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ABSTRACT

Training efficiency plays a pivotal role in deep learning. This paper begins by
analyzing current methods for enhancing efficiency, highlighting the necessity of
optimizing targets, a process we define as data optimization. Subsequently, we
reveal that current data optimization methods incur significant additional costs,
e.g., human resources or computational overhead, due to their inherently sequential
optimization process. To address these issues, we propose COOPT, a highly
efficient, parallelized framework designed for collaborative data optimization.
COOPT enables participants to independently optimize data subsets, ensuring that
the overall performance, once these subsets are collected, remains comparable
to the sequential optimization of the entire dataset, thus significantly reducing
optimization costs for individual participants. Extensive experiments have been
conducted on various real-world scenarios to demonstrate the effectiveness and
efficiency of COOPT across various datasets and architectures 1.

1 INTRODUCTION

Figure 1: A Collaborative Data Optimization Framework COOPT. In practical scenarios involving open-
source, large-scale unlabeled datasets, direct utilization via self-supervised learning results in low training
efficiency (Wang et al., 2021). Therefore, we propose COOPT, an efficient and parallel framework enabling
participants to utilize diverse task-agnostic models, such as pre-trained ResNets (He et al., 2016), termed prior
models, for collaborative data optimization. These prior models can be sourced from internet resources, human
expertise, or models trained on the participants’ own datasets.

Deep learning has achieved remarkable success across various domains, primarily due to the availabil-
ity of large-scale, high-quality datasets (Song et al., 2020; Yang et al., 2023). However, despite the
abundance of data in the era of big data, a significant portion remains unlabeled (Lei & Tao, 2023).

1Our code is provided in the Supplementary Materials and will be publicly accessible.
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Table 1: Properties of Various Data Utilization Methods. ‘Optimize DX ’ and ‘Optimize DY ’ indicate whether
they are optimized. ‘SSL’ denotes self-supervised learning, ‘HA’ is human annotation, ‘KD’ is knowledge
distillation, and ‘DD’ is dataset distillation. ‘c’ denotes the training cost associated with standard supervised
learning that employs human-labeled data. ‘-’ is not computable as it is associated with human.

Method
Optimize Efficiency

Cost Analysis Total Efficiency
DX DY

Data
Optimization

Model
Training

Original SSL ✗ ✗ 0 (≥ 2c) Extensive Computation

Data
Optimization

Methods

HA ✗ ✓ ( – ) (= c) Human Annotation
KD ✗ ✓ (≥ c) (< c) Task-specific Teacher Models
DD ✓ ✓ (≥ c) (< c) Task-specific Pre-trained models

COOPT (Our) ✗ ✓ (< c) (< c) Various Prior Models

Self-supervised learning (Chen et al., 2020b) is proposed to exploit intrinsic relationships within
large volumes of unlabeled data to learn meaningful representations. While it reduces dependency on
labels, training on such extensive datasets demands considerable computational resources, posing
significant computational challenges and diminishing training efficiency (Sun et al., 2024a).

To efficiently leverage unlabeled data, a straightforward but labor-intensive method is through human
annotation, thereby transforming them into labeled data. To further enhance training efficiency,
methods such as knowledge distillation (Hinton, 2015) and dataset distillation (Wang et al., 2018)
have been proposed. Knowledge distillation innovatively leverages soft labels provided by a powerful
teacher model to improve the performance of a student model and expedite its training (Dong et al.,
2023). Dataset distillation focuses on compressing the original dataset into a smaller subset, enabling
a model trained on this distilled data to perform comparably to one trained on the full dataset, thus
significantly reducing computational costs.

The data utilization methods discussed above are summarized in Table 1 . Essentially, compared
to the less efficient self-supervised learning methods, methods achieve higher efficiency by either
optimizing targets DY through human annotation or pre-trained models (as in knowledge distillation),
or by optimizing both input data DX and targets DY (as in dataset distillation). Notably, all these
methods necessarily optimize targets DY , and we term this process as data optimization.

In this paper, we identify the inefficiency of conventional data optimization methods, which suffer
from a sequential optimization process with a time complexity ranging from O(|DX |) to O(|DX |2),
as elaborated in Section 3.2 . As a remedy, we propose COOPT, a highly efficient collaborative
framework inspired by crowd-sourcing to achieve parallel data optimization. An overview of COOPT
is depicted in Figure 1 , with detailed processes illustrated in Figure 2 .

In summary, our contributions are threefold:

(a) We propose COOPT, a highly efficient and parallelized framework for collaborative data
optimization. This framework enables participants to independently optimize data subsets,
ensuring that when these subsets are collected, the overall performance is comparable
to sequential optimization of the entire dataset. Therefore, COOPT significantly reduces
optimization costs for each participant.

