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Abstract

While numerous frameworks have been developed to enhance the reasoning abilities1

of large language models (LLMs), there is a scarcity of methods that effectively2

balance the trade-off between cost and quality. In this paper, we introduce FLEET3

OF AGENTS (FOA), a novel and intuitive yet principled framework utilizing LLMs4

as agents to navigate through dynamic tree searches, employing a genetic-type5

particle filtering approach. FOA spawns a multitude of agents, each exploring6

the search space autonomously, followed by a selection phase where resampling7

based on a heuristic value function optimizes the balance between exploration and8

exploitation. This mechanism enables dynamic branching, adapting the exploration9

strategy based on discovered solutions. We conduct extensive experiments on three10

benchmark tasks, “Game of 24”, “Mini-Crosswords”, and “WebShop”, utilizing11

four different LLMs, “GPT-3.5”, “GPT-4”, “LLaMA3.2-11B”, and “LLaMA3.2-12

90B”. On average across all tasks and LLMs, FOA obtains a quality improvement13

of ≃ 5% while requiring only ≃ 40% of the cost of previous SOTA methods.14

Notably, our analyses reveal that (1) FOA achieves the best cost-quality trade-off15

among all benchmarked methods and (2) FOA + LLaMA3.2-11B surpasses the16

Llama3.2-90B model. FOA is publicly available at https://anonymous.4open.17

science/r/FoA-4D83.18

1 Introduction19

With strong reasoning and problem-solving abilities, large language models (LLMs) [5] such as20

GPT-4 [1], LLaMA [40, 41, 11], and PaLM [2], have sparked a new-found interest in building21

general-purpose autonomous agents. LLM-based agents have portrayed excellent performance22

on reasoning [7] and knowledge-intensive tasks [47], often requiring interactions with complex23

environments, such as playing complex video games [8], performing web navigation [50], or enabling24

tool-use [34].25

Naturally, the rise of LLM-based agents has contributed to the prosperity of prompt-based reasoning26

frameworks [46, 44, 4, 35, 49, 51, 54, 37, 52] that further enhance the problem-solving and reasoning27

abilities of LLMs. Broadly, the reasoning frameworks can be categorized into two categories: (1)28

single-query reasoning and (2) multi-query reasoning. As the name implies, single-query methods [46,29

44, 35, 30, 20] obtain an answer by querying the LLM only once, whereas, multi-query methods [51,30

4, 54, 37, 52] perform multiple LLM queries to identify different plausible reasoning paths or to plan31

ahead. It is important to note that none of the two aforementioned paradigms is perfect.32

On the one hand, despite being cost-effective by design, single-query methods require one or more of33

the following: intricate prompt engineering, high-quality demonstrations, or knowledge distilled from34

informative historical reasoning processes, to achieve competitive quality. More importantly, even35
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Figure 1: Analyzing the trade-off between cost
and quality of representative SOTA methods with
GPT-3.5 on the Game of 24 task. FOA achieves
the best cost-quality trade-off.
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Figure 2: Evaluating the trade-off between model
size and quality on benchmarked tasks with
Llama3.2-11B and 90B. FOA enables smaller
models to achieve competitive quality.

then, these methods are not well-suited for sequential decision-making tasks that require interactions36

with an environment, such as web navigation [50].37

On the other hand, multi-query methods decompose a complex problem into a series of simpler38

sub-problems and search over all plausible reasoning paths. This allows them to obtain competitive39

quality but also renders them inefficient. With the objective of devising a reasoning framework40

applicable to both general problem-solving and sequential decision-making tasks, our focus in this41

paper is to improve the cost-efficiency of multi-query methods.42

Present work. We introduce FLEET OF AGENTS (FOA), a novel and intuitive yet principled43

framework that brings the concept of genetic-type particle filtering [14] to dynamic tree searches.44

Fig. 3 provides an overview of our framework, while at the same time highlighting the conceptual45

differences between state-of-the-art (SOTA) tree-search-based methods [51, 4, 54, 13] and FOA.46

FOA spawns a multitude of agents, each exploring the search space autonomously, followed by a47

selection phase where resampling based on a heuristic value function optimizes the balance between48

exploration and exploitation. If one of the agents has discovered a very promising solution approach49

indicated by states with a high value, the resampling mechanism can decide to create many copies of50

this agent. Conversely, if none of the agents is ahead of the others, or in other words, there are multiple51

promising states, the resampling mechanism can decide to keep all of them, thereby maintaining a52

fleet of high diversity. This mechanism enables dynamic branching, adapting the exploration strategy53

based on discovered solutions.54

Cost-quality trade-off. The biggest advantage of FOA is its ability to strike a balance between55

exploration vs. exploitation. We provide early empirical evidence in Fig. 1, which compares the56

performance of tree-based SOTA methods with FOA for varying price points. We find that FOA57

substantially outperforms the existing SOTA methods at all possible price points, thereby achieving58

the best cost-quality trade-off among the benchmarked methods.59
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Figure 3: Comparison between SOTA tree-search-based reasoning [51, 4, 54, 13] and our FOA
frameworks. FOA offers precise control over the tree width (n agents) and depth (t steps), leading
to predictable latency and cost. However, by expanding the c most promising states at each step,
tree-search methods offer no such control and their search trees might grow exponentially.
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Contributions.60

•We propose an intuitive yet principled framework FLEET OF AGENTS (FOA) for improving the61

cost-quality trade-off of LLM-based reasoning (§ 2).62

• Ours is the first work to explore the concept of genetic particle filtering in the context of AI agents63

(cf. § A for a detailed literature review).64

•We conduct extensive experiments on three benchmark tasks using four LLMs as base models. On65

average across all tasks and LLMs, FOA obtains a quality improvement of ≃ 5% while requiring66

only ≃ 40% of the cost of previous SOTA methods (§ 3 and § 4).67

2 Fleet of agents68

2.1 Overview of FOA69

Fig. 4 provides a pictorial overview of FOA. FOA spawns a fleet of n agents that collectively search70

for a solution. The genetic filtering search has a mutation phase during which each agent explores71

the search space autonomously. Specifically, it tracks the n agent states and allows k independent72

mutation steps before evaluating the values of the current states. During the selection phase, we73

resample, with replacement, the population of agents. The resampling mechanism is based on a74

heuristic value function and allows us to optimize the trade-off between exploration and exploitation.75

The FOA algorithm is comprehensively described in Algorithm 1 in the Appendix.76

Figure 4: FOA comprising n = 5 agents that think
autonomously for k steps and are then resampled
to focus the search on promising regions.

Preliminaries. The fleet consists of n agents.77

At time t agent i has the state si,t. When choos-78

ing an action, the agent samples from its policy79

ai,t ∼ πa(a|si,t). The agent then transitions80

to a new state, following the dynamics of the81

environment si,t+1 ∼ P[s|ai,t, si,t]. With each82

agent searching for the solution, the fleet jointly83

discovers more and more of the state space. We84

describe the current set of states at timestep t85

as St = {si,t}, i = 1..n and the set of all states86

visited so far as Ŝt =
⋃

t̂ St̂, t̂ = 1..t.87

We assume that we can identify solutions when88

they are found, i.e., we can decide whether a89

state s is a solution, 1solution(s). Depending90

on the task, we may also be able to identify91

invalid states, failed tasks, and other forms of92

dead-ends; we denote them as terminal states93

1terminal(s).94

For some tasks, we can stop as soon as a solution is found; for other tasks, we may instead collect95

a set of solution candidates and stop the search only if we run out of time or sampling budget. We96

assume we are given access to a value function v(s) that can guide the search. For a solution state97

s, the value function represents the utility of the solution. For other states, s, the value function98

is a heuristic considering the uncertainty of eventually reaching a solution and its expected utility.99

Accordingly, the value of terminal, non-solution states is 0.100

2.2 Genetic particle filtering101

Each agent in the fleet of agents acts autonomously and tries to choose the best action given its current102

state. After k independent steps, we use the value function to resample the set of states and allocate103

more agents to high-value states. Our algorithm implements a genetic-type particle filter that captures104

the dynamics of a population of particles, i.e., agents, with a series of mutation and selection steps.105

Mutation phase. During the mutation phase, each agent in FOA independently samples state106

transitions. To simplify the notation, we introduce a model π which captures both the stochasticity107

of the decision of the agent as well as the response of the environment, si,t+1 ∼ π(s|si,t) We use108
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the same notation for multi-step state transitions by marginalizing over intermediate states, i.e.,109

si,t+k ∼ π(si,t+k|si,t). After each mutation step, we can check whether a solution has been found110

and decide to stop the search. Following the concept of genetic filtering, we apply two optimizations:111

• Enforced mutation: The agent must mutate its state; it can not remain stationary.112

• Sudden death: If we notice that an agent i has entered an invalid state 1terminal(si,t), then we113

resample its state immediately from the set sj,t, j ̸= i. This resampling can be uniform to avoid114

expensive calls to the value function.115

Selection phase. The selection phase resamples the population of agents based on an importance116

sampling mechanism. We observe the value estimates v(si,t) for all current states and calculate a117

resampling weight pi,t. This framework can capture many resampling schemes, such as linear, greedy,118

or exponential weighting of values:119

plin(si,t) = αv(si,t) + β,

pexp(si,t) = exp

(
v(si,t)

β

)
,

pgreedy(si,t) =

{
1, if si,t = arg max

sj,t,j=1..N
v(sj,t)

0, otherwise
.

