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Figure 1: Illustration of the challenges of VRD with similar relation categories holding and carrying.
Four images and their ground-truths are on the left. The subject and object for each triplet are
denoted by blue and pink boxes, respectively. (a) A child may incorrectly identify these two relations
only based on similar concepts alone. (b) Using class-based prompts, CLIP always maps these two
relations to adjacent locations in the semantic space. (c) We humans always utilize composite visual
cues to correctly distinguish between different relations. (d) Our proposed RECODE uses LLM (e.g.,
GPT) to generate composite descriptions that aid the CLIP model in distinguishing between them.

Abstract

Pretrained vision-language models, such as CLIP, have demonstrated strong gen-
eralization capabilities, making them promising tools in the realm of zero-shot
visual recognition. Visual relation detection (VRD) is a typical task that identifies
relationship (or interaction) types between object pairs within an image. However,
naively utilizing CLIP with prevalent class-based prompts for zero-shot VRD has
several weaknesses, e.g., it struggles to distinguish between different fine-grained
relation types and it neglects essential spatial information of two objects. To this
end, we propose a novel method for zero-shot VRD: RECODE, which solves RE-
lation detection via COmposite DEscription prompts. Specifically, RECODE first
decomposes each predicate category into subject, object, and spatial components.
Then, it leverages large language models (LLMs) to generate description-based
prompts (or visual cues) for each component. Different visual cues enhance the
discriminability of similar relation categories from different perspectives, which
significantly boosts performance in VRD. To dynamically fuse different cues, we
further introduce a chain-of-thought method that prompts LLMs to generate rea-
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Figure 2: A comparative analysis of predictions made by RECODE and baseline CLIP using class-
based prompts. It illustrates how our method offers interpretability to the relation classification results
through the similarity ϕ between the image and the description-based prompts.

sonable weights for different visual cues. Extensive experiments on four VRD
benchmarks have demonstrated the effectiveness and interpretability of RECODE.

1 Introduction

Recent advances in pretrained vision-language models (VLMs) [1, 2, 3, 4] (e.g., CLIP [1]), have
shown remarkable generalization ability and achieved impressive performance on zero-shot recogni-
tion tasks. Specifically, CLIP employs two encoders: an image encoder that converts images into
visual features, and a text encoder that transforms sentences into semantic features. This design
allows the encoders to map different modalities into a common semantic space. When the inputs to
the text encoder are class-based prompts, such as “A [CLASS]”, “A photo of [CLASS]”, CLIP can
compare the image and prompts in the shared semantic space, thereby enabling zero-shot recognition
of novel categories [1]. Compared to object recognition, visual relation detection (VRD) is much
more challenging, which needs to identify the relation types between object pairs within an image in
the form of ⟨subject, relation, object⟩ [5, 6, 7, 8, 9]. It differs from object recognition in that it
requires an understanding of how objects are related to each other. By crafting class-based prompts
to describe these relation types, CLIP could potentially be extended to perform zero-shot VRD.

However, this straightforward baseline presents notable challenges. Imagine you are a child asked to
distinguish relation categories “holding” and “carrying”, both involving a person and an object. Based
on the similar concepts of “holding” (i.e., a person having an object in their hands) and “carrying”
(i.e., a person supporting an object in their hands), it would be difficult to determine the correct
prediction (cf., Figure 1(a)). In other words, class-based prompts of “holding” and “carrying” might
be projected to adjacent locations in semantic space by CLIP, leading to a relation sensitivity issue:
CLIP struggles to differentiate between the subtle nuances of similar relations. Secondly, class-based
prompts overlook the unique spatial cues inherent to each relation category, leading to a spatial
discriminability issue. The “holding” category generally suggests the object being at a certain height
and orientation relative to the person, while “carrying” implies a different spatial position, typically
with the object located lower and possibly supported by the person’s entire body. The neglect of
spatial cues leads to inaccuracies in distinguishing between such spatial-aware relation categories.
Moreover, applying CLIP in this manner brings about a computational efficiency issue. Using CLIP
requires cropping each union region of a subject-object pair separately from the original image (i.e.,
N2 crops for N proposals), leading to computational inefficiencies.
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Nonetheless, we humans can distinguish relation categories from different visual cues. For example,
from the subject’s perspective, we could think that in the case of “holding”, a person might be
standing while having an object, such as an umbrella, in their hand. Meanwhile, in the case of
“carrying”, a person should be in a more engaged position, perhaps walking or running with both
hands and arms supporting a heavy object, like a suitcase. In addition, spatial cues also play an
important role in identifying these relation categories. For example, when a person is carrying an
umbrella, the umbrella is usually positioned lower and closer to the person’s body compared to when
the person is holding an umbrella. Based on these visual cues, we can easily identify scenarios such
as “person-holding-umbrella” and “person-carrying-umbrella” as in Figure 1(c).