(b) Within COOPT, we identify a critical issue: Target Distribution Inconsistency, as defined in
Section 3.4 . This issue arises from the diverse prior models employed by participants, leading to
heterogeneity in the target distribution spaces. To address this challenge, we propose an effective
target alignment strategy, elaborated in Section 3.5 .

(c) Extensive experiments have been conducted across a range of real-world scenarios, involving a va-
riety of prior models trained on various datasets, architectures, and training paradigms. Notably,
special cases are explored where human or significantly weak models are employed as prior mod-
els, verifying the robustness and flexibility of COOPT. These experiments consistently demon-
strate that COOPT achieves superior effectiveness and efficiency across a range of scenarios.

2 RELATED WORK

This section first introduces low-efficiency self-supervised learning (Chen et al., 2020a) on unlabeled
data. Subsequently, it reviews existing high-efficiency methods for labeled data, specifically focusing
on Knowledge Distillation (Hinton, 2015) and Dataset Distillation (Wang et al., 2018).
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2.1 LOW-EFFICIENCY SELF-SUPERVISED LEARNING FOR UNLABELED DATA

To eliminate the need for human annotation, self-supervised learning (Chen et al., 2020b) is proposed
to exploit the intrinsic co-occurrence relationships within large volumes of unlabeled data to learn
meaningful representations.

Instance-instance contrastive learning has demonstrated effectiveness across various visual classi-
fication tasks. For example, InstDisc (Wu et al., 2018) introduces the concept of using instance
discrimination as a pretext task. Building on this, CMC (Tian et al., 2020) proposes to use multiple
views of an image as positive samples and take another one as the negative. MoCo (He et al., 2020)
significantly increases the number of negative samples but utilizes a relatively simplistic strategy for
selecting positive samples. Subsequent methods, such as PIRL (Misra & Maaten, 2020), incorporated
jigsaw augmentations, and SimCLR (Chen et al., 2020a) highlights the importance of hard positive
sample strategies by introducing data augmentation. A notable advancement is BYOL (Grill et al.,
2020), which discards negative sampling and surpasses the performance of SimCLR (Chen et al.,
2020a). SimSiam (Chen & He, 2021) further investigates the necessity of negative sampling in
contrastive representation learning, achieving faster convergence.

Summary. These methods, although not reliant on human annotation, often come with high
computational costs due to the need for large batch sizes or memory banks.

2.2 HIGH-EFFICIENCY DATA OPTIMIZATION METHODS FOR LABELED DATA

Knowledge distillation. Knowledge distillation (Hinton, 2015) innovatively employs soft labels
generated by high-capacity teacher models to improve the performance of a student model. Many
following works aim to enhance the use of soft labels for more effective knowledge transfer. WSLD
(Zhou et al., 2021) analyzes soft labels and distributes different weights for them from a perspective
of bias-variance trade-off. DKD (Zhao et al., 2022) decouples the logits and assigns different weights
for the target and non-target classes. Moreover, several studies (Yim et al., 2017; Dong et al., 2023)
have demonstrated that knowledge distillation can accelerate the optimization process during training.

Dataset dstillation. Dataset distillation (Wang et al., 2018) aims to learn a compact distilled dataset
that preserves the essential information in the large-scale original dataset, achieving comparable
performance to the original dataset with less training time. Current solutions can be categorized
based on their optimization mechanisms (Lei & Tao, 2023): meta-learning framework (Wang et al.,
2018; Zhou et al., 2022), gradient matching (Zhao et al., 2020; Zhao & Bilen, 2021), distribution
matching (Zhao & Bilen, 2023; Yin et al., 2023), trajectory matching (Cazenavette et al., 2022; Guo
et al., 2024). Notably, RDED (Sun et al., 2024b) introduces an optimization-free paradigm, which
directly crops and selects realistic patches from the original data and then stitches the selected patches
into the new images as the distilled dataset.

Summary. Knowledge distillation enhances model training efficiency by optimizing targets DY ,
while dataset distillation optimizes both target DY and input data DX . Despite their benefits, both
approaches are computationally expensive as they require task-specific pre-trained models, which
significantly reduces overall efficiency.

3 COLLABORATIVE DATA OPTIMIZATION FRAMEWORK COOPT

In this section, we begin by formally defining data optimization in Section 3.1 . We then analyze and
underscore the necessity of our collaborative data optimization framework COOPT in Section 3.2 .
Following this, we provide a comprehensive and detailed description of the proposed COOPT
framework in Section 3.3 . Furthermore, we identify the inherent challenge within this framework in
Section 3.4 and present method designed to address the challenge in Section 3.5 .

