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Abstract

While numerous frameworks have been developed to enhance the reasoning abilities
of large language models (LLMs), there is a scarcity of methods that effectively
balance the trade-off between cost and quality. In this paper, we introduce FLEET
OF AGENTS (FOA), a novel and intuitive yet principled framework utilizing LLMs
as agents to navigate through dynamic tree searches, employing a genetic-type
particle filtering approach. FOA spawns a multitude of agents, each exploring
the search space autonomously, followed by a selection phase where resampling
based on a heuristic value function optimizes the balance between exploration and
exploitation. This mechanism enables dynamic branching, adapting the exploration
strategy based on discovered solutions. We conduct extensive experiments on three
benchmark tasks, “Game of 24”, “Mini-Crosswords”, and “WebShop”, utilizing
four different LLMs, “GPT-3.5”, “GPT-4”, “LLaMA3.2-11B”, and “LLaMA3.2-
90B”. On average across all tasks and LLMs, FOA obtains a quality improvement of
~ 5% while requiring only ~ 40% of the cost of previous SOTA methods. Notably,
our analyses reveal that (1) FOA achieves the best cost-quality trade-off among all
benchmarked methods and (2) FOA + LLaMA3.2-11B surpasses the Llama3.2-90B
model. FOA is publicly available athttps://github.com/au-clan/FoA.

1 Introduction

With strong reasoning and problem-solving abilities, large language models (LLMs) [5] such as
GPT-4 [1]], LLaMA [40} 41} [11], and PaLM [2]], have sparked a new-found interest in building
general-purpose autonomous agents. LLM-based agents have portrayed excellent performance
on reasoning [[7] and knowledge-intensive tasks [47]], often requiring interactions with complex
environments, such as playing complex video games [8]], performing web navigation [S0]], or enabling
tool-use [34].

Naturally, the rise of LLM-based agents has contributed to the prosperity of prompt-based reasoning
frameworks [46, 44,14, 135,149, 1511154} 137,152 that further enhance the problem-solving and reasoning
abilities of LLMs. Broadly, the reasoning frameworks can be categorized into two categories: (1)
single-query reasoning and (2) multi-query reasoning. As the name implies, single-query methods [46,
44135130, 20] obtain an answer by querying the LLM only once, whereas, multi-query methods [51}
4,541 137, 52]] perform multiple LLM queries to identify different plausible reasoning paths or to plan
ahead. It is important to note that none of the two aforementioned paradigms is perfect.

*Equal contribution.
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Figure 1: Analyzing the trade-off between cost Figure 2: Evaluating the trade-off between model
and quality of representative SOTA methods with Size and quality on benchmarked tasks with
GPT-3.5 on the Game of 24 task. FOA achieves [-1ama3.2-11B and 90B. FOA enables smaller
the best cost-quality trade-off. models to achieve competitive quality.

On the one hand, despite being cost-effective by design, single-query methods require one or more of
the following: intricate prompt engineering, high-quality demonstrations, or knowledge distilled from
informative historical reasoning processes, to achieve competitive quality. More importantly, even
then, these methods are not well-suited for sequential decision-making tasks that require interactions
with an environment, such as web navigation [50]].

On the other hand, multi-query methods decompose a complex problem into a series of simpler
sub-problems and search over all plausible reasoning paths. This allows them to obtain competitive
quality but also renders them inefficient. With the objective of devising a reasoning framework
applicable to both general problem-solving and sequential decision-making tasks, our focus in this
paper is to improve the cost-efficiency of multi-query methods.

Present work. We introduce FLEET OF AGENTS (FOA), a novel and intuitive yet principled
framework that brings the concept of genetic-type particle filtering to dynamic tree searches.
Fig. [ provides an overview of our framework, while at the same time highlighting the conceptual
differences between state-of-the-art (SOTA) tree-search-based methods and FOA.

FOA spawns a multitude of agents, each exploring the search space autonomously, followed by a
selection phase where resampling based on a heuristic value function optimizes the balance between
exploration and exploitation. If one of the agents has discovered a very promising solution approach
indicated by states with a high value, the resampling mechanism can decide to create many copies of
this agent. Conversely, if none of the agents is ahead of the others, or in other words, there are multiple
promising states, the resampling mechanism can decide to keep all of them, thereby maintaining a
fleet of high diversity. This mechanism enables dynamic branching, adapting the exploration strategy
based on discovered solutions.

Cost-quality trade-off. The biggest advantage of FOA is its ability to strike a balance between
exploration vs. exploitation. We provide early empirical evidence in Fig. [T} which compares the
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Figure 3: Comparison between SOTA tree-search-based reasoning [51] 4], [54] and our FOA
frameworks. FOA offers precise control over the tree width (n agents) and depth (¢ steps), leading
to predictable latency and cost. However, by expanding the ¢ most promising states at each step,
tree-search methods offer no such control and their search trees might grow exponentially.
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performance of tree-based SOTA methods with FOA for varying price points. We find that FOA
substantially outperforms the existing SOTA methods at all possible price points, thereby achieving
the best cost-quality trade-off among the benchmarked methods.

Contributions.

e We propose an intuitive yet principled framework FLEET OF AGENTS (FOA) for improving the
cost-quality trade-off of LLM-based reasoning (§ [2).

e Ours is the first work to explore the concept of genetic particle filtering in the context of Al agents
(cf. §[A]for a detailed literature review).

e We conduct extensive experiments on three benchmark tasks using four LLMs as base models. On
average across all tasks and LLMs, FOA obtains a quality improvement of ~ 5% while requiring
only ~ 40% of the cost of previous SOTA methods (§[3|and § [4).

2 Fleet of agents

2.1 Overview of FOA

Fig. ] provides a pictorial overview of FOA. FOA spawns a fleet of n agents that collectively search
for a solution. The genetic filtering search has a mutation phase during which each agent explores
the search space autonomously. Specifically, it tracks the n agent states and allows k independent
mutation steps before evaluating the values of the current states. During the selection phase, we
resample, with replacement, the population of agents. The resampling mechanism is based on a
heuristic value function and allows us to optimize the trade-off between exploration and exploitation.
The FOA algorithm is comprehensively described in Algorithm[I]in the Appendix.

Preliminaries. The fleet consists of n agents.
At time ¢ agent ¢ has the state s; ;. When choos-
ing an action, the agent samples from its policy .
a;+ ~ ma(als;+). The agent then transitions State
to a new state, following the dynamics of the o [ Activenode
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Figure 4: FOA comprising n = 5 agents that think
autonomously for k steps and are then resampled
to focus the search on promising regions.

For some tasks, we can stop as soon as a solution is found; for other tasks, we may instead collect
a set of solution candidates and stop the search only if we run out of time or sampling budget. We
assume we are given access to a value function v(s) that can guide the search. For a solution state
s, the value function represents the utility of the solution. For other states, s, the value function
is a heuristic considering the uncertainty of eventually reaching a solution and its expected utility.
Accordingly, the value of terminal, non-solution states is 0.

2.2 Genetic particle filtering

Each agent in the fleet of agents acts autonomously and tries to choose the best action given its current
state. After k£ independent steps, we use the value function to resample the set of states and allocate
more agents to high-value states. Our algorithm implements a genetic-type particle filter that captures
the dynamics of a population of particles, i.e., agents, with a series of mutation and selection steps.



Mutation phase. During the mutation phase, each agent in FOA independently samples state
transitions. To simplify the notation, we introduce a model 7 which captures both the stochasticity
of the decision of the agent as well as the response of the environment, s; ;11 ~ 7(s|s;;) We use
the same notation for multi-step state transitions by marginalizing over intermediate states, i.e.,
Sijttk ~ T(Si14k|Si). After each mutation step, we can check whether a solution has been found
and decide to stop the search. Following the concept of genetic filtering, we apply two optimizations:

e Enforced mutation: The agent must mutate its state; it can not remain stationary.