We then resample, with replacement, to select a new set of agent states:120

pt(s) =

N∑
i=1

pi,t∑
j=1 Npj,t

δsi,t(s), categorical resampling

ŝi,t
iid∼ pt(s), resampling with replacement

si,t = ŝi,t, i = 1..N

Backtracking. Additionally, by keeping track of a history of states and the associated value function121

estimates, we extend the resampling process with an intuitive backtracking mechanism. Backtracking122

undoes localized mistakes and allows our fleet of agents to recover from a catastrophic scenario in123

which all agents might have made a wrong decision. Instead of resampling states from the set of124

current states St, we consider all previously visited states Ŝt. To incentivize the fleet of agents to125

push forward and explore new regions of the state space, we introduce a discount factor γ. The value126

of a state that was visited t timesteps ago is discounted by γt. The mutation phase of our genetic127

particle filter comprises k steps of individual exploration, before evaluating and resampling in the128

selection phase. Therefore, we may not have a value estimate for all previously visited states Ŝt.129

Depending on the task, and the corresponding cost of computing the value v(s), we may limit the130

backtracking mechanism to a subset of Ŝt which only contains states with a known value estimate.131

3 Experiments132

We assess the effectiveness of our proposed FOA framework through comparisons with representative133

SOTA methods on a judicious mix of tasks that require a variety of reasoning, planning, and134

general problem-solving skills. Additional experimental details, e.g., task and method descriptions,135

hyperparameter tuning, additional results, etc. are present in Appx. C. The resources for reproducing136

our experiments are available at https://anonymous.4open.science/r/FoA-4D83.137

Base model. Following convention in the literature, we use GPT-41 as the base model for the main138

results presented in this paper. To showcase the generalizability of our findings, we report results with139

other base models, namely, GPT-3.5, Llama3.2-11B, and Llama3.2-90B, in Appx. C.6. We use these140

models for the model and ablation analyses (§ 4 and § 5), primarily for practical cost-related reasons.141

1Owing to the exorbitant cost of running GPT-4 (cf. App. C.4), we use GPT-3.5 instead for WebShop [50].

4

https://anonymous.4open.science/r/FoA-4D83


Table 1: Comparing FOA with previous methods using success rate (↑ better) and cost (↓ better) on
the Game of 24 task (base model: GPT-4). The best performance is shown in blue , whereas the
second best is shown in orange .

Method Success Rate (%) Cost (US$)

IO 6.0 0.65
CoT [46] 6.0 6.98
CoT-SC [44] 10.0 49.40
AoT [35] 49.0 20.98
ToT [51] 74.0 75.02
GoT [4] 63.0 70

FoA (Present Work) 76.0 62.93

Table 2: Comparing FOA with previous methods on (Left) Crosswords (base model: GPT-4) using
overlap (↑ better) and cost (↓ better), and (Right) WebShop (base model: GPT-3.5) using average
score (↑ better) and cost (↓ better). The best performance is highlighted in blue , and the second
best in orange .

Method Overlap (%) Cost (US$)

IO 36.8 0.51
CoT [46] 39.4 1.06
CoT-SC [44] 39.4 2.82
ToT [51] 39.7 48.99
GoT [4] 41.2 30.28

FoA (Present Work) 46.0 12.94

Type Method Avg Score Cost (US$)

Super-
vised

IL [50] 59.9 NA
IL+RL [50] 62.4 NA

WebN-T5 [12] 61.0 NA
WebGUM [10] 67.5 NA

In-
context

Act [52] 58.1 0.10
ReAct [52] 48.7 0.17

Reflexion [37] 56.3 0.65
LASER [25] 57.2 0.41

LATS [54] 66.1 232.27

FoA (Present Work) 75.6 1.68

Hum. experts [50] 82.1 NA

Prompts. Unlike all existing works, we do not craft custom prompts for FOA, but instead, we142

reuse the prompts (cf. Appx. C.4 for details) provided by ToT [51] for the “Game of 24” and “Mini143

Crosswords” tasks and LATS [54] for the “WebShop” task. This ensures a direct and fair comparison144

of the reasoning abilities of the benchmarked frameworks and controls for the impact of prompt145

quality, which is a confounder.146

Baselines. We only compare with methods that have made their code available for the tasks bench-147

marked in this study (cf. Appx. C.3 for details). Thus, we do not compare with LLMCompiler [19],148

TouT [28], RAP [13], and RecMind [45]. Moreover, we exclude BoT [49], where although the code149

is available, an important resource (the meta-buffer) to reproduce their results is unavailable.150

Results. Across all benchmark tasks, Game of 24, Mini Crosswords, and WebShop, FOA consistently151

outperforms existing baselines, achieving the best overall quality and the most favorable cost-quality152

trade-offs. On Game of 24, FOA delivers a 70% quality improvement over GPT-4 and surpasses153

the next-best method, ToT, with a 2% higher success rate while reducing cost by 25%. In the Mini154

Crosswords task, FOA achieves a 5% quality gain over GoT and simultaneously cuts the cost by155

60%. On the WebShop benchmark, FOA even outperforms supervised fine-tuned models, delivering156

a 10% higher average score than LATS at just 1% of its cost. Overall, FOA strikes an exceptional157

balance between exploration and exploitation, consistently advancing both quality and efficiency158

across diverse tasks.159

4 Model analysis160

FOA vs. SOTA. To better understand the improvements obtained by FOA, we compare it with161

the second most efficacious method (SOTA hereafter) on all three benchmark tasks. Specifically,162
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ToT [51], GoT [4], and LATS [54] are the SOTA methods for the Game of 24, Crosswords, and163

WebShop tasks, respectively. As stated in § 3, we use GPT-4 as the base model for Game of 24 and164

Crosswords, and GPT-3.5 for WebShop. Fig. 13 shows that FOA not only achieves the best quality165

but also the lowest cost on all tasks. On average, FOA obtains a quality improvement of ≃ 5%166

while requiring only ≃ 40% of the cost of SOTA methods.167

Trade-off between cost and quality. We analyze the trade-off between cost and quality for the top168

four methods, namely, ToT [51], GoT [4], RAFA [23], and FOA, in the Game of 24 task. For cost169

reasons, we use GPT-3.5 as the base model. Following RAFA [23], we allow each method to perform170

multiple trials (∆) and consider them successful if they generate a valid solution in any of the ∆171

trials. To ensure fairness in the allocated resources, we allocate a fixed budget of 5$ per method,172

which governs the number ∆ of trials for each method (5 each for ToT and GoT, 6 for FOA, and 10173

for RAFA).174

Fig. 14 (right) shows that FOA substantially outperforms the existing SOTA methods at all possible175

price points. Based on the portrayed trends, ToT might be able to close the quality gap or even surpass176

FOA with a higher budget, however, FOA is always favorable for resource-constrained settings.177

Overall, FOA achieves the best cost-quality trade-off.178

Trade-off between model-size and quality. Fig. 14 (left) shows that on their own, both the 11B and179

90B Llama3.2 models [11] achieve poor quality on the benchmarked tasks. However, FOA boosts the180

performance of both models by portraying significant (5x–6x) quality improvements. What’s more,181

Llama3.2-11B + FOA surpasses the larger Llama3.2-90B model. Overall, FOA enables smaller182

models to obtain comparable or even better performance than larger models, thereby bridging183

the gap between their reasoning abilities.184

5 Ablation analysis185

In this section, we report results on Game of 24 with GPT-3.5 and Llama3.2 (11B&90B) as base186

models. We observed similar trends for the other two tasks, results in Appx. C.6.187

Impact of the selection phase. We remove the selection phase by setting the resampling frequency188

k = 0. Thus, each agent constantly remains in its own mutation phase, and independently works189

towards its goal until a solution is found, a terminal state is found, or time runs out. As expected,190

FOA (without selection) obtains an extremely low success rate but is also cheaper (Fig. 10a). This is191

because, without the selection phase, the fleet does not evolve into a composition of more high-value192

states with each time step.193

Impact of resampling. Instead of using a resampling strategy, we assign each agent to the highest-194

value state during the selection phase. If there are multiple such states, the first one is randomly195

chosen by all agents. When there are multiple promising states, a meaningful resampling strategy196

may decide to explore all of them in the next time step, however, retaining only the highest-value197

state reduces the fleet diversity. Thus, FOA (no/max resampling) obtains a slightly lower success rate198

but also incurs a lower cost (Fig. 10b).199

Impact of the backtracking mechanism. We vary the discount factor γ to study two aspects of200

the backtracking mechanism: (1) γ = 0 (no backtracking) and (2) γ = 1 (no decay). When γ = 0,201

resampling from a past state is not permitted, and thus, FOA cannot undo localized mistakes, resulting202

in a lower success rate but also lower cost (Fig. 10c). With γ = 1, all past states are considered during203

resampling, thereby increasing the spectrum of states to explore but at the risk of overwhelming the204

resampling mechanism with noisy value estimates of (relatively older) past states. This explains205

the reduction in success rate and a slight increase in cost owing to potentially futile explorations206

(Fig. 10c).207

Impact of caching. Similar to ToT [51] and LATS [54], FOA utilizes a caching mechanism (details208

in Appx. C.4) to enhance its cost efficiency, which ensures that a given state is evaluated only once209

by an LLM. As expected, disabling the cache leads FOA to incur a higher cost, but interestingly, it210

also leads to a lower success rate (Fig. 10d). We hypothesize that frequent re-evaluations of the same211
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state while solving a puzzle might introduce inconsistencies further disrupting the flow of reasoning212

structures, thereby leading to a reduction in quality.213

Impact of batching. Similar to ToT [51] and LATS [54], FOA utilizes a batching mechanism (details214

in Appx. C.4) to enhance its cost efficiency, which groups many individual LLM calls into a single215

combined call (one input prompt leading to many output responses). Disabling batching leads FOA216

to incur a higher cost with no noticeable impact on quality (Fig. 10e).217

In sum, Fig. 10 shows that each component of the FOA framework has an overall positive impact on218

its performance.219

6 Discussion and concluding insights220

6.1 Summary of findings221

FOA achieves better quality than all existing methods. Based on the results presented in § 3 and222