3.1 DATA OPTIMIZATION

As illustrated in Table 1 , we provide a comprehensive comparison of various unlabeled data utiliza-
tion methods. Self-supervised learning (SSL), which operates without optimizing both targets and
input data (indicated by ✗ under ‘Optimize DX ’ and ‘Optimize DY ’), is effective but often suffers
from low efficiency due to the extensive computational resources required.

3
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In contrast, methods that achieve higher efficiency typically involve optimizing data through different
strategies. For example, Human Annotation (HA) provides labeled data (indicated by ✓ under
‘Optimize DY ’) and achieves high effectiveness and efficiency. However, this approach incurs
substantial costs in terms of human resources and time, making it impractical for large-scale datasets
or applications requiring rapid deployment. Knowledge distillation (KD) supplies soft labels by
teacher models, resulting in high effectiveness and efficiency, yet requires additional computational
resources to train the teacher models. Thus, the data optimization process incurs a minimum cost of c
when only training a teacher model with standard supervised learning, where the cost is c.

Dataset Distillation (DD) further extends data optimization by simultaneously optimizing the input
samples DX and the targets DY . While DD can significantly improve efficiency during the training
of new models due to the reduced dataset size, most DD methods rely on complex optimization
procedures, such as trajectory matching (Guo et al., 2024), which require models trained on the
original datasets to guide the distillation process. This reliance can offset the efficiency gains by
introducing additional computational overhead.

Summary. Improving training efficiency necessitates to optimize targets.

We formally define data optimization as the process of optimizing the original dataset D to create an
optimal dataset D′. The goal is to enable a model ϕ trained on D′ to achieve comparable performance
with significantly fewer training steps compared to training on the original dataset D.

Definition 1 (Data optimization) . Data optimization aims to produce optimized data D′ s.t.

L(ϕθ, D′, T ′) < L(ϕθ, D, T ) where T ′ < T , (1)

where L is the loss function, T ′ and T denote the training steps required for D′ and D, respectively,
and θ are the parameters of the neural network ϕ : Rm → Rn.

3.2 WHY OUR COLLABORATIVE DATA OPTIMIZATION COOPT IS NECESSARY?

Proposition 1 (Data optimization with prior model ψ) . Given samples DX = {xi}|D|
i=1 and

an existing prior model ψ : Rm → Rl, the objective of data optimization is assigning targets
DY = {yi}|D|

i=1 for the samples to create D′ = {xi,yi}|D|
i=1. We assigns a target yi for xi as:

D′ = {(xi,yi) | yi = Wψ(xi),∀xi ∈ DX} , (2)

where DY is the optimized targets, and ψ(xi) represents the target of xi, which means the feature
representation. W : Rl → Rn denotes a random matrix designed to transform the feature vector
ψ(xi) from dimension l to n without loss of information (Matoušek, 2008). This transformation
aligns the output dimensiona with that required by the model ϕθ : Rm → Rn.

aHere, n denotes the target dimensionality of ϕθ . In practice, each participant may produce targets of
varying dimensions due to the use of different prior models. Therefore, to train the model ϕθ using the
optimized data, we employ the random matrix W to transform all target vectors to a common dimensionality.

As we discussed above, existing data optimization methods incur substantial costs, as indicated by the
‘Extra Cost’ in Table 1 . For example, most dataset distillation methods rely on bi-level optimization
(Zhao et al., 2020; Kim et al., 2022; Liu et al., 2023), leading to a training cost of O(|D|2), where
|D| is the number of data samples. To alleviate this computational burden, a promising strategy is
to partition the dataset into K splits, thereby reducing the computational cost to O(|D|2/K)2. This
approach incurs a key question:

How can we independently optimize each subset so that, when the subsets are combined, the overall
performance is comparable to that achieved by optimizing the entire dataset as a whole?

Drawing inspiration from Sun et al. (2024a), which demonstrates that employing task-agnostic models
for target assignment can accelerate training, we propose to split the data and then independently
optimize the targets of each split. Consequently, when the optimized subsets are aggregated, the

2This outcome is obtained from O(|D|2/K2)×K, representing K times the processing time for a single
partition O((|D| /K)2).
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Distributing

Step ①

Optimization

Upload & Merge

Step ②

Step ③ & ④

Figure 2: Lifecycle of the proposed collaborative data optimization framework COOPT. The framework
encompasses an open data platform and multiple participants, involving four key data operations.

combined targets are the same as those obtained by optimizing the whole dataset, thereby achieving
comparable performance. Furthermore, if these K splits are processed in parallel, the computational
cost can be further reduced to O(N2/K2). Therefore, collaboration among multiple participants
becomes essential to distribute the computational burden and enhance computational efficiency.
Formally, we define data optimization with a prior model ψ in each participant in Proposition 1 .

