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Abstract

Numerous real-world systems, ranging from healthcare to energy grids, involve
users competing for finite and potentially scarce resources. Designing policies
for repeated resource allocation in such real-world systems is challenging for
many reasons, including the changing nature of user types and their (possibly ur-
gent) need for resources. Researchers have developed numerous machine learning
solutions for determining repeated resource allocation policies in these challeng-
ing settings. However, a key limitation has been the absence of good methods
and test-beds for benchmarking these policies; almost all resource allocation
policies are benchmarked in environments which are either completely synthetic
or do not allow any deviation from historical data. In this paper we introduce
AllSim, which is a benchmarking environment for realistically simulating the
impact and utility of policies for resource allocation in systems in which users
compete for such scarce resources. Building such a benchmarking environment
is challenging because it needs to successfully take into account the entire col-
lective of potential users and the impact a resource allocation policy has on all
the other users in the system. AllSim’s benchmarking environment is modu-
lar (each component being parameterized individually), learnable (informed by
historical data), and customizable (adaptable to changing conditions). These,
when interacting with an allocation policy, produce a dataset of simulated out-
comes for evaluation and comparison of such policies. We believe AllSim is
an essential step towards a more systematic evaluation of policies for scarce re-
source allocation compared to current approaches for benchmarking such methods.

1 Introduction

The problem of repeated resource allocation to users with timeliness constraints is ubiquitous in
settings ranging from healthcare to engineering systems and even labour markets. This problem
becomes even more challenging when the resources are diverse and users may derive different benefits
from obtaining a specific resource. In these applications, a resource coordinator or decision maker, is
tasked with allocating these diverse resources to a pool of diverse users which arrive or leave over time.

When a new resource arrives, it is the decision maker’s task to assign this coveted resource to one of the
users in their current pool. Making such a decision has an enormous impact on the complete system:
(i) when a resource is allocated to a user, other users now need to wait for the next resource to arrive,
thereby impacting their utility (since they are delay-sensitive), (ii) the match between the resource
and the user recipient has different valuations, (iii) assigning a resource to a specific user in the pool
influences the utilities of all the other users in the pool as well, and thereby impacting any subsequent
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Figure 1: AllSim overview. We illustrate how AllSim takes as input a dataset (D) which comprises a
set of users (&) and resources (%) and outcomes (Y). Each of these objects is confounded by an
allocation policy 7. From this highly complex dataset, AllSim learns a set of separate components (in
green): a distribution for users (p(&)) and resources (p(3%)), an associated arrival time based on ¢
(Mg and Ag;), and a utility (u). AllSim then exposes an interface where a decision maker can perturb
and influence each component separately, included the allocation policy itself. We highlight these
perturbations in blue, resulting in a new dataset (D’) used to measure the effect of each perturbation.

allocations. We note that the above problem scenario is incredibly general. To have an idea of the
diversity of situations described as such, we refer to Table 1 where we list a few example situations.

Resource allocation. We identify three main challenges one has to overcome when solving problems
described by the above. (i) Resources and users are described by multiple (possibly continuous)
variables resulting in them being diverse and having complex interactions. (ii) The above are
dynamic non-steady-state scenarios, which means that at any time the arrival of resources and users
may change, the user-specific as well as system-wide utility may change, and even the users and
resources themselves may change. (iii) These are multi-user problems, which means that each
decision needs to take into account the resource recipient alongside every other user in the system.

Evaluation. Given the complex interactions between diverse resources and users, more and more
we have to rely on machine learning based allocation policies which model these interactions to
optimise a (system-wide) utility [1-4] (cfr. Table 1). While these novel policies receive a lot of
research attention, the way in which they are evaluated seems to receive much less while being
equally important. In fact, literature introducing these new methods fail to evaluate them against
the challenges listed above. We believe the reason is the lack of proper evaluation tools; to our
knowledge, there only exist tools that: Have no diverse resources/users [5, 6], Remain steady-
state [7], or Model single-user systems [8]. None of them capture the challenges described above.