Inspired by our humans’ ability to extract and utilize different visual cues, we present a novel method
for zero-shot VRD: RECODE, which classifies RElation via COmposite DEscriptions. It first uses
large language models (LLMs) [10], to generate detailed and informative descriptions2 for different
components of relation categories, such as subject, object, and spatial. These descriptions are then
used as description-based prompts for the CLIP model, enabling it to focus on specific visual features
that help distinguish between similar relation categories and improve VRD performance. Specifically,
for the subject and object components, these prompts include visual cues such as appearance (e.g.,
with leg), size (e.g., small), and posture (e.g., in a sitting posture). For the spatial component, these
prompts include cues related to the spatial relationships between objects, such as relative position and
distance. By incorporating different visual cues, RECODE enhances the discriminability of similar
relation categories, such as “riding” and “mounted” based on the different postures of the subject,
e.g., “seated on the back of animal” for the subject of “riding”. Similarly, spatial visual cues can be
used to differentiate between “laying on” and “holding” based on the relative position between the
subject and object, such as “subject above object” and “subject under object” (cf., Figure 2).

In addition, we explore the limitations of several description generation prompts for visual cue, e.g.,
relation class description prompt [11], and then design a guided relation component description
prompt that utilizes the high-level object categories to generate more accurate visual cues for each
relation category. For instance, if the high-level category of object is “animal”, the generated object
descriptions for relation “riding” are tailored to the “animal” category, e.g., “with four legs”, instead
of the “product”, e.g., “with wheels”. Meanwhile, to better fuse the evidence from different visual
cues, we further leverage LLMs to predict reasonable weights for different components. Particularly,
we design a chain-of-thought (CoT) method [12] to break down this weight assignment problem into
smaller, more manageable pieces, and prompt LLM to generate a series of rationales and weights.

To evaluate our RECODE, we conducted experiments on four benchmark datasets: Visual Genome
(VG) [13] and GQA [14] datasets for scene graph generation (SGG), and HICO-DET [15] and
V-COCO [16] datasets for human-object interaction (HOI) detection. Experimental results prove the
generalization and interpretability of our method. In summary, we made three main contributions in
this paper: 1) We analyze the weaknesses of the prevalent class-based prompt for zero-shot VRD in
detail and propose a novel solution RECODE. RECODE leverages the power of LLMs to generate
description-based prompts (visual cues) for each component of the relation class, enhancing the CLIP
model’s ability to distinguish between various relation categories. 2) We introduce a chain-of-thought
method that breaks down the problem into smaller, more manageable pieces, allowing the LLM
to generate a series of rationales for each cue, ultimately leading to reasonable weights for each
component. 3) We conduct experiments on four benchmark datasets and demonstrate the effectiveness
and interpretability of our method.

2 Approach

Typically, VRD is comprised of two sub-tasks: object detection and relation classification [5]. Since
zero-shot object detection has been extensively studied [17, 1, 11], in this paper, we primarily focus
on zero-shot relation classification. Specifically, given the bounding boxes (bboxes) {bi} and object
categories {oi} of all objects, our target is to predict the visual relation (or predicate/interaction)
categories {rij} between pairwise objects. To facilitate presentation, we use s, o, and p to denote the
subject, object, and their spatial position in a triplet respectively, and r to denote the relation category.