Appx. C.6, FOA consistently outperforms all existing SOTA methods across all benchmarked tasks223

and base models.224

FOA achieves a better cost-quality trade-off. Our results show that FOA is cost-efficient, much225

more so than other SOTA reasoning frameworks. Moreover, our analysis in § 4 reveals that FOA226

substantially outperforms all SOTA methods at all possible price points.227

Other advantages. Beyond better performance, FOA offers many important practical advantages.228

First and most importantly, FoA is not a prompting scheme but a runtime. Unlike existing prompt-229

based frameworks, e.g. ToT [51], GoT [4], etc., FOA does not require custom-crafted prompts, but,230

instead, can be used in combination with any existing agent or prompting strategy. Next, FOA offers231

precise control over the tree’s width (n agents) and depth (t steps), leading to predictable latency and232

cost. In particular, it is possible to tune the size n of the fleet to the available resources, such as an233

optimal batch size for a given hardware configuration. Finally, as evidenced by a smaller standard234

error (Appx. C.6), FOA generates consistent responses across multiple runs and is relatively more235

stable than other methods.236

6.2 Implications and Broader Impact237

Throughout an LLM’s lifecycle, the majority of costs are incurred during inference rather than238

training [9]. Thus, it is crucial to benchmark the cost incurred by various SOTA reasoning frameworks.239

Our work is the first to report, analyze, and include a discussion on the trade-off between cost240

and quality of a variety of SOTA reasoning frameworks for LLMs. We hope that this work will241

spark further discussions on the cost-efficiency of reasoning frameworks and eventually lead to the242

development of practically feasible and sustainable reasoning frameworks for LLMs.243

6.3 Limitations and future work244

Constant fleet size. Currently, we assign a fixed number n of agents to each task. However, it may245

be advantageous to allocate more agents to more difficult tasks to enhance sample efficiency. In the246

future, we would like to explore the possibility of an adaptive fleet size.247

Resampling mechanisms. One avenue for improvement is the design of more intelligent value248

functions, for example, pooling information from neighboring states and smoothing predictions.249

Building on precise value estimates, we can investigate different resampling mechanisms, to tune250

FoA towards either more risk-seeking or careful behavior, i.e., different tradeoffs between exploration251

and exploitation.252

Fleet organization. Currently, we consider a homogenous fleet of identical agents. In the future,253

we would like to introduce further coordination between the individual agents with a hierarchical254

organizational structure. For instance, what if agents could spawn other agents in a nested particle255

filtering framework? Finally, as a runtime that embraces modular compatibility with any agent, FoA256

will also enable research into more complex fleet compositions.257
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A Related Work408

In this section, we review works that overlap closely with our study.409

Prompt-based reasoning. Recent research focuses on developing strategies to enhance the reasoning410

capabilities of LLMs. Few-shot prompting employs demonstrations of high-quality input/output411

samples to exploit the eagerness of the LLMs to imitate patterns seen in their context window [5].412

Algorithm of thoughts (AoT) [35], goes a step further by including algorithmic examples within413

the prompt to propel the LLM through algorithmic reasoning pathways. Chain-of-Thought (CoT)414

prompting [30, 46, 20] as well as other variants such as Decomposed Prompting [18] and Least-415

to-Most [55] guide LLMs to decompose a complex question into a sequence of thoughts and then416

synthesize an answer by resolving them methodically. It has been shown that Self-Consistency417

(CoT-SC) [43] can be used to augment such methods by generating multiple thought sequences and418

then selecting the most accurate answer through majority voting. Recent meta-prompting techniques419

[39] employ a uniform, task-independent prompting framework across multiple tasks, enabling a420

single LLM to iteratively refine its responses and dynamically adapt to diverse input queries. The421

Buffer of Thoughts (BoT) [49] framework extracts task-specific information, uses it to retrieve422

relevant thought templates from its meta-buffer, and then instantiates them with more task-specific423

reasoning structures before continuing with the reasoning process.424

Refinement. Closed-loop approaches that allow an LLM to interact with an external environment425

can help in choosing and potentially revising an action. Notable examples are ReAct [52], REFINER426

[31] and Self-Refine [26]. Reflexion [37] provides further linguistic feedback based on previous427

attempts while AdaPlanner [38] also incorporates positive and negative feedback of an individual428

trajectory. Reason for future, act for now (RAFA) [23] develops further by planning a trajectory,429

gathering feedback for the potential planned actions, and then revising the trajectory based on the430

feedback.431

Tree search. Thoughts are individual ideas or steps in reasoning, and when connected together,432

they can be modeled as a tree data structure. Tree search algorithms can then be used to explore433

the tree of thoughts and optimize the search for a final answer. In “Tree of Thoughts” (ToT), the434

authors utilize a value function that compares different branches to describe both DFS and BFS435

flavors of a guided tree-search [51]. The closely related “Graph of Thoughts” (GoT) approach relaxes436

the assumption of a strict tree structure [4]. Reasoning via Planning (RAP) [13] augments LLMs437

with a world model and employs Monte Carlo Tree Search (MCTS)-based planning to reduce the438

search complexity. Language Agent Tree Search (LATS) [54] extends this concept by leveraging439

environment interactions, thereby eliminating the need for a world model. ReST-MCTS* [53] builds440

on this line by integrating process-level rewards into MCTS, by identifying high-quality reasoning441

traces.442

Particle filtering. Genetic particle filters have been used successfully across a large variety of443

domains, ranging from vehicle routing [27], to fuzzy cognitive maps in time series forecasting444

[33], to the positioning of industrial robots [21]. Near-universally, the efficacy of a genetic particle445

optimization approach has, in these contexts, been demonstrated on standard artificial neural networks,446

however, to the best of our knowledge, it has not been employed on LLMs.447

Key differences. FOA exhibits fundamental differences from all aforementioned methods. First, it448

does not require extensive or intricate prompt engineering, unlike AoT [35] and meta prompting [39].449
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Additionally, it is well-suited for sequential decision-making tasks that require interactions with an450

environment, such as web navigation [50, 3, 47], which can be challenging for methods such as451

CoT [46] and BoT [49]. Furthermore, FOA distinguishes itself from approaches like Reflexion [37]452

and RAFA [23] by utilizing a refinement strategy based on a genetic-type particle filter, instead453

of linguistic feedback. Lastly, unlike tree-search-based methods [51, 54, 4], FOA employs a more454

principled approach to search tree exploration, achieving a better balance between exploration and455

exploitation. This structured approach also grants FOA precise control over the tree’s width and456

depth, leading to predictable latency and cost.457

AI agents. AI agents extend the capabilities of LLMs by integrating external tools or orchestrating458

collaborations between multiple LLMs. To solve a task, such an AI agent may take many individual459

steps, usually one depending on the other, e.g., querying a database, searching with a web browser,460

running computations in a code interpreter, etc. There exists a diverse and quite fragmented ecosystem461

of frameworks and libraries that motivate specific interaction patterns or are designed to offer the462

flexibility to implement new forms of collaboration. A well-established library is LangChain [6], but463

many practitioners chose to accompany their research with a custom solution. Cameleon [24], Camel464

[22], HuggingGPT [36], AutoGPT [32], BabyAGI [29], MetaGPT [15], Flows [16], and AutoGen465

[48], all these works present some form of blueprint or framework for building AI agents.466

Building on these works, creating highly sophisticated AI agents is possible. Nevertheless, even if467

an action is only taken after many steps of deliberation and careful consideration, the agent must468

ultimately follow a sequential chain of actions on its way toward a solution. This is fundamentally469

similar to structured reasoning, i.e., the agent approaches a solution in smaller discrete steps, each step470

following logically from the previous steps. In many scenarios, multiple actions may be promising;471

the agent is faced with uncertainty and a large state space to explore. In this setting, the perspective472

of a single agent is necessarily a myopic and localized worldview. We overcome this limitation by473

instantiating a fleet of individual agents and coordinating a joint search process between them. This474

research is orthogonal to existing work on optimizing AI agents: Instead of a novel way to build or475

improve a specific AI agent, we implement a runtime that can readily accommodate any existing476

agent and multiply its capabilities.477

B Fleet of agents: additional details478

Algorithm 1 Fleet of Agents: A genetic particle filter.
1: Initialize
2: t← 0
3: si,t ← x0, i = 1..N {setting initial state}
4: loop
5: Mutation phase
6: si,t+k ← Call Algorithm 2 with si,t, i = 1..N and St

7:
8: Selection phase
9: si,t+k ← Call Algorithm 3 with St+k

10:
11: t← t+ k
12: end loop

B.1 Comparison of FOA with a standard tree-search algorithm479

We posit that any multi-step structured reasoning prompt will rely on two flavors of prompts: mutation480

steps, in which the current state of the reasoning process is advanced, and evaluation steps, in which481

different states are judged and compared. The key difference between structured reasoning algorithms482

lies in how these steps are orchestrated. In Fig. 6, we show a standard tree search algorithm, based on483

one of the Tree-of-Thoughts (ToT) algorithms, side by side with FLEET OF AGENTS.484

At every step during the search for a solution, ToT keeps track of b thoughts, generates c follow-up485

thoughts for each, estimates their value, and from the cb candidate thoughts, selects the b best. It is486

important to note:487
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Algorithm 2 Mutation Phase
1: Input: List of current states si,t, i = 1..N and states St at time t
2: Output: List of states si,t+k, i = 1..N at time t+ k
3: for j = 1 to k do
4: Each agent independently mutates its state
5: si,t+1 ∼ π(s|si,t), i = 1..N
6: t← t+ 1
7: Check for solution
8: if ∃s ∈ St : 1solution(s) then
9: We have found a solution: early exit

10: end if
11: Identify and prune terminal states,
12: resample across all viable states St discovered so far
13: B ← {si,t|1terminal(si,t)}
14: G← {s|s ∈ S, s /∈ B}
15: for i ∈ B do
16: ŝi ∼ Uniform(G)
17: si,t ← ŝi
18: end for
19: end for