¢ Sudden death: If we notice that an agent ¢ has entered an invalid state L;e,minai(Si,¢). then we
resample its state immediately from the set s;;, j # 7. This resampling can be uniform to avoid
expensive calls to the value function.

Selection phase. The selection phase resamples the population of agents based on an importance
sampling mechanism. We observe the value estimates v(s; ;) for all current states and calculate a
resampling weight p; ;. This framework can capture many resampling schemes, such as linear, greedy,
or exponential weighting of values:

Prin(8it) = av(s; ) + B,

pefcp(Si,t) = €exp (v(sﬂl,t)) ’

1, ifs;y =arg max v(s;q)
_ sj.0=1..N
pgreedy(si,t) - . ’

0, otherwise

We then resample, with replacement, to select a new set of agent states:
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Backtracking. Additionally, by keeping track of a history of states and the associated value function
estimates, we extend the resampling process with an intuitive backtracking mechanism. Backtracking
undoes localized mistakes and allows our fleet of agents to recover from a catastrophic scenario in
which all agents might have made a wrong decision. Instead of resampling states from the set of
current states S;, we consider all previously visited states .S;. To incentivize the fleet of agents to
push forward and explore new regions of the state space, we introduce a discount factor . The value
of a state that was visited ¢ timesteps ago is discounted by v*. The mutation phase of our genetic
particle filter comprises k steps of individual exploration, before evaluating and resampling in the
selection phase. Therefore, we may not have a value estimate for all previously visited states S;.
Depending on the task, and the corresponding cost of computing the value v(s), we may limit the

backtracking mechanism to a subset of \S; which only contains states with a known value estimate.

3 Experiments

We assess the effectiveness of our proposed FOA framework through comparisons with representative
SOTA methods on a judicious mix of tasks that require a variety of reasoning, planning, and
general problem-solving skills. Additional experimental details, e.g., task and method descriptions,
hyperparameter tuning, additional results, etc. are present in Appx.[C|] The resources for reproducing
our experiments are available at https://github.com/au-clan/FoA.

Base model. Following convention in the literature, we use GPT—4E] as the base model for the main
results presented in this paper. To showcase the generalizability of our findings, we report results with

2Owing to the exorbitant cost of running GPT-4 (cf. App. , we use GPT-3.5 instead for WebShop [50].
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Table 1: Comparing FOA with previous methods using success rate (T better) and cost (| better) on

the Game of 24 task (base model: GPT-4). The best performance is shown in blue , whereas the
second best is shown in orange .

Method Success Rate (%) Cost (US$)
10 6.0 0.65
CoT [46] 6.0 6.98
CoT-SC [44] 10.0 49.40
AoT [35] 49.0 20.98
ToT [51] 74.0 75.02
GoT [4] 63.0 70
FoA (Present Work) 76.0 62.93

Table 2: Comparing FOA with previous methods on (Left) Crosswords (base model: GPT-4) using
overlap (1 better) and cost ({ better), and (Right) WebShop (base model: GPT-3.5) using average
score (T better) and cost (| better). The best performance is highlighted in blue , and the second
best in orange .

Type Method Avg Score  Cost (US$)

1L [50) 59.9 NA

Method Overlap (%) Cost (US$) Super- IL+RL [50] 62.4 NA

vised WebN-T5 [12] 61.0 NA

10 36.8 0.51 WebGUM [10] 67.5 NA
CoT [46]) 394 1.06 ;

CoT-SC [44] 39.4 2.82 I Eij s =

] eAc . b

ToT 21 39.7 48.99 In- Reflexion [37] 56.3 0.65

GoT [4] 41.2 30.28 context LASER [25] 57.2 0.41

FoA (Present Work) 46.0 12.94 LATS (4] 66.1 232.21

FoA (Present Work) 75.6 1.68

Hum. experts [50] 82.1 NA

other base models, namely, GPT-3.5, Llama3.2-11B, and Llama3.2-90B, in Appx. @ ‘We use these
models for the model and ablation analyses (§ 4]and § [5), primarily for practical cost-related reasons.

Prompts. Unlike all existing works, we do not craft custom prompts for FOA, but instead, we
reuse the prompts (cf. Appx.[C.4]for details) provided by ToT [51] for the “Game of 24” and “Mini
Crosswords” tasks and LATS [54] for the “WebShop” task. This ensures a direct and fair comparison
of the reasoning abilities of the benchmarked frameworks and controls for the impact of prompt
quality, which is a confounder.

Baselines. We only compare with methods that have made their code available for the tasks bench-
marked in this study (cf. Appx. for details). Thus, we do not compare with LLMCompiler [19],
TouT [28]], RAP [13], and RecMind [45]. Moreover, we exclude BoT [49], where although the code
is available, an important resource (the meta-buffer) to reproduce their results is unavailable.

Results. Across all benchmark tasks, Game of 24, Mini Crosswords, and WebShop, FOA consistently
outperforms existing baselines, achieving the best overall quality and the most favorable cost-quality
trade-offs. On Game of 24, FOA delivers a 70% quality improvement over GPT-4 and surpasses
the next-best method, ToT, with a 2% higher success rate while reducing cost by 25%. In the Mini
Crosswords task, FOA achieves a 5% quality gain over GoT and simultaneously cuts the cost by
60%. On the WebShop benchmark, FOA even outperforms supervised fine-tuned models, delivering
a 10% higher average score than LATS at just 1% of its cost. Overall, FOA strikes an exceptional
balance between exploration and exploitation, consistently advancing both quality and efficiency
across diverse tasks.



4 Model analysis

FOA vs. SOTA. To better understand the improvements obtained by FOA, we compare it with
the second most efficacious method (SOTA hereafter) on all three benchmark tasks. Specifically,
ToT [51], GoT [4]], and LATS [54] are the SOTA methods for the Game of 24, Crosswords, and
WebShop tasks, respectively. As stated in §[3] we use GPT-4 as the base model for Game of 24 and
Crosswords, and GPT-3.5 for WebShop. Fig. [T3]shows that FOA not only achieves the best quality
but also the lowest cost on all tasks. On average, FOA obtains a quality improvement of ~ 5%
while requiring only ~ 40% of the cost of SOTA methods.

Trade-off between cost and quality. We analyze the trade-off between cost and quality for the top
four methods, namely, ToT [S1], GoT [4]], RAFA [23], and FOA, in the Game of 24 task. For cost
reasons, we use GPT-3.5 as the base model. Following RAFA [23]], we allow each method to perform
multiple trials (A) and consider them successful if they generate a valid solution in any of the A
trials. To ensure fairness in the allocated resources, we allocate a fixed budget of 5$ per method,
which governs the number A of trials for each method (5 each for ToT and GoT, 6 for FOA, and 10
for RAFA).

Fig. [T4] (right) shows that FOA substantially outperforms the existing SOTA methods at all possible
price points. Based on the portrayed trends, ToT might be able to close the quality gap or even surpass
FoOA with a higher budget, however, FOA is always favorable for resource-constrained settings.
Overall, FOA achieves the best cost-quality trade-off.

Trade-off between model-size and quality. Fig.|14|(left) shows that on their own, both the 11B and
90B Llama3.2 models [L1] achieve poor quality on the benchmarked tasks. However, FOA boosts the
performance of both models by portraying significant (5x—6x) quality improvements. What’s more,
Llama3.2-11B + FOA surpasses the larger Llama3.2-90B model. Overall, FOA enables smaller
models to obtain comparable or even better performance than larger models, thereby bridging
the gap between their reasoning abilities.

5 Ablation analysis

In this section, we report results on Game of 24 with GPT-3.5 and Llama3.2 (11B&90B) as base
models. We observed similar trends for the other two tasks, results in Appx.