Class-based Prompt Baseline for Zero-Shot VRD. Following recent zero-shot object recognition
methods, a straightforward solution for zero-shot VRD is the CLIP with class-based prompt. Specif-

2We use a description to represent a visual cue.
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Figure 3: The framework of RECODE. 1) Visual feature decomposing decomposes the triplet into
subject, object, and spatial features. 2) Semantic feature decomposing decomposes relation categories
into subject, object, and spatial descriptions. 3) Relation classification calculates similarities between
decomposed visual and semantic features and applies softmax to obtain the probability distribution.

ically, a pretrained CLIP image encoder V (·) and a pretrained CLIP text encoder T (·) are used to
classify pairwise objects with a set of relation classes. For each relation class, a natural language
class-based prompt pc is generated, incorporating the relation information, e.g., “[REL-CLS]-ing/ed”
or “a photo of [REL-CLS]”. Each prompt is then passed through T (·) to get semantic embedding t,
while the union region of a subject-object pair is passed through V (·) to get visual embedding v. The
cosine similarity between v and t of different relation categories is calculated and processed by a
softmax function to obtain the probability distribution over all relation categories.

2.1 Zero-shot VRD with Composed Visual Cues

To overcome the limitations of class-based prompts, we propose a novel approach RECODE for
zero-shot VRD. It consists of three parts: visual feature decomposing, semantic feature decomposing,
and relation classification (cf., Figure 3). In the first two parts, we decompose the visual features
of the triplet into subject, object, and spatial features, and then generate semantic features for each
component. In the last part, we calculate the similarities between the decomposed visual features and
a set of semantic features, and aggregate them to get the final predictions over all relations.

Visual Feature Decomposing. To enhance spatial discriminability and computational efficiency,
we decompose the visual features of a triplet into subject, object, and spatial features. For subject
and object features, we crop the regions of the subject and object from the original image using the
given bboxes bs and bo, and encode them into visual embeddings vs and vo using the image encoder
V (·) of CLIP. For spatial features, we aim to obtain the spatial relationship between the subject
and object based on their bounding boxes. However, directly obtaining all spatial images based on
the given bounding boxes is computationally expensive due to the diversity of spatial positions (N2

each image). To address this, we simulate the spatial relationship between the subject and object
using a finite set of spatial images, represented by red and green bboxes respectively. We define
four attributes (shape, size, relative position, and distance) based on bounding box properties. Each
attribute is assigned a finite set of values to construct a finite set of simulated spatial images. For a
given triplet, we match the calculated attribute values with the most similar simulated image3. The
matched spatial image is then encoded into a visual embedding vp using V (·) of CLIP.

Semantic Feature Decomposing. To improve the CLIP model’s ability to distinguish between
different relation classes, we incorporate a set of description-based prompts D to augment the
original class-based prompt for each relation category. For the subject and object components, we
generate a set of description-based prompts Ds and Do to provide additional visual cue information,
the generation process is described in Sec. 2.2. These prompts contain object categories with specific
visual cues that highlight the unique characteristics of the relation being performed, e.g., “women,
with legs”, which enhances the discriminability between similar relation categories. For the spatial
component, it only contains a set of description-based prompts Dp that include information about
the relative position and distance between the subject and object in the image. By incorporating

3Due to the limited space, the details are left in the appendix.
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Figure 4: Examples of different prompts used for generating descriptions of visual cues. (a) Relation
class description generates descriptions for each relation class directly. (b) Relation component
description generates descriptions for each component of the relation separately. (c) Guided relation
component description incorporates high-level object category guide generation process.

this additional information, we aim to distinguish between relations based on spatial location. After
generating these sets of description-based prompts, we obtain semantic embeddings {tdsi

}, {tdoi
},

and {tdpi
} using a text encoder T (·), separately. These embeddings, along with the class-based

prompt embedding tc, are used for relation classification.