Algorithm 3 Selection Phase
1: Input: Set of states St at time t
2: Output: Resampled list of states si,t, i = 1..N at time t
3: Evaluate heuristic value function
4: vs ← v(s), s ∈ St

5: Calculate the resampling distribution
6: ps = exp(1βvs), s ∈ St, {resampling weight}

7: p(s) = 1∑
ŝ∈S pŝ

∑
s∈S psδsi,t(s) {categorical resampling distribution}

8: ŝi
iid∼ pt(s), i = 1..N {resampling with replacement}

9: si,t = ŝi, i = 1..N

•Mutation and evaluation prompts are called in lockstep; each new thought is immediately evaluated.488

• At every step, cb − b candidate thoughts are discarded. Depending on the parametrization, the489

majority of mutation and value calls correspond to thoughts that immediately become dead ends.490

• The number of promising states selected and the number of follow-up thoughts are fixed, resulting491

in a constant branching factor.492

This ToT algorithm closely resembles beam search using a value function as a heuristic. By compari-493

son, FLEET OF AGENTS follows a different design philosophy. Instead of modeling the multi-step494

reasoning process as a graph traversal or heuristic tree search, we take inspiration from the concept495

of individual AI agents exploring a complex search space on their own. We believe that for many496

real-world applications, it is best to trust the individual agent to make local decisions based on their497

best judgment. Rather than exploring c branches at each step, we allow our fleet of N agents to make498

a series of educated guesses.499

We evaluate the states of individual agents only every k steps. Instead of selecting the b best states,500

we then resample with replacement. If one of the agents has found an extremely promising state,501

it is duplicated and the search focuses on the region that agent is exploring. This corresponds to a502

decision to exploit the findings of this agent. Conversely, if all agents have a similar value, none of503

them may be duplicated during the resampling process, keeping maximum diversity in the fleet of504

agents. This corresponds to a decision to explore further.505

Refer to the first resampling stage in Fig. 6, which shows that one agent is duplicated (replacing506

an agent of very low value) while three others are kept. In practice, this means that we allocate a507

branching factor of 2 to the duplicated agent and a branching factor of 1 to the rest of the fleet. This508
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Figure 5: Example of a Fleet of Agents runtime applied to the Game of 24. Three agents are deployed,
and the runtime undergoes the selection phase every k = 1 steps. A positive discount factor γ > 0 is
retained to allow backtracking to previous states. During the resampling in the mutation phase, agents
that have taken incorrect actions are corrected by replacing their state with one that has a potential
solution.

is a reasonable choice: When we have yet to observe a distinct difference in thought value, then it is509

better to explore further before concentrating the search. In the second resampling stage, we note510

that one thought has a much higher value than the others. The resampling creates four copies of511

this thought but also retains one medium-value state. In this toy scenario, ToT always explores the512

dynamic search tree with a fixed branching factor of 3, whereas FLEET OF AGENTS selects branching513

factors dynamically, ranging from 1 to 4.514

Notable properties of FLEET OF AGENTS include:515

• Individual decisions are made according to each agent’s localized best judgment. This enables516

quick and efficient spread across the search space.517

• Resampling (i.e., discarding some agents) occurs only every k steps. Ideally, only thoughts clearly518

worse than their competitors are discarded.519

• The resampling process provides an intuitive trade-off between exploitation and exploration. In520

practice, FLEET OF AGENTS can dynamically choose a branching factor between 1 (all agents are521

retained, maximizing exploration) and N (one agent finds a highly promising state and the search is522

focused accordingly).523

C Additional Experimental Details524

C.1 Main experiments525

Number of runs. For cost reasons, experiments with GPT-4 were run only once. However, for other526

base models (results in Appx. C.6), we run each experiment 5 times and report both the mean and527

standard error of the evaluation metrics.528
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Figure 6: (Left) Search-tree for Tree-of-thoughts (ToT) that generates c = 3 candidates for the next
thought step and maintains a set of b = 2 most promising states at each step. (Right) Fleet-of-Agents
(FoA) comprising N = 5 agents that think autonomously for k steps and are then resampled to focus
the search on promising regions.

C.1.1 Game of 24529

Task and data. Game of 24 is a mathematical puzzle, where four numbers are given, and the530

objective is to form an arithmetic expression that equals 24 using each number exactly once. The531

benchmark data consists of 1362 puzzles. Following ToT [51], we use the puzzles indexed 901-1000532

as the test set (cf. Appx. C.2 for details).533

Evaluation metrics. We use success rate, i.e., the percentage of solved puzzles, to evaluate the534

quality of the benchmarked methods. For efficiency, we use cost (in US$).535

Baselines. We compare FOA with: (1) Standard IO prompting, (2) CoT [46], (3) CoT-SC [44], (4)536

AoT [35], (5) ToT [51], (6) GoT [4], and (7) RAFA [23]. Owing to the unavailability of their code537

for Game of 24, we do not compare with LATS [54].538

Results. Table 1 shows that FOA outperforms all existing baselines and achieves the best quality.539

Taking GPT-4 as a baseline, FOA achieves a whopping 70% improvement in quality. On the one540

hand, IO and CoT [46] are the most cost-effective methods, their success rate is extremely low at just541

6%. On the other hand, sophisticated reasoning frameworks like ToT [51] achieve a high success rate542

(74%) but also incur a high cost (75$). Striking a good balance between exploration vs. exploitation,543

our FOA obtains a 2% improvement in quality over the second best method, ToT, simultaneously544

lowering the cost requirement by 25%.545

C.1.2 Mini Crosswords546

Task and data. Mini Crosswords is a puzzle, where, given 5 vertical and 5 horizontal clues, the547

objective is to use the clues to identify answers and place them on a 5 × 5 crossword board. The548

benchmark data consists of 156 puzzles. Following ToT [51], we use the puzzles 0, 5, . . . , 90, and 95549

as the test set (cf. Appx. C.2 for details).550

Evaluation metrics. For quality, we use overlap, i.e., the percentage of correct letters in the proposed551

solution. For efficiency, we compute the cost (in US$).552
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Baselines. We compare FOA with: (1) Standard IO prompting, (2) CoT [46], (3) CoT-SC [44], (4)553

ToT [51], and (5) GoT [4]. Owing to the unavailability of their code for Mini Crosswords, we do not554

compare with AoT [35].555

Results. Table 2 (Left) shows that FOA outperforms all existing baselines and achieves the best556

quality. Once again, IO and CoT [46] are the most cost-effective methods. Moreover, they also557

obtain good performance with their quality being comparable to ToT [51] and GoT [4] at just a558

fraction (2.5%) of the cost. Notably, our FOA reports the best cost-quality trade-off among all the559

benchmarked methods. We obtain a 5% improvement in quality over the second best method, GoT,560

simultaneously lowering its cost requirement by 60%.561

C.1.3 WebShop562

Task and data. WebShop [50] is a simulated e-commerce website environment, where, given a563

textual instruction specifying a product and its properties, the objective is to find the product by564

navigating webpages using a variety of actions and purchase it. The benchmark data consists of565

12,087 subtasks. Following [52, 54, 37], we use 50 randomly sampled subtasks as the test set (cf.566

Appx. C.2 for details).567

Evaluation metrics. The quality of a purchase is assessed using an environment-generated reward,568

which measures the percent overlap between the purchased product and the user-specified attributes.569

We use average score, i.e., the average of subtask rewards, to evaluate the quality of the benchmarked570

methods. For efficiency, we use cost (in US$).571

Baselines. We compare FOA with: (1) Act [52], (2) ReAct [52], (3) Reflexion [37], (4) LASER [25],572

(5) LATS [54], and (6) multiple fine-tuned models from (author?) [50]. We also use the performance573

of human experts as an upper bound for quality. Owing to the unavailability of their code for574

WebShop, we do not compare with RAP [17].575

Results. Table 2 (Right) shows that FOA outperforms all existing baselines, even the supervised576

fine-tuned models [50, 12, 10], and achieves the best quality. While Act [52] is by far the cheapest577

method (0.1$), it obtains a moderate average score (58.1%). LATS [54], on the other hand, obtains a578

better average score (66.1%), it suffers from an exorbitant cost footprint (232$). Yet again, our FOA579

achieves the best cost-quality trade-off: obtaining a 10% improvement in quality over the second-best580

method, LATS, requiring only 1% of its cost.581

C.2 Detailed Task Descriptions582

C.2.1 Game of 24583

Game of 24 is a mathematical puzzle where the participants are presented with four numbers, and584

their objective is to find a combination of arithmetic operations (+-*/) to construct an arithmetic585

expression that uses each given number exactly once to obtain a final total of 24.586

The benchmark consists of 1362 such puzzles scraped from 4nums.com, which are sorted in increasing587

order of their difficulty. The input data in each puzzle are the four initial numbers and the expected588

output is an equation that equals 24. Following ToT [51], we use the puzzles indexed 901–1000 as589

the test set. We also created a validation set from the puzzles indexed 876–900 and 1001–1025. The590

validation set is constructed such that, in expectation, its overall difficulty is similar to the test set.591

C.2.2 Mini Crosswords592

Mini Crosswords is a puzzle where participants are given 5 vertical and 5 horizontal clues. Each clue593

leads to a 5-letter word, and the objective is to use the clues to identify answers and place them on a594

5× 5 crossword board. We use the percentage of correct letters to measure the quality of a proposed595

crossword solution. For a letter to be correct, it has to match both the letter and its position on the596

ground truth board.597

The benchmark constitutes 156 such puzzles scraped from GooBix. Following ToT [51], we use the598

puzzles 0, 5, . . . , 90, and 95 as the test set. We also created a validation set from the puzzles indexed599

