figure 3: Results for data imputation use case in terms of ML utility under different levels of missing features.
Baseline is an oracle that imputes real data.

2021). This would allow us to control the trade-off between the utility of the generated data and the
associated privacy risk.

Table 4: Comparison of correlation matrix L2 distances, privacy risk and ML efficiency ( ↑ for
F1-score, ↓ for MSE) for TabDDPM and TabGenDDPM for each dataset. Privacy risk is evaluated
using the Distance to Closest Record and higher the this value, the lesser the risk of privacy breach.

TabDDPM TabGenDDPM

Corr. Risk ML eff. Corr. Risk ML eff.

HELOC ↑ 0.03 2.75 76.66 0.005 0.25 82.7
Churn ↑ 0.0013 0.09 83.57 0.0008 0.09 83.98
Cal. Hous. ↓ 0.211 1.28 0.27 0.0018 0.075 0.21
House Sales ↓ 0.018 0.34 0.145 0.003 0.1 0.131
Adult Inc. ↑ 0.01 0.15 84.8 0.0035 0.11 85.3
Cardio ↑ 0.0035 0.41 72.83 0.0022 0.41 72.96

7 CONCLUSION

In our exploration of synthetic tabular data generation and data imputation, we introduced a novel
adaptation to TabDDPM diffusion model, incorporating a transformer and unique masking mechanism
for conditioning the reverse diffusion process. This innovation allows our model to handle both
tasks within a unified framework. Our evaluations show our model’s better performance over the
baselines for synthetic data generation based on VAE, GAN and diffusion model, in terms of ML
utility, statistical accuracy while keeping similar privacy risk. This study, thus, not only bridges the
conceptual gap between data imputation and synthetic data generation but also sets a new benchmark
for generative models in tabular data contexts.
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APPENDICES

A DATASET DESCRIPTIONS

HELOC FICO (2019): Home Equity Line of Credit (HELOC) provided by FICO (a data analytics
company), contains anonymized credit applications of HELOC credit lines. The dataset contains
21 numerical and two categorical features characterizing the applicant to the HELOC credit line.
The task is a binary classification and the goal is to predict whether the applicant will make timely
payments over a two-year period.

Churn Modelling Iyyer (2019): This dataset consists of six numerical and four categorical features
about bank customers. The binary classification task involves determining whether or not the customer
closes his account.

California Housing Pace & Barry (1997): The information refers to the houses located in a certain
California district, as well as some basic statistics about them based on 1990 census data. This is a
regression task, which requires to forecast the price of a property.

House Sales King Country Kaggle (2016): Similar to the California Housing case, this is a regression
task in which the prices of properties sold in the King County region between May 2014 and May
2015 must be estimated. The dataset originally contained 14 numerical and four categorical features,
as well as one date. The date is turned into two categorical variables (month and year) after our
pre-processing.

Adult Incoming Becker & Kohavi (1996): Personal details such as age, gender or education level are
used to predict whether an individual would earn more or less than 50K$ per year.

Cardiovascular Disease Ulianova (2020): The existence or absence of cardiovascular disease must
be predicted based on factual information, medical examination results, and information provided by
the patient. The dataset is made up of seven numerical and four categorical features.

Insurance Rathi & Mishra (2019) Customer variables and past payment data are used to solve a
binary task: determining whether the customer will pay on time. There are eight numerical and two
categorical features in the dataset.

Forest Cover Type Blackard (1998): Cartographic variables are used to predict the forest cover type:
it is a multi-class (seven) classification task. The first eight features are continuous whereas the last
two are categorical with four and 40 levels, respectively.

B HYPERPARAMETER TUNING

Table 5: Search Space for XGBoost Hyperparameters with Optuna.

Parameter Range
maxdepth [1, 9]
learning rate [0.01, 1.0]
estimators [50, 500]
min childweight [1, 10]
gamma

[
10−8, 1

]
subsample [0.01, 1]
colsample bytree [0.01, 1]
reg alpha

[
10−8, 1

]
reg lambda

[
10−8, 1

]
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Table 6: Hyperparameters for Different Models.

Model Hyperparameter Possible Values

TVAE

compress dims [32, 64, 128, 256, 512]
decompress dims [32, 64, 128, 256, 512]
embedding dim [32, 64, 128, 256, 512]

batch size [64, 128, 256, 512, 1024]
epochs 500

CTGAN

generator dim [32, 64, 128, 256, 512]
discriminator dim [32, 64, 128, 256, 512]
embedding dim [32, 64, 128, 256, 512]

batch size [64, 128, 256, 512, 1024]
epochs 500

TabDDPM

timesteps [100, 200, 300, 400, 600, 800, 1000]
latent space size [64, 128, 256, 512, 1024]

mlp depth [2, 4, 6, 8]
batch size [64, 128, 256, 512, 1024]

epochs 500

TabGenDDPM

timesteps [100, 200, 300, 400, 600, 800, 1000]
latent space size [64, 128, 256, 512, 1024]

transformer layer num [2, 3, 4]
transformer heads [2, 4, 8]

transformer feedforward size [256, 512]
batch size [64, 128, 256, 512, 1024]

epochs 500
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