Impact of the selection phase. We remove the selection phase by setting the resampling frequency
k = 0. Thus, each agent constantly remains in its own mutation phase, and independently works
towards its goal until a solution is found, a terminal state is found, or time runs out. As expected,
FoOA (without selection) obtains an extremely low success rate but is also cheaper (Fig. @}a). This is
because, without the selection phase, the fleet does not evolve into a composition of more high-value
states with each time step.

Impact of resampling. Instead of using a resampling strategy, we assign each agent to the highest-
value state during the selection phase. If there are multiple such states, the first one is randomly
chosen by all agents. When there are multiple promising states, a meaningful resampling strategy
may decide to explore all of them in the next time step, however, retaining only the highest-value
state reduces the fleet diversity. Thus, FOA (no/max resampling) obtains a slightly lower success rate
but also incurs a lower cost (Fig. [I0p).

Impact of the backtracking mechanism. We vary the discount factor ~ to study two aspects of
the backtracking mechanism: (1) v = 0 (no backtracking) and (2) v = 1 (no decay). When v = 0,
resampling from a past state is not permitted, and thus, FOA cannot undo localized mistakes, resulting
in a lower success rate but also lower cost (Fig.[I0f). With v = 1, all past states are considered during
resampling, thereby increasing the spectrum of states to explore but at the risk of overwhelming the
resampling mechanism with noisy value estimates of (relatively older) past states. This explains
the reduction in success rate and a slight increase in cost owing to potentially futile explorations

(Fig. [T0F).



Impact of caching. Similar to ToT [51]] and LATS [54], FOA utilizes a caching mechanism (details
in Appx.[C.4) to enhance its cost efficiency, which ensures that a given state is evaluated only once
by an LLM. As expected, disabling the cache leads FOA to incur a higher cost, but interestingly, it
also leads to a lower success rate (Fig.[I0d). We hypothesize that frequent re-evaluations of the same
state while solving a puzzle might introduce inconsistencies further disrupting the flow of reasoning
structures, thereby leading to a reduction in quality.

Impact of batching. Similar to ToT [51]] and LATS [54], FOA utilizes a batching mechanism (details
in Appx.[C.4) to enhance its cost efficiency, which groups many individual LLM calls into a single
combined call (one input prompt leading to many output responses). Disabling batching leads FOA
to incur a higher cost with no noticeable impact on quality (Fig. [T0).

In sum, Fig.[I0[shows that each component of our framework has a positive impact on its performance.

6 Discussion and concluding insights

6.1 Summary of findings

FOA achieves better quality than all existing methods. Based on the presented results FOA
consistently outperforms all existing SOTA methods across all benchmarked tasks and base models.

FOA achieves a better cost-quality trade-off. Our results show that FOA is cost-efficient, much
more so than other SOTA reasoning frameworks. Moreover, our analysis in § ] reveals that FOA
substantially outperforms all SOTA methods at all possible price points.

Other advantages. Beyond better performance, FOA offers many important practical advantages.
First and most importantly, FOA is not a prompting scheme but a runtime. Unlike existing prompt-
based frameworks, e.g. ToT [51]], GoT [4], etc., FOA does not require custom-crafted prompts, but,
instead, can be used in combination with any existing agent or prompting strategy. Finally, FOA
offers precise control over the tree’s width (n agents) and depth (¢ steps), leading to predictable
latency and cost. In particular, it is possible to tune the size n of the fleet to the available resources,
such as an optimal batch size for a given hardware configuration.

6.2 Implications and Broader Impact

Throughout an LLM’s lifecycle, the majority of costs are incurred during inference rather than
training [9]]. Thus, it is crucial to benchmark the cost incurred by various SOTA reasoning frameworks.
Our work is the first to report, analyze, and include a discussion on the trade-off between cost
and quality of a variety of SOTA reasoning frameworks for LLMs. We hope that this work will
spark further discussions on the cost-efficiency of reasoning frameworks and eventually lead to the
development of practically feasible and sustainable reasoning frameworks for LLMs.

6.3 Limitations and future work

Constant fleet size. Currently, we assign a fixed number n of agents to each task. However, it may
be advantageous to allocate more agents to more difficult tasks to enhance sample efficiency. In the
future, we would like to explore the possibility of an adaptive fleet size.

Resampling mechanisms. One avenue for improvement is the design of more intelligent value func-
tions by pooling information from neighboring states and smoothing predictions. Building on precise
value estimates, we can investigate different resampling mechanisms, to tune FoA towards either
more risk-seeking or careful behavior, i.e., different tradeoffs between exploration and exploitation.

Fleet organization. Currently, we consider a homogenous fleet of identical agents. In the future,
we would like to introduce further coordination between the individual agents with a hierarchical
organizational structure. For instance, what if agents could spawn other agents in a nested particle
filtering framework? Finally, as a runtime that embraces modular compatibility with any agent, FoA
will also enable research into more complex fleet compositions.
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A Related Work

In this section, we review works that overlap closely with our study.

Prompt-based reasoning. Recent research focuses on developing strategies to enhance the reasoning
capabilities of LLMs. Few-shot prompting employs demonstrations of high-quality input/output
samples to exploit the eagerness of the LLMs to imitate patterns seen in their context window [J5]].
Algorithm of thoughts (AoT) [35], goes a step further by including algorithmic examples within
the prompt to propel the LLM through algorithmic reasoning pathways. Chain-of-Thought (CoT)
prompting [30, 46, 20] as well as other variants such as Decomposed Prompting [18] and Least-
to-Most [55] guide LLMs to decompose a complex question into a sequence of thoughts and then
synthesize an answer by resolving them methodically. It has been shown that Self-Consistency
(CoT-SC) [43] can be used to augment such methods by generating multiple thought sequences and
then selecting the most accurate answer through majority voting. Recent meta-prompting techniques
[39] employ a uniform, task-independent prompting framework across multiple tasks, enabling a
single LLM to iteratively refine its responses and dynamically adapt to diverse input queries. The
Buffer of Thoughts (BoT) [49] framework extracts task-specific information, uses it to retrieve
relevant thought templates from its meta-buffer, and then instantiates them with more task-specific
reasoning structures before continuing with the reasoning process.

Refinement. Closed-loop approaches that allow an LLM to interact with an external environment
can help in choosing and potentially revising an action. Notable examples are ReAct [52], REFINER
[31] and Self-Refine [26]. Reflexion [37] provides further linguistic feedback based on previous
attempts while AdaPlanner [38] also incorporates positive and negative feedback of an individual
trajectory. Reason for future, act for now (RAFA) [23]] develops further by planning a trajectory,
gathering feedback for the potential planned actions, and then revising the trajectory based on the
feedback.

Tree search. Thoughts are individual ideas or steps in reasoning, and when connected together,
they can be modeled as a tree data structure. Tree search algorithms can then be used to explore
the tree of thoughts and optimize the search for a final answer. In “Tree of Thoughts” (ToT), the
authors utilize a value function that compares different branches to describe both DFS and BFS
flavors of a guided tree-search [S1]. The closely related “Graph of Thoughts” (GoT) approach relaxes
the assumption of a strict tree structure [4]. Reasoning via Planning (RAP) [13]] augments LLMs
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with a world model and employs Monte Carlo Tree Search (MCTS)-based planning to reduce the
search complexity. Language Agent Tree Search (LATS) [54] extends this concept by leveraging
environment interactions, thereby eliminating the need for a world model. ReST-MCTS* [53]] builds
on this line by integrating process-level rewards into MCTS, by identifying high-quality reasoning
traces.

Particle filtering. Genetic particle filters have been used successfully across a large variety of
domains, ranging from vehicle routing [27]], to fuzzy cognitive maps in time series forecasting
[33], to the positioning of industrial robots [21]. Near-universally, the efficacy of a genetic particle
optimization approach has, in these contexts, been demonstrated on standard artificial neural networks,
however, to the best of our knowledge, it has not been employed on LLMs.