3.3 OVERVIEW OF THE PROPOSED FRAMEWORK COOPT

COOPT is a collaborative and parallelized framework that comprises an open data platform and K
participants, each equipped with a distinct prior model. Specifically, COOPT operates through the
following four steps:

Step 1 : Data distributing. The open data platform initiates the process by randomly partitioning
the entire set of unlabeled data D into K non-overlapping subsets. Each participant then downloads
one of these subsets from the platform, denoted as D(k), where k indicates the k-th participant.

Step 2 : Data optimization. Participants optimize their respective datasets D(k) = {xi}|D
(k)|

i=1

using their local prior model ψk. This data optimization process, detailed in Section 3.2 , yields

optimized targets D′(k) = {xi,yi}|D
(k)|

i=1 . However, due to the heterogeneity of prior models among
participants, the optimized targets of all participants may exhibit significant variations, leading to
divergence in the distribution of the targets. This issue, referred to as target distribution inconsistency
(defined in Section 3.4 ), necessitates an alignment strategy to align the target distribution spaces
across participants. We propose a solution to this challenge in Section 3.5 .
Step 3 : Data uploading. After optimization, participants upload their optimized datasets D′(k)

back to the open data platform.
Step 4 : Data merging. The platform aggregates all the optimized datasets received from the
participants to form a consolidated dataset.

The proposed collaborative parallel process enables participants to independently optimize their
subsets while ensuring consistency through the proposed alignment strategies. When combined,
the overall results are comparable to that achieved by optimizing the entire dataset as a whole.
Consequently, this approach markedly reduces individual data optimization costs and enhances data
processing efficiency through parallel execution.

3.4 AN INHERENT CHALLENGE: TARGET DISTRIBUTION INCONSISTENCY

In our collaborative framework, each participant may employ a distinct prior model, leading to
inconsistencies in the target distributions, as illustrated in Figure 4a . For example, participant 1
uses ResNet-18 for optimization, resulting in a target dimension of 512, while participant 2 utilizes
ResNet-50, yielding a target dimension of 2,048. Such inconsistencies can negatively impact the
generalization capabilities of models trained on the optimized data, as they prevent the models from
learning representations that are uniformly representative of the overall data distribution.

Considering N participants, participant k uses an prior model ψ(k), resulting in a target distribution
space T (k). Target distribution inconsistency occurs when significant differences exist between these
distributions T (k). The formal definition of target distribution inconsistency is as follows:

5
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Definition 2 (Target Distribution Inconsistency) . Given a distance metric DTV where
(T (i), T (j)) ∈ [0, 1],∀i, j, the global inconsistency G among K participants can be quantified as:

G (T (1), T (2), ..., T (K)) = 1

(N2 )

∑K−1
i=1

∑K
j=i+1 DTV(T (i), T (j)) , (3)

where DTV is the total variation distance (Verdú, 2014), i and j are participants, and 1/(K2 ) is a
normalization factor. Target distribution inconsistency exists when I > ϵ, where ϵ ∈ (0, 1) is a
predefined threshold.

3.5 AN EFFECTIVE STRATEGY: TARGET ALIGNMENT

In the previous section, we identified that the primary challenge arises from the heterogeneity of
optimized target distributions across participants. To address this issue, a potential solution is to align
the target distributions of all participants’ prior models with that of the prior model producing the most
optimal target distribution space, referred to as the best prior model. Such alignment can be achieved
by utilizing an optimizable transformation matrix to map each participant’s target distribution to that
of the best prior model (Sun et al., 2024a). This alignment strategy ensures consistency across all
optimized target distribution spaces.

In summary, it is crucial to first effectively assess each participant’s prior model quality and subse-
quently train the transformation matrix for alignment.

A metric to quantify prior model quality. Drawing inspirations from Wang & Isola (2020),
which proposes an optimizable metric a.k.a. uniform value loss to achieve feature uniformity on
the hypersphere during training, we employ this metric to evaluate the quality of prior models.
Specifically, each participant downloads a small shared dataset SX from the platform and computes
the uniformity value of their prior model on SX . They then upload this value to the platform, enabling
it to determine which participant possesses the best prior model. The uniform value is computed as:

Vuniform(ψ;S) ≜ logExi,xj∼S

[
eτ∥ψ(xi)−ψ(xj)∥2

2

]
, (4)

where ψ is the prior model, τ is a hyper-parameter set as 2, consistent with Wang & Isola (2020).

