
Under review as a conference paper at ICLR 2024

ARE WE IN (A)SYNC?:
GUIDANCE FOR EFFICIENT FEDERATED LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Federated Learning (FL) methods have widely adopted synchronous FL (syncFL),
where a server distributes and aggregates the model weights with clients in coor-
dinated rounds. As syncFL suffers from low resource utilization on clients with
heterogeneous computing power, asynchronous FL (asyncFL), which allows the
server to exchange models with available clients continuously, has been proposed.
Despite numerous studies on syncFL and asyncFL, how they differ in training
time and resource efficiency is still unclear. Given the training and communica-
tion speed of participating clients, we present a formulation of time and resource
usage on syncFL and asyncFL. Our formulation weights asyncFL against its inef-
ficiencies stemming from stale model updates, enabling more accurate comparison
to syncFL in achieving the same objectives. Unlike previous findings, the formu-
lation reveals that no single approach always works better than the other regarding
time and resource usage. Our experiments across five datasets show that the for-
mulation predicts relative time and resource usage of syncFL and asyncFL with up
to 5.5× smaller root-mean-square error (RMSE) compared to the baseline meth-
ods. We envision our formulation to guide FL practitioners in making informed
decisions between syncFL and asyncFL, depending on their resource constraints.

1 INTRODUCTION

Federated Learning (FL) has emerged as a machine learning paradigm that performs decentralized
model training across multiple devices using their locally stored data (McMahan et al., 2017). Most
prior FL approaches adopted synchronous FL (syncFL), in which a central server distributes and
aggregates model weights with client devices in coordinated rounds (Li et al., 2020; Karimireddy
et al., 2020; Reddi et al., 2021; Acar et al., 2021). While syncFL ensures consistency in model
training, it often leads to suboptimal resource utilization, as clients who finish training early wait
for other slower clients to complete (Chen et al., 2020; Xu et al., 2021). To address this issue,
asynchronous FL (asyncFL) has been proposed (Xie et al., 2019; Chai et al., 2021; Wu et al., 2021;
Nguyen et al., 2022). In asyncFL, the central server continuously exchanges models with available
clients, aiming to harness the full potential of each client’s computational power.

We aim to answer the following question: how do syncFL and asyncFL differ in training time and
resource efficiency? Despite extensive research on syncFL and asyncFL, a definitive understanding
of their relative efficiency in time and resource usage remains unclear. Prior studies (Nguyen et al.,
2022; Huba et al., 2022) have empirically studied the relative efficiency of asyncFL compared to
syncFL. However, these findings are not easily generalizable as the investigations were confined
to specific setups (e.g., parameters) of syncFL and asyncFL. Moreover, these conclusions conflict
with others (Wu et al., 2021; Sun et al., 2023), indicating a lack of clarity on variables impacting
the efficiency of both methods. Such an ambiguity makes it challenging for FL practitioners with
limited resources to decide which of the two methods to choose.

To address this problem, we introduce a formulation that quantifies the time and resource usage of
syncFL and asyncFL based on the given training and communication time of participating clients.
Our formulation accounts for the inefficiencies in asyncFL that arise from stale model updates,
providing more accurate comparison with syncFL. Our analysis based on the formulation reveals
neither syncFL nor asyncFL universally outperforms the other in terms of time and resource us-
age, which contradicts previous findings (Xie et al., 2019; Nguyen et al., 2022; Huba et al., 2022).

1

Under review as a conference paper at ICLR 2024

We found that their efficiency is influenced by the distribution and scale of the client training and
communication times, along with the choice of parameters such as concurrency.

We evaluated the accuracy of our formulation on five datasets involving up to 21,876 FL clients,
comparing the formulated time and resource usage values with the actual results from syncFL and
asyncFL runs. The results demonstrate that the formulation predicts the relative efficiency of syncFL
and asyncFL with up to 5.5× less root-mean-square error (RMSE) compared to the baseline ap-
proaches. We further investigate the applicability of our formulation on different FL optimiza-
tions (McMahan et al., 2017; Li et al., 2020; Reddi et al., 2021). Our findings suggest that our for-
mulation could support FL practitioners to better understand the efficiency of syncFL and asyncFL
before FL execution, guiding their choices on which approaches and parameters to operate.

2 BACKGROUND

2.1 SYNCHRONOUS AND ASYNCHRONOUS FEDERATED LEARNING

For syncFL and asyncFL, we refer to the most commonly used algorithms, FedAvg (McMahan et al.,
2017) and FedBuff (Nguyen et al., 2022), respectively. We explain each as follows:

Synchronous Federated Learning. Suppose we have n FL clients and a server. FedAvg pro-
gresses on a round basis, where the server initiates a round by randomly sampling k clients (k ≤ n).
Let di denote the number of training samples for a sampled client i where 1 ≤ i ≤ k. The total
sum of training samples is expressed as m =

∑k
i=1 di. The server distributes model weights wj

for round j to the sampled clients. Each client i individually trains a model and responds with the
updated weights wj

i . The server waits for clients to finish training and synchronously aggregates the
model updates to a new global model as wj+1 ←

∑k
i=1

di

mwj
i .

Asynchronous Federated Learning. FedBuff uses two key parameters: (1) Concurrency c and
(2) aggregation goal k. FedBuff maintains c number of clients training concurrently during FL. At
an FL system with n clients, a server starts training with c randomly sampled clients. The server
stores the client update in a buffer whenever a client finishes training. Then, the server randomly
selects a non-training client for training, maintaining c training clients. When the buffer reaches size
k, the server aggregates the buffered updates into a new model. Note that in asyncFL, the server
model could be updated while clients train, which could let some clients end up training on a stale
global model. Such staleness is expressed in τi, a version difference between the current global
model and the global model trained by client i. FedBuff performs aggregation as in FedAvg, except
that client updates are each multiplied by 1√

1+τi
, similar to Xie et al. (2019).

2.2 FL EFFICIENCY METRICS

We primarily focus on two key metrics that characterize the efficiency of FL execution: (1) time and
(2) resource usage. Time denotes the wall-clock time required for a training model to achieve a target
test accuracy (Lai et al., 2021). Resource usage represents the sum of resources clients use for on-
device training and model communication to reach the target test accuracy. As in Abdelmoniem et al.
(2023), we quantify resource usage as the time clients spend for training and communication, which
is proportional to various resource types such as energy consumption. These metrics collaboratively
demonstrate how effectively the FL system could utilize the resources to accelerate FL execution.

We formulate the above metrics for syncFL and asyncFL to guide FL deployers in choosing the most
suitable approach before FL execution (discussed in Section 3). For example, if the FL deployers are
constrained by time for FL executions, they could leverage our formulation to evaluate the metrics
and select an option that optimizes time within their resource budget.