Key differences. FOA exhibits fundamental differences from all aforementioned methods. First, it
does not require extensive or intricate prompt engineering, unlike AoT [35] and meta prompting [39].
Additionally, it is well-suited for sequential decision-making tasks that require interactions with an
environment, such as web navigation [0, 3| 47], which can be challenging for methods such as
CoT [46] and BoT [49]. Furthermore, FOA distinguishes itself from approaches like Reflexion [37]]
and RAFA [23] by utilizing a refinement strategy based on a genetic-type particle filter, instead
of linguistic feedback. Lastly, unlike tree-search-based methods [51} 54, 4], FOA employs a more
principled approach to search tree exploration, achieving a better balance between exploration and
exploitation. This structured approach also grants FOA precise control over the tree’s width and
depth, leading to predictable latency and cost.

Al agents. Al agents extend the capabilities of LLMs by integrating external tools or orchestrating
collaborations between multiple LLMs. To solve a task, such an Al agent may take many individual
steps, usually one depending on the other, e.g., querying a database, searching with a web browser,
running computations in a code interpreter, etc. There exists a diverse and quite fragmented ecosystem
of frameworks and libraries that motivate specific interaction patterns or are designed to offer the
flexibility to implement new forms of collaboration. A well-established library is LangChain [6]], but
many practitioners chose to accompany their research with a custom solution. Cameleon [24], Camel
[22], HuggingGPT [36], AutoGPT [32]], BabyAGI [29], MetaGPT [15]], Flows [16]], and AutoGen
[48], all these works present some form of blueprint or framework for building Al agents.

Building on these works, creating highly sophisticated Al agents is possible. Nevertheless, even if
an action is only taken after many steps of deliberation and careful consideration, the agent must
ultimately follow a sequential chain of actions on its way toward a solution. This is fundamentally
similar to structured reasoning, i.e., the agent approaches a solution in smaller discrete steps, each step
following logically from the previous steps. In many scenarios, multiple actions may be promising;
the agent is faced with uncertainty and a large state space to explore. In this setting, the perspective
of a single agent is necessarily a myopic and localized worldview. We overcome this limitation by
instantiating a fleet of individual agents and coordinating a joint search process between them. This
research is orthogonal to existing work on optimizing Al agents: Instead of a novel way to build or
improve a specific Al agent, we implement a runtime that can readily accommodate any existing
agent and multiply its capabilities.

B Fleet of agents: additional details

B.1 Comparison of FOA with a standard tree-search algorithm

We posit that any multi-step structured reasoning prompt will rely on two flavors of prompts: mutation
steps, in which the current state of the reasoning process is advanced, and evaluation steps, in which
different states are judged and compared. The key difference between structured reasoning algorithms
lies in how these steps are orchestrated. In Fig.[6] we show a standard tree search algorithm, based on
one of the Tree-of-Thoughts (ToT) algorithms, side by side with FLEET OF AGENTS.

At every step during the search for a solution, ToT keeps track of b thoughts, generates ¢ follow-up
thoughts for each, estimates their value, and from the cb candidate thoughts, selects the b best. It is
important to note:

e Mutation and evaluation prompts are called in lockstep; each new thought is immediately evaluated.
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Algorithm 1 Fleet of Agents: A genetic particle filter.

1: Initialize

2: t+ 0

3: si¢ < Xo,t = 1..IN {setting initial state}
4: loop
5. Mutation phase

6: 5444k  Call Algorithm[2]with s, 4,7 = 1..N and S;
7.

8

. Selection phase
9: 844k < Call Algorithm with S &

10:
11: t+t+k
12: end loop

Algorithm 2 Mutation Phase
1: Input: List of current states s; ;, ¢ = 1..IN and states S at time ¢
2: Output: List of states s; 41,7 = 1..N attime t + k
3: for j =1to kdo
. Each agent independently mutates its state

4
50 Sig41 ~7(s|sie),i=1.N

6: t+t+1

7. Check for solution

8: if ds € St : ﬂ.solution(s) then

9: We have found a solution: early exit
10:  end if
11:  Identify and prune terminal states,
12:  resample across all viable states S; discovered so far
13: B+ {Si,t‘]]-terminal(si,t)}
14: G+ {s|]s€S,s¢ B}
15:  for: € Bdo

16: §; ~ Uniform(Q)
17: Sit < él

18:  end for

19: end for

Algorithm 3 Selection Phase
1: Input: Set of states S; at time ¢

2: Output: Resampled list of states s; ¢, 7 = 1..N at time ¢

3. Evaluate heuristic value function

4: vs «v(s),s € Sy

5: Calculate the resampling distribution

6: ps = exp(18vs), s € Sy, {resampling weight}

7: p(s) = ﬁ > scs PsOs, ,(s) {categorical resampling distribution}
8: §; i p¢(8),4 = 1..N {resampling with replacement}

9: Sit = §Z,Z =1.N

e At every step, cb — b candidate thoughts are discarded. Depending on the parametrization, the
majority of mutation and value calls correspond to thoughts that immediately become dead ends.

e The number of promising states selected and the number of follow-up thoughts are fixed, resulting
in a constant branching factor.

This ToT algorithm closely resembles beam search using a value function as a heuristic. By compari-
son, FLEET OF AGENTS follows a different design philosophy. Instead of modeling the multi-step
reasoning process as a graph traversal or heuristic tree search, we take inspiration from the concept
of individual Al agents exploring a complex search space on their own. We believe that for many
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Figure 5: Example of a Fleet of Agents runtime applied to the Game of 24. Three agents are deployed,
and the runtime undergoes the selection phase every k = 1 steps. A positive discount factor v > 0 is
retained to allow backtracking to previous states. During the resampling in the mutation phase, agents
that have taken incorrect actions are corrected by replacing their state with one that has a potential
solution.

real-world applications, it is best to trust the individual agent to make local decisions based on their
best judgment. Rather than exploring ¢ branches at each step, we allow our fleet of NV agents to make
a series of educated guesses.

We evaluate the states of individual agents only every k steps. Instead of selecting the b best states,
we then resample with replacement. If one of the agents has found an extremely promising state,
it is duplicated and the search focuses on the region that agent is exploring. This corresponds to a
decision to exploit the findings of this agent. Conversely, if all agents have a similar value, none of
them may be duplicated during the resampling process, keeping maximum diversity in the fleet of
agents. This corresponds to a decision to explore further.

Refer to the first resampling stage in Fig. [6] which shows that one agent is duplicated (replacing
an agent of very low value) while three others are kept. In practice, this means that we allocate a
branching factor of 2 to the duplicated agent and a branching factor of 1 to the rest of the fleet. This
is a reasonable choice: When we have yet to observe a distinct difference in thought value, then it is
better to explore further before concentrating the search. In the second resampling stage, we note
that one thought has a much higher value than the others. The resampling creates four copies of
this thought but also retains one medium-value state. In this toy scenario, ToT always explores the
dynamic search tree with a fixed branching factor of 3, whereas FLEET OF AGENTS selects branching
factors dynamically, ranging from 1 to 4.

Notable properties of FLEET OF AGENTS include:

o Individual decisions are made according to each agent’s localized best judgment. This enables
quick and efficient spread across the search space.

e Resampling (i.e., discarding some agents) occurs only every k steps. Ideally, only thoughts clearly
worse than their competitors are discarded.
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e The resampling process provides an intuitive trade-off between exploitation and exploration. In
practice, FLEET OF AGENTS can dynamically choose a branching factor between 1 (all agents are
retained, maximizing exploration) and /N (one agent finds a highly promising state and the search is
focused accordingly).
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Figure 6: (Left) Search-tree for Tree-of-thoughts (ToT) that generates ¢ = 3 candidates for the next
thought step and maintains a set of b = 2 most promising states at each step. (Right) Fleet-of-Agents
(FoA) comprising N = 5 agents that think autonomously for & steps and are then resampled to focus
the search on promising regions.

