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Abstract: Learning diverse policies for non-prehensile manipulation of objects
can potentially improve skill transfer and generalization to out-of-distribution sce-
narios and unseen objects. In this work, we propose an innovative approach to
learning versatile 6D non-prehensile manipulation policies by introducing a new
objective function based on entropy maximization terms. This allows for simulta-
neous exploration of discrete and continuous action spaces, such as contact loca-
tion and motion parameter spaces. To further enhance the diversity of the agent’s
policy, we represent a continuous motion parameter policy as a diffusion model
and derive the maximum entropy objective for optimizing diffusion policies as
the lower bound of the maximum reward likelihood using structured variational
inference. As a result, we introduce the hybrid soft actor-critic with diffusion pol-
icy algorithm (Diff-HySAC). We evaluate the benefit of adding maximum entropy
regularization and diffusion on both simulation and zero-shot sim2real tasks. Re-
sults show that this combination helps learn more diverse behavior policies. The
largest improvements we obtain are for zero-shot sim2real transfer on a 6D object
pose alignment task where the success rate increases from 53% to 72%.
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1 Introduction

The ability to manipulate objects beyond simple grasping is critical to human dexterity and essential
for tasks ranging from daily activities to complex industrial processes. Enabling robots to achieve
such dexterity remains a significant challenge in robotics [1, 2]. While previous work has made ad-
vances, challenges in object generalization and complex motion persist [3, 4, 5]. Motion primitives
(MPs) and object-centric action representations are often employed to simplify action representa-
tions and reduce sample complexity, with Reinforcement Learning (RL) used to learn these skills,
especially within hybrid action spaces combining discrete contact points and continuous MPs [6, 7].
To improve generalization and skill transfer, we introduce HySAC, an off-policy hybrid soft actor-
critic algorithm with maximum entropy objectives across discrete and continuous actions.

Diffusion models have shown promise for learning multi-modal policies in RL by generating actions
through structured denoising steps, which encourage diverse behavior [8]. Diffusion Probabilistic
Models (DDPMs) excel at modeling complex, multi-modal distributions, valuable for RL tasks with
diverse action spaces. While they’ve been explored in offline RL [9, 10], their application in online
RL remains limited. In this work, we propose an approach to learning versatile and diverse ma-
nipulation policies by introducing a maximum entropy objective for both discrete and continuous
actions, and a novel off-policy hybrid soft actor-critic algorithm, HySAC. Our second contribution
is DiffSAC, a soft actor-critic algorithm optimized for diffusion-based policies, incorporating en-
tropy maximization as a lower bound through structured variational inference. Building on this,
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Diff-HySAC: Diffusion-Based Hybrid Soft Actor-Critic

Figure 1: Diff-HySAC overview. The input to the policy is a point cloud where each point includes
a 3D location, a 1D segmentation mask and a 3D goal flow vector. Diff-HySAC outputs motion
primitive parameters along with the optimal contact location.

we propose Diff-HySAC, a hybrid diffusion-based soft actor-critic algorithm for 6D non-prehensile
manipulation, as illustrated in Fig. 1.

2 Methodology

Problem Statement We define the non-prehensile manipulation task as a Markov decision process
(MDP) represented by the tuple {S,A,R,P, γ,P0} [11], where S is the state space, A the action
space, R the reward function, P the transition probabilities, γ the discount factor, and P0 the initial
state distribution. The goal is to maximize the cumulative reward Rt =

∑∞
i=0 γ

ir(st+i, at+i).

The policy receives input as a point cloud X , where each point consists of 3D location, a 1D seg-
mentation mask, and a 3D goal flow vector. This setup allows hybrid action spaces that combine
discrete contact locations with continuous motion parameters, which we address using our proposed
HySAC and Diff-HySAC algorithms for effective exploration and diverse policy learning.

