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ABSTRACT

Recently, several works have used unstructured pruning to augment adapter meth-
ods. However, these “sparse adapter” methods have limited communication ben-
efits in federated learning (FL). In this work, we propose a simple baseline which
combines low-rank adaptation (LoRA) with a constant sparsity during commu-
nication only. On three FL image and text tasks, our method reduces communi-
cation costs by up to 10× over vanilla LoRA and up to 5× over more complex
sparse LoRA baselines while achieving greater utility. Our work highlights the
importance of considering system-specific constraints when developing efficient
fine-tuning approaches, and serves as a competitive baseline for future work in
federated fine-tuning.

1 INTRODUCTION

As pretrained models (e.g. large language models or LLMs) continue to advance state-of-the-art
performance in a variety of domains, it is critical to develop methods for efficiently fine-tuning
LLMs in low-resource settings. Federated learning (FL) is an increasingly important setting that
considers training models across a heterogeneous network of edge devices (McMahan et al., 2017).
A primary bottleneck in FL is client-to-server upload communication, which scales with the number
of trainable model parameters and makes fine-tuning large models prohibitive (Konečný et al., 2017).
Although many FL methods based on pruning and quantization have been proposed to solve this
issue, adapters have emerged as an effective way to reduce costs while retaining the performance of
full fine-tuning in both centralized and federated settings (Houlsby et al., 2019; Zhang et al., 2023c).

Recent works in the centralized setting have proposed using unstructured pruning to boost the pa-
rameter efficiency of adapters by zeroing and freezing a large fraction of the adapter weights (Wu &
Chen, 2022; He et al., 2022). However, we show that these schemes for “pruning adapters” transfer
poorly to FL because of two key limitations: a) compressing upload is more important than down-
load (Konečný et al., 2017; Ro et al., 2022) and b) weight freezing tends to harm training (Raihan &
Aamodt, 2020). To address these issues, we propose to simply apply sparse communication to low-
rank adaptation (LoRA). Rather than directly pruning the LoRA parameters, our method allows
for separate configuration of download and upload sparsity, making it well-suited for FL settings
constrained by upload bandwidth. Our work makes the following contributions:

1. To the best of our knowledge, we are the first to apply unstructured sparsity to LoRA for
efficient federated fine-tuning. We focus on unstructured (weight-level) sparsity because it has
been shown to outperform structured (block-level) sparsity in centralized settings (Liu et al.,
2018; Siswanto et al., 2021).

2. We identify several limitations of “sparse LoRA” in FL. Primarily, we find that naively pruning
methods significantly degrades the model’s utility. Furthermore, existing methods use equal
sizes for upload and download, resulting in an upload bottleneck.

3. We propose a simple baseline that applies a constant Top-K sparsity only to communication.
Our method can reduce communication costs up to 10× while matching the performance of
dense LoRA on several FL image and text tasks.
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2 RELATED WORK

Efficient federated learning. Fine-tuning a large pretrained model is highly useful for both cen-
tralized and federated learning (Radford et al., 2018; Nguyen et al., 2022). Many types of methods
have been explored to reduce FL communication costs, including quantization (Reisizadeh et al.,
2020; Ozkara et al., 2021), sparsity (Caldas et al., 2018b; Horvath et al., 2021; Bibikar et al., 2022;
Stripelis et al., 2022; Isik et al., 2022), and parameter-efficient fine-tuning (PET) (Chen et al., 2023;
Babakniya et al., 2023a). Prior work has shown that PET methods are surprisingly efficient in FL.
For example, LoRA can train a module 100× smaller than the original model, while sparse and
quantized FL methods degrade noticeably beyond 10× compression (Qiu et al., 2021; Babakniya
et al., 2023b; Ro et al., 2022).

Parameter-efficient fine-tuning (PET) reduces the costs of fine-tuning LLMs by training a small
number of parameters and freezing the rest of the model (Ding et al., 2022). In this work, we focus on
low-rank adaptation (LoRA), a reparameterization-based method which has two advantages: First,
unlike prior adapter methods, LoRA can be merged with the backbone after training, eliminating
additional inference costs (Houlsby et al., 2019; Hu et al., 2021). Second, prior work has shown that
LoRA achieves better efficiency-utility trade-offs than other PET methods based on partial backbone
fine-tuning (Guo et al., 2021; Zaken et al., 2022; Sung et al., 2021; Gong et al., 2022).