Synthetic versus real data. Another major consideration is the usage of data when evaluating
policies. Whenever a real-world dataset is available— comprising users, resources, assignments and
outcomes —we have to consider the fact that this dataset is tainfed by an observational (in-place)

policy. We have illustrated this as Qt@ﬂ&t in Figure 1, where the policy is denoted as 7. The
moment we want to test a policy which is different from the observational policy (e.g. 7’ in Figure 1),
we deviate from the original dataset as the resource to user assignments are (by definition) different.

A solution could be a completely synthetic simulation to evaluate policies. However, given the
detailed and diverse descriptions of resources and users, this would introduce too much bias into our
evaluation as every detail needs to be manually specified [9]. The latter is of particular importance
when testing these novel ML-based policies, as this is exactly what they were built for in the first place.

Our solution is AlISim. Illustrated in Figure 1, AllSim learns separate (unbiased) components
from historical data which was biased by a previous observational policy, 7. These components are
exposed as an interface which a decision maker can use to modify the system to fit their purpose. An
obvious example of such a modification is to replace the past policy with a different policy. Other
examples could be changing the arrival rates of users, resources, changing user and resource types,
or even resource efficacy by changing the outcomes (Y') while still maintaining detail and realism.
These perturbations are illustrated in blue in Figure 1. From AllSim, we sample a new dataset to
measure the effect of the practitioner’s modifications on utilities such as fairness, survival, waste, etc.



Table 1: Example situations. We list a few example situations that follow the general problem
formalism introduced in this paper and the repeated allocation policy used to solve them.

Problem setting Users Resources Allocation policy  Utility
Headhunting Openings Applicants  Assignment Hires (& retention)
Project staffing  Projects Workers Staffing Project success
Organ transplantation  Patients Donors Matching Post/Pre TX survival
Mechanical ventilation — Patients Ventilators  Triaging ICU Discharge
Bicycle sharing  Docks Bicycles Redistribution Idle times

Why are such simulators important for ML research? The successes in other subareas in machine
learning are driven largely by the existence of capable and qualitative simulators [10—13]. With an
easy-to-use interface and easily customisable environments, simulators allow researchers to focus
on model development rather than creating their own (often conflicting) evaluation protocols. With
AlISim, we hope to drive innovation for resource allocation in multi-user problems in healthcare,
engineering, economics, etc. The aforementioned simulators are great examples of systematic evalua-
tion across entire research communities, however, they do not: learn realistic and unbiased simulation
objects from data, allow for multi-user simulation, or model dynamic non-steady-state scenarios.

Desiderata. From Figure 1 we identify three important desiderata: (1) A simulation should extract
unbiased components from historical data which was tainted by existing policies; (2) The simulation
should infer unbiased outcomes despite having access to only these biased data, which includes
long-term impact on system-wide utilities since present allocations influence future allocations,
requiring counterfactual inference (to determine outcomes under different allocations). (3) Using
the extracted components from (1), a user must be able to perturb and change the components to fit
their specific needs to evaluate different policies and settings before being deployed in the real world.

Contributions In this work, we present AllISim (Allocation Simulator), a general-purpose open-
source framework for performing data-driven simulation of scarce resource allocation policies
for pre-deployment evaluation. We use modular environment mechanisms to capture a range of
environment conditions (e.g. varying arrival rates, sudden shocks, etc.), and provide for com-
ponentwise parameters to be learned from historical data, as well as allowing users to further
configure parameters for stress testing and sensitivity analysis. Potential outcomes are evalu-
ated using unbiased causal effects methods: Upon interaction with a policy, AllSim outputs a
batch dataset detailing all of the simulated outcomes, allowing users to draw their own conclu-
sions over the effectiveness of a policy. Compared to existing work, we believe this simulation
framework takes a step towards more methodical evaluation of scarce resource allocation policies.

In Appendix B we compare against other strategies used to evaluate allocation policies. AllISim’s
itself is built using ideas from various fields in machine learning which we also review in Appendix B.
Furthermore, in Appendix B.1 we review some medical simulations which seem related, but are not.