2.1 Soft Actor-Critic with Diffusion Policy

We propose DiffSAC, a variant of SAC designed to optimize policies parameterized by diffusion
models. The diffusion policy πθ is represented as a diffusion process πθ(a|s). DiffSAC optimizes
the following objective: Jπ(θ) =

∑
t Est,a0:K

t ∼πθ

[
r(st,a

0
t )− α

∑K
k=0 log πθ(a

k−1
t |ak

t , k, st)
]

where α is the entropy regularization coefficient, a0 is the action executed by the agent (sam-
pled at step 0), and the diffusion chain includes K steps. The entropy term can be interpreted
as − log p(at|st) for the entire diffusion-sampled action path, instead of just − log p(a0

t |st) as in
standard SAC, because computing the density of diffusion models is intractable. We follow the
derivation of structured variational inference [12] to show that Jπ(θ) forms a lower bound on the
maximum reward likelihood (proof is provided in Appendix A). Using DDPMs or Consistency mod-
els [13], each probability pθ(a

k−1
t |ak

t , k, st) is a Gaussian and benefits from the reparameterization
trick: ak−1

t = fθ(ϵ
k−1
t ;ak

t , k, st). Thus, the gradient of the actor loss is approximated as:

∇θL(θ) = −∇a0
t
Qϕ(st,a

0
t )
∂a0

t

∂θ
+

K∑
k=1

∇ak−1
t

log pθ(a
k−1
t |ak

t , k, st)∇θfθ(ϵ
k
t ;a

k
t , k, st),

where the term ∂a0
t

∂θ is also computed using the reparameterization trick, as in previous direct policy
optimization methods [9, 10].

2.2 Hybrid Soft Actor-Critic with Standard Policy and Diffusion Policy

We introduce two hybrid actor-critic algorithms for non-prehensile manipulation: Hybrid Soft
Actor-Critic with a standard policy representation (HySAC) and Hybrid Soft Actor-Critic with a
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Figure 2: A real robot task showcases the multi-modalities of action sequences, (top) Push→ Push
→ Push→ Push→ Flip; (bottom) Push→ Push → Push→ Flip→ Push. In this task, we fixed the
goal and initial pose and generated the action sequences with two different random seeds.

diffusion policy (Diff-HySAC). HySAC extends SAC to handle hybrid action spaces, while Diff-
HySAC builds on DiffSAC to incorporate diffusion-based policies (see Section 2.1).

HySAC: HySAC adapts SAC by incorporating both discrete and continuous actions. The actor
loss includes entropy terms for both location and motion policies:

Ji(θ) = −Qϕ(fi,a
m
i ) + α log πθ,i(xi,a

m
i |s),

where log πθ,i(xi,a
m
i |s) includes both location entropy log πloc

i (xi|s) and motion entropy
log πm

i (am
i |s). The critic update is: yt = rt + γExi∼πloc,am

i ∼πm
[Qϕ(fi(st+1,a

m
i )) −

α log πθ,i(xi,a
m
i |s)].

Diff-HySAC: Diff-HySAC uses a diffusion model to generate action maps am through a denoising
process πm(am|s), α1 and α2 are hyperparameter. The actor loss for diffusion models is:

Ji(θ) = −Qϕ(fi,a
m,0) + α1 log π

loc
i (xi|s) + α2

K∑
k=0

log pθ(a
k−1
t |ak

t , k, s).

This approach can incorporate consistency models, as proposed by [13], to improve inference speed,
leading to Con-HySAC. The diffusion policy can be replaced by a consistency model πm(am|s) =
Consistency Model(s; fθ) without changing the optimization process. Both algorithm variants
are shown in Appendix B.

3 Experiments

3.1 Experimental Setup

Table 1: Simulation experiment: Generalization to un-
seen objects, reported as mean success rate and std.
Results are averaged over 200 runs for unseen cate-
gory and instance evaluations.

Method Unseen Category Unseen Instance
HACMan 0.80± 0.06 0.84± 0.05
HySAC 0.76± 0.06 0.86± 0.05
HybridDiff-TD3 0.78± 0.06 0.81± 0.06
Diff-HySAC 0.81± 0.05 0.89± 0.04
HybridCon-TD3 0.75± 0.06 0.76± 0.06
Con-HySAC 0.86± 0.05 0.93± 0.04

We evaluate HySAC, Diff-HySAC, and
Con-HySAC against HACMan [7], along
with two baselines: HybridDiff-TD3 and
HybridCon-TD3. These baselines use TD3
but replace the motion parameter policy
with a diffusion or consistency model, re-
spectively. All methods share the same
training setup, using a 4D point cloud input
composed of 3D goal flow vectors and a 1D
segmentation mask, which labels points as
part of the target object or background. In
simulations, ground-truth masks are used,
while real-world experiments employ background subtraction for segmentation.

