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Abstract

One of the central goals of causal machine learning is the accurate estimation of
heterogeneous treatment effects from observational data. In recent years, meta-
learning has emerged as a flexible, model-agnostic paradigm for estimating condi-
tional average treatment effects (CATE) using any supervised model. This paper
examines the performance of meta-learners when the confounding variables are
expressed in text. Through synthetic data experiments, we show that learners using
pre-trained text representations of confounders, in addition to tabular background
variables, achieve improved CATE estimates compared to those relying solely on
the tabular variables, particularly when sufficient data is available. However, due to
the entangled nature of the text embeddings, these models do not fully match the
performance of meta-learners with perfect confounder knowledge. These findings
highlight both the potential and the limitations of pre-trained text representations
for causal inference and open up interesting avenues for future research.

1 Introduction

Treatment effects can vary substantially across different subgroups within a population. Accurately
estimating these heterogeneous effects can guide decision-making in a wide range of critical areas
such as personalised medicine and public policy. For instance, doctors need to identify which patients
are most likely to benefit from specific treatments. Likewise, governments must determine who
would gain most from programs such as subsidised job training. Although randomised controlled
trials (RCTs) are the gold standard for estimating these effects, ethical and practical constraints often
limit their feasibility. Recent advances in machine learning have enabled data-driven estimation of
heterogeneous treatment effects from observational data [1, 2, 5, 9, 11, 13, 16, 21, 22, 25, 26].

Since individual-level treatment effects are unobservable—known as the fundamental problem of
causal inference—estimating treatment effects differs from traditional supervised learning due to the
absence of a direct prediction target. One approach proposed in literature is meta-learning, which
addresses this challenge by decomposing treatment effect estimation into separate sub-problems that
can each be tackled with standard supervised models [13]. Alternatively, various machine learning
techniques have been adapted for estimating heterogeneous treatment effects, including Gaussian
processes [2], random forests [25] and GANs [26].

Recent advances in meta-learning have broadened its applicability to a wider range of problems. For
instance, new methods enable meta-learners to provide predictive intervals to account for uncertainty
around the point-estimates of heterogeneous treatment effects [1, 10] or to estimate these effects
over time [8]. Following this line of work, our paper explores how meta-learners perform when
the confounding variables are expressed in text. This is particularly relevant given that many real
world applications involve unstructured data. For instance, in personalised medicine, diagnostic
information in electronic health records is often recorded in clinical notes written by physicians.
Similarly, in public policy, career characteristics of individuals are usually accessible only through
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survey or social media data. This leads to our central research question: How do meta-learners
perform with pre-trained text representations of confounders, and how does this compare to settings
where confounders are either ignored or perfectly known?

2 Background and related work

Problem definition: We position our work in the Rubin-Neyman framework on causality [19],
where heterogeneous treatment effects can be formalised as conditional average treatment effects
(CATE). Consider the observed data {

(
Xi, Ti, Y

obs
i

)
}Di=1, where Xi represents the covariates for

unit i, potentially including confounders, Ti is the treatment indicator with P (Ti = 1|Xi) = π(Xi)
(i.e., the propensity score) and Y obs

i is the observed outcome. In this framework, each unit i also
has two potential outcomes, Yi(0) and Yi(1), representing the outcomes we would observe under
no treatment and treatment, respectively. The CATE is the expected difference between potential
outcomes, conditioned on covariates X , and formally defined as:

τ(X) = E[Y (1)− Y (0)|X] (1)

Under the conventional assumptions of consistency (i.e., Y obs = Y (1)T + Y (0)(1− T )), positivity
(i.e., π(X) ∈ (c, 1− c) for 0 < c < 1) and unconfoudedness (i.e., Y (0), Y (1) ⊥⊥ T |X), the CATE
is identifiable, meaning that it can be estimated from observed data, and can be expressed as:

τ(X) = E[Y |T = 1, X]− E[Y |T = 0, X] (2)

Considered meta-learners: As discussed, meta-learning decomposes CATE estimation into sub-
problems that can each be addressed with standard supervised learning methods. This typically
involves estimating nuisance parameters η̂(X), which are then transformed into a pseudo-outcome
τ̃(X). Pseudo-outcomes aim to provide a noisy but potentially unbiased approximation of the CATE
and can be used as targets for a second-stage regressor [7].