2 AllSim

Let X € R? denote the feature vector of a user, and let X'(¢) denote the arrival process of users. At
each time ¢, let X(t) == {X;} %)N X (t) give the arrival set of (time-varying) size N (¢). Likewise,
let R € R® be the feature vector of a resource, and let R(t) be the arrival process of resources.
At each time ¢, let R(t) := {Rj};.\/i(ot)'\’ R(t) give the arrival set of (time-varying) size M (t).

While we make no assumptions on how users are modelled, we assume that resources are immediately
perishable—that is, each incoming resource cannot be kept idle, and must be consumed by some
user in the same time step. In organ transplantation, for instance, the time between harvesting an
organ and transplanting it (“‘cold ischemia time”) must be minimized to prevent degradation [14-16].

Let Y, € R be the outcome of a matched user, drawn from the distribution )(X, R) induced by
assigning a resource R to a user X. At each time ¢, let Y, (¢) .= {Y; ~ Y(Xg,R) : R € R(t)}
give the set of outcomes that result from matching each incoming R € R(¢) with its assigned X .
Likewise, let Y_ € R be the outcome of an un-matched user, drawn from the distribution Y(X, @).
At each time ¢, let the set of outcomes for users who are never assigned a resource be given by



Y_(t) ={Y_ ~Y(X,2): X € X(t), (It > t)(R € R(t'), X = Xg)}. (Note that we focus on
discrete-time settings (e.g. hours or days), and leave continuous time for future work). Then we have:

Definition 1 (Repeated Resource Allocation) Denote an environment with the tuple £ =
(X,R,Y). The repeated resource allocation problem is to decide which users to assign each
incoming resource to—that is, to come up with a repeated allocation policy 7 : R® x P(RY) — R4,
perhaps to optimize some utility defined on the basis of (un-)matched outcomes. For instance, if Y is
a patient’s post-transplantation survival time, we might wish to maximize the average survival time.

With the necessary notation, and a formal definition of a policy’s input and output in Definition 1,
we are equipped to introduce each component of AllSim as illustrated in Figure 1. In Sect. 2.4 we
also discuss how AllSim’s output can be used to evaluate a new policy (or any other modification
from the decision maker). Details regarding the simulation life-cycle can be found in Appendix A.

2.1 Arrival of users and resources Ag and g

There are two necessary ingredients that comprise the arrival of new users, and new resources:
the amount (N (¢) and M (t), respectively), and the description (X; and R, respectively). Each is
modelled differently. Before we sample the user and resource description, we first sample the amount
of each arriving at time ¢ from an associated arrival process— i.e., in this subsection we will focus
on N (t) and M (t). We first introduce the structure of the arrival processes, and explain how their
parameters can be learned from data and modified by a decision maker to setup the environment.

First, we stress that N(¢) and M (¢) are not necessarily sampled from constant arrival processes.
Instead, we want the user and resource arrivals to change over time either completely or per user/re-
source type, which we will explain in more detail below. To accommodate this, we split each
arrival process into a product of separate arrival processes which we combine into X'(¢t) and R () as:

X(t,0,) = X1(t,014) X - X Xc(t,0K.2), (1)
ﬁ(ta 07’) = 7%1(15, 91,7’) X X 7?'L(ta GL,T)a (2)

where each individual arrival process in /"ek and 7A€l is parameterised with (learnable) parameters
0k o and 0, , with k € [K] and [ € [L], respectively. Each factor corresponds with some (learned or
predefined) user-type (Equation (1)) and resource-type (Equation (2)). Having these factors allows us
to model increasing numbers of, for example, older/younger patients entering a transplant wait-list.