2.3 RELATED WORK

Federated Learning Approaches. McMahan et al. (2017) introduced the concepts of FL specif-
ically in the form of syncFL, by proposing the most commonly used FL algorithm, FedAvg. Most

2

Under review as a conference paper at ICLR 2024

subsequent optimizations in the FL domain were constructed on syncFL (Li et al., 2020; Karim-
ireddy et al., 2020; Reddi et al., 2021; Acar et al., 2021). However, syncFL faces challenges with
low resource utilization efficiency on heterogeneous clients (Chen et al., 2020; Xu et al., 2021). This
is because faster-training clients are often left idle in syncFL, waiting for other clients to complete.
To mitigate such a problem, researchers proposed various solutions, such as: configuring a deadline
for each round (Nishio & Yonetani, 2019), allowing slower clients to train on a sub-model (Diao
et al., 2021; Horváth et al., 2021) or train fewer samples (Shin et al., 2022), or oversampling the
clients at a round and partially accepting the faster updates (Li et al., 2019; Lai et al., 2021). How-
ever, these methods often led to the waste of client resources or suboptimal model accuracy due to
the partial exclusion of clients or not fully adhering to the training process (Abdelmoniem et al.,
2022; 2023). To harness the full capabilities of computational resources on FL clients, asyncFL has
been introduced (Wu et al., 2021; Nguyen et al., 2022; Chai et al., 2021; Sun et al., 2023), where
the server continuously exchanges model weights with available clients. Since asyncFL can lead
to stale model updates that might be noisier compared to syncFL, solutions such as weight decay-
ing (Park et al., 2021) or dropout regularization (Dun et al., 2023) have been proposed. Moreover,
the convergence of asyncFL methods has been theoretically validated (Fraboni et al., 2023).

Efficiency Comparison on Synchronous and Asynchronous Federated Learning. A number of
previous studies discussed the efficiency difference between syncFL and asyncFL: Wu et al. (2021)
and Sun et al. (2023) highlighted that the communication cost of asyncFL is much higher compared
to syncFL. Xie et al. (2019) and Zhang et al. (2023) featured that asyncFL achieves faster conver-
gence than syncFL. Others focused on empirically investigating a difference of FL efficiency be-
tween syncFL and asyncFL. Nguyen et al. (2022)’s experimental results on three datasets (CelebA,
Sent140, and CIFAR-10) show that syncFL requires about 3.3× more client updates compared to
asyncFL to reach the target accuracy. Huba et al. (2022) deployed syncFL and asyncFL to train a
language model on millions of mobile users, showing asyncFL achieves 5× less time in achiev-
ing accuracy goal with 8× less client updates compared to syncFL. These empirical findings are
hardly generalizable as they were under specific settings (e.g., 1,000 concurrency and 10 aggrega-
tion goal). Moreover, the fact that the prior findings (e.g., Wu et al. (2021) and Sun et al. (2023)
vs. Nguyen et al. (2022) and Huba et al. (2022)) are in disagreement suggests that there still exists
a gap in understanding the factors which influence the performance of the two approaches. Some
prior studies (Koloskova et al., 2022; Mishchenko et al., 2022) offer theoretical convergence rates
for asynchronous SGD based on maximum and average staleness. However, these findings are not
directly applicable to the widely used buffered asyncFL method and overlook resource efficiency.

In summary, it still remains unclear how syncFL and asyncFL differ in time and resource efficiency.
We present a formulation that quantifies the time and resource usage of both approaches. We further
conduct an analysis on our formulation and highlight that the training and communication speeds of
clients influence the efficiency of syncFL and asyncFL. We also demonstrate how the efficiencies
vary based on different concurrency parameters.

3 THEORETICAL FORMULATION

We formulate the time and resource usage required for syncFL and asyncFL to reach the target
accuracy. Our formulation assumes that the goal is achieved after p global model updates. Thus,
for syncFL, we formulate with an objective to complete p rounds. For asyncFL, we down-weight
each global model update based on its staleness (Nguyen et al., 2022) (e.g., a model update could be
measured as 0.8 model update due to staleness), and formulate the time and resource usage to reach
p model updates, as detailed in Section 3.2.

Let N = {1, 2, . . . , n} denote a set of n FL clients’ indices, from client 1 to client n. As-
suming clients train and communicate models on different hardware setups, we define a set
T = {t1, t2, . . . , tn}, where ti indicates a time that client i (i ∈ N) takes to complete the fol-
lowing: (1) download the global model weights, (2) train the model, and (3) upload the local model
weights. Without loss of generality, let t1 ≤ t2 ≤ · · · ≤ tn. For asyncFL, k denotes the aggregation
goal, i.e., a number of client updates required to update the global model; thus, k is equivalent to the
number of clients sampled per round in syncFL. c indicates the concurrency parameter of asyncFL.

3

Under review as a conference paper at ICLR 2024

3.1 SYNCHRONOUS FEDERATED LEARNING

Time. As in FedAvg (McMahan et al., 2017), k clients are randomly sampled among total n clients
at each round of syncFL. A round duration is determined by the slowest sampled client, which is
one of the following: {tk, tk+1, . . . , tn}. Among

(
n
k

)
of client selection cases, the number of cases

which ti (k ≤ i ≤ n) becomes the round duration is
(
i−1
k−1

)
, i.e., number of cases of choosing k − 1

clients among {t1, t2, . . . , ti−1} after choosing ti. Thus, the expected per-round time of syncFL is:

tk
(
k−1
k−1

)
+ tk+1

(
k

k−1

)
+ · · ·+ tn

(
n−1
k−1

)(
n
k

) . (1)

Thus, the averge time that elapses for syncFL to complete p rounds is p × Eq.(1).

Resource Usage. Average resource usage from a sampled client at a round is T . Thus, the resource
usage required for p rounds with syncFL is pkT .

3.2 ASYNCHRONOUS FEDERATED LEARNING

Time. Formulating the time of asyncFL execution involves two tasks: (1) Calculating the number
of global model updates until time x with given aggregation goal k and concurrency c, and (2) mea-
suring the staleness involved with each global model updates. Based on these two information, we
could find time x which asyncFL system achieves p global model updates after accounting staleness.
To this end, we define a function f(T, c, i) that denotes an expected portion of time in which client
i participated in FL (i.e., model training and communication) at asyncFL setting, where c ≤ |T |
indicates concurrency and 0 ≤ f(T, c, i) ≤ 1 for i ∈ N . For example, if the client i participated in
asyncFL for ti time while the whole training process takes time twhole to reach the target accuracy,
then f(T, c, i) = ti

twhole
.

Lemma 1. Let ec(T) denote an elementary symmetric polynomial defined as: ec(T) =∑
i1<i2<···<ic

ti1ti2 . . . tic , for ti1 , ti2 , . . . , tic ∈ T . Then:

f(T, c, i) =
tiec−1(T \ {ti})

ec(T)
.

Proof. Refer to Appendix A for the proof.