Relation Classification. In this step, we compute the similarity score between the visual and semantic
features to obtain the relation probability distribution. We first calculate the cosine similarity ϕ(·, ·)
between each visual embedding and semantic embedding for each relation category r. The final score
incorporates both class-based and description-based prompts, and is calculated as follows:

S(r) = ϕ(vs, tc) + ϕ(vo, tc)︸ ︷︷ ︸
class-based prompts

+
∑

k∈{s,o,p}

wk

|Dk(r)|

[ ∑
dki

∈Dk(r)

ϕ(vk, tdki
)

]
︸ ︷︷ ︸

description-based prompts

, (1)

where wk represents the importance of visual cues for each component k ∈ {s, o, p}, and |Dk(r)|
denotes the number of visual cues in Dk(r) for relation category r. We compute the similarity of
individual visual cues for each component and then obtain their average. The weights of different
components are determined by a LLM, which will be discussed in Sec. 2.2. Finally, we apply a
softmax operation to the scores to obtain the probability distribution over all relation categories.

2.2 Visual Cue Descriptions and Weights Generation

LLMs, such as GPT [10], have been shown to contain significant world knowledge. In this section,
we present the process of generating descriptions of visual cue Ds, Do, and Dp, as well as the weights
ws, wo, and wp for each component of each relation category using LLMs.

2.2.1 Visual Cue Descriptions

In this section, we explore methods for generating descriptions of visual cues for relation decompo-
sition. Inspired by the work [11] of zero-shot image classification, we first propose relation class
description prompt, which generates descriptions from the perspective of class-level (cf., Figure 4(a)).
It has the advantage of producing descriptions that are easy to interpret and understand. However,
it may result in overly diverse and information-rich descriptions that could hinder the extraction of
meaningful visual cues, e.g., “speed of the person” in Figure 4(a).

To address this limitation, we then consider another relation component description prompt, which
involves decomposing the relation into its subject and object components and generating descriptions
of their visual features separately (cf., Figure 4(b)). While this type of prompt allows for more focused
and specific descriptions of visual cues, it may not be effective in capturing the variations in visual
features between different subject-object category pairs. For example, “man-riding-horse” and
“person-riding-bike” typically have totally different visual features for the object. The visual
cues “reins” and “saddle” of the object in Figure 4(b) are inappropriate for a “bike”.
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Suppose you are a relation classification model.

Given: subject belongs to “human” and object belongs to 

“product”.

The visual features of subject: with eyes directed 

towards the object, with head upright.

The visual features of object: with visible features such 

as front, display, or screen.

The visual features of position: subject positioned either 

above, below, left or right of the object at a mid distance.

Q: How do you weight these visual features to determine 

the relation is “looking at”? The sum of weights must be 

1.0!

(a) Weight Prompt

➢ Visual features of subject: 0.4

➢ Visual features of object: 0.4

➢ Visual features of position: 0.2 

······ The sum of weights must be 1.0!
A：Let’s think step by step! (CoT prompt)

(b) Weight Prompt with Chain-of-Thought

First, we need to consider the importance of the subject's 

visual features. Since the direction of the eyes and head 

position strongly indicate the focus of attention, we will give 

them a weight of 0.6. 

Next, we need to consider the importance of the object's 

visual features. Since the visible features such as front, 

display, or screen indicate that the object is something that 

can be looked at, we will give them a weight of 0.3. 

Finally,…, we will give them a weight of 0.1.

Therefore, we can weight these visual features as follows:

➢ Visual features of subject: 0.6

➢ Visual features of object: 0.3

➢ Visual features of position: 0.1

Figure 5: Illustration of the effectiveness of CoT method in generating reasonable visual cue weights.
(a) Prompt without CoT. LLM assigns same weights for subject and object. (b) Prompt with CoT.
LLM analyzes the importance of each cue step by step and assigns more reasonable weights.