In this study, we consider four established meta-learners: the T-learner [13], the RA-learner [5], the
DR-learner [11], and the R-learner [16]. These meta-learners rely on a common set of nuisance
parameters η̂(X) = {µ̂0(X), µ̂1(X), µ̂(X), π̂(X)}, where µ̂t(X) is an estimate of the conditional
outcome given treatment T = t and covariates X (i.e., E[Y |T = t,X]), µ̂(X) is an estimate of
the overall conditional outcome given covariates X (i.e., E[Y |X]), and π̂(X) is an estimate of the
propensity score. The pseudo-outcomes for the RA-, DR- and R-learner are detailed in Appendix A,
along with a brief overview of their theoretical background. In contrast, the T-learner directly
estimates the CATE as the difference between µ̂1(X) and µ̂0(X). For a detailed discussion on these
learners and their connections, see [15].

Causal inference with learned representations: Using pre-trained text representations of con-
founders for CATE estimation is, to the best of our knowledge, a novel approach. However, an
extensive body of literature exists on learning representations with neural networks, particularly from
structured data, for causal inference. For instance, Shalit et al. [21] introduced a model that learns a
shared representation from the covariates, with two separate regression heads to predict outcomes
under treatment and no treatment respectively. They also introduced a regularization term to balance
the representations during training, such that the induced distributions of the two treatment groups
become similar. Building on this, Shi et al. [22] proposed a neural network that similarly learns a
shared representation from the covariates, but with a third head to also predict the propensity score.
Several other models have been proposed to learn representations for causal inference. Curth et al.
[6] explored a range of these, specifically evaluating their effectiveness for CATE estimation within
the meta-learner framework. In related work, Melnychuk et al. [14] studied representation-induced
confounder bias which arises when the learned representations lose information about the observed
confounders (e.g., due to dimensionality reduction) from a theoretical perspective.

Closely related to our work, Veitch et al. [24] develop a method for estimating causal effects by
adjusting for confounding features of text, such as subject and writing quality. Their approach adapts
language models to learn text representations that are predictive of both treatment and outcome.
While their work is highly relevant, our paper differs in several key aspects. We focus on confounders
expressed in text rather than text features themselves, and we specifically integrate text representations
within the meta-learning framework for CATE estimation, rather than focusing on average treatment
effects.
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3 Data
Current benchmarking practices: As noted, estimating heterogeneous treatment effects is chal-
lenging because these effects are unobserved, which also complicates evaluation. To address this, the
literature has typically relied on simulated data where ground-truth treatment effects are known. This
can be achieved with completely synthetic data [7], semi-synthetic data (where only the potential
outcomes are simulated) [21], or by fitting a generative model on real data [3].

A widely used benchmark in the machine learning community for evaluating CATE estimators is the
semi-synthetic IHDP benchmark [9]. This benchmark was constructed from real data of a randomised
study, from which a non-random subsample of the treated units was removed to simulate confounding.
The potential outcomes are generated using a relatively simple model. However, the benchmark has
several limitations (see [4] for a discussion), including the unknown treatment assignment mechanism
and the generative process that is not representative for the real world and systematically favours
certain algorithms over others. Additionally, it is not suited for our purpose, as it lacks unstructured
data. Due to these constraints, we have chosen to use the synthetic SynSUM benchmark instead (see
below), which does include text by design, has a fully known generative process, and is more realistic,
having been developed in close collaboration with a domain expert.

The SynSUM benchmark: SynSUM [17] is a dataset of 10.000 synthetic medical patient records,
containing both structured tabular variables and unstructured clinical text notes describing a fictional
patient encounter in the domain of respiratory diseases in primary care. The tabular variables include
two possible diagnoses (pneumonia and common cold), four underlying respiratory conditions
(asthma, smoking, COPD and hay fever), five symptoms (dyspnea, cough, pain, fever and
nasal) and three non-clinical variables (policy, self-employed and season). In the fictional
setting, a treatment of antibiotics is prescribed based on the severity of the symptoms. The
outcome is days at home, describing how many days the patient ends up staying home as a result
of their symptoms and the prescribed treatment. The five symptoms act as confounders between
antibiotics and days at home. All other variables (like diagnoses and underlying conditions)
either directly or indirectly influence the occurrence of the symptoms, but do not act as direct
confounders between treatment and outcome.