Given the client times set T , we could measure the portion of time which each client participated.
This allows us to further measure the number of model updates given by each client, as follows:
Corollary 1. Let g(T, c, i, x) be an expected number of updates from client i until arbitrary time x:

g(T, c, i, x) =
xf(T, c, i)

ti
=

xec−1(T \ {ti})
ec(T)

. (2)

Since
∑

i∈N ec(T \ {ti}) = (n − c)ec(T), an expected portion of updates from client i among all
updates given by total n clients:

g(T, c, i, x)∑
j∈N g(T, c, j, x)

=

xec−1(T\{ti})
ec(T)∑

j∈N
xec−1(T\{tj})

ec(T)

=
ec−1(T \ {ti})

(n− c+ 1)ec−1(T)
. (3)

Based on the number of model updates on each client, we could formulate staleness involved with
client model updates. This is achieved by measuring the expected number of global model updates
that occur while a client is training, as follows:
Corollary 2. The expected number of updates given by other clients while client i is participating
(e.g., training and communicating for ti time) is approximated as:∑

j∈N−{i}

g(T \ {ti}, c− 1, j, ti) = ti
(n− c)ec−2(T \ {ti})

ec−1(T \ {ti})
. (4)

4

Under review as a conference paper at ICLR 2024

20 40 60 80 100
Client ID

2

4

6

8

10

t i

(a) Client times T

10 30 50 70 90
Concurrency

0.25

0.50

0.75

1.00

T
im

e

(b) [0,10]-Time

10 30 50 70 90
Concurrency

0.00

0.25

0.50

0.75

1.00

T
im

e

Exp

Neg-exp

Uniform

(c) [0,1000]-Time

10 30 50 70 90
Concurrency

1.5

2.0

2.5

R
e
so

u
rc

e
U

sa
g
e

(d) [0,10]-RU

10 30 50 70 90
Concurrency

1.0

1.5

2.0

2.5

R
e
so

u
rc

e
U

sa
g
e

(e) [0,1000]-RU

Figure 1: Time and Resource Usage (RU) analysis from the formulation. All subgraphs share the
legend of Figure 1c. The results demonstrate the normalized performance of asyncFL, with syncFL’s
time and RU set as the baseline at 1.0. Figure 1a displays the distribution of three client time sets
used for analysis, with each time ti generated from a scale of [0, 10] and [0, 1000]. Figures 1b
and 1d show time and RU for [0, 10] client times, while Figures 1c and 1e show for [0, 1000].

Let staleness τi denote the number of global model updates that occured during the training and
communication time of client i. Let k indicate the aggregation goal parameter of asyncFL. The
expected value of τi:

E[τi] =
Eq.(4)

k
=

ti(n− c)ec−2(T \ {ti})
kec−1(T \ {ti})

.

Then, the expected staleness penalty of an asyncFL client:∑
i∈N

Eq.(3)√
1 + E[τi]

=
∑
i∈N

ec−1(T \ {ti})
(n− c+ 1)ec−1(T)

√
1 + E[τi]

. (5)

Note that our formulation uses Eq.(5) to down-weight the global model update of asyncFL.

Based on the staleness penalty formulation on global model updates, the time is formulated as:

Proposition 1. The time for asyncFL to reach p global model updates is: pkec(T)∑
i∈N

ec−1(T\{ti})√
1+E[τi]

.

Proof. The total number of global model updates until time x:∑
i∈N g(T, c, i, x)

k
=

x

k

∑
i∈N

ec−1(T \ {ti})
ec(T)

. (6)

Then, the measured global model updates until time x with staleness down-weighting:

Eq.(5)× Eq.(6) =
x

kec(T)

∑
i∈N

ec−1(T \ {ti})√
1 + E[τi]

. (7)

Let p global model updates is achieved at time x, i.e., Eq.(7) = p. Then: x = pkec(T)∑
i∈N

ec−1(T\{ti})√
1+E[τi]

.

Resource Usage. By multiplying ti by g(T, c, i, x) (i.e., the expected client i updates count until
time x), we determine the resource usage of client i. Then, the total resource usage across all clients:∑

i∈N

tig(T, c, i, x) = x
∑
i∈N

ti
ec−1(T \ {ti})

ec(T)
=

pk
∑

i∈N tiec−1(T \ {ti})∑
i∈N

ec−1(T\{ti})√
1+E[τi]

.

4 CASE STUDY WITH THE FORMULATION

Based on the formulation we derived in Section 3, we conduct analysis on time and resource usage
comparing syncFL and asyncFL. We evaluate a toy example involving 100 FL clients, where they
have three distinct distributions of client times T : (1) Exp: Used an exponential distribution to
produce client times within the interval [0, 1], with an average of 0.2. This signifies scenarios where
only a minority of clients operate at a slower pace. (2) Neg-exp: This is achieved by subtracting
values from the aforementioned Exp distribution from 1 (i.e., 1 - Exp), representing a case where

5

Under review as a conference paper at ICLR 2024

majority of clients are slow. (3) Uniform: Clients times are uniformly spread within [0, 1]. Figure 1a
demonstrates the example of client times T on the three distributions. To understand the impact of
client time scales, we expanded the generated T values into two different ranges: [0, 10] and [0,
1000]. We set aggregation goal parameter as 10 for asyncFL as recommended by Nguyen et al.
(2022). We normalize the results by configuring the time and resource usage of syncFL as 1.0. Thus,
the asyncFL results demonstrate the relative performance over syncFL. We repeat the generation of
T over five different random seeds and analyze on averaged time and resource usage results.

Figures 1b–1e illustrate the time and resource usage results over different concurrency parameters.
Although prior studies has asserted a definitive advantage of either asyncFL or syncFL in terms of
time and resource usage (Nguyen et al., 2022; Huba et al., 2022), our findings suggest that no single
approach always work better than the other. From the time results in Figure 1b and 1c, the majority
of our results across three T distributions suggest that asyncFL outpaces syncFL, as evidenced by
the results where time < 1.0. However, when asyncFL operates on Neg-exp, it exhibits a time
value exceeding 1.0 at a concurrency of ≈ 10, signifying that asyncFL is slower than syncFL. In
terms of the resource usage, most of the results in Figure 1d and 1e indicate that asyncFL incurs
more resource usage than syncFL, showing resource usage > 1.0. Yet, asyncFL with Exp presents
resource usage < 1.0 when concurrency > 75, being more resource efficient than syncFL.

Our analysis results on the formulation suggest that the time and resource usage of syncFL and
asyncFL are shaped by the distribution of the client times T and its scale. Further, these find-
ings hint that the formulation offers valuable insights for FL practitioners, guiding their choices on
which approaches and hyperparameters to operate. For instance, if FL clients display a Neg-exp T
distribution within the range [0, 10], FL practitioners operating on a tight resource budget might nat-
urally gravitate towards syncFL, as the formulation results consistently indicate the resource usage
of asyncFL > 1.0. More broadly, FL practitioners could pinpoint an optimal concurrency parame-
ter of asyncFL that strikes a right balance between time benefit and additional resource usage over
syncFL, by drawing insights from our formulation outcomes.

5 PRACTICAL IMPROVEMENTS

In addition to the formulation in Section 3, we make the following two modifications considering
realistic scenarios as follows:

Contribution Scaling on a Client Dataset. FL clients with heterogeneous data often con-
tribute differently to the global model training (Lai et al., 2021; Shin et al., 2022). We formu-
late each client’s contribution to the training proportional to its dataset size. We define a set
D = {d1, d2, . . . , dn}, where di indicates a dataset size of client i. In the formulation, we multiply

by di

D
as a contribution factor on each selected client, where D =

∑
di∈D di

|D| . SyncFL formulation
remains identical as expected dataset size of a client sampled at a round is D. For asyncFL, the for-
mulation is updated by each client item of Eq.(5) by di

D
, in addition to the staleness down-weighting.