Task Setting: We validate our method on the 6D object pose alignment task introduced in HACMan
[7], which requires non-prehensile manipulations such as pushing and flipping. The simulation
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environment, built with Robosuite [14] and MuJoCo [15], consists of 44 objects split into 32 training
objects, 7 unseen instances, and 5 unseen categories. Success is measured by achieving a mean
distance of less than 3 cm between corresponding points of the object and the goal.

Policy Diversity: To assess the diversity of the learned policies, we evaluate Con-HySAC in terms
of action sequence variety. We keep the initial pose and goal the same across two runs with identical
environment settings, such as point cloud sampling. As shown in Fig. 2, Con-HySAC produces two
distinct action sequences to reach the goal pose. The order of flipping and pushing actions differs
between the two, demonstrating policy flexibility in action.

Real Robot Setting: For sim-to-real transfer, we evaluate the trained policies on a 7DoF Franka
Panda arm with three static Realsense cameras. We test two configurations: (i) Planar goals, where
the object starts in a fixed pose and the goal involves a planar translation, and (ii) 6D goals, where
both the initial and goal poses are stable SE(3) poses.

3.2 Experimental Results

Simulation Results: Table 1 presents results for 6D tasks, including unseen categories, and unseen
instances. Diff-HySAC and Con-HySAC outperform HACMan and HySAC, in unseen category and
instance evaluations. HybridDiff-TD3 and HybridCon-TD3, lacking entropy regularization, suffer
from mode collapse and perform worse than HACMan.

Real Robot Results: We evaluated the trained policies on the ”All Objects + 6D Goals” simulation
task using a real-world robot with the same setup, pose randomization, and success criteria as HAC-
Man. The evaluation includes 5 objects: Lego, Lotion, Milk, Soja, and Cube. Diff-HySAC and Con-
HySAC achieved success rates of 68% and 72%, respectively, outperforming HACMan (53%) and
HySAC (64%). The performance gap between diffusion-based methods and non-diffusion methods
was more pronounced in real-world experiments compared to simulations, suggesting that diffusion-
based policies generalize better in real-world settings.

Table 2: Results for real robot experiments on Planar goal (left) and 6D goal (right) tasks.
Object HACMan HySAC (ours) Diff-HySAC (ours) Con-HySAC (ours)
Lego 6/10 6/10 8/10 5/10 8/10 6/10 9/10 7/10
Lotion 6/10 5/10 7/10 6/10 8/10 7/10 7/10 7/10
Milk 4/10 6/10 8/10 6/10 7/10 7/10 8/10 7/10
Soja 5/10 5/10 6/10 4/10 6/10 6/10 7/10 5/10
Cube 5/10 5/10 8/10 6/10 8/10 5/10 9/10 6/10
Total 26/50 27/50 37/50 27/50 37/50 31/50 40/50 32/50

4 Conclusion
We present Hybrid Soft Actor-Critic with Diffusion Policy (Diff-HySAC), an online diffusion-based
off-policy maximum entropy RL algorithm for 6D non-prehensile manipulation. We derive a prin-
cipled objective, the maximum entropy regularization, that treats diffusion policies as a class of
stochastic policies. Our results show that incorporating this objective improves the performance of
diffusion-based policies in RL applications. Our qualitative analysis highlights that online RL can
be challenging for learning multi-modal policy distributions, as diffusion policies tend to converge
to uni-modal solutions. Therefore, combining stochastic diffusion-based methods with entropy-
maximizing RL algorithms holds promise for better exploration and learning more diverse behaviors.
Future work will focus on enhancing the expressiveness and multi-modal capabilities of diffusion
models for exploration strategies and on improving entropy estimation for diffusion model densities
to further advance off-policy learning techniques.
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