The tabular variables (including treatment and outcome) were sampled from a Bayesian network,
where both the structure and the conditional probability distributions were defined by an expert
through domain knowledge. Afterwards, GPT4-o was prompted to generate a clinical note to accom-
pany the tabular patient record. The prompt contained information on the symptoms experienced by
the patient, as well as any underlying health conditions the patient may have, but no information on
the diagnosis, treatment or outcome variables. For further details on prompting and the full directed
acyclic graph relating all tabular variables, we refer the reader to [17]. An example of a SynSUM
entry can be found in Appendix B.

In our experiments, the five symptoms play the role of text-based confounders, while antibiotics
is the treatment and days at home is the outcome. The other tabular variables are passed to the
models as additional background information. The diagnosis variables (pneumonia and common
cold) and policy (reflecting a clinician’s inclination to prescribe antibiotics) are excluded and
assumed unknown to simulate a realistic setting, as these are typically unavailable at the time of
prescribing treatment. Importantly, these excluded variables are no direct confounders in the dataset.
As the data-generating process is fully known, the ground-truth CATE for each sample is available.
The potential outcomes, Y (0) and Y (1), were generated using two separate Poisson regression
models, where the mean number of days at home, E[Y (t)|X], parameterises each model and is a
function of the symptoms [17].

4 Experimental results
4.1 Impact of the text-based confounders on the performance of the meta-learners
Objective: The aim of our initial experiments is to evaluate how the considered meta-learners
perform (1) with perfect knowledge of the text-based confounders and (2) with no access to them,
having to rely solely on the tabular background variables to estimate the CATE. By varying the
amount of training data, we seek to determine how much data is required for each learner before a
significant performance gap emerges between these two settings. This will clarify the conditions
under which information on the confounders substantially improves CATE estimates and when
pre-trained text representations of confounders may potentially be beneficial.
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Figure 1: Overview of the experimental setup across three panels: Panel (a) presents the different
types of representations Φtext of the text-based confounders, concatenated with the tabular variables
Φtab to form the model inputs. Panel (b) illustrates the architecture used to estimate the nuisance
parameters, which are then transformed—along with the observed outcomes and treatment indi-
cators—into the pseudo-outcomes for each learner (except the T-learner). Panel (c) depicts the
second-stage regressor, which uses these pseudo-outcomes as targets to estimate the CATE.

Experimental setup and model architecture: In the first setting, where we assume perfect
knowledge of the text-based confounders, the CATE is estimated using both the tabular variables
(Φtab) and the true confounder values (Φtext). In the second setting, where the confounders are
unknown, the model relies solely on the tabular variables (Φtab). This setup is illustrated in panel
(a) of Figure 1. We vary the size of the training set across 300 - 1,000 - 3,000 and 9,000 samples,
while keeping a fixed test set of 1,000 samples. In both settings, these inputs are first used to estimate
the nuisance parameters using four separate multi-layer perceptrons (MLPs), each with a single
hidden layer of 10 units and a ReLU activation. Each MLP is trained with a target specific to the
nuisance parameter being estimated. The estimated nuisance parameters are then used to construct
pseudo-outcomes for each learner (except the T-learner), as shown in panel (b) of Figure 1. Finally,
a second-stage regressor uses these pseudo-outcomes as targets to estimate the CATE. Like the
nuisance parameter models, this regressor is an MLP with a single hidden layer of 10 units and a
ReLU activation, as depicted in panel (c) of Figure 1. Consistent with Curth et al. [5], cross-fitting
is not applied as the focus is on empirical performance rather than theoretical guarantees. Detailed
training procedures for both the nuisance parameter models and the second-stage regressors are
provided in Appendix C.

Performance evaluation and results: For each meta-learner and training set size, the entire training
process—which includes the nuisance parameter model and second-stage regressor—is repeated five
times with different random seeds to account for variations in weight initialisation and data sampling.
We evaluate the CATE estimates on the test set by comparing them to the ground-truth CATE using
the root mean squared error, commonly referred to as precision in estimation of heterogeneous effects
(PEHE) in the context of CATE estimation [9].