Reflecting the Impact of Bias. In asyncFL, the model gets biased towards faster clients as they
contribute more model updates to the global model, while slower clients’ updates are down-weighted
due to staleness (Tamboli et al., 2023). This issue causes asyncFL to perform more global model
updates than syncFL to reach the target accuracy. We define a set U = {u1, u2, . . . , un}, where
ui represents the count of model updates made by client i during asyncFL. The influence of model
bias intensifies as the variance of U increases (Zhang et al., 2023), indicating faster clients providing
more model updates than slower clients. Thus, we multiply the coefficient of variation of U (denoted
as CV (U)) by p, which we assumed that the target accuracy is achieved after p global model updates
in our formulation. Through empirical analysis, we found that multiplying 10 ∗ CV (U) + 1 at p
yields an accurate prediction. Note that adding 1 ensures that p remains unchanged in cases with no
variance in U, i.e., CV(U) = 0. We use Eq.(2) to measure ui, which is proportional to ec−1(T−{ti}).

6 EXPERIMENTS

We conduct experiments to demonstrate how well our formulation predicts the time and resource
usage of syncFL and asyncFL under realistic FL scenarios, as follows:

6

Under review as a conference paper at ICLR 2024

Table 1: Experiment details on five datasets.

FEMNIST CelebA Shakespeare Sent140 CIFAR-10

Num. of clients 3,000 9,343 660 21,876 5,000
Num. of samples 638,649 200,288 4,035,372 430,707 60,000
Target accuracy 80% 85% 50% 69% 60%

Batch size 20 10 4 10 10
Learning rate 0.1 0.001 1 0.0003 0.1

Model architecture CNN CNN Stacked LSTM ALBERT ResNet-18

Datasets. We run experiments on the following five datasets: FEMNIST (Cohen et al., 2017),
CelebA (Liu et al., 2015), Shakespeare (Shakespeare, 2014), Sent140 (Go et al., 2009), and CIFAR-
10 (Krizhevsky et al., 2009). Table 1 shows the statistics, model architectures, hyperparameters, and
target accuracies on each dataset, which we chose based on previous studies (Caldas et al., 2018; Li
et al., 2020; Acar et al., 2021; Charles et al., 2021; Hu et al., 2022; Nguyen et al., 2022; Shin et al.,
2022). We trained image classification models on three datasets: FEMNIST contains images of
62 handwritten alphabets and digits from 3,000 clients, and CelebA involves facial images of 9,343
clients. We divided the CIFAR-10 dataset into 5,000 clients as in Nguyen et al. (2022). We also used
two natural language-based datasets: we performed next-character prediction on the Shakespeare
dataset, which contains speaking lines of 660 roles from Shakespeare’s plays. We conduct sentiment
analysis on the Sent140 dataset containing Twitter posts of 21,876 clients. We split each client’s data
into a train, validation, and test set in a ratio of 8:1:1 and measure the validation and test accuracy
at every global model update. We allocated IID data to CIFAR-10 dataset clients, but the other four
datasets were non-IID as their original form provided by the LEAF framework (Caldas et al., 2018).

Metrics. We evaluate metrics in Section 2.2, (1) time, and (2) resource usage on syncFL and
asyncFL experiments. The time and resource usage metrics are measured until the test accuracy
reaches the target accuracy. We normalize the results by setting up the time and resource usage
of syncFL as 1.0 and measure the prediction error by root-mean-square error (RMSE). We further
report the accuracy for each experiment, which is a test accuracy at maximal validation accuracy.

Baselines. As a baseline method for predicting the time and resource usage of syncFL and
asyncFL, we employ the following method that runs FL for a limited number of global model up-
dates and makes predictions based on the mean observed values. We name the baseline methods
as updates-1, updates-10, and updates-100, each using observed results from r number of global
model updates for prediction where r = 1, 10 and 100.

Methods. To emulate realistic training and networking durations of FL clients, we derived client
times from a large-scale trace dataset (Yang et al., 2021) that contains on-device training and com-
munication latencies of 136k user smartphones spanning a thousand device models. For each of the
five datasets, we generated a client time set T = {t1, . . . , tn} whose size n matches the number of
clients in the dataset. We use T to predict the metrics on our formulation and measure the predic-
tion error after running syncFL and asyncFL by assigning each ti on clients. We run up to 5,000
global model updates for FEMNIST, CelebA, and CIFAR-10 datasets; 1,000 for Shakespeare and
Sent140 datasets. For asyncFL experiments, concurrency c was set to [10, 25, 50, 100, 200, 500,
1000] (Nguyen et al., 2022). We used [10, 50, 100] aggregation goal parameters k for asyncFL and
per-round sampled clients for syncFL. Notably, k = 10 consistently yielded minimal time and re-
source usage across all datasets on both syncFL and asyncFL. We repeated the process five times on
different random seeds [0-4], generating different T on each seed, and reported the averaged results.

6.1 TIME AND RESOURCE USAGE PREDICTION

Table 2 presents the time and resource usage prediction error on five datasets, averaged from experi-
ments with different concurrency parameters and random seeds. The results indicate our formulation
has minimal error among the tested methods in predicting time and resource usage across the five
datasets. Our formulation shows 1.08–2.25× and 1.51–5.50× smaller prediction error than baseline
methods for the time and resource usage respectively. Our formulation accounts for the inefficien-
cies of stale model updates in asyncFL, enabling it to outperform baseline methods that treat all
asyncFL updates as equivalent to syncFL. Note that our formulation also achieves minimal over-
head in performing prediction, obviating the need for test FL rounds unlike the baseline methods.

7

Under review as a conference paper at ICLR 2024

Table 2: Time and Resource Usage (RU) prediction performance on five datasets, in root-mean-
square error (RMSE). Our formulation (Ours) is compared with the Updates-N baseline methods,
which runs FL for N number of global model updates and makes predictions derived from average
observed values. Experiments are repeated five times on different random seeds.

FEMNIST CelebA Shakespeare Sent140 CIFAR-10

Method Time RU Time RU Time RU Time RU Time RU

Updates-1 0.10±0.03 5.00±1.92 0.09±0.02 3.63±0.34 0.17±0.04 6.16±0.53 0.24±0.12 9.18±5.65 0.10±0.02 4.23±0.31

Updates-10 0.11±0.02 4.89±1.96 0.17±0.06 3.46±0.35 0.26±0.02 5.86±0.54 0.20±0.11 9.09±5.64 0.18±0.01 4.15±0.30

Updates-100 0.12±0.02 4.66±1.97 0.18±0.06 3.16±0.35 0.26±0.02 5.60±0.55 0.21±0.13 8.83±5.64 0.20±0.01 3.91±0.33

Ours 0.08±0.02 1.95±1.21 0.08±0.04 0.66±0.26 0.13±0.01 1.58±0.24 0.14±0.10 5.85±4.11 0.09±0.02 1.77±0.33