LoRA significantly reduces communication costs in FL. Assuming that all clients have a copy of the
pretrained model, only updates to the LoRA modules need to be communicated at each round (Sun
et al., 2022; Zhang et al., 2023d). In our work, we consider this “dense LoRA” as a naive baseline
and study how to further reduce its message size using sparsity. Orthogonal works on FL and
LoRA focus on personalizing the rank or weights to individual clients (Kim et al., 2023b; Yi et al.,
2023; Cho et al., 2023). While these methods converge in fewer rounds, they do not focus on
reducing per-round communication. Finally, a recent work uses sparsity and quantization to reduce
communication when merging PET modules, but is focused on the specific application of one-shot
federated learning (Yadav et al., 2023).

Pruning methods set a large fraction of model parameters to zero and compactly represent the model
in a sparse matrix format. We study two key algorithms which produce extremely sparse networks
while retaining utility. Iterative magnitude pruning is a classical baseline which gradually sparsifies
the model while re-training the remaining weights (Renda et al., 2019). In contrast, pruning-at-
initialization performs one-shot pruning followed by a single sparse re-training stage (Lee et al.,
2018; Tanaka et al., 2020; Wang et al., 2019).

LoRA with pruning. There has been recent interest in using pruning methods to increase the effi-
ciency of LoRA and vice versa. Most of these methods are based on structured (rank-level) prun-
ing (Ding et al., 2023; Liu et al., 2024). Some search for more efficient ways to allocate ranks
between layers (Zhang et al., 2023a; 2022). Others use LoRA to help prune or re-train the model
backbone (Zhao et al., 2023; Zhang et al., 2023b; Zhao et al., 2024). To our knowledge, there are two
existing methods that extend unstructured pruning to LoRA training (Wu & Chen, 2022; He et al.,
2022). While these works improve the storage efficiency of LoRA, they otherwise have marginal
practical benefits in centralized settings since:

• The compute and memory costs of adapters are small compared to the costs of the back-
bone (Kim et al., 2023a). Additionally, reparameterization-based PET modules such as LoRA
can be merged with the backbone once training is complete (Luo et al., 2023). This eliminates
adapter inference costs and makes it less important to produce an extremely sparse adapter.

• Unstructured sparsity often requires specialized hardware and software to accelerate com-
putation. Otherwise, training and inference are no more efficient than that of a dense counterpart
(Muralidharan, 2023).

Despite these limitations, we argue that combining unstructured sparsity with LoRA is particularly
effective for handling issues of communication in FL. Additionally, we show that it is important to
carefully incorporate sparsity with LoRA to see benefits in terms of communication. For example,
we find that it is highly effective to target upload and download communication at varying rates
rather than communicating the same sparse model in both directions. This makes our method a nat-
ural choice for practical FL settings where upload speeds are typically much slower than download
speeds (up to 8×) (Konečný et al., 2017; Lai et al., 2022).
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3 METHODS

In our experiments, we fine-tune a pretrained model using FedAdam and LoRA. On top of this com-
bined method, we apply two baselines (Adapter LTH, SparseAdapter) that propose unstructured
pruning of LoRA in a centralized setting (Wu & Chen, 2022; He et al., 2022).

FedAdam is an adaptive FL method that accelerates convergence by manipulating the aggregated
update at the server (Reddi et al., 2020). Given a model with trainable weights W , at each round par-
ticipating client i will download a copy of W , fine-tune it to obtain updated weights W ′

i , and upload
∆Wi = W −W ′

i to the server. The server then computes a global update ∆W = 1
n

∑n
i=1 ∆Wi,

where n is the number of clients sampled per round. ∆W can be interpreted as a global pseudo-
gradient; for example, the update rule for FedAvg is to set W ← W −∆W for the next round. In
the case of FedAdam, the server maintains a stateful Adam optimizer that takes ∆W as input and
outputs an adapted global update at each round.

LoRA is a reparameterization-based PET method that updates a weight matrix W ∈ Rd×k in a
low-rank subspace. The update ∆W ∈ Rd×k is defined as a product BA where B ∈ Rd×r and A ∈
Rr×k. A is initialized using a normal distribution and B is initialized to zero. By freezing W and
selecting r to be a small constant, LoRA significantly reduces the number of trainable parameters.