3, 8, . . . , 93, and 98.600
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C.2.3 WebShop601

WebShop [50] is a simulated e-commerce website environment comprising 1.18 million real-world602

products and 12,087 crowd-sourced textual instructions. The participants are provided with textual603

instructions specifying a product and its properties, and their objective is to find and purchase the604

product by navigating webpages using a variety of actions.605

The benchmark data consists of 12,087 subtasks. We noticed that the website environment randomizes606

the set of subtasks upon every initialization. Thus, to fix the test set across all the experiments607

and methods benchmarked in this study, we add a fixed random seed to the website environment.608

Following [52, 54, 37], we use 50 subtasks to construct the test set. Specifically, we use the subtasks609

indexed 5–54 as the test set. We also created a validation set from subtasks indexed 55–69.610

C.3 Detailed Baseline Descriptions611

C.3.1 Game of 24612

• Input-Output (IO) prompting uses the LLM to directly generate an output, with no interme-613

diate steps.614

• Chain-of-Thought (CoT) [46] solves the problem step by step by decomposing it into a615

sequence of thoughts.616

• Chain-of-Thought [46] with Self-Consistency [43] CoT-SC, generates multiple responses617

for the same CoT prompt and then selects the best one based on majority voting.618

• Algorithm-of-Thoughts (AoT) [35] (AoT), guides the reasoning through algorithmic path-619

ways by including such examples in its prompt.620

• Tree-of-Thoughts (ToT) [51]. decomposes the problem into multiple chain of thoughts,621

organized in a tree structure. Thought evaluation and search traversal algorithms are utilized622

to solve the problem.623

• Graph of Thoughts (GoT) [4] allows the organization of thoughts in a graph structure. It624

introduces arbitrary graph-based thought transformations such as thought aggregation and625

thought refinement.626

• Reason for futre, act for now (RAFA) [23] structures its reasoning by initially implementing627

a potential plan for a trajectory. Then, feedback is gathered for actions included in the plan.628

Finally, a new plan is generated with the gathered feedback in context. Even though we629

compared with RAFA using models GPT3.5 and Llama 3.2 11B, we did not compare with630

GPT4 or Llama 3.2 90b as its cost would be prohibitive.631

• Reasoning via Planning (RAP) [13] augments LLMs with a world model and employs Monte632

Carlo Tree Search (MCTS)-based planning to generate and traverse its thought process.633

Language Agent Tree Search (LATS) [54] extends this concept by leveraging environment634

interactions, thereby eliminating the need for a world model. We did not compare with any635

of these two methods as code for the game of 24 task was not available.636

• The Buffer of Thoughts (BoT) [49] framework extracts task-specific information, uses it637

to retrieve relevant thought templates from its meta-buffer, and then instantiates them with638

more task-specific reasoning structures before continuing with the reasoning process. For639

BoT [49] we were unable to reproduce the results reported in their paper as a component of640

their method (meta-buffer) is not available and we have no detailed instructions on how to641

recreate it ourselves.642

• The LLMCompiler [19] is an LLM compiler that optimizes the parallel function calling643

performance of LLMs. There was no code available for the task of Game of 24, so we do644

not compare against it.645

• Tree of uncertain Thoughts (TouT) [28] leverages Monte Carlo Dropout to quantify uncer-646

tainty scores associated with LLMs’ diverse local responses at intermediate thoughts. This647

local uncertainty quantification is then united with global search algorithms. There was no648

code available so we do not compare against TouT.649

• ReST-MCTS* [53] introduces a self-training framework that uses a modified Monte Carlo650

Tree Search (MCTS*) guided by process-level rewards. Instead of relying solely on final651

answers, it infers per-step rewards to identify and reinforce high-quality reasoning traces,652
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improving the LLM’s reasoning ability over successive iterations. In our experiments, we653

only tested the MCTS* component for inference-time reasoning, without the full iterative654

self-training loop, to ensure a fair comparison, as all other baselines were also evaluated655

purely in the inference-time setting.656

C.3.2 Mini Crosswords657

• Input-Output (IO) prompting uses the LLM to directly generate an output, with no interme-658

diate steps.659

• Chain-of-Thought (CoT) [46] solves the problem step by step by decomposing it into a660

sequence of thoughts.661

• Chain-of-Thought [46] with Self-Conistency [43] CoT-SC, generates multiple responses for662

the same CoT prompt and then selects the best one based on majority voting.663

• Algorithm-of-Thoughts (AoT) [35] (AoT), guides the reasoning through algorithmic path-664

ways by including such examples in its prompt. For its Mini Crosswords implementation,665

AoT utilizes 2 prompts that need to be run sequentialy and provides both of them. However,666

in between the two prompts a necessary step is performed which extracts the word combina-667

tion of the highest “compatibility”. No further details are found about this step and since it668

can be interpreted in a number of ways we chose not to move on with it.669

• Tree-of-Thoughts (ToT) [51]. decomposes the problem into multiple chain of thoughts,670

organized in a tree structure. Thought evaluation and search traversal algorithms are utilized671

to solve the problem.672

• Graph of Thoughts (GoT) [4] allows the organization of thoughts in a graph structure. It673

introduces arbitrary graph-based thought transformations such as thought aggregation and674

thought refinement.675

C.3.3 WebShop676

• Act [52] simply prompts the framework to perform an action within a closed loop.677

• ReAct [52] integrates reasoning into Act by allowing the model to think instead of explicitly678

performing an action to the environment.679

• Reflexion [37] generates linguistic feedback that is utilized during subsequent runs.680

• Agent with State-Space ExploRation (LASER) [25] models environment interactive tasks as681

state-space exploration. This is achieved by allowing the LLM agent to transition among a682

pre-defined set of states by performing actions to complete the task.683

• Language Agent Tree Search (LATS) [54] employs Monte Carlo Tree Search (MCTS)-based684

planning to generate and traverse its thought process, leveraging environment interactions.685

Even though we compare with LATS using GPT3.5, we do not repeat the experiment for686

any other model as it is prohibitively expensive.687

• Multiple deep learning approaches[50]. We also compare with a variety of deep learning688

approaches such as supervised, reinforcement and imitation learning. We report their average689

score as given in their published paper.690

• Human Experts: A human annotators have been recruited by the Webshop authors [50] to691

study their trajectories. Based on their results, thirteen of them are recruited and trained692

further. Finally, the top 7 performers are selected as experts.[50]693

• Retrieval-Augmented Planning (RAP) [17] dynamically leverage past experiences corre-694

sponding to the current situation and context in both textual and multimodal environments.695

• The LLMCompiler [19] is an LLM compiler that optimizes the parallel function calling696

performance of LLMs. There was no code available for the task of WebShop, so we do not697

compare against it.698

C.4 Implementation Details699

Platforms. GPT models were were accessed through the OpenAI API while the utilization of the700

Llama models was facilitated by the TogetherAI API.701
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Model checkpoints and prices. To compute the costs of our experiments we used the current model702

prices indicated OpenAI and Together AI, accordingly to the model. The specific models snapshot703

we used, along with their respective prices are presented in 3704

US$ per 1m prompt tokens US$ Per 1m completion tokens
gpt-3.5-turbo-0125 0.5 1.5
gpt-4-0613 30.0 60.0
Llama-3.2-90B-Vision-Instruct-Turbo 1.2 0.06
Llama-3.2-11B-Vision-Instruct-Turbo 0.18 0.18

Table 3: Model snapshot prices. OpenAI and TogetherAI prices for each model used, during the
implementation of the project.

Model configurations. Generation parameters specified when making calls to any of the models used705

throughout this project. These parameters were not defined by us, but by the implementation where706

the respective prompts where introduced. Specifically, Game of 24 and Mini Crosswords parameters707

were used from [51], WebShop step request parameters was taken from [52] and WebShop evaluate708

request parameters from [54]. Configurations presented in Table 4709

max_tokens temperature top_p stop
Game of 24 100 0.7 1 null
Mini Crosswords 1000 0.7 1 null
WebShop (step) 100 1 1 ["\n"]
WebShop (eval) 100 1 1 null

Table 4: Generation parameters. Generation parameters specified when making requests to any
model.

Base model selection strategy. We selected GPT4 to be our base model as it was the one for which710

the prompts we used were originally designed for. Excepions were made for the RAFA [23] and711

LATS [54] baselines as their cost was prohibitive for us to run using GPT4. Finally, for the task of712

WebShop, we didn’t repeat any baseline for GPT4. That was because firstly, the price was extremely713

steep for some of the baselines and secondly because some of the baselines had already achieved714

near-human level of performance.715

Prompts. This section provides all the prompts used for the models evaluated in our experiments.716

We include the exact phrasing and formatting of each prompt to ensure reproducibility and allow for717

detailed examination of how the tasks were presented to the models.718

Input: 2 8 8 14719

Possible next steps:720

2 + 8 = 10 (left: 8 10 14)721

8 / 2 = 4 (left: 4 8 14)722

14 + 2 = 16 (left: 8 8 16)723

2 * 8 = 16 (left: 8 14 16)724

8 - 2 = 6 (left: 6 8 14)725

14 - 8 = 6 (left: 2 6 8)726

14 / 2 = 7 (left: 7 8 8)727

14 - 2 = 12 (left: 8 8 12)728

Input: {input}729

Possible next steps:730

Prompt 1: Game of 24 - Step prompt The prompt used to generate candidate new states. Taken from
[51].