10 25 50 100 200 500 1000
Concurrency

0.0

0.2

0.4

0.6

T
im

e

Ground truth

Updates-100

Ours

(a) FEMNIST-Time

10 25 50 100 200 500 1000
Concurrency

0.0

0.2

0.4

0.6

0.8
T

im
e

Ground truth

Updates-100

Ours

(b) CelebA-Time

10 25 50 100 200 500 1000
Concurrency

0

5

10

15

20

R
e
so

u
rc

e
U

sa
g
e

Ground truth

Updates-100

Ours

(c) FEMNIST-RU

10 25 50 100 200 500 1000
Concurrency

0.0

2.5

5.0

7.5

10.0

12.5

R
e
so

u
rc

e
U

sa
g
e

Ground truth

Updates-100

Ours

(d) CelebA-RU

SyncFL 10 25 50 100 200 500 1000
Concurrency

0

1000

2000

3000

N
u

m
.

m
o
d

e
l

u
p

d
a
te

s

(e) FEMNIST-Updates #

SyncFL 10 25 50 100 200 500 1000
Concurrency

1000

2000

3000

N
u

m
.

m
o
d

e
l

u
p

d
a
te

s

(f) CelebA-Updates #

SyncFL10 25 50 100 200 500 1000
Concurrency

0.2

0.4

0.6

0.8

A
cc

u
ra

cy

(g) FEMNIST-Accuracy

SyncFL10 25 50 100 200 500 1000
Concurrency

0.82

0.84

0.86

0.88

0.90

A
cc

u
ra

cy

(h) CelebA-Accuracy

Figure 2: Experimental results on FEMNIST and CelebA datasets over different concurrency pa-
rameters. Figure 2a–2d demonstrates the time and Resource Usage (RU) ground truth values and
prediction from Updates-100 baseline and our formulation. 2e–2f shows the number of global model
updates required to reach the target accuracy, and 2g–2h indicates accuracy from each experiment.

Figures 2a–2d illustrate the ground truth and prediction values of the time and resource usage over
different concurrency parameters, on FEMNIST and CelebA datasets. The results indicate our for-
mulation better aligns with the ground truth than the Updates-100 baseline, which especially shows
huge discrepancy on resource usage. The baseline, which predicts after running fixed number of
global model updates, assumes that both syncFL and asyncFL achieve the target accuracy after
identical count of updates; however, as shown in Figures 2e and 2f, asyncFL necessitates a greater
number of global model updates to reach the target accuracy than syncFL. The number escalates
with bigger concurrency, due to the increasing staleness involved with the global model updates.

Such a staleness factor also impacts the accuracy of asyncFL (Figures 2g and 2h), manifesting
decreasing trend at higher concurrency parameters. This is due to the model being biased towards
faster clients, given that the updates from slower clients are significantly down-weighted due to their
increased staleness (Zhang et al., 2023). In summary, adopting concurrency parameters≤ 200 when
employing aggregation goal of 10 shows accuracy on par with syncFL across five datasets. We
observe that using concurrency > 200 offers minimal benefit on time but demands exponentially
increasing resource usage as depicted in Figure 2.

Impact of practical improvements. We conducted an ablation study to understand the prediction
performance brought by each component of practical improvements (Section 5): (i) contribution
scaling on a client dataset (D) and (ii) reflecting the impact of bias (B). We refer the original for-
mulation presented in Section 3 as Orig, and observe how the prediction error changes when each
component is introduced. Figures 3a and 3b report the comparison results of average RMSE for time
and resource usage prediction across the datasets. The results show that Orig, the formulation with-
out practical improvements, still achieves 1.42-1.54× smaller RMSE on average compared to the
baseline method, Updates-100. We make two observations: (1) the prediction error drops as com-
ponents are introduced; (2), B induces more error reduction than D. The results imply that training

8

Under review as a conference paper at ICLR 2024

0.00

0.05

0.10

0.15

0.20

0.25

0.30

R
M

S
E

Updates-100

Orig

Orig+D

Orig+D+B

(a) Ablation-Time

0

2

4

6

R
M

S
E

Updates-100

Orig

Orig+D

Orig+D+B

(b) Ablation-RU

10 25 50 100 200 500 1000
Concurrency

0.2

0.4

0.6

0.8

1.0

T
im

e

FedAvg

FedProx

FedAdagrad

FedYogi

Ours

(c) FL approaches-Time

10 25 50 100 200 500 1000
Concurrency

0

10

20

30

R
e
so

u
rc

e
U

sa
g
e

FedAvg

FedProx

FedAdagrad

FedYogi

Ours

(d) FL approaches-RU

Figure 3: Experiment results. Figures 3a and 3b depicts the result of an ablation study to compare
the predictive error when each element of the practical improvements (Section 5) is introduced.
This includes scaling contributions based on a client dataset (D) and accounting for bias effects (B).
Orig indicates the original formulation from Section 3, and Updates-100 is the baseline method.
Figures 3c and 3d demonstrates how the time and RU result changes on FEMNIST dataset when
different FL approaches are applied instead of FedAvg, and how it compares with the formulation.

bias between clients has greater impact on asyncFL than dataset size heterogeneity. Nevertheless,
applying D to the formulation is still beneficial when FL practitioners deal with FL tasks with large
variance on client sample counts.

6.2 COMPATIBILITY WITH OTHER FL APPROACHES

We primarily focused on formulating and evaluating the most commonly used FL algorithms for
syncFL and asyncFL, which are FedAvg (McMahan et al., 2017) and FedBuff (Nguyen et al., 2022)
respectively. However, since the inception of FL, numerous other FL methods and optimizations
have been proposed. To understand the impact of these alternative techniques on the prediction
error of our formulation, we experimented other widely recognized FL optimization approaches for
syncFL in place of FedAvg: a client-side regularizer, FedProx (Li et al., 2020), and server-side
optimizers, FedYogi and FedAdagrad (Reddi et al., 2021). We applied recommended parameters
for each of the approaches: µ = 0.001 for FedProx, {β1, β2, η, τ} = {0.9, 0.99, 0.01, 0.001} for
FedYogi and FedAdagrad.

Figures 3c and 3d demonstrate the time and resource usage results compared to our formulation over
different concurrency parameters on FEMNIST dataset. While substituting different methods for
FedAvg leads to different prediction errors, the overall trend observed across different concurrency
parameters and our formulation remains consistent. This indicates the potential of our formulation
to predict trends even when alternative FL approaches are implemented. Moreover, we hypothesize
that our formulation’s prediction error on other FL approaches would decrease when analogous
optimization is applied on asyncFL. As such optimization techniques are specifically designed for
syncFL, directly applying such approaches on asyncFL is non-trivial. Additionally, refining our
formulation to incorporate various optimization techniques for both syncFL and asyncFL is what
we plan to explore as future work.