C Additional Experimental Details
C.1 Main experiments

Number of runs. For cost reasons, experiments with GPT-4 were run only once. However, for other
base models (results in Appx.|[C.6), we run each experiment 5 times and report both the mean and
standard error of the evaluation metrics.

C.1.1 Game of 24

Task and data. Game of 24 is a mathematical puzzle, where four numbers are given, and the
objective is to form an arithmetic expression that equals 24 using each number exactly once. The
benchmark data consists of 1362 puzzles. Following ToT [S1], we use the puzzles indexed 901-1000
as the test set (cf. Appx.[C.2]for details).

Evaluation metrics. We use success rate, i.e., the percentage of solved puzzles, to evaluate the
quality of the benchmarked methods. For efficiency, we use cost (in US$).

Baselines. We compare FOA with: (1) Standard IO prompting, (2) CoT [46]], (3) CoT-SC [44], (4)
AoT [35]], (5) ToT [51], (6) GoT [4], and (7) RAFA [23]]. Owing to the unavailability of their code
for Game of 24, we do not compare with LATS [54].

Results. Table [T]shows that FOA outperforms all existing baselines and achieves the best quality.

Taking GPT-4 as a baseline, FOA achieves a whopping 70% improvement in quality. On the one
hand, 10 and CoT [46]] are the most cost-effective methods, their success rate is extremely low at just
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6%. On the other hand, sophisticated reasoning frameworks like ToT [51]] achieve a high success rate
(74%) but also incur a high cost (753). Striking a good balance between exploration vs. exploitation,
our FOA obtains a 2% improvement in quality over the second best method, ToT, simultaneously
lowering the cost requirement by 25%.

C.1.2 Mini Crosswords

Task and data. Mini Crosswords is a puzzle, where, given 5 vertical and 5 horizontal clues, the
objective is to use the clues to identify answers and place them on a 5 x 5 crossword board. The
benchmark data consists of 156 puzzles. Following ToT [51], we use the puzzles 0, 5, ..., 90, and 95
as the test set (cf. Appx. for details).

Evaluation metrics. For quality, we use overlap, i.e., the percentage of correct letters in the proposed
solution. For efficiency, we compute the cost (in US$).

Baselines. We compare FOA with: (1) Standard IO prompting, (2) CoT [46]], (3) CoT-SC [44]], (4)
ToT [51], and (5) GoT [4]]. Owing to the unavailability of their code for Mini Crosswords, we do not
compare with AoT [35].

Results. Table 2| (Left) shows that FOA outperforms all existing baselines and achieves the best
quality. Once again, 10 and CoT [46] are the most cost-effective methods. Moreover, they also
obtain good performance with their quality being comparable to ToT [51]] and GoT [4] at just a
fraction (2.5%) of the cost. Notably, our FOA reports the best cost-quality trade-off among all the
benchmarked methods. We obtain a 5% improvement in quality over the second best method, GoT,
simultaneously lowering its cost requirement by 60%.

C.1.3 WebShop

Task and data. WebShop [50]] is a simulated e-commerce website environment, where, given a
textual instruction specifying a product and its properties, the objective is to find the product by
navigating webpages using a variety of actions and purchase it. The benchmark data consists of
12,087 subtasks. Following [52| 54, 37]], we use 50 randomly sampled subtasks as the test set (cf.

Appx. [C.2)for details).

Evaluation metrics. The quality of a purchase is assessed using an environment-generated reward,
which measures the percent overlap between the purchased product and the user-specified attributes.
We use average score, i.e., the average of subtask rewards, to evaluate the quality of the benchmarked
methods. For efficiency, we use cost (in US$).

Baselines. We compare FOA with: (1) Act [52]], (2) ReAct [52], (3) Reflexion [37], (4) LASER [25],
(5) LATS [54], and (6) multiple fine-tuned models from ((author?) [50]. We also use the performance
of human experts as an upper bound for quality. Owing to the unavailability of their code for
WebShop, we do not compare with RAP [17].

Results. Table |2 (Right) shows that FOA outperforms all existing baselines, even the supervised
fine-tuned models [50} (12 [10], and achieves the best quality. While Act [52] is by far the cheapest
method (0.1$), it obtains a moderate average score (58.1%). LATS [54], on the other hand, obtains a
better average score (66.1%), it suffers from an exorbitant cost footprint (232%). Yet again, our FOA
achieves the best cost-quality trade-off: obtaining a /0% improvement in quality over the second-best
method, LATS, requiring only 1% of its cost.

C.2 Detailed Task Descriptions
C.2.1 Game of 24
Game of 24 is a mathematical puzzle where the participants are presented with four numbers, and

their objective is to find a combination of arithmetic operations (+-*/) to construct an arithmetic
expression that uses each given number exactly once to obtain a final total of 24.
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The benchmark consists of 1362 such puzzles scraped from 4nums.com, which are sorted in increasing
order of their difficulty. The input data in each puzzle are the four initial numbers and the expected
output is an equation that equals 24. Following ToT [51], we use the puzzles indexed 901-1000 as
the test set. We also created a validation set from the puzzles indexed 876-900 and 1001-1025. The
validation set is constructed such that, in expectation, its overall difficulty is similar to the test set.

C.2.2 Mini Crosswords

Mini Crosswords is a puzzle where participants are given 5 vertical and 5 horizontal clues. Each clue
leads to a 5-letter word, and the objective is to use the clues to identify answers and place them on a
5 x b crossword board. We use the percentage of correct letters to measure the quality of a proposed
crossword solution. For a letter to be correct, it has to match both the letter and its position on the
ground truth board.

The benchmark constitutes 156 such puzzles scraped from GooBix. Following ToT [31]], we use the
puzzles 0, 5, ..., 90, and 95 as the test set. We also created a validation set from the puzzles indexed
3,8, ...,93, and 98.

C.2.3 WebShop

WebShop [50] is a simulated e-commerce website environment comprising 1.18 million real-world
products and 12,087 crowd-sourced textual instructions. The participants are provided with textual
instructions specifying a product and its properties, and their objective is to find and purchase the
product by navigating webpages using a variety of actions.

The benchmark data consists of 12,087 subtasks. We noticed that the website environment randomizes
the set of subtasks upon every initialization. Thus, to fix the test set across all the experiments
and methods benchmarked in this study, we add a fixed random seed to the website environment.
Following [52 154, 137]], we use 50 subtasks to construct the test set. Specifically, we use the subtasks
indexed 5-54 as the test set. We also created a validation set from subtasks indexed 55-69.

C.3 Detailed Baseline Descriptions

C.3.1 Game of 24

¢ Input-Output (IO) prompting uses the LLM to directly generate an output, with no interme-
diate steps.

¢ Chain-of-Thought (CoT) [46] solves the problem step by step by decomposing it into a
sequence of thoughts.

 Chain-of-Thought [46]] with Self-Consistency [43] CoT-SC, generates multiple responses
for the same CoT prompt and then selects the best one based on majority voting.

* Algorithm-of-Thoughts (AoT) [35] (AoT), guides the reasoning through algorithmic path-
ways by including such examples in its prompt.

* Tree-of-Thoughts (ToT) [51]. decomposes the problem into multiple chain of thoughts,
organized in a tree structure. Thought evaluation and search traversal algorithms are utilized
to solve the problem.

* Graph of Thoughts (GoT) [4] allows the organization of thoughts in a graph structure. It
introduces arbitrary graph-based thought transformations such as thought aggregation and
thought refinement.

 Reason for futre, act for now (RAFA) [23] structures its reasoning by initially implementing
a potential plan for a trajectory. Then, feedback is gathered for actions included in the plan.
Finally, a new plan is generated with the gathered feedback in context. Even though we
compared with RAFA using models GPT3.5 and Llama 3.2 11B, we did not compare with
GPT4 or Llama 3.2 90b as its cost would be prohibitive.