A lower uniform value indicates a higher-quality prior model, which optimizes targets of superior
quality. Extensive experiments in Figure 3c demonstrate a strong correlation between this metric
and the performance of prior, thereby effectively assessing the quality of targets.

Alignment. Upon identifying the best prior model, all participants, excluding the best prior model
itself, proceed to train an optimizable transformation matrix. Specifically, the participant owning
the best prior model disseminates its optimized targets, denoted as SY

⋆, computed over the shared
dataset SX using prior model ψ⋆, to facilitate the alignment of target distribution spaces for other
participants. Subsequently, each participant k optimizes a lightweight transformation matrix, denoted
as T(k), on the shared dataset SX . The optimization problem is defined as follows:

T(k) = argminT∈Rn×n{∥T ·ψ(k)(SX)− SY
⋆∥22} , (5)

where SX represents the matrix form of SX , suitable for input into the network ψ(k), and SY
⋆ also

represents the matrix form of SY
⋆. After obtaining the transformation matrix T(k), the participant

can convert the optimized targets for its own data using this matrix: DY
(k) = T(k) ·ψ(k)(DX

(k)),
where DX

(k) denotes the participant’s subset, and DY
(k) are the adjusted targets aligned with the

best prior model’s target distribution space. As illustrated in Figure 4b , the proposed alignment
strategy effectively mitigates target distribution space inconsistency.

4 EXPERIMENTS

In this section, we outline the experimental setup and assess the performance of our proposed col-
laborative data optimization framework, COOPT, across various real-world scenarios, employing
different datasets and architectures, as discussed in Section 4.2 . Subsequently, we explore a con-
tinuous data optimization framework that allows the prior models of participants to evolve, thereby
further optimizing the targets, as detailed in Section 4.3 . Finally, we validate the effectiveness of the
introduced uniform value metric and the target alignment strategy in Section 4.4 .
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4.1 EXPERIMENTAL SETUP

Datasets and Networks: We conduct experiments on both large-scale and small-scale datasets,
including Tiny-ImageNet (64 × 64) (Le & Yang, 2015), CIFAR-100 (Krizhevsky et al., 2009a) and
CIFAR-10 (32 × 32) (Krizhevsky et al., 2009b). Following previous self-supervised studies (He
et al., 2020; Chen et al., 2020a; Grill et al., 2020; Chen & He, 2021; Assran et al., 2023; Zhang et al.,
2024), we employ a range of model capacities backbone architectures to evaluate the generalizability
of our method, including ResNet-18, 50, 101 (He et al., 2016), ViT (Dosovitskiy et al., 2020).

Baselines: For the unlabeled data utilization, referring to a prior widely-used benchmark (Da Costa
et al., 2022), we consider several state-of-the-art self-supervised methods as baselines for a broader
practical impact, including: SimCLR (Chen et al., 2020a), BYOL (Grill et al., 2020), DINO (Caron
et al., 2021), MoCo (He et al., 2020), SimSiam (Chen & He, 2021), and SwAV (Caron et al., 2020).

Evaluation and Metrics: Following previous benchmarks and research (He et al., 2020; Chen
et al., 2020a; Grill et al., 2020; Chen & He, 2021), we evaluate the test accuracy (%) of all the trained
models using offline linear probing strategy to reflect the representation ability of the trained models,
and ensure a fair and comprehensive comparison with baseline approaches. Additionally, we measure
the computational efficiency by evaluating the time cost (s).

Implementation details: In this study, we introduce a collaborative data optimization framework,
COOPT, which involves an open data platform and multiple participants. In practical applications,
each participant can use publicly pre-trained models or their own models directly as the prior model.
To simulate the diversity of prior models in practical applications, we train multiple prior models for
participants across three key dimensions:

• Training Paradigm: Models are trained using various paradigms, such as supervised learning
and self-supervised learning. Specifically, for supervised learning, we employ cross-entropy loss,
while for self-supervised learning, we primarily utilize the BYOL framework (Grill et al., 2020).

• Prior Dataset: These prior models of participants are trained on extensive and public datasets,
including CIFAR-10/100, Tiny-ImageNet, and ImageNet-1k.

• Architecture: Popular architectures such as ResNet and Vision Transformer (ViT) are employed.