7 CONCLUSION

We present a formulation that quantifies the time and resource usage of synchronous and asyn-
chronous FL (syncFL and asyncFL), given the training and communicating speed of participating
clients. Our formulation factors in the inefficiencies of asyncFL due to stale model updates, facili-
tating a more precise comparison with syncFL in achieving the same objectives. Our analysis on the
formulation highlights that the distribution and scale of clients’ training and communication time
influences the time and resource usage of both approaches. Contrary to prior findings, our formula-
tion reveals that neither approach consistently outperforms the other in terms of time and resource
usage. Our evaluation on five datasets demonstrates that the formulation accurately predicts the rel-
ative time and resource usage of syncFL and asyncFL, with 5.5× smaller root-mean-square error
(RMSE) than the baseline methods. We believe our formulation will provide valuable insights on
the efficiency of syncFL and asyncFL for FL practitioners, guiding them to make informed decisions
between the two approaches based on their resource constraints.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Ahmed M. Abdelmoniem, Chen-Yu Ho, Pantelis Papageorgiou, and Marco Canini. Empirical anal-
ysis of federated learning in heterogeneous environments. In Proceedings of the 2nd European
Workshop on Machine Learning and Systems, EuroMLSys ’22, pp. 1–9, New York, NY, USA,
2022. Association for Computing Machinery. ISBN 9781450392549. doi: 10.1145/3517207.
3526969. URL https://doi.org/10.1145/3517207.3526969.

Ahmed M. Abdelmoniem, Atal Narayan Sahu, Marco Canini, and Suhaib A. Fahmy. Refl: Resource-
efficient federated learning. In Proceedings of the Eighteenth European Conference on Computer
Systems, EuroSys ’23, pp. 215–232, New York, NY, USA, 2023. Association for Computing
Machinery. ISBN 9781450394871. doi: 10.1145/3552326.3567485. URL https://doi.
org/10.1145/3552326.3567485.

Durmus Alp Emre Acar, Yue Zhao, Ramon Matas, Matthew Mattina, Paul Whatmough, and
Venkatesh Saligrama. Federated learning based on dynamic regularization. In International Con-
ference on Learning Representations, 2021. URL https://openreview.net/forum?
id=B7v4QMR6Z9w.

Sebastian Caldas, Sai Meher Karthik Duddu, Peter Wu, Tian Li, Jakub Konečnỳ, H Brendan McMa-
han, Virginia Smith, and Ameet Talwalkar. Leaf: A benchmark for federated settings. arXiv
preprint arXiv:1812.01097, 2018.

Zheng Chai, Yujing Chen, Ali Anwar, Liang Zhao, Yue Cheng, and Huzefa Rangwala. Fe-
dat: A high-performance and communication-efficient federated learning system with asyn-
chronous tiers. In Proceedings of the International Conference for High Performance Com-
puting, Networking, Storage and Analysis, SC ’21, New York, NY, USA, 2021. Association
for Computing Machinery. ISBN 9781450384421. doi: 10.1145/3458817.3476211. URL
https://doi.org/10.1145/3458817.3476211.

Zachary Charles, Zachary Garrett, Zhouyuan Huo, Sergei Shmulyian, and Virginia Smith.
On large-cohort training for federated learning. In M. Ranzato, A. Beygelzimer,
Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), Advances in Neural In-
formation Processing Systems, volume 34, pp. 20461–20475. Curran Associates, Inc.,
2021. URL https://proceedings.neurips.cc/paper_files/paper/2021/
file/ab9ebd57177b5106ad7879f0896685d4-Paper.pdf.

Y. Chen, Y. Ning, M. Slawski, and H. Rangwala. Asynchronous online federated learning for
edge devices with non-iid data. In 2020 IEEE International Conference on Big Data (Big
Data), pp. 15–24, Los Alamitos, CA, USA, dec 2020. IEEE Computer Society. doi: 10.1109/
BigData50022.2020.9378161. URL https://doi.ieeecomputersociety.org/10.
1109/BigData50022.2020.9378161.

Gregory Cohen, Saeed Afshar, Jonathan Tapson, and André van Schaik. Emnist: Extending mnist
to handwritten letters. In 2017 International Joint Conference on Neural Networks (IJCNN), pp.
2921–2926, 2017. doi: 10.1109/IJCNN.2017.7966217.

Enmao Diao, Jie Ding, and Vahid Tarokh. Hetero{fl}: Computation and communication efficient
federated learning for heterogeneous clients. In International Conference on Learning Represen-
tations, 2021. URL https://openreview.net/forum?id=TNkPBBYFkXg.

Chen Dun, Mirian Hipolito, Chris Jermaine, Dimitrios Dimitriadis, and Anastasios Kyrillidis. Effi-
cient and light-weight federated learning via asynchronous distributed dropout. In Francisco Ruiz,
Jennifer Dy, and Jan-Willem van de Meent (eds.), Proceedings of The 26th International Confer-
ence on Artificial Intelligence and Statistics, volume 206 of Proceedings of Machine Learning
Research, pp. 6630–6660. PMLR, 25–27 Apr 2023. URL https://proceedings.mlr.
press/v206/dun23a.html.

Yann Fraboni, Richard Vidal, Laetitia Kameni, and Marco Lorenzi. A general theory for federated
optimization with asynchronous and heterogeneous clients updates. Journal of Machine Learning
Research, 24(110):1–43, 2023. URL http://jmlr.org/papers/v24/22-0689.html.

10

Under review as a conference paper at ICLR 2024

Alec Go, Richa Bhayani, and Lei Huang. Twitter sentiment classification using distant supervision.
project report, Stanford, 1(12):2009, 2009.

Samuel Horváth, Stefanos Laskaridis, Mario Almeida, Ilias Leontiadis, Stylianos Venieris, and
Nicholas Lane. Fjord: Fair and accurate federated learning under heterogeneous targets with or-
dered dropout. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan
(eds.), Advances in Neural Information Processing Systems, volume 34, pp. 12876–12889. Cur-
ran Associates, Inc., 2021. URL https://proceedings.neurips.cc/paper_files/
paper/2021/file/6aed000af86a084f9cb0264161e29dd3-Paper.pdf.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In International Con-
ference on Learning Representations, 2022. URL https://openreview.net/forum?
id=nZeVKeeFYf9.

Dzmitry Huba, John Nguyen, Kshitiz Malik, Ruiyu Zhu, Mike Rabbat, Ashkan Yousefpour, Carole-
Jean Wu, Hongyuan Zhan, Pavel Ustinov, Harish Srinivas, Kaikai Wang, Anthony Shoumikhin,
Jesik Min, and Mani Malek. Papaya: Practical, private, and scalable federated learning. In
D. Marculescu, Y. Chi, and C. Wu (eds.), Proceedings of Machine Learning and Systems, vol-
ume 4, pp. 814–832, 2022. URL https://proceedings.mlsys.org/paper_files/
paper/2022/file/a8bc4cb14a20f20d1f96188bd61eec87-Paper.pdf.

Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and
Ananda Theertha Suresh. SCAFFOLD: Stochastic controlled averaging for federated learn-
ing. In Hal Daumé III and Aarti Singh (eds.), Proceedings of the 37th International Confer-
ence on Machine Learning, volume 119 of Proceedings of Machine Learning Research, pp.
5132–5143. PMLR, 13–18 Jul 2020. URL https://proceedings.mlr.press/v119/
karimireddy20a.html.