Use numbers and basic arithmetic operations (+ - * /) to obtain 24.731

Each step , you are only allowed to choose two of the remaining732

numbers to obtain a new number.733

Input: 4 4 6 8734

Steps:735

4 + 8 = 12 (left: 4 6 12)736
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6 - 4 = 2 (left: 2 12)737

2 * 12 = 24 (left: 24)738

Answer: (6 - 4) * (4 + 8) = 24739

Input: 2 9 10 12740

Steps:741

12 * 2 = 24 (left: 9 10 24)742

10 - 9 = 1 (left: 1 24)743

24 * 1 = 24 (left: 24)744

Answer: (12 * 2) * (10 - 9) = 24745

Input: 4 9 10 13746

Steps:747

13 - 10 = 3 (left: 3 4 9)748

9 - 3 = 6 (left: 4 6)749

4 * 6 = 24 (left: 24)750

Answer: 4 * (9 - (13 - 10)) = 24751

Input: 1 4 8 8752

Steps:753

8 / 4 = 2 (left: 1 2 8)754

1 + 2 = 3 (left: 3 8)755

3 * 8 = 24 (left: 24)756

Answer: (1 + 8 / 4) * 8 = 24757

Input: 5 5 5 9758

Steps:759

5 + 5 = 10 (left: 5 9 10)760

10 + 5 = 15 (left: 9 15)761

15 + 9 = 24 (left: 24)762

Answer: ((5 + 5) + 5) + 9 = 24763

Input: {input}764

Prompt 2: Game of 24 - Last step prompt In the game of 24, once all initial numbers were combined,
if the resulting number is 24, then the following chain of thought prompt was used to summarized the
operations that have taken place to get there [51].

Evaluate if given numbers can reach 24 (sure/likely/impossible)765

10 14766

10 + 14 = 24767

sure768

11 12769

11 + 12 = 23770

12 - 11 = 1771

11 * 12 = 132772

11 / 12 = 0.91773

impossible774

4 4 10775

4 + 4 + 10 = 8 + 10 = 18776

4 * 10 - 4 = 40 - 4 = 36777

(10 - 4) * 4 = 6 * 4 = 24778

sure779

4 9 11780

9 + 11 + 4 = 20 + 4 = 24781

sure782

5 7 8783

5 + 7 + 8 = 12 + 8 = 20784

(8 - 5) * 7 = 3 * 7 = 21785

I cannot obtain 24 now , but numbers are within a reasonable range786

likely787

5 6 6788

5 + 6 + 6 = 17789

(6 - 5) * 6 = 1 * 6 = 6790

I cannot obtain 24 now , but numbers are within a reasonable range791

likely792

10 10 11793

10 + 10 + 11 = 31794

(11 - 10) * 10 = 10795

10 10 10 are all too big796
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impossible797

1 3 3798

1 * 3 * 3 = 9799

(1 + 3) * 3 = 12800

1 3 3 are all too small801

impossible802

{input}803

Prompt 3: Game of 24 - Value prompt The prompt used to evaluate a state [51].

Let ’s play a 5 x 5 mini crossword , where each word should have exactly804

5 letters.805

806

{input}807

808

Given the current status , list all possible answers for unfilled or809

changed words , and your confidence levels (certain/high/medium/low810

), using the format "h1. apple (medium)". Use "certain" cautiously811

and only when you are 100% sure this is the correct word. You can812

list more then one possible answer for each word.813

Prompt 4: Mini Crosswords - Step prompt The prompt used to generate candidate new states [51].

Evaluate if there exists a five letter word of some meaning that fit814

some letter constraints (sure/maybe/impossible).815

816

Incorrect; to injure: w _ o _ g817

The letter constraint is: 5 letters , letter 1 is w, letter 3 is o,818

letter 5 is g.819

Some possible words that mean "Incorrect; to injure ":820

wrong (w r o n g): 5 letters , letter 1 is w, letter 3 is o, letter 5821

is g. fit!822

sure823

824

A person with an all -consuming enthusiasm , such as for computers or825

anime: _ _ _ _ u826

The letter constraint is: 5 letters , letter 5 is u.827

Some possible words that mean "A person with an all -consuming828

enthusiasm , such as for computers or anime ":829

geek (g e e k): 4 letters , not 5830

otaku (o t a k u): 5 letters , letter 5 is u831

sure832

833

Dewy; roscid: r _ _ _ l834

The letter constraint is: 5 letters , letter 1 is r, letter 5 is l.835

Some possible words that mean "Dewy; roscid ":836

moist (m o i s t): 5 letters , letter 1 is m, not r837

humid (h u m i d): 5 letters , letter 1 is h, not r838

I cannot think of any words now. Only 2 letters are constrained , it is839

still likely840

maybe841

842

A woodland: _ l _ d e843

The letter constraint is: 5 letters , letter 2 is l, letter 4 is d,844

letter 5 is e.845

Some possible words that mean "A woodland ":846

forest (f o r e s t): 6 letters , not 5847

woods (w o o d s): 5 letters , letter 2 is o, not l848

grove (g r o v e): 5 letters , letter 2 is r, not l849

I cannot think of any words now. 3 letters are constrained , and _ l _850

d e seems a common pattern851

maybe852

853

An inn: _ d _ w f854
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The letter constraint is: 5 letters , letter 2 is d, letter 4 is w,855

letter 5 is f.856

Some possible words that mean "An inn":857

hotel (h o t e l): 5 letters , letter 2 is o, not d858

lodge (l o d g e): 5 letters , letter 2 is o, not d859

I cannot think of any words now. 3 letters are constrained , and it is860

extremely unlikely to have a word with pattern _ d _ w f to mean "861

An inn"862

impossible863

864

Chance; a parasitic worm; a fish: w r a k _865

The letter constraint is: 5 letters , letter 1 is w, letter 2 is r,866

letter 3 is a, letter 4 is k.867

Some possible words that mean "Chance; a parasitic worm; a fish":868

fluke (f l u k e): 5 letters , letter 1 is f, not w869

I cannot think of any words now. 4 letters are constrained , and it is870

extremely unlikely to have a word with pattern w r a k _ to mean "871

Chance; a parasitic worm; a fish"872

impossible873

874

{input}875

Prompt 5: Mini Crosswords - Value prompt The prompt used to evaluate a state. Specifically,
this prompt evaluates a potential solution of 1 out of the 10 questions of the Crossword. To get the
value of the overall state this prompt was called for each row/column of the crosswords board with a
potential solution [51].

Webshop876

Instruction:877

i would like a 3 ounce bottle of bright citrus deodorant for sensitive878

skin , and price lower than 50.00 dollars879

[Search]880

881

Action: search [3 ounce bright citrus deodorant sensitive skin]882

Observation:883

[Back to Search]884

Page 1 (Total results: 50)885

[Next >]886

[B078GWRC1J]887

Bright Citrus Deodorant by Earth Mama | Natural and Safe for Sensitive888

Skin , Pregnancy and Breastfeeding , Contains Organic Calendula 3-889

Ounce890

$10 .99891

[B078GTKVXY]892

Ginger Fresh Deodorant by Earth Mama | Natural and Safe for Sensitive893

Skin , Pregnancy and Breastfeeding , Contains Organic Calendula 3-894

Ounce895

$10 .99896

[B08KBVJ4XN]897

Barrel and Oak - Aluminum -Free Deodorant , Deodorant for Men , Essential898

Oil -Based Scent , 24-Hour Odor Protection , Cedar & Patchouli Blend899

, Gentle on Sensitive Skin (Mountain Sage , 2.7 oz , 2-Pack)900

$15 .95901

902

Action: think[B078GWRC1J and B078GTKVXY are bright citrus deodorant903

less then 50 dollars. I can check B078GWRC1J first .]904

Observation: OK.905

906

Action: click[B078GWRC1J]907

Observation:908

[Back to Search]909

[< Prev]910

scent [assorted scents ][ bright citrus ][ calming lavender ][ ginger fresh911

][ simply non -scents]912

size [travel set (4-pack)][3 ounce (pack of 1)][3-ounce (2-pack)]913
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Bright Citrus Deodorant by Earth Mama | Natural and Safe for Sensitive914

Skin , Pregnancy and Breastfeeding , Contains Organic Calendula 3-915

Ounce916

Price: $10 .99917

Rating: N.A.918

[Description]919

[Features]920

[Reviews]921

[Buy Now]922

923

Action: think[For 3 ounce bottle of bright citrus deodorant for924

sensitive skin , the item has options ’bright citrus ’ and ’3 ounce925

(pack of 1)’ and seems good to buy.]926

Observation: OK.927

928

Action: click[bright citrus]929

Observation: You have clicked bright citrus.930

931

Action: click[3 ounce (pack of 1)]932

Observation: You have clicked 3 ounce (pack of 1).933

934

Action: click[Buy Now]935

Prompt 6: WebShop - Step prompt The prompt used to generate the next action so that after
performing the action a new state would be achieved. The observation and action history of the agent
would be appended at the end of this prompt. Taken from [52].