We present our results in Figure 4 (Appendix D) which shows the performance of each meta-learner
in both settings—with perfect vs. no knowledge of the text-based confounders—across various
training set sizes. A clear trend emerges: as the amount of training data increases, the performance
gap between the two settings widens. When the training set is small, models with perfect knowledge
of the confounders perform similarly to those relying solely on the tabular background variables.1

1Except for the T-learner trained with 300 samples. In this case, the model with perfect knowledge of the
confounders performs significantly better compared to the model with no knowledge of the confounders.
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However, as the training set grows, the models with perfect knowledge of the confounders continue to
improve steadily, whereas the models with no access to the confounders show little or no improvement.
This pattern consistently holds across all meta-learners. Additionally, we observe that the variability
of the PEHE decreases for larger training sets. Notably, the DR-learner and R-learner exhibit higher
variability compared to the T-learner and RA-learner, likely due to their reliance on propensity score
estimates in their pseudo-outcomes (see e.g. [7]).

These preliminary results indicate that the information on the text-based confounders only significantly
improves CATE estimates when enough training data is available for the models to effectively leverage
this. This provides a foundation for further experiments to investigate the potential of pre-trained text
representations to improve meta-learner performance.

4.2 Text-based confounders as pre-trained text representations

Objective: Building on the insights from our initial experiments, we now explore the potential
of pre-trained text representations of confounders in improving the quality of CATE estimates.
Specifically, we examine how pre-trained embeddings—both from generic and domain-specific
encoders—affect the performance of meta-learners when the true confounder values are unknown.
When sufficient data is available, and confounder information significantly improves CATE estimates,
we aim to determine how the learners perform with these representations. Conversely, when little
data is available, and the impact is minimal, our goal is to ensure that these representations do not
degrade the estimates further.

Extended experimental setup: The experimental setup remains largely consistent with the previous
experiments, with a few notable exceptions. We now evaluate the learners across four settings: (1)
with perfect knowledge of the text-based confounders, (2) using pre-trained BioLord embeddings, (3)
using pre-trained MPNet embeddings, and (4) with no access to the confounders. Both BioLord [18]
and MPNet [23] are sentence transformer models, from which text-based confounder representations
(Φtext) were obtained by encoding each sentence in the clinical text notes and applying mean pooling
(panel (a) of Figure 1). BioLord is a domain-specific encoder finetuned on biomedical texts and is
based on MPNet, a sentence embedding model trained on extensive sentence-level datasets using a
self-supervised contrastive learning objective. Based on our previous results, we focus on training
sets of 300 and 3,000 samples, representing conditions where access to the text-based confounders
had minimal and substantial impact on the CATE estimates of our meta-learners, respectively (see
Figure 4 in Appendix D).

Results and discussion: The results are presented in Figure 2, showing the performance of each
meta-learner across the different settings and training set sizes. First, we observe that meta-learners
using text representations of the confounders never perform worse than those without access to the
confounders (relying only on the tabular background variables). This suggests that the pre-trained
embeddings, whether from BioLord or MPNet, do not degrade the performance of the learners, even in
the low-data regime. Second, when the confounding information has substantial impact on the CATE
estimates (i.e., with a training set of 3,000 samples), we see that the learners using text representations
achieve a performance that falls between those with perfect and no knowledge of the confounders.
This indicates that the pre-trained embeddings can bridge the gap, to some extent, by capturing
useful confounding information for CATE estimation. Third, we observe little difference between the
domain-specific BioLord embeddings and the more general MPNet embeddings, suggesting that both
are equally effective at capturing the confounding information.

Based on these observations, we hypothesise that the reason learners using text embeddings still fall
short of those with perfect confounder knowledge is the entangled nature of the text representations.
We assume that the embeddings capture most, if not all, of the confounding information.2 However,
this information is likely distributed across multiple dimensions, which does not align with the
data-generating process in our synthetic setup that relies on disentangled, yet correlated, confounders.
This points to the broader concept of causal representation learning, which seeks to uncover high-level
causal variables from low-level observations [20]. One potential solution to this issue would be to
disentangle the confounders through additional supervision, such as training a specialised layer on
top of the embeddings using labelled confounder data, but we leave this for future work.