In order for X (t) and R(t) to change over time, we let their parameterisation, 6, and 6,., change in .
As an example, we can set the arrival processes to Poisson processes (we refer to Appendix E for
other examples) with arrival rates 8,, = A\, (t) and 6,, = \;(¢), which we can both model over time as,

Ak (t) = vk Ak (0)gr (1), 3)
Ai(t) = vXi(0)gi (), 4)

with Ag (), A () € Ry, and v, v € Ry as a normalising constant such that the sum of all \;, equal
some overall arrival rate a,, and similarly, the sum of all \; equal some overall arrival rate a,.. Lastly,
gr. and g; are continuous functions that simulate a user-specified drift. Note that these g can also be
a combination of multiple drift scenarios, or can be shared across different k,[. Having g, allows
practitioners to very accurately describe the non-stationarity they wish to test for. Optionally, vy
and v; can be kept fixed throughout the simulation such that a, and a, vary as does g, ;(¢), or it
can be recomputed for every step ¢, such that a, and a, are kept fixed throughout the simulation.

As such, we have a set of arrival rates, A, = [A1,..., Ag], with >°, A\p = a, with o, € R} as
the total arrival rate of recipients. The advantage of splitting o, into multiple )\, is that we can
finetune the arrival of certain recipient types, yet allow comparison between «,, and «,. (the total
arrival rate for resources). For example, the k™ recipient type may be completely absent when a
policy is launched, but over time it gradually enters the system, increasing o, as a whole. Naturally,
we also model the arrival of resources as we have for recipients, but left it out of discussion for clarity.

Learning 6, , naturally depends on the choice of arrival process. In our setups below we use a Poisson
process and have either: (i) learned the dynamic parameters Ay ;(t) as in Equations (3) and (4) using
polynomial regression over a time-windowed average of incoming users and resources— over all



data to compute a correct vy, ;, as well as per predefined condition; or (ii) have predefined an arrival
function and drift functions, g, to illustrate a scenario where one wishes to test a prespecified scenario.

2.2 New users and resources p(&) and p(3)

From X'(t) and R(t) we sample N (t) and M (t), respectively. Of course, we need to provide the
tested policies with more than just an amount of users and resources arriving at time ¢. Furthermore,
when working with user and resource types (using the decomposition in Equations (1) and (2)), we
have N(t) =), Ni(t) and M(t) = >, M;(t), where each Nj,(t) and M;(t) represents an amount
of users and resources per type. As such, we need these types to sample detailed descriptions of each.

When a recipient or a resource arrives, we sample them from a distribution denoted py, (X) for the
recipients, and py, (R) for the resources. These distributions are either learnt from data, or shared
as an open-source (but privatised) distribution. For the user-distributions we learn from Ut X, and
similarly, for the resource-distributions we learn from [ J, R(t). Since both remain independent from
the past policy (no policy determines which users and resources arrive in the system), we can use any
(conditional) generative model to learn these distributions as we are not required to de-bias these data.

Of course, we need to be able to sample specific user and resource types. For this we require condi-
tional generative models, where the condition corresponds with a type: pg, (X) becomes py_ (X |k),
and similarly pg_(R) becomes py,_(R|l). In case we wish to use an unconditional generative model,
we can simply learn multiple: pg, . (X) for each k € [K], and similarly for py, . (R) for each [ € [L].

Interestingly, we do not need to account for any variability (learned nor specified) over time, since
this is completely modelled through the arrival processes in Sect. 2.1. In particular, whenever we wish
one type, k to dominate others, we simply increase gy (t) in Equations (3) and (4). In case we only
want one type to appear after ¢ in the simulation, we set gr, = 0 for ¢ < ¢ and increase it for t” > ¢.

2.3 Utility u(m,Y, 38, &)

The final component in AllSim, as per Figure 1,
are the utilities: functions of the policy (), the
users and resources (X and R), and crucially,
the allocation outcomes (Y'). Given the previous
sections, all that remains are the outcomes and
how we can combine each element into a new
dataset, D', with counterfactual outcomes, Y.

DorD’

As the outcome is a function of the resource and
its recipient, inference is a hard problem as al-
locations suggested by the tested policy deviate
from historical data which was collected under
a different policy (i.e., they are counterfactual).
Consequentially, some combinations are less ob-

Figure 2: Allocation policies bias data. Above
illustration depicts two policies: 7 and 7’. Each
policy is tasked with assigning resources to users
served in the original data, illustrated in Figure 2. 35 PeT Definition 1. Besides users and resources,
In Figure 2 we illustrate two policies, 7 and W€ observe an outcome, Y. Desplte obsgrvmg the
7' which result in different datasets D and D/, S3Me Users and'resources, a different policy results
The latter (D') is what we wish to provide with 1 completely different outcomes, Y, and data, D’.