We train the 16 different models based on a widely recognized supervised learning and self-supervised
learning open-source benchmark (Da Costa et al., 2022). For the model trained on optimized data,
we use the AdamW optimizer, the same as baselines. The size of mini-batch is set as 128. For all
experiments, we utilize three random seeds and report both the mean and variance of the results.

4.2 COMPARISON WITH THE STATE-OF-THE-ART METHODS

We evaluate our framework, COOPT, across various scenarios: (1) participants use a diverse range of
prior models trained on different datasets, architectures, and training paradigms; (2) we specifically
evaluate the robustness of our method when employing different prior datasets used for training prior
models, as well as (3) varying scalar networks; (4) finally, we explore special cases involving human
or weak models, particularly where there are resource-rich or resource-poor participants.

A Diverse Range of Prior Models. Given the diversity among participant models, we employ a
comprehensive set of 16 models, as detailed in Section 4.1 . These models are trained using various
training paradigms, datasets, and architectures. Details of the training processes for these models
are provided above. As presented in Table 2 , it is evident that our method COOPT demonstrates
superior performance and training efficiency compared to existing self-supervised learning methods.

(a) In terms of performance, the proposed COOPT achieves results comparable to or exceeding
state-of-the-art self-supervised learning techniques. For instance, it achieves an improvement
of 3.3% over the leading self-supervised approach BYOL on Tiny-ImageNet. Notably, COOPT
demonstrates more significant improvements on larger-scale datasets, such as Tiny-ImageNet,
which is particularly advantageous given the current emphasis on large-scale data era.

(b) Regarding training efficiency, COOPT demonstrates a substantial reduction in training costs
across various datasets. In particular, on the large-scale Tiny-ImageNet dataset, COOPT achieves
a training speed that surpasses BYOL and SwAV by a factor of approximately ×2.48 and ×1.94.

Diverse Prior Datasets. In the last experiment, we employ prior models that have been pre-trained
on a variety of datasets, some of which are congruent with the unlabeled training data, while others

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 2: Comparison of COOPT with Various Self-Supervised Learning Methods Accuracy (%) and
Training Time (s). Evaluations are conducted on four datasets: CIFAR-10 (CF-10), CIFAR-100 (CF-100), and
Tiny-ImageNet (T-IN). The best results are highlighted in bold. ↑ indicates the performance improvement over
the second-best results. × denotes the factor of training speed compared to the second-best results.

Dataset Metric BYOL DINO MoCo SimCLR SimSiam SwAV COOPT

CF-10
Acc. (%) 82.8 ± 0.1 82.6 ± 0.0 82.9 ± 0.1 83.1 ± 0.0 79.0 ± 0.0 82.9 ± 0.1 83.5 ± 0.1 (↑ 0.4)
Time (s) 1376.56 1457.22 1349.56 1114.81 1090.79 1012.74 540.43 (× 1.87)

CF-100
Acc. (%) 51.7 ± 0.1 51.0 ± 0.0 57.8 ± 0.1 55.4 ± 0.0 44.6 ± 0.1 53.2 ± 0.1 59.4 ± 0.0 (↑ 1.6)
Time (s) 1406.17 1419.69 1425.80 1103.45 1139.14 1072.44 548.11 (× 1.95)

T-IN
Acc. (%) 43.9 ± 0.2 36.1 ± 0.0 42.4 ± 0.2 41.5 ± 0.1 40.8 ± 0.0 39.9 ± 0.1 47.2 ± 0.1 (↑ 3.3)
Time (s) 7086.62 7030.90 7133.98 5621.33 5531.92 5540.96 2852.6790 (× 1.94)

Table 3: Comparison of COOPT with BYOL Across Diverse Prior Datasets. For instance, “CF-10 (P)”
indicates participants’ prior models are trained on CIFAR-10. Bold means the best results. Underline indicates
the results when the prior dataset is identical to the training data. All models are based on ResNet-18 architectures.

Dataset BYOL
(Baseline)

Our COOPT (Diverse Prior Datasets)

CF-10 (P) CF-100 (P) T-IN (P) IN-1K (P)