2This is supported by the supervised classification experiments on the SynSUM benchmark in [17].
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Figure 2: Performance comparison of the meta-learners across four settings: the text-based con-
founders represented (1) with perfect knowledge of them, (2) as pre-trained BioLord embeddings,
(3) as pre-trained MPNet embeddings and (4) with no knowledge of them. The figure shows the
PEHE on the test set (lower values indicate better performance) for each learner (columns) across two
training set sizes (rows). A dashed red line at PEHE = 1 is included to aid comparison across different
y-axis scales. The boxplots display results over different random seeds to illustrate variability due to
weight initialisation and data sampling.

5 Conclusion and future work

Our study demonstrates the potential and the limitations of pre-trained text representations in the
estimation of conditional average treatment effects (CATE) when confounders are expressed in
text. Meta-learners leveraging text embeddings of confounders—whether from domain-specific or
general-purpose encoders—outperform those without access to confounders (relying solely on tabular
background variables). However, they still fall short of models with perfect confounder knowledge,
likely due to the entangled nature of the text representations.

A first direction for future work involves addressing this entanglement. This could be achieved, for
instance, through supervision by incorporating labelled data on the true confounders, by exploring
causal fine-tuning strategies for text encoders (in line with the work of Veitch et al. [24]), or by
applying techniques from causal representation learning [20].

Second, while our current work is primarily empirical, we aim to formalise our findings by investigat-
ing the role of representation error in confounders from a theoretical perspective. Specifically, we
aim to study how entangled representations (Φtext) of text-based confounders affect CATE estimates
of different learners. This exploration will shift the focus from traditional theoretical work on esti-
mation errors due to finite samples (e.g., see [4, 11, 16]) to estimation errors arising from imperfect
confounder representations, aligning with the work of Melnychuk et al. [14].

Finally, a more immediate direction of future work is to explore how meta-learners perform when
confounders are expressed in other modalities, such as images. In the context of the SynSUM
benchmark [17], where confounders are currently expressed in clinical text notes, we could for
instance augment this dataset by expressing the confounders in synthetic medical images. This could
offer additional insights into the applicability of meta-learners in practical contexts.
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Appendix

A Pseudo-outcomes for the considered meta-learners

In this appendix, we provide additional details on the pseudo-outcomes of the meta-learners con-
sidered in our study. Specifically, we present the formal expressions for the pseudo-outcomes
associated with the RA-learner and DR-learner, and we discuss how the R-learner can be formu-
lated as a weighted pseudo-outcome regression. Recall that these pseudo-outcomes rely on the
estimated nuisance parameters η̂(X) = {µ̂0(X), µ̂1(X), µ̂(X), π̂(X)}, obtained in the first step of
the meta-learning process.

The pseudo-outcome for data instance
(
Xi, Ti, Y

obs
i

)
according to the RA-learner is given by:

τ̃RA,i = Ti(Y
obs
i − µ̂0(Xi)) + (1− Ti)(µ̂1(Xi)− Y obs

i ) (3)

and the corresponding pseudo-outcome for the DR-learner is given by:

τ̃DR,i =

(
Ti

π̂(Xi)
− 1− Ti

1− π̂(Xi)

)
Y obs
i +

(
1− Ti

π̂(Xi)

)
µ̂1(Xi)−

(
1− 1− Ti

1− π̂(Xi)

)
µ̂0(Xi) (4)

Whenever we have correctly specified nuisance parameters, these pseudo-outcomes are unbiased
approximations of the CATE meaning that E[τ̃ |X] = τ(X). Specifically, the RA-learner’s pseudo-
outcome is unbiased for the CATE given accurate estimates of the conditional outcome nuisance
parameters (i.e. when µ̂t(X) = E[Y |T = t,X]). The DR-learner is doubly robust meaning that its
potential outcome remains unbiased if either the conditional outcome nuisance parameters or the
propensity nuisance parameter are correctly specified (i.e. when µ̂t(X) = E[Y |T = t,X] or when
π̂(X) = P (T = 1|X)). For a theoretical analysis of these learners, we refer the reader to [5].
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The R-learner estimates the CATE by minimising the following loss function:

argmin
τ̂

D∑
i=1

[(
Y obs
i − µ̂(Xi)

)
− (Ti − π̂(Xi)) τ̂(Xi)

]2
(5)

Alternatively, the R-learner can also be formulated as fitting a weighted regression on a pseudo-
outcome defined as:

τ̃R,i =
Y obs
i − µ̂(Xi)

Ti − π̂(Xi)
(6)

with weights (Ti − π̂(Xi))
2 and the squared error loss function [7]. For the theoretical background

on the R-learner, we refer the reader to [16]. Note that we use the latter approach in our experiments.