AllSim, using only data from the former (D).

Counterfactual inference. AllSim handles this difficult problem by using a counterfactual estimator.
Counterfactual methods correct for allocation bias explicitly [2]. In particular, these methods aim to
make an unbiased prediction of the potential outcome, associated with some treatment (or resource).
We are interested in counterfactual methods that model the potential outcomes for the recipients when
they are (not) allocated a resource. A counterfactual estimator then “completes” the dataset (D’) as,

Y (t) = E[Y (R(t))| XA (1)], (5)

where Y (R(t)) is the estimated potential outcome, using methodology known in the potential
outcomes literature [17-22], and X (¢) are the recipients selected by a policy 7 at time ¢. The
potential outcome is a random variable depicting the (possibly alternative) outcome when the user
receives the resource, R(t). Note that this is not the same as simply conditioning the outcome



variables on the users, for the reasons outlined above: conditioning using only biased data will lead
to biased estimates for the outcome variable. Hence, literature on counterfactual inference intro-
duced the potential outcomes notation in Equation (5) to differentiate between Y (R(t)) and Y| R(t).
We provide a comprehensive overview of counterfactual methods and literature in Appendix H.

2.4 Putting it all together

We have now discussed each component in the middle section of Figure 1. What remains are
the decision maker’s perturbations, and finally, combining each component into a new dataset, D’.

Perturbations. From Figure 1 we learn that a decision maker can make three types of perturbations:
(i) they can replace the original policy, 7, with a new (alternative) policy, 7’; (ii) they can change
the utility function, u, which takes as argument a dataset comprised of users, resources, outcomes,
and a policy; and lastly, (iii) they can change the types, as well as the amount, of users and resources
entering the system. Given these perturbations, the policy is allowed to act in a different environment.

Changing the policy in (i) is done simply by implementing the new policy according to the simulation
interface (discussed in the next section). We stress once more that this paper does not provide
guidance for allocation policies nor does it propose a new policy of any kind. In fact, the policies
used in the following section are tried and tested policies, currently in use in practice. Changing
the utility function for (ii) is easily done in AllSim as running the simulation does not depend at
all on the chosen utility function! As AllSim provides a completely counterfactual dataset, D’, the
utility is computed post-hoc which allows us to always fall back on the generated dataset. Finally,
perturbing arrivals (iii) is already discussed in Sect. 2.1; the arrival processes are perturbed through g.

Sampling data. Equations (1) to (4) provides us with X (¢) and R(t). Equation (5) provides us with
an estimated potential outcome given X (¢), R(¢) and their allocations using 7. AllSim then carefully
indicates a timestamp for each combination and then presents the decision maker with a new dataset:

D' = {(X,R,Y(R),t); :i=1,...,N}.

Having a new (counterfactual) dataset based on 7/, D', allows to easily calculate various performance
utilities of interest, which the decision maker can use to evaluate the allocation policy, pre-deployment:

Definition 2 (Pre-Deployment Evaluation) Let f : ][] kR’“ X ... — M denote an evaluation metric
mapping a sequence of outcomes {Y (¢)},=1,... to some space of evaluation outcome M (e.g. for the
average survival time, this would simply be R), where Y (¢) := Y (¢) U Y_(¢). Given a problem &
and policy m, the pre-deployment evaluation problem is to compute statistics of the distribution F¢
of evaluation outcomes f({Y (¢) }+=1,...); commonly, this would be the mean E¢ . [f({Y (¢)}1=1....)]-

Note that we have defined f in terms of the sequence of per-period outcomes such that it gives
maximum flexibility: Depending on how individual outcomes Y are defined, we can measure point
estimates (e.g. the mean survival), compare subpopulations (e.g. whether some types of recipients
systematically receive more favourable outcomes), examine trends (e.g. whether outcomes degrade
as the types of recipients arriving change), or potentially investigate more complex hypotheses.