Therefore, we design guided relation component description prompt. It builds upon the second
method by incorporating the high-level category information of the object into the generation process,
leading to more accurate and informative descriptions of the visual features of both the subject and
object components (cf., Figure 4(c)). To achieve this, we classify the object into high-level classes,
such as “human”, “animal”, and “product”, to guide the description generation. For example, “bike” is
classified as “product”, and “horse” is classified as “animal”. This allows for the separate generation
of visual feature descriptions for each high-level object class, e.g., “a harness or saddle on its body”
for “animal”, resulting in more precise and relevant visual cues for each relation category3.

2.2.2 Visual Cue Weights

Intuitively, different combinations of visual cues may have varying degrees of importance in relation
classification. For example, for relation “looking at”, the visual cue “with visible features” of the
object may not be as informative as the visual cue “with eye” of the subject. To account for this, we
leverage the impressive knowledge and reasoning abilities of LLMs to analyze the discriminative
power of different visual cues and dynamically assign weights accordingly. Specifically, we provide
each combination of visual cues as input to LLM and prompt it to determine the appropriate weight
for each cue for distinguishing the given predicate. The prompts used for this purpose are in Figure 5.

Chain-of-Thought (CoT) Prompting. To ensure the generated weights are reasonable, we utilize a
CoT method that has demonstrated remarkable reasoning abilities [12, 18]. Specifically, we prompt
the LLM to generate rationales by using the stepwise reasoning prompt “Let’s think step by step!”
to break down the problem into smaller, more manageable pieces. Then LLM generates a series of
rationales, and those that lead to the reasonable weights. For example in Figure 5, we demonstrate the
importance of the CoT method in generating more accurate weights. Without the stepwise reasoning
prompt, LLM generates the same weight for both the subject and object visual cues for “looking
at”, which is clearly unreasonable. However, with the CoT prompt, LLM is able to analyze each cue
step by step, leading to a more accurate assignment of weights, i.e., the cues about the subject are
relatively more important. In order to standardize the format of the strings generated by LLMs for
extracting different components of visual cues and weights, we make certain modifications to the
prompts for descriptions and weights3.

3 Experiment

3.1 Experiment setup

Datasets. We evaluated our method on four zero-shot VRD benchmarks: 1) VG [13] contains 26,443
images for testing, each annotated with object and predicate labels to form a scene graph. Following
previous works [5], we used the pre-processed VG with 150 object classes. We adopted the 24
semantic predicate classes proposed in [19, 20], as they are more informative and challenging for
classifying. 2) GQA [14] is a large-scale SGG dataset. We used the same split provided by [21],
which contains 8,208 images for testing with 200 object classes. As for predicate classes, we selected
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Table 1: Evaluation results on the test set of VG and GQA datasets. † denotes removing the guidance
from high-level object category. ⋆ denotes integrated with Filter strategy.

Data Method
Predicate Classification

R@20 △ R@50 △ R@100 △ mR@20 △ mR@50 △ mR@100 △
V

G
CLS 7.2 - 10.9 - 13.2 - 9.4 - 14.0 - 17.6 -
CLSDE 7.0 -0.2 10.6 -0.3 12.9 -0.3 8.5 -0.9 13.6 -0.4 16.9 -0.7
RECODE† 7.3 0.1 11.2 0.3 15.4 2.2 8.2 -1.2 13.5 -0.5 18.3 0.7
RECODE 9.7 2.5 14.9 4.0 19.3 6.1 10.2 0.8 16.4 2.4 22.7 5.1
RECODE⋆ 10.6 3.4 18.3 7.4 25.0 11.8 10.7 1.3 18.7 4.7 27.8 10.2

G
Q

A

CLS 5.6 - 7.7 - 9.9 - 6.3 - 9.5 - 12.2 -
CLSDE 5.4 -0.2 7.2 -0.5 9.3 -0.6 6.0 -0.3 8.8 -0.7 11.5 -0.7
RECODE† 5.2 -0.4 7.8 0.1 10.2 0.3 5.8 -0.5 8.9 -0.6 11.3 -0.9
RECODE 6.3 0.7 9.4 1.7 11.8 1.9 7.8 1.5 11.9 2.4 15.1 2.9
RECODE⋆ 7.0 1.4 11.1 3.4 15.4 5.5 9.4 3.1 14.8 5.3 20.4 8.2

26 semantic predicate classes by referring to VG. 3) HICO-DET [15] contains 9,658 testing images
annotated with 600 HOI triplets derived from combinations of 117 verb classes and 80 object classes.
4) V-COCO [16] comprises 4,946 testing images annotated with 29 action categories.