Pruning methods rank the model parameters W according to a scoring function and prune a fraction
of parameters with the lowest scores (i.e. set them to zero and freeze them for the rest of training).
In the context of LoRA, we focus on pruning baselines that leave W both frozen and dense while
pruning entries in the adapters A and B. In the context of FL, pruning naturally reduces com-
munication costs as clients do not have to upload or download zeroed/frozen weights. However, as
we show later, applying sparsity only to communication without strictly freezing the model leads to
significant gains in performance.

Adapter LTH (Lottery Ticket Hypothesis) iterates between pruning away a small fraction of the
lowest magnitude weights and retraining the remaining weights of an adapter module such as
LoRA (Frankle & Carbin, 2018; Wu & Chen, 2022). To use this method in FL, we consider training
LoRA weights A and B using FedAdam. After each aggregation round, we apply increasingly sparse
magnitude pruning to the LoRA weights. We use the efficient “fine-tuning” version of LTH which
continues training from the pruned state rather than rewinding the weights after pruning (Renda
et al., 2019). This allows the model to recover from pruning within fewer rounds and is necessary to
keep communication costs competitive with the dense LoRA baseline.

SparseAdapter generally proposes pruning adapters once at initialization (Wu & Chen, 2022; He
et al., 2022). For the choice of parameter scoring function, SNIP (gradient-magnitude product)
was found to work the best among other baselines (Lee et al., 2018). However, magnitude-based
scoring does not directly extend to LoRA. Because the B matrix in LoRA is initialized to all zeros,
pruning below a given density would remove all of the B weights and prevent the LoRA modules
from training. To address this issue, we perform an initial round of dense LoRA training, apply
magnitude pruning to the aggregated weights, then train the remaining sparse weights as usual.

Algorithm 1: PyTorch-like LoRA training with FedAdam and sparse communication

1 Require: ddown, dup (download and upload density)
2 P ← Initialize LoRA parameters
3 optim← torch.nn.optim.Adam(params=P)
4 for r = 1, ..., R do
5 Mdown ← mask of top ddown fraction entries of P by magnitude
6 Sample clients c1, ..., cn uniformly at random without replacement
7 for i = 1, ..., n in parallel do
8 Pi = P ⊙Mdown # sparse download
9 P ′

i ← update Pi with 1 SGD epoch on data of ci # fine-tuning all entries of Pi

10 ∆Pi ← Pi − P ′
i

11 Mup,i ← mask of top dup fraction entries of ∆Pi by magnitude
12 ∆Pi ← ∆Pi ⊙Mup,i # sparse upload
13 optim.grad← 1

n

∑n
i=1 ∆Pi # set Adam pseudo-gradient

14 optim.step() (updates P ) # take one step of Adam
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Figure 1: We compare accuracy vs. total communication when augmenting LoRA (rank r = 16)
with sparsity. Each curve shows the averaged trace over 3 random seeds. Our method improves the
overall accuracy-communication trade-offs of Dense LoRA. In contrast, Adapter LTH is inefficient
early in training and SparseAdapter fails to reach high accuracy.

Our method is in Algorithm 1. There are three key differences from pruning: a) local fine-tuning
uses dense gradients, b) the upload and download sparsity masks can be different, and c) the down-
load mask can change across rounds. For the pruning baselines described above, the same mask
Mdown is applied for all operations, including local SGD steps (red comments, 8-12).

We use P to refer to the flattened and concatenated vector of LoRA weights {Al, Bl}Ll=1 where L
is the number of layers LoRA is applied to. We apply global sparsity i.e. retain the Top-K entries of
P . An alternative approach is to uniformly sparsify each layer (Al, Bl) in a layer-wise way before
concatenation, but we found that global sparsity tended to perform better.

4 RESULTS

We present experiments on three datasets: CIFAR10, 20NewsGroups, and Reddit (Krizhevsky,
2009; Lang, 1995; Caldas et al., 2018a). We resize the CIFAR10 images to 224 × 224 to match
ImageNet, the pretraining dataset for the ViT model architecture we chose. We use the GPT2 tok-
enizer to preprocess the examples of 20Newsgroups and Reddit into sequences with length 128 and
25 respectively. We partition CIFAR10 and 20NewsGroups using a Dirichlet(α = 0.1) distribution
(Hsu et al., 2019). The Reddit comments are naturally partitioned by user.