The learners considered in our study are among the most prominent for CATE estimation but have
been developed from very different perspectives. Recently, Morzywołek et al. studied the connection
between these learners and proposed a single unifying framework. For more details, we refer the
reader to [15].

B Example entry from the SynSUM dataset

In Figure 3 of this appendix, we present an example entry from the SynSUM dataset [17], containing
structured tabular variables sampled from a Bayesian network and a textual clinical note generated by
GPT-4o. This illustrates a synthetic patient record composed of both structured and unstructured data.

History
The patient presented with a persistent cough over the past five days,
coupled with a low-grade fever. They reported that the cough is mainly dry
and worsens at night, disrupting their sleep. They do not experience any
difficulty breathing and deny feeling short of breath during activities or at
rest. The patient noted no recent exposure to sick contacts and has not
traveled recently. They reported adhering to over-the-counter cough
syrups, which offer minimal relief.

Physical Examination
Vital signs showed a slightly elevated temperature of 37.8°C, with other
vital parameters within normal limits. The patient's throat appears mildly
erythematous without exudate. Lung fields are clear to auscultation
bilaterally with no wheezing, crackles, or rales noted. No cyanosis or
clubbing of the fingers appreciated. Cardiovascular examination is
unremarkable with no abnormalities detected. Overall appearance
suggests mild discomfort, primarily due to the prolonged cough.

Textual clinical note

Generate with GPT-4o

0

1

0

1

0

0

0

0

... ...

0

0
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Figure 3: An example entry from the SynSUM dataset that combines structured tabular variables,
sampled from a Bayesian network, with a textual clinical note, generated by GPT-4o. This synthetic
example represents a realistic patient record from a patient encounter in primary care containing both
structured data (e.g., underlying conditions of the patient) and unstructured text (e.g. describing the
results of a physical examination revealing the symptoms a patient experiences).
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C Training details of the nuisance parameter models and the second-stage
regressors

The nuisance parameter models consist of four separate multi-layer perceptrons (MLPs), each
dedicated to estimating a specific nuisance parameter with a distinct target and loss function. For
estimating µ̂(X), we use the mean squared error loss with the observed outcome Y obs as target.
For µ̂t(X), we also compute the mean squared error, but only using samples from the respective
treatment groups (T = t) with the observed outcome Y obs as target. Finally, for π̂(X), we use binary
cross-entropy loss with the treatment indicator T as target.

Each MLP is trained with its own Adam optimizer [12] and learning rate scheduler. The learning rate
scheduler reduces the initial learning rate by a factor of 0.1 if the validation loss does not improve for
5 consecutive epochs. A randomly sampled 20% of the training set serves as the validation set. The
training lasts for 75 epochs with batches of 32 samples, during which the model alternates between
tasks for each nuisance parameter in every batch. L2-regularization with a weight decay of 1e-4 is
applied. The initial learning rate for each head was tuned separately as a hyperparameter (the initial
learning rate that minimised the validation loss was ultimately selected). This training procedure is
consistently applied across all settings discussed in the paper.

The second-stage regressors are trained similarly, with the primary difference being the use of pseudo-
outcomes τ̃ as targets (and mean squared error as the loss function). Unlike the nuisance parameter
models, the second-stage regressor does not alternate tasks between batches. The entire training
process—which includes the nuisance parameter model and second-stage regressor—is repeated five
times for each learner and training set size, with different random seeds to account for variations in
weight initialisation and data sampling.

D Experimental results

This appendix presents the results from our initial experiments, showcasing the performance of our
considered meta-learners under different settings and across various training set sizes. The settings
correspond to different representations of the text-based confounders, (1) with perfect knowledge and
(2) with no knowledge of them.
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Figure 4: Performance comparison of the meta-learners across two settings: the text-based con-
founders represented (1) with perfect knowledge of them and (2) with no knowledge of them. The
figure shows the PEHE on the test set (lower values indicate better performance) for each learner
(columns) across four training set sizes (rows). A dashed red line at PEHE = 1 is included to aid
comparison across different y-axis scales. The boxplots display results over different random seeds
to illustrate variability due to weight initialisation and data sampling.
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