CF-10 82.8 ± 0.1 86.6 ± 0.0 (↑ 3.8) 80.9 ± 0.0 (↓ 1.9) 81.6 ± 0.1 (↓ 1.2) 88.1 ± 0.0 (↑ 5.3)
CF-100 51.7 ± 0.3 54.9 ± 0.1 (↑ 3.2) 60.0 ± 0.1 (↑ 8.3) 56.8 ± 0.0 (↑ 5.1) 63.7 ± 0.0 (↑ 12.0)
T-IN 43.9 ± 0.2 38.3 ± 0.0 (↓ 5.6) 40.2 ± 0.1 (↓ 3.7) 49.0 ± 0.0 (↑ 5.1) 55.8 ± 0.1 (↑ 11.9)

are incongruent. We refer to these datasets as the prior datasets. To rigorously evaluate the influence
of these prior datasets, we perform an analysis across scenarios where the prior datasets used for
prior models either align with or differ from the unlabeled training dataset. For instance, in the
aligned scenario, the training dataset is CIFAR-10 (CF-10), and the prior models are also trained on
CIFAR-10 (CF-10 (P)). Conversely, in the divergent scenario, the training dataset remains CIFAR-10,
while the prior models are trained on CIFAR-100 (CF-100 (P)). We conduct experiments on four
public datasets, with results detailed in Table 3 .

(a) Prior models trained on the same dataset as the training data can yield significant improvements.
(b) For complex training datasets, using simpler prior datasets may degrade performance compared

to BYOL, as they provide less informative guidance.
(c) However, for all unlabeled training datasets, employing prior models trained on ImageNet-1K

can result in substantial improvements, owing to their robust generalization capabilities. This
is especially pertinent in practical applications, given that the majority of pre-trained models
accessible in internet resources are derived from ImageNet-1K.

Table 4: Comparison of COOPT with
BYOL Across Diverse Architectures
of Prior Models. We use both large-
scale and small-scale networks for prior
models. Bold means the best results.

Dataset BYOL COOPT

CF-10 82.8 ± 0.1 87.5 ± 0.2
CF-100 57.4 ± 0.1 63.8 ± 0.1
T-IN 43.9 ± 0.2 55.7 ± 0.1

Diverse Architectures of Prior Models. To further verify the
robustness of COOPT across various prior model architectures,
we perform experiments on various datasets using a diverse
range of networks to train prior models. This includes large-
scale networks such as ResNet-101 (He et al., 2016) and Swin-
V2-Tiny (Liu et al., 2021), as well as smaller-scale networks
like ResNet-18 (He et al., 2016), EfficientNet-B0 (Tan & Le,
2019) and MobileNet-V2 (Sandler et al., 2018). The results,
presented in Table 4 , demonstrate that COOPT consistently
achieves superior performance across various architectures.

Table 5: Comparison of COOPT with BYOL in
Presence of Human or Weak Prior Models.

Prior Models Dataset

Method Human Weak CF-10 CF-100

BYOL – – 82.8 ± 0.1 57.4 ± 0.1

COOPT
✗ ✗ 83.5 ± 0.1 59.4 ± 0.0
✗ ✓ 83.3 ± 0.1 58.7 ± 0.1
✓ ✗ 86.7 ± 0.0 61.0 ± 0.0

Extreme Cases of Prior Models: Human or
Weak. In real-world applications, extreme cases
arise due to the varying capabilities of participants.
For example, some participants have extensive re-
sources and employ human annotators for labeling,
while others may have limited resources and rely
on weak models with inferior performance and gen-
eralization abilities. In our experiments, we define
weak models as those trained during intermediate
stages that are even far from convergence.
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(c) Uniform Value and Accuracy.

Figure 3: (a) Training curves of various self-supervised learning methods, including our proposed COOPT.
It is evident that our COOPT demonstrates superior performance compared to the other methods. (b) Practical
Scenario: The prior models of each participant experience temporal evolution, leading to improved target quality
across multiple rounds. (c) Correlation Verification: Examine the relationship between the uniform value and
performance, which demonstrates a strong negative correlation, quantified by ρ = −0.9714.

To simulate the conditions, in addition to the 16 diverse prior models detailed in Section 4.1 , we
incorporate 10 prior models, either human or weak models. The results, presented in Table 5 , clearly
indicate that our method, COOPT, maintains robustness despite the incorporation of weak models.
Furthermore, the integration of high-capacity human models leads to significant improvements.

4.3 CONTINUOUS DATA OPTIMIZATION

We explore another practical scenario where the prior models of each participant experience temporal
evolution. For instance, an initially prior model of a participant, such as ResNet-18, may be evolved
to a higher-capacity model like ResNet-50 as the participant’s resources improve. Consequently,
within COOPT, data optimization can be a continuous process.

We simulate this scenario by conducting experiments where, in each interaction round between the
platform and participants, 20% of the participants randomly update their model architectures to reflect
an increase in model capacity. The training curves across 10 rounds on CIFAR-100 are depicted in
Figure 3b . The results have demonstrated that in COOPT, as the prior models evolve, the quality
of the targets improves, thereby facilitating continuous optimization. In particular, compared to the
baseline BYOL, these improvements can achieve an enhancement of 11.6%.