Anastasiia Koloskova, Sebastian U Stich, and Martin Jaggi. Sharper convergence guaran-
tees for asynchronous sgd for distributed and federated learning. In S. Koyejo, S. Mo-
hamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural In-
formation Processing Systems, volume 35, pp. 17202–17215. Curran Associates, Inc.,
2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/
file/6db3ea527f53682657b3d6b02a841340-Paper-Conference.pdf.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Fan Lai, Xiangfeng Zhu, Harsha V. Madhyastha, and Mosharaf Chowdhury. Oort: Efficient fed-
erated learning via guided participant selection. In 15th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 21), pp. 19–35. USENIX Association, July 2021.
ISBN 978-1-939133-22-9. URL https://www.usenix.org/conference/osdi21/
presentation/lai.

Li Li, Haoyi Xiong, Zhishan Guo, Jun Wang, and Cheng-Zhong Xu. Smartpc: Hierarchical pace
control in real-time federated learning system. In 2019 IEEE Real-Time Systems Symposium
(RTSS), pp. 406–418, 2019. doi: 10.1109/RTSS46320.2019.00043.

Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia
Smith. Federated optimization in heterogeneous networks. In I. Dhillon, D. Papailiopou-
los, and V. Sze (eds.), Proceedings of Machine Learning and Systems, volume 2, pp. 429–
450, 2020. URL https://proceedings.mlsys.org/paper_files/paper/2020/
file/1f5fe83998a09396ebe6477d9475ba0c-Paper.pdf.

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild.
In 2015 IEEE International Conference on Computer Vision (ICCV), pp. 3730–3738, 2015. doi:
10.1109/ICCV.2015.425.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Ar-
cas. Communication-Efficient Learning of Deep Networks from Decentralized Data. In

11

Under review as a conference paper at ICLR 2024

Aarti Singh and Jerry Zhu (eds.), Proceedings of the 20th International Conference on Artifi-
cial Intelligence and Statistics, volume 54 of Proceedings of Machine Learning Research, pp.
1273–1282. PMLR, 20–22 Apr 2017. URL https://proceedings.mlr.press/v54/
mcmahan17a.html.

Konstantin Mishchenko, Francis Bach, Mathieu Even, and Blake E Woodworth. Asyn-
chronous sgd beats minibatch sgd under arbitrary delays. In S. Koyejo, S. Mo-
hamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances in Neu-
ral Information Processing Systems, volume 35, pp. 420–433. Curran Associates, Inc.,
2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/
file/029df12a9363313c3e41047844ecad94-Paper-Conference.pdf.

John Nguyen, Kshitiz Malik, Hongyuan Zhan, Ashkan Yousefpour, Mike Rabbat, Mani Malek, and
Dzmitry Huba. Federated learning with buffered asynchronous aggregation. In Gustau Camps-
Valls, Francisco J. R. Ruiz, and Isabel Valera (eds.), Proceedings of The 25th International Con-
ference on Artificial Intelligence and Statistics, volume 151 of Proceedings of Machine Learning
Research, pp. 3581–3607. PMLR, 28–30 Mar 2022. URL https://proceedings.mlr.
press/v151/nguyen22b.html.

Takayuki Nishio and Ryo Yonetani. Client selection for federated learning with heterogeneous
resources in mobile edge. In ICC 2019 - 2019 IEEE International Conference on Communications
(ICC), pp. 1–7, 2019. doi: 10.1109/ICC.2019.8761315.

Jungwuk Park, Dong-Jun Han, Minseok Choi, and Jaekyun Moon. Sageflow: Robust fed-
erated learning against both stragglers and adversaries. In M. Ranzato, A. Beygelz-
imer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), Advances in Neu-
ral Information Processing Systems, volume 34, pp. 840–851. Curran Associates, Inc.,
2021. URL https://proceedings.neurips.cc/paper_files/paper/2021/
file/076a8133735eb5d7552dc195b125a454-Paper.pdf.

Sashank J. Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush, Jakub Konečný,
Sanjiv Kumar, and Hugh Brendan McMahan. Adaptive federated optimization. In International
Conference on Learning Representations, 2021. URL https://openreview.net/forum?
id=LkFG3lB13U5.

William Shakespeare. The complete works of William Shakespeare. Race Point Publishing, 2014.

Jaemin Shin, Yuanchun Li, Yunxin Liu, and Sung-Ju Lee. Fedbalancer: Data and pace control for
efficient federated learning on heterogeneous clients. In Proceedings of the 20th Annual Inter-
national Conference on Mobile Systems, Applications and Services, MobiSys ’22, pp. 436–449,
New York, NY, USA, 2022. Association for Computing Machinery. ISBN 9781450391856. doi:
10.1145/3498361.3538917. URL https://doi.org/10.1145/3498361.3538917.

Jingwei Sun, Ang Li, Lin Duan, Samiul Alam, Xuliang Deng, Xin Guo, Haiming Wang, Maria
Gorlatova, Mi Zhang, Hai Li, and Yiran Chen. Fedsea: A semi-asynchronous federated learning
framework for extremely heterogeneous devices. In Proceedings of the 20th ACM Conference
on Embedded Networked Sensor Systems, SenSys ’22, pp. 106–119, New York, NY, USA, 2023.
Association for Computing Machinery. ISBN 9781450398862. doi: 10.1145/3560905.3568538.
URL https://doi.org/10.1145/3560905.3568538.

Dipesh Tamboli, Pranjal Jain, Atul Sharma, Biplab Banerjee, Saurabh Bagchi, and Somali Chaterji.
Kuiper: Moderated asynchronous federated learning on heterogeneous mobile devices with non-
IID data, 2023. URL https://openreview.net/forum?id=AqiB_Tqqc8z.

Wentai Wu, Ligang He, Weiwei Lin, Rui Mao, Carsten Maple, and Stephen Jarvis. Safa: A semi-
asynchronous protocol for fast federated learning with low overhead. IEEE Trans. Comput., 70
(5):655–668, may 2021. ISSN 0018-9340. doi: 10.1109/TC.2020.2994391. URL https:
//doi.org/10.1109/TC.2020.2994391.

Cong Xie, Sanmi Koyejo, and Indranil Gupta. Asynchronous federated optimization. arXiv preprint
arXiv:1903.03934, 2019.

12

Under review as a conference paper at ICLR 2024

Chenhao Xu, Youyang Qu, Yong Xiang, and Longxiang Gao. Asynchronous federated learning on
heterogeneous devices: A survey. arXiv preprint arXiv:2109.04269, 2021.

Chengxu Yang, Qipeng Wang, Mengwei Xu, Zhenpeng Chen, Kaigui Bian, Yunxin Liu, and
Xuanzhe Liu. Characterizing impacts of heterogeneity in federated learning upon large-scale
smartphone data. In Proceedings of the Web Conference 2021, WWW ’21, pp. 935–946, New
York, NY, USA, 2021. Association for Computing Machinery. ISBN 9781450383127. doi:
10.1145/3442381.3449851. URL https://doi.org/10.1145/3442381.3449851.

Tuo Zhang, Lei Gao, Sunwoo Lee, Mi Zhang, and Salman Avestimehr. Timelyfl: Heterogeneity-
aware asynchronous federated learning with adaptive partial training. In 2023 IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 5064–5073, 2023.
doi: 10.1109/CVPRW59228.2023.00535.