3 AllSim Interface & Examples

Given the formal definition of AllSim presented in Sect. 2 (and further in Appendix A), we now
introduce AllSim’s programming interface and use it directly to provide some experimental results.
We split this section in two major parts: first, we show the type of analysis AllSim can do for us,
as well as how to tailor AllSim to the decision maker’s needs; and then, we show how realistic the
AlISim simulations are, compared to the factual data; we show that AlISim models realistic systems.

3.1 Example analysis and decision-maker specifications

As a first example, let us showcase an analysis to illustrate the possible impact AlISim may have in
practice. Throughout this section, we will use the open-access United Network for Organ Sharing
(UNOS) dataset which comprises 25 years of liver-to-patient allocation. Importantly, we had to
make zero adjustments to our framework to fully capture these data, showcasing the generality of the
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Figure 4: Specifying a simulation using AllSim. In the above, a decision maker defines a set of
donor arrival rates, based on age (\g and Asgg). Using these very simple, but custom, arrival rates, we
see a direct influence in the user and resource distributions (p(&) and p(%%)). These perturbations
constitute as perturbations of type (iii) as per Sect. 2.4. Finally, the decision maker tries out three
different policies: MELD, MELD-na, and FIFO, which constitute as perturbation type (i). The result
of these policies is shown on the right. The reported averages are windowed over 300 samples.

AllSim framework. We only use UNOS data until 2019 which, interestingly, predates the COVID-19
global pandemic. As such, it is impossible to evaluate policies using only these data: we need AllSim
to model a counterfactual scenario that mimics what we saw during the pandemic to test a policy.

In Figure 3 we ran the MELD-Na policy in two hypo-
thetical scenarios: one where COVID-19 happens (which
resulted in a 50% drop in the donor liver arrival rates [23—
25]), and one where it doesn’t. With AlISim we can model
each scenario confidently. For this particular example,

Two hypothetical scenarios

1,000
750

we fix the seed of AllSim and only change the supply of

COVID-19 .

organs by giving two different resource arrival processes: 500 no COVID-19 | =~y
def covid(t): /Aug. Mar. Oct.
if t < 600: COVID-19
return .5 happened
else: Figure 3: Two hypothetical scenarios.
return .25 We require AllSim to evaluate a policy
) (e.g. MELD-Na) in hypothetical (coun-
def no_covid(t) :

terfactual) scenarios. The x-axis is time,

return .5 R . .
and the y-axis indicates survival time.

Having illustrated the power of AllSim, let us now show how a decision maker may introduce their
perturbations (such as the covid and no_covid arrival processes from above) into the AllSim
simulator. For this, we will provide the donor-organ system with two specific perturbations: (1) we
will change the policies (from MELD, to MELD-na, and a simple FIFO policy), and (2) we will
increase the user age and decrease the donor age. These two perturbations respectively illustrate
perturbation types (i) and (iii), listed in Sect. 2.4 (recall that perturbation type (ii) was changing the
utility which is done after a counterfactual dataset is sampled and hence does not require testing).

Consider Figure 4 which shows the resulting simulation and the found utility when perturbing the
organ arrival rates as well as the allocation policies. The take-away from this experiment is not the
performance of the policy (although, reassuringly, MELD and MELD-na' do outperform FIFO).
Instead, we learn that increasing user age results in dropping the survival time, regardless of the
donor age which is decreasing. This is not surprising, as older transplant patients simply have less
time to live, whether they get an organ or not. Which leads to the next question: is AllSim realistic?

'Which are the policies used in Europe and the USA for donor liver allocation.
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Figure 5: AllSim (easily) simulates realistic environments. Using real-world data on donor organs,
we let AllSim model 3 years of organ arrivals and compare it with the actual arrival as reported in the
data. In Figures 5a and 5b we show AllISim’s output (in donor age and BMI), given the code on the
right. With minimal code, a simple condition (4 age brackets), and conservative models (polynomial
regression to fit the arrival rates, and a Gaussian kernel density to model the organ densities), we find
that AlISim accurately models the actual (real-world) arrival of organs as reported in the UNOS data.