* Reasoning via Planning (RAP) [[13]] augments LLMs with a world model and employs Monte
Carlo Tree Search (MCTS)-based planning to generate and traverse its thought process.
Language Agent Tree Search (LATS) [54]] extends this concept by leveraging environment
interactions, thereby eliminating the need for a world model. We did not compare with any
of these two methods as code for the game of 24 task was not available.
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* The Buffer of Thoughts (BoT) [49] framework extracts task-specific information, uses it
to retrieve relevant thought templates from its meta-buffer, and then instantiates them with
more task-specific reasoning structures before continuing with the reasoning process. For
BoT [49] we were unable to reproduce the results reported in their paper as a component of
their method (meta-buffer) is not available and we have no detailed instructions on how to
recreate it ourselves.

* The LLMCompiler [19] is an LLM compiler that optimizes the parallel function calling
performance of LLMs. There was no code available for the task of Game of 24, so we do
not compare against it.

* Tree of uncertain Thoughts (TouT) [28]] leverages Monte Carlo Dropout to quantify uncer-
tainty scores associated with LLMs’ diverse local responses at intermediate thoughts. This
local uncertainty quantification is then united with global search algorithms. There was no
code available so we do not compare against TouT.

* ReST-MCTS* [53] introduces a self-training framework that uses a modified Monte Carlo
Tree Search (MCTS*) guided by process-level rewards. Instead of relying solely on final
answers, it infers per-step rewards to identify and reinforce high-quality reasoning traces,
improving the LLM’s reasoning ability over successive iterations. In our experiments, we
only tested the MCTS* component for inference-time reasoning, without the full iterative
self-training loop, to ensure a fair comparison, as all other baselines were also evaluated
purely in the inference-time setting.

Mini Crosswords

¢ Input-Output (I0) prompting uses the LLM to directly generate an output, with no interme-
diate steps.

* Chain-of-Thought (CoT) [46] solves the problem step by step by decomposing it into a
sequence of thoughts.

* Chain-of-Thought [46] with Self-Conistency [43] CoT-SC, generates multiple responses for
the same CoT prompt and then selects the best one based on majority voting.

* Algorithm-of-Thoughts (AoT) [35] (AoT), guides the reasoning through algorithmic path-
ways by including such examples in its prompt. For its Mini Crosswords implementation,
AoT utilizes 2 prompts that need to be run sequentialy and provides both of them. However,
in between the two prompts a necessary step is performed which extracts the word combina-
tion of the highest “compatibility”. No further details are found about this step and since it
can be interpreted in a number of ways we chose not to move on with it.

* Tree-of-Thoughts (ToT) [51]. decomposes the problem into multiple chain of thoughts,
organized in a tree structure. Thought evaluation and search traversal algorithms are utilized
to solve the problem.

* Graph of Thoughts (GoT) [4] allows the organization of thoughts in a graph structure. It
introduces arbitrary graph-based thought transformations such as thought aggregation and
thought refinement.

WebShop
* Act [52] simply prompts the framework to perform an action within a closed loop.

* ReAct [52] integrates reasoning into Act by allowing the model to think instead of explicitly
performing an action to the environment.

» Reflexion [37] generates linguistic feedback that is utilized during subsequent runs.

» Agent with State-Space ExploRation (LASER) [25] models environment interactive tasks as
state-space exploration. This is achieved by allowing the LLM agent to transition among a
pre-defined set of states by performing actions to complete the task.

» Language Agent Tree Search (LATS) [54] employs Monte Carlo Tree Search (MCTS)-based
planning to generate and traverse its thought process, leveraging environment interactions.
Even though we compare with LATS using GPT3.5, we do not repeat the experiment for
any other model as it is prohibitively expensive.
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» Multiple deep learning approaches[50]. We also compare with a variety of deep learning
approaches such as supervised, reinforcement and imitation learning. We report their average
score as given in their published paper.

e Human Experts: A human annotators have been recruited by the Webshop authors [50] to
study their trajectories. Based on their results, thirteen of them are recruited and trained
further. Finally, the top 7 performers are selected as experts.[S0]

* Retrieval-Augmented Planning (RAP) [17] dynamically leverage past experiences corre-
sponding to the current situation and context in both textual and multimodal environments.

* The LLMCompiler [19] is an LLM compiler that optimizes the parallel function calling
performance of LLMs. There was no code available for the task of WebShop, so we do not
compare against it.

C.4 Implementation Details

Platforms. GPT models were were accessed through the OpenAl API while the utilization of the
Llama models was facilitated by the TogetherAl APL.

Model checkpoints and prices. To compute the costs of our experiments we used the current model
prices indicated OpenAl and Together Al, accordingly to the model. The specific models snapshot
we used, along with their respective prices are presented in

US$ per Im prompt tokens | US$ Per Im completion tokens
gpt-3.5-turbo-0125 0.5 1.5
gpt-4-0613 30.0 60.0
Llama-3.2-90B- Vision-Instruct-Turbo 1.2 0.06
Llama-3.2-11B-Vision-Instruct-Turbo 0.18 0.18

Table 3: Model snapshot prices. OpenAl and TogetherAl prices for each model used, during the
implementation of the project.

Model configurations. Generation parameters specified when making calls to any of the models used
throughout this project. These parameters were not defined by us, but by the implementation where
the respective prompts where introduced. Specifically, Game of 24 and Mini Crosswords parameters
were used from [S1]], WebShop step request parameters was taken from [52]] and WebShop evaluate
request parameters from [54]]. Configurations presented in Table [4]

max_tokens | temperature | top_p stop
Game of 24 100 0.7 1 null
Mini Crosswords 1000 0.7 1 null
WebShop (step) 100 1 1 ["\n"]
WebShop (eval) 100 1 1 null

Table 4: Generation parameters. Generation parameters specified when making requests to any
model.

Base model selection strategy. We selected GPT4 to be our base model as it was the one for which
the prompts we used were originally designed for. Excepions were made for the RAFA [23]] and
LATS [54] baselines as their cost was prohibitive for us to run using GPT4. Finally, for the task of
WebShop, we didn’t repeat any baseline for GPT4. That was because firstly, the price was extremely
steep for some of the baselines and secondly because some of the baselines had already achieved
near-human level of performance.

Prompts. This section provides all the prompts used for the models evaluated in our experiments.
We include the exact phrasing and formatting of each prompt to ensure reproducibility and allow for
detailed examination of how the tasks were presented to the models.

Input: 2 8 8 14
Possible next steps:

19


https://platform.openai.com/docs/overview
https://docs.together.ai/docs/introduction

2 10 (left: 8 10 14)
8 = 4 (left: 4 8 14)
14 + 2 = 16 (left: 8 8 16)
2

8

N 00
|

8 16 (left: 8 14 16)
- 2 =6 (left: 6 8 14)
14 - 8 = 6 (left: 2 6 8)
14 / 2 =7 (left: 7 8 8)
14 - 2 = 12 (left: 8 8 12)
Input: {input}
Possible next steps:

Prompt 1: Game of 24 - Step prompt The prompt used to generate candidate new states. Taken from
(510.

Use numbers and basic arithmetic operations (+ - * /) to obtain 24.
Each step, you are only allowed to choose two of the remaining
numbers to obtain a new number.