In all experiments, we sample 10 clients at each round and perform one epoch of local training with
a batch size of 16. We fine-tune all models for 200 rounds. For the pretrained models, we used
VIT-B-16 (85M params) and GPT2-Small (124M params) (Dosovitskiy et al., 2021; Radford et al.,
2019). For all datasets, we report the accuracy on the validation partition. More details on the task
setups can be found in Table 1.

Dataset Backbone Task #Clients #Examples #Classes

CIFAR10 ViT-B-16 Image Classification 500 50K 10
20NewsGroups GPT2-Small Sequence Classification 350 20K 20
Reddit GPT2-Small Next Token Prediction 40K 1.1M 50257

Table 1: Statistics of the datasets used in the experiments.

We used LoRA with rank r = 16 for all experiments. In general, smaller ranks tend to be more
communication-efficient, while larger ranks tend to achieve higher accuracy. We found that r = 16
achieved a good accuracy vs. communication trade-off across the three datasets we considered
and thus fixed this for the dense LoRA baseline. To fairly compare against this baseline, we do
not re-tune the rank and instead only tune the sparsity of each method to efficiently match dense
performance (when possible).
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In Figure 1, we measure the total (download + upload) communication from fine-tuning LoRA for
200 FL rounds. We compare our method (Algorithm 1 with ddown = dup = 0.25) to three other
baselines (Adapter LTH, SparseAdapter, and Dense LoRA). Adapter LTH and SparseAdapter have
limited improvements; Adapter LTH only achieves significant efficiency gains on 20NewsGroups,
while SparseAdapter fails to match dense LoRA on all 3 datasets. Our method outperforms dense
LoRA using up to 10× less communication than dense LoRA and up to 5× less than Adapter LTH.

In Figure 2, we run an ablation to show the impact of applying sparsity at different stages of an
FL round: upload, download, and local fine-tuning. “Sparse Upload” and “Sparse Download” are
specific configurations of Algorithm 1, while “Sparse Up and Down” is the configuration presented
in Figure 1. By allowing for dense local updates, our method is robust to extremely sparse commu-
nication. In contrast, “Freeze Zeros” i.e. SparseAdapter performs poorly even at 1

4 density, since it
additionally constrains Algorithm 1 by freezing all zeroed weights in Pi.

In Figure 3, we assume that all clients have identical network bandwidths and fix the total time spent
on communication across all methods (equal to 50 FL rounds of dense LoRA). We then simulate
slower upload speeds; for example, under symmetric and constant-per-round communication sizes,
a 16× slower upload corresponds to (1 + 16)/2 = 9.5× fewer FL rounds. To handle slow uploads,
our method uses a simple and effective heuristic of setting dup, ddown to be proportional to their
respective bandwidths (e.g. if upload is 16× slower, we set dup = ddown

16 ).

5 CONCLUSION AND FUTURE WORK

In this paper, we introduce a communication-efficient FL method that trains LoRA while only spar-
sifying communication. Our method performs much better than existing pruning-based methods
and serves as a strong baseline for future works in federated fine-tuning. Our results show that ef-
ficient fine-tuning approaches can be made an order of magnitude more efficient when considering
FL constraints, highlighting the importance of tailoring efficiency to the setting at hand.

Still, many important questions remain on how to make LoRA even more efficient in FL. In order
to make “communication-efficient” methods truly practical, future work should consider more com-
prehensive settings that evaluate total training times and realistic bandwidth constraints. Another
important question is how to cheaply configure hyperparameters such as the rank and sparsity be-
cause they affect both communication and utility. In the future, we aim to investigate such questions
and design methods to make high-quality models more accessible to low-resource users.
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A APPENDIX
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Figure 4: Comparison of total communication with LoRA rank 4.
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Figure 5: Comparison of total communication with LoRA rank 64.
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Figure 6: Comparison of upload communication with LoRA rank 4.
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Figure 7: Comparison of upload communication with LoRA rank 16.
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Figure 8: Comparison of upload communication with LoRA rank 64.
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