Evaluation Metrics. For SGG datasets (i.e., VG and GQA), we reported Recall@K (R@K) which
indicates the proportion of ground-truths that appear among the top-K confident predictions, and
mean Recall@K (mR@K) which averages R@K scores calculated for each category separately [22].
For HOI datasets (i.e., HOI-DET and V-COCO), we reported mean Average Precision (mAP) [23].

Implementation Details. For the LLM, we employed the GPT-3.5-turbo, a highly performant variant
of the GPT model. As for CLIP, we leveraged the OpenAI’s publicly accessible resources, specifically
opting for the Vision Transformer with a base configuration (ViT-B/32) as default backbone3.

Settings. The bounding box and category of objects were given in all experiments. We compared our
RECODE with two baselines: 1) CLS, which uses relation-CLasS-based prompts (e.g., “riding”)
to compute the similarity between the image and text. 2) CLSDE, which uses prompts of relation
CLasS DEscription as shown in Figure 4(a). Each component of the proposed framework can serve
as a plug-and-play module for zero-shot VRD. Specifically, 1) Filter, which denotes filtering those
unreasonable predictions (e.g., kid-eating-house) with the rules generated by GPT3. 2) Cue,
which denotes using description-based prompts (Sec. 2.1). 3) Spatial, which denotes using spacial
images as additional features. 4) Weight, which denotes using dynamic weights generated by GPT to
determine the importance of each feature, i.e., visual cue weights.

3.2 Results and Analysis

In this work, we evaluated the prediction performance of the proposed framework on two related
tasks, i.e., SGG and HOI. The former outputs a list of relation triplet ⟨sub,pred,obj⟩, while the
latter just fix the category of sub to human. Overall, our method achieved significant improvement
on the two tasks compared to the CLS baseline, which shows the superiority of our method.

Table 2: Evaluation results on the test set of
HICO-DET and V-COCO datasets.

Method
HICO-DET V-COCO

Full Rare Non-Rare Role 1 Role 2
CLS 32.3 33.2 31.8 25.5 28.6
CLSDE 32.5 33.1 32.2 25.6 28.8
RECODE† 32.5 33.0 32.4 25.7 28.8
RECODE 32.7 33.2 32.5 26.0 29.0

Evaluation on SGG. From the results in Table 1,
we have the following observations: 1) CLSDE
showed worse performance than the trivial CLS
baseline. This is because the considerable noise in
CLSDE which may hinder the model to attend the
most distinguishable parts. 2) With the proper guid-
ance, RECODE achieved considerable improve-
ments compared to the baselines, e.g., 0.8% to 6.1%
gains on VG and 0.7% to 2.9% gains on GQA. The
performance drops of RECODE† also demonstrated the importance of guidance from high-level ob-
ject categories during the generation process. 3) Integrated with the filtering strategy, i.e., RECODE⋆,
achieved the best performance over all metrics, which suggests that commonsense knowledge is com-
plementary and effective for zero-shot VRD. It also demonstrated that CLIP struggles to distinguish
abstract concepts, i.e., relation sensitivity as mentioned in Sec. 1.
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Table 3: Ablation studies on different architectures of CLIP. The official released weights are used.