Input: 4 4 6 8

Steps:

4 + 8 = 12 (left: 4 6 12)

6 - 4 = 2 (left: 2 12)

2 *x 12 = 24 (left: 24)

Answer: (6 - 4) * (4 + 8) = 24

Input: 2 9 10 12

Steps:

12 * 2 = 24 (left: 9 10 24)

10 - 9 = 1 (left: 1 24)

24 * 1 = 24 (left: 24)

Answer: (12 * 2) * (10 - 9) = 24
Input: 4 9 10 13

Steps:

13 - 10 = 3 (left: 3 4 9)

9 - 3 =6 (left: 4 6)

4 x 6 = 24 (left: 24)

Answer: 4 x (9 - (13 - 10)) = 24

Input: 1 4 8 8

Steps:

8 / 4 2 (left: 1 2 8)

1 + 2 =3 (left: 3 8)

3 x 8 = 24 (left: 24)
Answer: (1 + 8 / 4) * 8 = 24
Input: 5 5 5 9

Steps:

5 + 5 = 10 (left: 5 9 10)

10 + 5 = 15 (left: 9 15)

15 + 9 = 24 (left: 24)
Answer: ((5 + 5) + 5) + 9 = 24
Input: {input}

Prompt 2: Game of 24 - Last step prompt In the game of 24, once all initial numbers were combined,
if the resulting number is 24, then the following chain of thought prompt was used to summarized the
operations that have taken place to get there [51]].

Evaluate if given numbers can reach 24 (sure/likely/impossible)
10 14
10 + 14
sure

11 12
11 + 12 = 23

12 - 11 =1

11 * 12 = 132

11 / 12 = 0.91
impossible

4 4 10

4 + 4 + 10 = 8 + 10 = 18

24
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4 *x 10 - 4 = 40 - 4 = 36
(10 - 4) * 4 = 6 * 4 = 24
sure

4 9 11

9 + 11 + 4
sure

57 8

5+ 7 + 8 =12 + 8 = 20

(8 - 5) 7 =3x*7=21

I cannot obtain 24 now, but numbers are within a reasonable range
likely

5 6 6

5+ 6 + 6 = 17
(6 - 5) x6 =1%6 =6

I cannot obtain 24 now, but numbers are within a reasonable range
likely

10 10 11

10 + 10 + 11 = 31

(11 - 10) * 10 = 10

10 10 10 are all too big

impossible

13 3

1 * 3 % 3 =9

(1 +3) * 3 =12

1 3 3 are all too small

impossible

{input}

20 + 4 = 24

Prompt 3: Game of 24 - Value prompt The prompt used to evaluate a state [S1]].

Let’s play a 5 x 5 mini crossword, where each word should have exactly
5 letters.

{input}

Given the current status, list all possible answers for unfilled or
changed words, and your confidence levels (certain/high/medium/low
), using the format "hl. apple (medium)". Use "certain" cautiously
and only when you are 100% sure this is the correct word. You can
list more then one possible answer for each word.

Prompt 4: Mini Crosswords - Step prompt The prompt used to generate candidate new states [51]].

Evaluate if there exists a five letter word of some meaning that fit
some letter constraints (sure/maybe/impossible).

The letter constraint is: 5 letters, letter 1 is w, letter 3 is o,
letter 5 is g.

Some possible words that mean "Incorrect; to injure":

wrong (w r o n g): 5 letters, letter 1 is w, letter 3 is o, letter 5
is g. fit!

sure

Incorrect; to injure: w _ o g

A person with an all-consuming enthusiasm, such as for computers or
anime: _ _ _ _ u

The letter constraint is: 5 letters, letter 5 is u.

Some possible words that mean "A person with an all-consuming
enthusiasm, such as for computers or anime":

geek (g e e k): 4 letters, not 5

otaku (o t a k u): 5 letters, letter 5 is u

sure

Dewy; roscid: r 1

The letter constraint is: 5 letters, letter 1 is r, letter 5 is 1.
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Some possible words that mean "Dewy; roscid":

moist (m o i s t): 5 letters, letter 1 is m, not r

humid (h um i d): 5 letters, letter 1 is h, not r

I cannot think of any words now. Only 2 letters are constrained, it is
still likely

maybe

A woodland: _ 1 _ d e

The letter constraint is: 5 letters, letter 2 is 1, letter 4 is d,
letter 5 is e.

Some possible words that mean "A woodland":

forest (f or e s t): 6 letters, not 5

woods (w o o d s): 5 letters, letter 2 is o, not 1

grove (g r o v e): 5 letters, letter 2 is r, not 1

I cannot think of any words now. 3 letters are constrained, and _ 1 _
d e seems a common pattern

maybe

An inn: d w f

The letter constraint is: 5 letters, letter 2 is d, letter 4 is w,
letter 5 is f.

Some possible words that mean "An inn":

hotel (h o t e 1): 5 letters, letter 2 is o, not d

lodge (1 o d g e): 5 letters, letter 2 is o, not d

I cannot think of any words now. 3 letters are constrained, and it is
extremely unlikely to have a word with pattern _ d _ w f to mean "
An inn"

impossible

Chance; a parasitic worm; a fish: w r a k _

The letter constraint is: 5 letters, letter 1 is w, letter 2 is r,
letter 3 is a, letter 4 is k.

Some possible words that mean "Chance; a parasitic worm; a fish":

fluke (f 1 u k e): 5 letters, letter 1 is f, not w

I cannot think of any words now. 4 letters are constrained, and it is
extremely unlikely to have a word with pattern w r a k _ to mean "
Chance; a parasitic worm; a fish"

impossible

{input}

Prompt 5: Mini Crosswords - Value prompt The prompt used to evaluate a state. Specifically,
this prompt evaluates a potential solution of 1 out of the 10 questions of the Crossword. To get the
value of the overall state this prompt was called for each row/column of the crosswords board with a
potential solution [S1].

Webshop

Instruction:

i would 1like a 3 ounce bottle of bright citrus deodorant for sensitive
skin, and price lower than 50.00 dollars

[Search]

Action: search[3 ounce bright citrus deodorant sensitive skin]
Observation:

[Back to Search]

Page 1 (Total results: 50)

[Next >]

[BO78GWRC1J]

Bright Citrus Deodorant by Earth Mama | Natural and Safe for Sensitive
Skin, Pregnancy and Breastfeeding, Contains Organic Calendula 3-
Ounce

$10.99

[BO78GTKVXY]
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Ginger Fresh Deodorant by Earth Mama | Natural and Safe for Sensitive
Skin, Pregnancy and Breastfeeding, Contains Organic Calendula 3-
Ounce

$10.99

[BOBKBVJ4XN]

Barrel and Oak - Aluminum-Free Deodorant, Deodorant for Men, Essential

0il-Based Scent, 24-Hour 0Odor Protection, Cedar & Patchouli Blend
, Gentle on Sensitive Skin (Mountain Sage, 2.7 oz, 2-Pack)
$15.95

Action: think[BO78GWRC1J and BO78GTKVXY are bright citrus deodorant
less then 50 dollars. I can check BO78GWRC1J first.]
Observation: OK.

Action: click[BO78GWRC1J]

Observation:

[Back to Search]

[< Prev]

scent [assorted scents][bright citrus][calming lavender][ginger fresh
J[simply non-scents]

size [travel set (4-pack)][3 ounce (pack of 1)][3-ounce (2-pack)]

Bright Citrus Deodorant by Earth Mama | Natural and Safe for Sensitive
Skin, Pregnancy and Breastfeeding, Contains Organic Calendula 3-
Ounce

Price: $10.99
Rating: N.A.
[Description]
[Features]
[Reviews]
[Buy Now]

Action: think[For 3 ounce bottle of bright citrus deodorant for
sensitive skin, the item has options ’bright citrus’ and ’3 ounce
(pack of 1)’ and seems good to buy.]

Observation: OK.

Action: click[bright citrus]
Observation: You have clicked bright citrus.

Action: click[3 ounce (pack of 1)]
Observation: You have clicked 3 ounce (pack of 1).

Action: click[Buy Now]

Prompt 6: WebShop - Step prompt The prompt used to generate the next action so that after
performing the action a new state would be achieved. The observation and action history of the agent
would be appended at the end of this prompt. Taken from [52].

Given an item to purchase and a trajectory that aims to buy an item
that exactly matches the specification, which corresponds to the
ideal score of 1.0, analyze the following trajectory, then at the
last line conclude "Thus the correctness score is {s}", where s is

an integer from 1 to 10.