Given an item to purchase and a trajectory that aims to buy an item936

that exactly matches the specification , which corresponds to the937

ideal score of 1.0, analyze the following trajectory , then at the938

last line conclude "Thus the correctness score is {s}", where s is939

an integer from 1 to 10.940

941

Here are some examples942

943

Webshop944

Instruction:945

i am looking for dairy free and apple variety pack of chips , and price946

lower than 30.00 dollars947

[Search]948

949

Action: search[dairy free and apple variety pack of chips]950

Observation:951

[Back to Search]952

Page 1 (Total results: 50)953

[Next >]954

[B07HRFJWP8]955

Enjoy Life Foods Soft Baked Ovals , Breakfast Bars , Nut Free Bars , Soy956

Free , Dairy Free , Non GMO , Gluten Free , Vegan , Variety Pack , 4957

Boxes (20 Bars Total)958

$100.0959

[B01KMHY5PG]960

Enjoy Life Soft Baked Chewy Bars , Variety Pack , Nut Free Bars , Soy961

Free , Dairy Free , Gluten Free , 6 Boxes (30 Total Bars)962

$21 .49963

[B008D2X8C4]964

Enjoy Life Lentil Chips Variety Pack , Dairy Free Chips , Soy Free , Nut965

Free , Non GMO , Vegan , Gluten Free , 24 Bags (0.8 oz)966

$100.0967

968

Action: think[The first two items are not what I want. The third item969

is the dairy free and apple variety pack of chips I want.]970

Observation: OK.971

972

Action: click[B008D2X8C4]973
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Observation:974

[Back to Search]975

[< Prev]976

flavor name [dill and sour cream ][ garlic & parmesan ][light sea salt][977

margherita pizza ][thai chili lime][ variety pack]978

size [0.8 ounce (pack of 24) ][4 ounce (pack of 12)]979

Price: $100.0980

Rating: N.A.981

[Description]982

[Features]983

[Reviews]984

[Buy Now]985

986

Action: think[The item has options ’variety pack ’ and ’0.8 ounce (pack987

of 24)’ and seems good to buy.]988

Observation: OK.989

990

Action: click[variety pack]991

Observation: You have clicked variety pack.992

993

Action: click [0.8 ounce (pack of 24)]994

Observation: You have clicked 0.8 ounce (pack of 24).995

996

Action: click[Buy Now]997

998

Reflection: In this attempt , I was unsuccessful. I accidentally bought999

a product that was $100 , which is more than my budget of $30.1000

Either way , the initial search results were not good. Next time , I1001

will do search [" variety pack of chips "] and then check if the1002

results meet the dairy free and the $30 budget constraints. I will1003

continue to refine my searches so that I can find more products.1004

Thus the correctness score is 51005

1006

Webshop1007

Instruction:1008

i would like a 3 ounce bottle of bright citrus deodorant for sensitive1009

skin , and price lower than 50.00 dollars1010

[Search]1011

1012

Action: search [3 ounce bright citrus deodorant sensitive skin]1013

Observation:1014

[Back to Search]1015

Page 1 (Total results: 50)1016

[Next >]1017

[B078GWRC1J]1018

Bright Citrus Deodorant by Earth Mama | Natural and Safe for Sensitive1019

Skin , Pregnancy and Breastfeeding , Contains Organic Calendula 3-1020

Ounce1021

$10 .991022

[B078GTKVXY]1023

Ginger Fresh Deodorant by Earth Mama | Natural and Safe for Sensitive1024

Skin , Pregnancy and Breastfeeding , Contains Organic Calendula 3-1025

Ounce1026

$10 .991027

[B08KBVJ4XN]1028

Barrel and Oak - Aluminum -Free Deodorant , Deodorant for Men , Essential1029

Oil -Based Scent , 24-Hour Odor Protection , Cedar & Patchouli Blend1030

, Gentle on Sensitive Skin (Mountain Sage , 2.7 oz , 2-Pack)1031

$15 .951032

1033

Action: think[B078GWRC1J and B078GTKVXY are bright citrus deodorant1034

less then 50 dollars. I can check B078GWRC1J first .]1035

Observation: OK.1036

1037
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Reflection: Although the task is not yet complete , the first search is1038

correct and returns relevant results. The thought is also logical1039

and has potential to lead to the correct selection.1040

Thus the correctness score is 91041

{input}1042

Prompt 7: WebShop - Value prompt The prompt used to evaluate a state. The observation and
action history of the agent would be appended at the end of this prompt [54].

Given a science problem , you need to answer the problem based on your1043

existing knowledge. The input may include some existing steps to1044

solve the question and you should continue to complete the1045

solution based on these existing steps.1046

1047

If the input does not provide any existing steps , you need give the1048

first step in solving or calculating the problem. If partial1049

solution steps are provided , you need to output the next step1050

along the lines of the existing steps.1051

The output format is limited to: "Next step: ..." where ... indicates1052

omitted output information , which is the next step in the answer1053

that you should give. Your output must be a complete step , which1054

may include detailed calculations , reasoning , choosing answers ,1055

etc. but no reasoning.1056

1057

If the existing steps are already sufficient , you can output "The1058

final answer is: $...$" where ... indicates the final answer to1059

the question.1060

1061

Please provide MULTIPLE alternative next steps. Use the following1062

format:1063

"Next step: $...$1064

Next step: $...$1065

Next step: $...$".1066

1067

Below is the input , please follow the specified format for your output1068

.1069

1070

Problem: {problem}1071

Existing steps:1072

{existing_steps}1073

Output:1074

Prompt 8: SciBench - Step prompt The prompt used to generate candidate new states. Taken from
[53]

Given a math problem and its corresponding solution , your task is to1075

extract the final answer obtained in the solution.1076

You should summarize the answer using the format: "The final answer is1077

$...$". Replace "..." with the answer obtained in the solution.1078

Problem: {problem}1079

Solution: {existing_steps}1080

Extracted answer:1081

Prompt 9: SciBench - Summary prompt This prompt is applied after a solution is found to adjust
the output into the expected format. Taken from [53]

Your task is to assess whether the provided solution steps can1082

successfully solve the given science/mathematics problem and1083

output a score.1084

The score should be a decimal between 0 and 1. If all the provided1085

steps are incorrect (every step is wrong), the score should be 0.1086

If all steps are correct and the final answer is successfully1087

calculated , the score should be 1. The more errors there are in1088

the steps , the closer the score should be to 0. The closer the1089

steps are to the final correct answer , the closer the score should1090

be to 1.1091
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Steps that only contain verbal descriptions without any mathematical1092

expressions should generally receive a low score. A score equal to1093

or greater than 0.9 can only be given if the answer has already1094

been calculated to a specific numerical value. If the thought1095

process is complete but the answer is not computed , or only the1096

mathematical expression is written without solving it, the score1097

must be below 0.9.1098

1099

First provide an analysis , then the score. Your analysis and scoring1100

should be entirely based on the given steps. Do not continue1101

solving the problem. Please study the following examples.1102

1103

{examples}1104

1105

Below is a problem and the existing steps , with analysis and scoring.1106

Be careful not to output the next steps in the analysis , and the1107

scoring should be based entirely on the steps given in the input.1108

The output format is limited to: "Analysis :...\ nScore :...", where ...1109

indicates omitted output content , which is the part you need to1110

fill in.1111

1112

Input:1113

Problem: {problem}1114

Existing steps:1115

{existing_steps}1116

Output:1117

Prompt 10: SciBench - Value prompt This prompt used to evaluate a state. The original prompt was
taken from [53] but was translated from Chinese to English using Google Translate.

Practical extensions in the FOA framework.1118

• Caching: The caching mechanism is utilized during the evaluation phase of our method to1119

enhance its efficiency. It operates by ensuring that a given state is evaluated only once by the1120

language model. This is achieved through a temporary state-to-value map maintained for1121

the duration of a single run of the algorithm. Consequently, only when an agent encounters1122

a previously unseen state, the LLM evaluates it and stores it in the cache. However, if1123

a different agent (or the same agent at a later step) revisits that state, the LLM does not1124

re-evaluate it; instead, the value is retrieved from the state-to-value cache. In comparison to1125

other baselines such as ToT [51] and LATS [54], no additional caching is being performed.1126

• Batching: During the mutation or selection phase (depending on the task) prompts are1127

callected by all agents. Once that happens, if duplicated prompts occur, instead of making1128

several individual requests for the same prompt, we make a single request and ask for1129

multiple outputs. Employing batching in this way, ensures competitive fairness to methods1130

such as ToT which utilize the this mechanic in the same way. This approach enhances1131

efficiency and resource management by reducing network latency, server requests, on1132

top of lowering the costs, as the user pays for the input tokens only once. Additionally,1133

batching ensures consistency, as slight changes in the model’s state or data processing on1134

the provider’s side, can affect individual requests differently.1135

Task-specific modifications.1136

• For the Scibench task [42], we used the prompts provided in the ReST-MCTS* paper [53].1137

However, from our understanding, the evaluation prompt used in that paper was written in1138

Chinese, and no official English version was available. To ensure better control over the1139

evaluation process and to align the task with the predominantly English-language setup of1140

our experiments, we translated the original Chinese prompt into English. This allowed us to1141

directly inspect, adjust, and verify the evaluation inputs, ensuring consistency and clarity1142

across all baselines.1143
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C.5 Hyperparameter Tuning1144

We perform a hyperparameter grid-search on the validation set, to explore trade-offs between success1145

rate and cost. For this search, we use GPT-3.5-turbo, since GPT-4 would be prohibitively expensive.1146

The hyperparameters we consider are the number of agents, the total number of steps each agent is1147

allowed to perform, the discount factor γ, the resampling frequency k and the resampling method.1148

The grid search is implemented in two steps. Initially, a broader, more general grid search is conducted1149

to obtain an approximate understanding of where the optimal configurations are located. Subsequently,1150

a more precise grid search is performed based on the findings from the initial step. The results of the1151

second grid search for Game of 24 are presented in Figure 7, for Mini Crosswords in Figure 8 and for1152

WebShop in Figure 9.1153

C.5.1 Game of 241154

The strategy for selecting the optimal configuration for the Game of 24 involves choosing the1155

configuration that yields the best performance at the lowest cost. Following this approach, it is evident1156

that the optimal number of agents and steps is achieved when the either hyperparameter is set to 9 or1157

12. However, since the cost is lowest at 9, this value is chosen for both the number of agents and the1158

number of steps. Regarding the resampling frequency, resampling after every step (i.e., k = 1) results1159

in significantly better performance and is therefore selected. For the discount factor γ, no notable1160

differences in performance or cost are observed. Thus, γ = 0.5 is chosen as it represents a balanced1161

choice between not allowing backtracking (γ = 0) and maximally encouraging backtracking by1162

rendering the discount factor inconsequential (γ = 1). Finally, the linear filtered resampling method1163

provides similar results to the linear method but at a significantly lower cost, making it the preferred1164

choice.1165

The linear filtered resampling method is essentially the same as linear resampling, but it only considers1166

states whose values are equal to or greater than the value of the current best-evaluated state. Across1167

the different tasks, we found that this method is advantageous only when multiple states with sparse1168

values are taken into consideration during resampling.1169
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Figure 7: Results of the final grid-search for Game of 24. Each subplot illustrates the performance
(left) and cost (right) as a function of a varying hyperparameter. The values of the remaining
hyperparameters are set to those of the final, optimal configuration.