13

Under review as a conference paper at ICLR 2024

A PROOF OF LEMMA 1

Proof. We prove by induction that f(T, c, i) = tiec−1(T\{ti})
ec(T) , where function f(T, c, i) denotes the

portion of time in which client i participated in asyncFL (0 ≤ f(T, c, i) ≤ 1). ec(T) is an elementary
symmetric polynomial defined as: ec(T) = Σi1<i2<···<icti1ti2 . . . tic , where ti1 , ti2 , . . . , tic ∈ T .
Refer to Section 3 for other notations.

Basis. If T = {t1}, then f(T, 1, 1) = 1.

If T = {t1, t2}, then f(T, 1, 1) = t1
t1+t2

, f(T, 1, 2) = t2
t1+t2

, f(T, 2, 1) = 1, f(T, 2, 2) = 1.

For T = {t1, . . . , tm} where m ≥ 1, f(T, 1, 1) = ti
ΣT and f(T,m, i) = 1 for i ∈ 1, . . . ,m.

Hypothesis. Assume f(T, c, i) = tiec−1(T\{ti})
ec(T) holds for any set T satisfying |T | ≤ n, where

c ≤ |T |, ti ∈ T .

Inductive Step. Let T = {t1, t2, . . . , tn}, and T ′ = T + tn+1.

For ti, tj ∈ T ′ and c < |T ′|, the following holds:

f(T ′, c, i) = f(T ′, c, j)f(T ′ \ {tj}, c− 1, i) + (1− f(T ′, c, j))f(T ′ \ {tj}, c, i). (8)

f(T ′, c, j) = f(T ′, c, i)f(T ′ \ {ti}, c− 1, j) + (1− f(T ′, c, i))f(T ′ \ {ti}, c, j). (9)

Calculating f(T ′, c, i) in Eq.(8) indicates the summation of the following two cases: (1) ti is partici-
pating with tj : f(T ′, c, j)f(T ′\{tj}, c−1, i), and (2) ti is participating while tj is not participating:
(1− f(T ′, c, j))f(T ′ \ {tj}, c, i). Substituting ti as tj and tj as ti results in Eq.(9).

Using the recursion property of elementary symmetric polynomials (for 1 ≤ c ≤ |T |):
ec(T) = tiec−1(T \ {ti}) + ec(T \ {ti}),

and using our inductive hypothesis, let:

y1 = f(T ′ \ {tj}, c− 1, i) =
tiec−2(T

′ \ {ti, tj})
ec−1(T ′ \ {tj})

=
tiec−2(T

′ \ {ti, tj})
tiec−2(T ′ \ {ti, tj}) + ec−1(T ′ \ {ti, tj})

,

y2 = f(T ′ \ {tj}, c, i) =
tiec−1(T

′ \ {ti, tj})
ec(T ′ \ {tj})

=
tiec−1(T

′ \ {ti, tj})
tiec−1(T ′ \ {ti, tj}) + ec(T ′ \ {ti, tj})

,

y3 = f(T ′ \ {ti}, c− 1, j) =
tjec−2(T

′ \ {ti, tj})
ec−1(T ′ \ {ti})

=
tjec−2(T

′ \ {ti, tj})
tjec−2(T ′ \ {ti, tj}) + ec−1(T ′ \ {ti, tj})

,

y4 = f(T ′ \ {ti}, c, j) =
tjec−1(T

′ \ {ti, tj})
ec(T ′ \ {ti})

=
tjec−1(T

′ \ {ti, tj})
tjec−1(T ′ \ {ti, tj}) + ec(T ′ \ {ti, tj})

,

α = f(T ′, c, i),

β = f(T ′, c, j).

Using y1, y2, y3, y4, α, and β, Eq.(8) and (9) each becomes the following:

α = βy1 + (1− β)y2,

β = αy3 + (1− α)y4.

14

Under review as a conference paper at ICLR 2024

Substituting β with an expression of α results in:

α = (αy3 + (1− α)y4)y1 + (1− (αy3 + (1− α)y4))y2,

α =
y1y4 + y2 − y2y4

1− y1y3 + y1y4 + y2y3 − y2y4
. (10)

Let z1 = ec(T
′ \ {ti, tj}), z2 = ec−1(T

′ \ {ti, tj}), z3 = ec−2(T
′ \ {ti, tj}).

Then, numerator of Eq.(10) becomes:

y1y4 + y2 − y2y4 =
tiz3

tiz3 + z2

tjz2
tjz2 + z1

+
tiz2

tiz2 + z1
− tiz2

tiz2 + z1

tjz2
tjz2 + z1

=
(titjz2z3)(tiz2 + z1) + tiz2(tiz3 + z2)(tjz2 + z1)− titjz

2
2(tiz3 + z2)

(tiz3 + z2)(tiz2 + z1)(tjz2 + z1)

=
tiz2(titjz2z3 + tiz1z3 + tjz1z3 + z1z2)

(tiz3 + z2)(tiz2 + z1)(tjz2 + z1)
.

The denominator of Eq.(10) is:

1− y1y3 + y1y4 + y2y3 − y2y4

= 1− tiz3
tiz3 + z2

tjz3
tjz3 + z2

+
tiz3

tiz3 + z2

tjz2
tjz2 + z1

+
tiz2

tiz2 + z1

tjz3
tjz3 + z2

− tiz2
tiz2 + z1

tjz2
tjz2 + z1

=
z2(titjz3 + tiz2 + tjz2 + z1)(titjz2z3 + tiz1z3 + tjz1z3 + z1z2)

(tiz3 + z2)(tjz3 + z2)(tiz2 + z1)(tjz2 + z1)
.

Thus, Eq.(10) becomes:

f(T ′, c, i) = α

=
y1y4 + y2 − y2y4

1− y1y3 + y1y4 + y2y3 − y2y4

=

tiz2(titjz2z3+tiz1z3+tjz1z3+z1z2)
(tiz3+z2)(tiz2+z1)(tjz2+z1)

z2(titjz3+tiz2+tjz2+z1)(titjz2z3+tiz1z3+tjz1z3+z1z2)
(tiz3+z2)(tjz3+z2)(tiz2+z1)(tjz2+z1)

=
ti(tjz3 + z2)

titjz3 + tiz2 + tjz2 + z1

=
ti(tjec−2(T

′\{ti,tj})+ec−1(T
′\{ti,tj}))

ti(tjec−2(T ′\{ti,tj})+ec−1(T ′\{ti,tj}))+tjec−1(T ′\{ti,tj})+ec(T ′\{ti,tj})

=
ti(ec−1(T

′ \ {ti}))
tiec−1(T ′ \ {ti}) + ec(T ′ \ {ti})

=
ti(ec−1(T

′ \ {ti}))
ec(T ′)

.

The inductive hypothesis holds true for f(T ′, c, i), establishing the inductive step for c ≤ |T | and any
i which ti ∈ T ′. |T ′| is the only possible c > |T | for f(T ′, c, i), as we defined f to have c ≤ cardi-
nality of the set given as a first parameter. As noted in the basis step of induction, f(T ′, |T ′|, i) = 1.
This proves the hypothesis holds for arbitrary set T , c ≤ |T |, and any i which ti ∈ T .

15