Architecture Method
Predicate Classification

R@20 R@50 R@100 mR@20 mR@50 mR@100

ViT-L/14
CLS⋆ 8.3 15.0 21.5 7.6 14.2 24.2
RECODE⋆ 11.2 19.9 28.0 9.1 18.5 28.1

ViT-L/14@336px
CLS⋆ 8.6 15.4 21.8 7.7 13.9 23.0
RECODE⋆ 12.1 21.1 29.2 9.7 19.5 28.2

ViT-B/32
CLS⋆ 7.5 13.7 19.4 9.1 15.9 24.0
RECODE⋆ 10.6 18.3 25.0 10.7 18.7 27.8

ViT-B/16
CLS⋆ 8.6 15.5 22.1 9.8 17.2 25.2
RECODE⋆ 12.6 21.0 28.5 12.5 20.2 30.0

Evaluation on HOI. Since standard evaluation procedure of HOI had filtered out those unreasonable
predictions, RECODE⋆ was not evaluated here. From the results in Table 2, we can observe that
the performance gains were lower than those on SGG, e.g., 0.0% to 0.7% gains on HICO-DET and
0.4% to 0.5% gains on V-COCO. The reasons are two-fold. On the one hand, since the category of
subject is always a human, its features are too similar to be distinguished by CLIP. On the other hand,
some of the actions are very similar in appearance. For example, distinguishing between actions like
“person-throw-sports ball” and “person-catch-sports ball” is challenging due to their
visual similarity.

3.3 Diagnostic Experiment

Architectures. We investigated the impact of changing the architectures of CLIP, as shown in Table 3.
From the results, we can observe consistent improvements regardless of the architecture used.

Table 4: Analysis of key components on the test set of VG.

Filter Cue Spatial Weight
Predicate Classification

R@20 R@50 R@100 mR@20 mR@50 mR@100
7.2 10.9 13.2 9.4 14.0 17.6

✓ 7.4 12.3 16.6 9.0 14.0 19.5
✓ ✓ 9.1 13.4 17.4 9.3 15.0 20.3
✓ ✓ 7.9 13.4 17.7 9.3 14.7 20.5
✓ ✓ ✓ 9.7 14.9 19.3 10.2 16.4 22.7

✓ 7.5 13.7 19.4 9.1 15.9 24.0
✓ ✓ 8.8 15.9 23.5 10.3 17.2 26.2
✓ ✓ ✓ 9.3 16.3 22.5 10.1 18.1 25.5
✓ ✓ ✓ 10.0 17.5 24.8 10.4 17.8 26.7
✓ ✓ ✓ ✓ 10.6 18.3 25.0 10.7 18.7 27.8

Key Component Analysis. The
results are summarized in Ta-
ble 4. The first row refers to the
CLS baseline. Four crucial con-
clusions can be drawn. First,
with the guidance of Cue, con-
sistent improvements can be ob-
served, e.g., 0.2% to 3.4% gains
on R@K w/o Filter and 1.3% to
4.1% gains on R@K with Filter.
Second, by introducing the spa-
tial feature, the relative position
of subject and object is consid-
ered, resulting in notable perfor-
mance gains on R@K (0.8% to 1.7%) and mR@K (0.3% to 1.0%) w/o Filter compared to just using
Cue. This is because the spatial feature is of importance for relation detection [6]. Third, benefiting
from the impressive reasoning ability of LLMs, the proposed weighting strategy can determine the
importance of different cues, thus achieving further improvements, e.g., 0.5% to 1.1% gains on R@K
compared to average aggregation. Fourth, by filtering those unreasonable predictions, consistent
improvements can be observed. The reason may be that the performance of relation detection of
CLIP is not accurate enough. Empirically, commonsense knowledge is a feasible way to filter those
noise. Combining all components allows for the best overall performance on all evaluation metrics.