C.5.2 Mini Crosswords1170

For the Mini Crosswords task, in our final grids-search we observed that performance plateaued at1171

approximately 0.4 overlap percentage, with minimal variation. Consequently, our primary strategy1172

for this task was to minimize cost. The overlap remained similar when tuning the number of agents,1173

number of steps, and the resampling frequency. However, in each case, there was always a specific1174

value that significantly minimized cost, and this value was selected. Thus, we opted for 2 agents,1175

running for 6 steps each, and resampling every k = 3 steps. For the discount factor and the resampling1176

method, there was no clear advantage in terms of performance or cost. Therefore, we selected the1177

most moderate options in each category: a discount factor of γ = 0.5 and the linear resampling1178

method.1179
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Figure 8: Results of the final grid-search for Mini Crosswords. Each subplot illustrates the
performance (left) and cost (right) as a function of a varying hyperparameter. The values of the
remaining hyperparameters are set to those of the final, optimal configuration.

C.5.3 WebShop1180

Finally, for the WebShop task, we reverted to our original strategy: achieving the best performance1181

at the lowest possible cost. It is noteworthy that, due to the complexity of the WebShop task, more1182

agents and steps were required for optimal performance. Consequently, we tested a broader range of1183

values for both resampling frequency and discount factor compared to the previous tasks. The results1184

indicated that the best average scores at the lowest cost were achieved with 15 agents running for 101185

steps each. For the resampling frequency, the best scores were obtained with γ ∈ {2, 4, 5}, with 41186

and 5 being the most cost-effective. Since there was no significant cost difference between 4 and 5,1187

we selected 4 to allow for more frequent resampling. Finally, we omitted filtering during resampling1188

as it provided no additional advantage.1189
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Figure 9: Results of the final grid-search for WebShop. Each subplot illustrates the performance
(left) and cost (right) as a function of a varying hyperparameter. The values of the remaining
hyperparameters are set to those of the final, optimal configuration.

C.6 Additional Results1190

C.6.1 Generalizability of the findings with other base models.1191

In the following section, we present our results for various models and demonstrate that the findings1192

generalize across different settings. You can find the results for the task of Game of 24 in Table 5,1193

Mini Crosswords in Table 6 and WebShop in Table 7.1194

Note on the performance of Act and ReAct. Act and ReAct have essentially the same architecture1195

in the sense that an initial prompt is repeatedly being given to the LLM while it’s being updated by1196

the actions that have been chosen and the resulting environment observations. The only difference1197

is that the ReAct prompt introduces the possibility of a new action for the LLM : "Think". When1198

this action is chosen the LLM does not interact with the environment, it simply states its thoughts1199

and aims to come up with a strategy to solve the problem. However, these prompts came up years1200

ago where much less powerful models were used. As a result, more contemporary models interact1201

differently with them.1202

C.6.2 Ablation analysis for the Crosswords and WebShop tasks1203

In the following section, we present the remaining ablation studies we performed and display that our1204

findings generalize across different settings. You can find the results for the Game of 24 ablation in1205

Figure 10, the Mini Crosswords in Figure 11 and for WebShop in Figure 12.1206
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Table 5: Comparing FOA with previous methods using success rate (↑ better) and cost (↓ better) on
the Game of 24 task. Owing to its exorbitant cost (≃ 600 US$), we could not run RAFA (shown as
DNR).

Task : Game of 24

model method success rate cost

GPT-3.5

IO 0.068 0.048
CoT 0.036 0.122

CoT-SC 0.052 1.404
AoT 0.010 0.322
ToT 0.136 1.711
GoT 0.112 1.603

RAFA 0.080 10.47
FoA 0.251 1.547

GPT-4

IO 0.060 0.652
CoT 0.060 6.98

CoT-SC 0.10 49.395
AoT 0.490 20.984
ToT 0.740 75.02
GoT 0.630 70

RAFA DNR DNR
FoA 0.760 62.93

Llama 3.2-11B

IO 0.026 0.004
CoT 0.036 0.008

CoT-SC 0.048 0.049
AoT 0.051 0.121
ToT 0.027 0.37
GoT 0.014 0.305

RAFA 0.000 23.102
FoA 0.060 0.32

Llama 3.2-90B

IO 0.060 0.027
CoT 0.068 0.054

CoT-SC 0.080 0.334
AoT 0.368 0.813
ToT 0.355 2.51
GoT 0.301 2.11

RAFA DNR DNR
FoA 0.397 2.05

C.7 Details on RAFA Results and Metric Differences1207

In our evaluation of RAFA [23] for the Game of 24 task, we used the official implementation provided1208

by the authors. However, the results we report differ from those presented in the original RAFA paper.1209

This difference stems from a variation in the definition of the success rate evaluation metric.1210

Specifically, the RAFA paper reports results using a relaxed version of the success rate metric (see1211

Footnote 1, page 50, ICML’24 camera-ready), which differs from the stricter formulation used in1212

other benchmarks. To ensure consistency and fairness across all methods evaluated in our study, we1213

applied the success rate implementation as defined in the original ToT [51] paper uniformly across all1214

baselines.1215

As shown in Table 8, when we apply the relaxed success rate metric used in the original RAFA paper,1216

our results align closely with those reported by its authors. This adjustment ensures that readers can1217

understand the basis of any apparent discrepancies and interpret our comparisons across methods1218

accurately.1219
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Table 6: Comparing FOA with previous methods using overlap (↑ better) and cost (↓ better) on the
Crosswords task .

Task : Mini Crosswords

model method overlap cost

GPT-3.5

IO 0.312 0.008
CoT 0.331 0.019

CoT-SC 0.331 0.063
ToT 0.333 0.479
GoT 0.345 0.398
FoA 0.362 0.246

GPT-4

IO 0.368 0.511
CoT 0.394 1.064

CoT-SC 0.394 2.822
ToT 0.397 48.988
GoT 0.412 30.281
FoA 0.460 12.938

Llama 3.2-11B

IO 0.062 0.006
CoT 0.210 0.008

CoT-SC 0.210 0.037
ToT 0.465 0.440
GoT 0.415 0.567
FoA 0.509 0.160

Llama 3.2-90B

IO 0.050 0.038
CoT 0.306 0.044

CoT-SC 0.306 0.129
ToT 0.628 6.010
GoT 0.625 4.715
FoA 0.649 1.550
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Figure 10: Ablation analysis to study the impact of (a) Selection phase, (b) Resampling, (c) Back-
tracking, (d) Caching, and (e) Batching on the performance of FOA using the Game of 24 task with
GPT-3.5, Llama3.2-11B, and 90B as base models.
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Table 7: Comparing FOA with previous methods using average score (↑ better) and cost (↓ better) on
the WebShop task.

Task : WebShop

model method average score cost

GPT-3.5

Act 0.581 0.095
ReAct 0.487 0.17

Reflexion 0.563 0.652
LASER 0.572 0.405

LATS 0.661 232.27
FoA 0.756 1.68

Llama 3.2-11B

Act 0.282 0.096
ReAct 0.167 0.116

Reflexion 0.248 0.493
LASER 0.54 0.75

LATS - -
FoA 0.772 2.6

DL

IL [50] 0.599 -
IL+RL [50] 0.624 -

WebN-T5 [12] 0.610 -
WebGUM [10] 0.675 -

Human experts [50] 0.821 -
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Figure 11: Ablation analysis to study the impact of (a) Selection phase, (b) Resampling, (c) Back-
tracking, (d) Caching, and (e) Batching on the performance of FOA using the Mini Crosswords task
with GPT-3.5, Llama3.2-11B, and 90B as base models.
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Figure 12: Ablation analysis to study the impact of (a) Selection phase, (b) Resampling, (c) Back-
tracking, (d) Caching, and (e) Batching on the performance of FOA using the WebShop task with
GPT-3.5 and Llama3.2-11B base models.
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Figure 13: Comparing (Left) quality and (Right) cost of FOA with the second most efficacious
method (labeled SOTA) on each benchmark task.
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Figure 14: Evaluating the trade-off between (Left) model size and quality on benchmarked tasks with
Llama3.2-11B and 90B, and (Right) cost and quality of SOTA methods with GPT-3.5 on Game of 24.

RAFA results (Game-of-24) Accuracy (%) Low interval High interval
Our run with RAFA metric 26 23 28
Our run with ToT metric 8 6 9
RAFA run with RAFA metric 29 – –
Table 8: Comparison of RAFA results across different runs and evaluation metrics.

34


	Introduction
	Fleet of agents
	Overview of FoA
	Genetic particle filtering

	Experiments
	Model analysis
	Ablation analysis
	Discussion and concluding insights
	Summary of findings
	Implications and Broader Impact
	Limitations and future work

	Related Work
	Fleet of agents: additional details
	Comparison of FoA with a standard tree-search algorithm

	Additional Experimental Details
	Main experiments
	Game of 24
	Mini Crosswords
	WebShop

	Detailed Task Descriptions
	Game of 24
	Mini Crosswords
	WebShop

	Detailed Baseline Descriptions
	Game of 24
	Mini Crosswords
	WebShop

	Implementation Details
	Hyperparameter Tuning
	Game of 24
	Mini Crosswords
	WebShop

	Additional Results
	Generalizability of the findings with other base models.
	Ablation analysis for the Crosswords and WebShop tasks

	Details on RAFA Results and Metric Differences