4.4 ABLATION STUDY

Effectiveness of Uniform Value. To evaluate the effectiveness of uniform value in estimating the
quality of prior models, we employ a diverse set of prior models, calculating both their uniform value
and test accuracy. We employ the Spearman rank correlation coefficient3 ρ (Zar, 2014) to quantify
the association between Uniform Value and accuracy. As illustrated in Figure 3c , the Spearman rank
correlation coefficient is ρ = −0.9714, indicating a strong correlation between uniform value and
model performance, thereby effectively assessing the quality of prior models.

Target Distribution Alignment. In real-world applications, participants often employ diverse prior
models, which results in target distribution space inconsistencies, as demonstrated in Figure 4a .
We conduct an ablation study w/o alignment and w/ alignment to verify the importance of target
distribution space alignment, and the training curves presented in Figure 4d .

(a) Compared to without alignment (green line), our proposed approach (blue line) yields a perfor-
mance improvement of 16.9%, which highlights the critical importance of aligning the target
distribution space. Notably, the training curve without alignment (green line) initially ascends
before declining, suggesting that during the early phase of model training, optimizing the target
leads to performance enhancement. However, as training continues, the severely inconsistent
targets significantly degrade model performance.

3The formula is: ρ = 1 − 6
∑

d2i
n(n2−1)

, where di represents the difference between the ranks of each pair of
observations and n denotes the number of observations.
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(d) Training curves.

Figure 4: (a), (b), (c): Visualization of t-SNE for optimized targets generated by two distinct models (BYOL
(acc. = 82%) and SupCE (acc. = 90%).). Aligning to the worse model (c) results in diminished target quality.
(d) Training curves with and without alignment, demonstrating the importance of alignment.

(b) Furthermore, we compare our alignment strategy, which aligns to the best prior model, with two
other straightforward strategies: aligning to a medium prior model (purple line) and aligning to
the worse prior model (red line). It is evident that all three alignment strategies outperform the
scenario without alignment, and aligning to the best prior model provides the most significant
performance gains.

(c) To further analyze the underlying reasons, we employ t-SNE visualization. Notably, a comparison
between alignment with the better participant ( Figure 4b ) and the worse participant ( Figure 4c )
reveals that alignment with a worse-quality model diminishes the representative capability of the
targets. This, in turn, results in less effective guidance for model training.
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Figure 5: Influence of shared data size. As
the size of the shared data increases, the per-
formance gains diminish A small dataset size
is sufficient to estimate uniform value and
compute the transformation matrix.

Influence of Shared Unlabeled Data Size. The shared
unlabeled data S is employed to estimate the uniform
value and compute the transformation matrix necessary
for target alignment, as detailed in Section 3.5 . To ex-
plore the influence of the size of shared unlabeled data, we
conduct experiments on both CIFAR-10 and CIFAR-100
datasets, varying the size of the shared data in proportions
of {0.01, 0.05, 0.1, 0.2, 0.4, 0.6, 0.8} relative to the origi-
nal dataset. The results are presented in Figure 5 . It is
observed that as the size of the shared data increases, per-
formance gains become marginal. Specifically, increasing
the proportion of data from 0.01% to 0.05% results in im-
provements of 2.4% and 2.5% for CIFAR-10 and CIFAR-
100, respectively. However, increasing from 0.05% to
0.8% This suggests that a small-sized shared unlabeled
dataset is adequate for accurate uniform value estimation
and the computation of the transformation matrix.

5 CONCLUSION AND FUTURE WORK

Conclusion. In this paper, we introduce COOPT, an efficient and highly parallelized framework
for collaborative data optimization. This framework enables participants to independently optimize
data subsets such that, when aggregated, the overall performance is comparable to that achieved by
sequentially optimizing the entire dataset. Consequently, COOPT significantly reduces individual data
optimization costs. Within COOPT, we identify a critical issue: Target Distribution Inconsistency,
which arises from the diversity of prior models used in data optimization. To mitigate this, we propose
an effective target alignment strategy. Extensive experiments conducted across various real-world
scenarios demonstrate the superior effectiveness and efficiency of the COOPT framework across
diverse datasets and architectures.

Future Work. In future work, we intend to (1) conduct an in-depth exploration of iterative data
optimization through multiple rounds, enabling more dynamic collaboration among participants.
(2) Furthermore, we aim to examine additional practical scenarios, such as participants optimizing
their local data and then uploading it to the platform. This paradigm is anticipated to broaden the
platform’s functionalities, thereby increasing its applicability to real-world applications.

10
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