Case study. To investigate the most important regions for distinguishing relations, we visualized the
attention map given different images and prompts (cf., Figure 6). From the visualization of class-based
prompts, we can observe that CLIP may attend those regions unrelated to the query prompts, e.g.,
focusing on the body of a person given relation “growing on”. We attribute this phenomenon to the
insufficient information within given prompts, which is also our motivation to introduce visual cue
descriptions. As for description-based prompts, CLIP can attend to right regions with the guidance of
descriptions, e.g., focusing on colorful patterns on the product given relation “painted on”.
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eating: giraffe, with head or 

mouth toward the food

hanging from: giraffe, with 

limbs

hanging from 𝜙: 27.2 hanging from 𝜙: 30.8

growing on: tree, a larger, 

stationary tree with a sturdy 

structure that can accommodate 

the growing product

hanging from: tree, with 

a hook, loop or handle
growing on 𝜙: 23.2 growing on 𝜙: 27.3 hanging from 𝜙: 23.4hanging from 𝜙: 24.5

using 𝜙: 23.4 looking at 𝜙: 25.2 using 𝜙: 25.2 looking at 𝜙: 23.3

using: person, possibly with 

fingers actively interacting with 

something 

looking at: person, with 

eyes directed towards 

something

painted on: vase, the painted 

design or image may cover all 

or part of the its body

mounted on: vase, with 

attachment mechanism

painted on 𝜙: 24.4 mounted on 𝜙: 26.4 painted on 𝜙: 32.3 mounted on 𝜙: 29.5

giraffe-eating-leaf

person-using-phone

leaf-growing on-tree

flower-painted on-vase

Description-based PromptsClass-based Prompts

eating 𝜙: 26.1 eating 𝜙: 33.1

Subject Description:

animal-product

Subject Description:

human-product

Object Description:

product-product

Object Description:

product-product

Figure 6: Visualization of CLIP attention maps on input images with different prompts. The right
side shows the partial description-prompts generated for each predicate category given the high-level
object category. They are used to generate the corresponding attention maps on the right.

4 Related Work

Visual Relation Detection (VRD) aims to predict the relationships of given subject-object pairs,
which can be viewed as a pair-wise classification task and have been widely studied in the image
domain, e.g., scene graph generation (SGG) [5, 6, 22, 24] and human-object interaction (HOI)
detection [25, 26, 27]. Previous solutions mainly focus on learning representations from the training
samples on pre-defined categories, which may suffer from noisy annotations [22] or long-tailed
predicate distribution [6, 28] and are far from the needs of the real-world scenarios. Recently, some
attempts [8, 29] adopted prompt-tuning [30] to predict unseen categories during inference. However,
since the learnable prompts may be overfitting when trained on seen categories, their performance
is sensitive to the split of seen/unseen categories [31]. In contrast, our method can predict the
relationships directly without any training samples, and has better interpretability and generalization
ability, especially in rare informative relation categories.

Zero-shot Visual Recognition enables the model to recognize new categories that it has never seen
during training, which is one of the research hotspots in the vision community. Aligning visual
representations to pre-trained word embeddings (e.g., Word2Vec [32] and GloVe [33]) is an intuitive
and feasible way to achieve this goal [34]. More recently, VLMs, which use contrastive learning [35]
to learn a joint space for vision and language, have demonstrated their impressive zero-shot ability [1].
Therefore, many zero-shot works [36, 37, 38] adopted such VLMs as their basic component to use
the knowledge of the learned joint space. However, most of them only utilized the class name of
unseen categories during inference, which makes an over-strong assumption that the text encoder
project proper embeddings with only category names [11]. Then, Menon and Vondrick [11] proposed
to query LLMs for the rich context of additional information. Nonetheless, it is non-trivial to apply
such paradigms to VRD as discussed in Sec. 1. To the best of our knowledge, we are the first to
leverage both LLMs and VLMs for VRD in an efficient, effective, and explainable way.
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5 Conclusion

In this paper, we proposed a novel approach for zero-shot Visual Relationship Detection (VRD)
that leverages large language models (LLMs) to generate detailed and informative descriptions of
visual cues for each relation category. The proposed method addresses the limitations of traditional
class-based prompts and enhances the discriminability of similar relation categories by incorporating
specific visual cues. Moreover, we introduced a chain-of-thought method that breaks down the
problem into smaller, more manageable pieces, allowing the LLM to generate a series of rationales
for each visual cue and ultimately leading to reasonable weights. Our experiments on four benchmark
datasets demonstrated the effectiveness and interpretability of our method.
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