3.2 AllSim’s realism

In this section, we will learn an AllSim configuration purely from the UNOS data (i.e. without a
decision maker’s input), such that we can compare AllSim’s output side-by-side with what actually
happened in UNOS. If they match up, we confirm that AllSim can output realistic scenarios (as UNOS
is a real dataset). However, before we do so, we first show how we use AllSim from a programming
perspective and configure appropriate arrival processes and densities for this particular use case.

First we determine how many users and resources we need to sample, once we know the amount
we sample them from a generative model. The former is modeled through a Poisson arrival rate
that changes over time, and the second is sampled from some learnt density. Of course, a user
can implement their own arrival process by inheriting from the abstract ArrivalProcess class.

Importantly, we need to be able to condition the density on some pre-specified characteristic of the
object of interest. For example, one may be interested in modelling the arrival of harvested organs of
older patients distinctly from younger patients. An example of this is provided in Figure 5, where
we show the changing resources coming in the system, alongside the code that generated the result.

Object densities. Before discussing a temporal arrival rate, we first discuss modelling the object’s
densities. Consider 1ns 3-12 in the righthand side of Figure 5. Using this code, we first define what
we want to condition on, using a Condit ion object: in this case we formulate age brackets. With
the KDEDensity class, which is a subclass of the abstract Density class, we can automatically
model a density, conditioned on these age brackets. Each Density object implements a £it and
sample function, which is used to sample new objects by the System, which we discuss next.

Arrival processes. Using a Density, we move on to 1ns 14-26, where we first build a system of
multiple arrival processes, one for each discrete condition as in Equations (1) and (2). In particular,
we define a PoisonProcess for each condition (or age bracket), which is then provided to a
PoissonSystem. Using the PoissonSystem, we can sample the arriving objects for each ¢ in



1n 25. Note that we also model alpha, returning the overall arrival rate, such that the system can
calculate an appropriate . Figure 5a shows that A11Sim accurately models the arriving objects.

With the arrival processes coded above together with a counterfactual Inference object, we
compose a Simulation object— the main interaction interface. In particular, one defines a set of
arrival rates (such as in Figure 5b) for both users and resources (cfr. 1n 13-17) to create a simulation:

simulation = asim.init (resource_process, patient_process, inference,
columns)

With that simulation, a practitioner can instantiate a Policy, which implements the add and select
methods. For example, we have implemented the MELD policy [26], which is a widely known
and used ScRAP for liver allocation. Using the simulation, we can generate a simulated dataset:

df = simulation.evaluate (policy=meld_policy, T=T)

Where df is a Pandas DataFrame [27, 28]. Naturally, df contains an enormous amount of informa-
tion w.r.t. the policy’s allocations in our environment. As such, we have included only a subset
of the potential results in Figure 4. Additional results and details can be found in Appendices C
and H. Ultimately, the practitioner determines appropriate analysis, settings, and performance metrics.

3.3 Beyond Organs

AllSim is a general purpose simulator which evaluates scarce resource allocation policies. While
we have mainly focused on organ-transplantation so far, AllSim is also applicable in other settings.
To illustrate, we show how one can implement a vaccine distribution policy evaluation system in
AllSim. This use-case illustrates the few adjustments one has to make compared to the organ-
allocation problem. Specifically, in vaccine distribution, each resource is the same and arrives in
batches. Furthermore, the type of patient-in-need is also much broader (in fact, they cover the
entire population). Yet, AllSim is perfectly capable of modelling this scenario given the following:

* Batch arrival requires a multiplier: if the Poisson process samples a value of 2 on one day,
we could simply interpret this as two batches of 1000 doses, i.e. multiply by batch content.

* We no longer require a resource density as vaccines are not unique, contrasting organ alloca-
tion. This is implemented as a dummy-density that always returns 1 (or the vaccine amount).

* The broader patient-type is achieved by retraining the recipient-density on the entire population.

These implementation details are relatively simple to implement using AllSim’s modular API. While
not necessarily a problem in vaccine distribution, recipient arrival in the ICU in a setting of infectious
disease (such as COVID-19), is definitely different compared to the organ-allocation setting. With
organ-allocation, we can safely assume a Poisson process for recipient arrival as recipients enter the
system independently. This is not true for infectious diseases: one recipient arriving may indicate
higher infection rates. As such, recipients do not arrive independently, motivating AllSim’s design.

It is clear that above scenario can no longer rely on a Poisson arrival process for new recipients
entering the system. Instead, accurately modelling a situation of infectious disease could be done
using a Hawkes process. To illustrate, we include some code below showing exactly how one may
go about including such a Hawkes process in AllSim (replacing the Poisson processes used earlier).

class HawkesProcess (PoissonProcess) :
def _ _init_ (self,

lam: float=.1,
update_lam: Callable[[int], float]=lambda t: t,
delta: float=.1,
a: float=.2):

assert a >= 0, "a should be larger than or equal to 0"

assert delta > 0, "delta should be larger than 0"

super () .__init__ (lam, update_lam)

self.a, self.delta, self._samples = a, delta, []



def get_lam_unnormalized(self, t: int) -> float:
return self._baseline_lam + np.sum(
self.a x self.beta x np.exp(-beta * (t - self._samples]|
self._samples < t])))

def progress(self, t: int, neu: float=1l) -> int:
self.lam = neu » self.get_lam_unnormalized(t) # egs. (5, 6)
sample = np.random.poisson (lam=self.lam)
self._samples.append(sample)
return sample

Allocation policies from machine learning and OR. It seems that both the ML [1-3, 29-34] and
OR [35-41] community is focused more and more on this important class of problems— which is
fantastic! But it also warrants careful evaluation. Furthermore, if we find that the evaluation strategies
in medicine (which generally propose linear combinations of features [26, 42] or simple CoxPH
models [43-46]) have shortcomings, then this is certainly the case for much more complicated
strategies introduced in ML or OR. In fact, a recent survey confirmed exactly this concern: [47, cfr.
Limitations of ML in transplant medicine]. It is in these extended scenarios where AllSim could help.

Naturally, problems solved by the OR community concern a variant of the general problem presented
in this paper. For example, Balseiro et al. [40] are concerned with distributing a fixed set of resources,
to a varying set of incoming users. While different, such problems can still be modelled in AllSim.
In the specific case of Balseiro et al. [40], resources are not unique (they represent an amount)
and require much less machinery than what we require to model the varying resource scenario.
Specifically, one can model the remaining amount of resources as an attribute in our Policy class.

4 Conclusion

AllSim provides the means to perform standardised evaluation of repeated resource allocation policies
in non-steady-state environments. While our experiments focus on organ-transplantation for the
sake of exhibition, Appendix G illustrates AllSim for COVID-19 vaccine distribution, an example
outside organ-transplantation. We believe that AllSim’s generality and modularity allows for sensible
adoption in a wide range of application areas. Furthermore, having standardised evaluation will
encourage research in this very important and impactful domain spanning many application areas.

Conducting research in repeated resource allocation requires consideration of a policy’s societal
impact. While we believe AllISim will aid (rather than negatively impact) in this respect (by offering
more than simple aggregate statistics), in Appendix F we provide a section dedicated to this topic.

Ethical research. We envisage AllSim as a tool to help accurate and standardised evaluation of
repeated resource allocation policies, however emphasise that any finding would need to be further
verified by a human expert or in some cases by a clinical trial. Ultimately, the decision on whether
or not to trust a decision making tool is up to the acting decision-maker and ethics board. We hope
that AllSim can help in any way to facilitate that decision, but stress that suggestions or evaluation
always require critical assessment, as is the case for any research. We also refer the reader to
Appendix F for a more thorough discussion on the potential societal impact of systems such as AllSim.

Reproducibility. To encourage reproducibility, we have included all our code to reproduce the pre-
sented results (as well as those in Appendix C). It should be clear from this paper, that reproducibility
is actually one of the main reasons for doing this type of research in the first place. Furthermore,
we have included a detailed discussion on how to use our simulation in Appendices D and E.
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