Here are some examples

Webshop

Instruction:

i am looking for dairy free and apple variety pack of chips, and price
lower than 30.00 dollars

[Search]

Action: search[dairy free and apple variety pack of chips]

Observation:
[Back to Search]
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Page 1 (Total results: 50)

[Next >]

[BO7HRFJWP8]

Enjoy Life Foods Soft Baked Ovals, Breakfast Bars, Nut Free Bars, Soy
Free, Dairy Free, Non GMO, Gluten Free, Vegan, Variety Pack, 4
Boxes (20 Bars Total)

$100.0

[BO1KMHY5PG]

Enjoy Life Soft Baked Chewy Bars, Variety Pack, Nut Free Bars, Soy
Free, Dairy Free, Gluten Free, 6 Boxes (30 Total Bars)

$21 .49

[BO0O8D2X8C4]

Enjoy Life Lentil Chips Variety Pack, Dairy Free Chips, Soy Free, Nut
Free, Non GMO, Vegan, Gluten Free, 24 Bags (0.8 oz)

$100.0

Action: think[The first two items are not what I want. The third item
is the dairy free and apple variety pack of chips I want.]
Observation: O0K.

Action: click[B008D2X8C4]

Observation:

[Back to Search]

[< Prev]

flavor name [dill and sour cream][garlic & parmesan][light sea salt][
margherita pizzal][thai chili lime][variety pack]

size [0.8 ounce (pack of 24)][4 ounce (pack of 12)]

Price: $100.0

Rating: N.A.

[Description]

[Features]

[Reviews]

[Buy Now]

Action: think[The item has options ’variety pack’ and ’0.8 ounce (pack
of 24)°’ and seems good to buy.]
Observation: OK.

Action: click[variety pack]
Observation: You have clicked variety pack.

Action: click[0.8 ounce (pack of 24)]
Observation: You have clicked 0.8 ounce (pack of 24).

Action: click[Buy Now]

Reflection: In this attempt, I was unsuccessful. I accidentally bought
a product that was $100, which is more than my budget of $30.
Either way, the initial search results were not good. Next time, I
will do search["variety pack of chips"] and then check if the
results meet the dairy free and the $30 budget constraints. I will
continue to refine my searches so that I can find more products.
Thus the correctness score is 5

Webshop

Instruction:

i would like a 3 ounce bottle of bright citrus deodorant for semnsitive
skin, and price lower than 50.00 dollars

[Search]

Action: search[3 ounce bright citrus deodorant sensitive skinl]
Observation:

[Back to Search]

Page 1 (Total results: 50)

[Next >]
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[BO78GWRC1J]

Bright Citrus Deodorant by Earth Mama | Natural and Safe for Sensitive
Skin, Pregnancy and Breastfeeding, Contains Organic Calendula 3-
Ounce

$10.99

[BO78GTKVXY]

Ginger Fresh Deodorant by Earth Mama | Natural and Safe for Sensitive
Skin, Pregnancy and Breastfeeding, Contains Organic Calendula 3-
Ounce

$10.99

[BOSKBVJ4XN]

Barrel and Oak - Aluminum-Free Deodorant, Deodorant for Men, Essential

0il -Based Scent, 24-Hour 0Odor Protection, Cedar & Patchouli Blend
, Gentle on Sensitive Skin (Mountain Sage, 2.7 oz, 2-Pack)
$15.95

Action: think[BO78GWRC1J and BO78GTKVXY are bright citrus deodorant
less then 50 dollars. I can check BO78GWRC1J first.]
Observation: OK.

Reflection: Although the task is not yet complete, the first search is
correct and returns relevant results. The thought is also logical
and has potential to lead to the correct selection.

Thus the correctness score is 9

{input}

Prompt 7: WebShop - Value prompt The prompt used to evaluate a state. The observation and
action history of the agent would be appended at the end of this prompt [54].

Given a science problem, you need to answer the problem based on your
existing knowledge. The input may include some existing steps to
solve the question and you should continue to complete the
solution based on these existing steps.

If the input does not provide any existing steps, you need give the
first step in solving or calculating the problem. If partial
solution steps are provided, you need to output the next step
along the lines of the existing steps.

The output format is limited to: "Next step: ..." where ... indicates
omitted output information, which is the next step in the answer
that you should give. Your output must be a complete step, which
may include detailed calculations, reasoning, choosing answers,
etc. but no reasoning.

If the existing steps are already sufficient, you can output "The
final answer is: $...$" where ... indicates the final answer to
the question.

Please provide MULTIPLE alternative next steps. Use the following
format:

"Next step: $...$

Next step: $...$

Next step: $...$".

Below is the input, please follow the specified format for your output

Problem: {problem}

Existing steps:

{existing_steps}

Output:

Prompt 8: SciBench - Step prompt The prompt used to generate candidate new states. Taken from
(53]
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Given a math problem and its corresponding solution, your task is to
extract the final answer obtained in the solution.

You should summarize the answer using the format: "The final answer is
$...8". Replace "..." with the answer obtained in the solution.

Problem: {problem}

Solution: {existing_steps}

Extracted answer:

Prompt 9: SciBench - Summary prompt This prompt is applied after a solution is found to adjust
the output into the expected format. Taken from [53]]

Your task is to assess whether the provided solution steps can
successfully solve the given science/mathematics problem and
output a score.

The score should be a decimal between O and 1. If all the provided
steps are incorrect (every step is wrong), the score should be 0.
If all steps are correct and the final answer is successfully
calculated, the score should be 1. The more errors there are in
the steps, the closer the score should be to 0. The closer the
steps are to the final correct answer, the closer the score should

be to 1.

Steps that only contain verbal descriptions without any mathematical

expressions should generally receive a low score. A score equal to

or greater than 0.9 can only be given if the answer has already
been calculated to a specific numerical value. If the thought
process is complete but the answer is not computed, or only the
mathematical expression is written without solving it, the score
must be below 0.9.

First provide an analysis, then the score. Your analysis and scoring
should be entirely based on the given steps. Do not continue
solving the problem. Please study the following examples.

{examples}
Below is a problem and the existing steps, with analysis and scoring.

Be careful not to output the next steps in the analysis, and the
scoring should be based entirely on the steps given in the input.

The output format is limited to: "Analysis:...\nScore:...", where
indicates omitted output content, which is the part you need to
£fill in.

Input:

Problem: {problem}

Existing steps:

{existing_steps}

Output:

Prompt 10: SciBench - Value prompt This prompt used to evaluate a state. The original prompt was
taken from [53]] but was translated from Chinese to English using Google Translate.

Practical extensions in the FOA framework.

* Caching: The caching mechanism is utilized during the evaluation phase of our method to
enhance its efficiency. It operates by ensuring that a given state is evaluated only once by the
language model. This is achieved through a temporary state-to-value map maintained for
the duration of a single run of the algorithm. Consequently, only when an agent encounters
a previously unseen state, the LLM evaluates it and stores it in the cache. However, if
a different agent (or the same agent at a later step) revisits that state, the LLM does not
re-evaluate it; instead, the value is retrieved from the state-to-value cache. In comparison to
other baselines such as ToT [51]] and LATS [54]], no additional caching is being performed.

* Batching: During the mutation or selection phase (depending on the task) prompts are
callected by all agents. Once that happens, if duplicated prompts occur, instead of making
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several individual requests for the same prompt, we make a single request and ask for
multiple outputs. Employing batching in this way, ensures competitive fairness to methods
such as ToT which utilize the this mechanic in the same way. This approach enhances
efficiency and resource management by reducing network latency, server requests, on
top of lowering the costs, as the user pays for the input tokens only once. Additionally,
batching ensures consistency, as slight changes in the model’s state or data processing on
the provider’s side, can affect individual requests differently.

Task-specific modifications.

* For the Scibench task [42], we used the prompts provided in the ReST-MCTS* paper [53].
However, from our understanding, the evaluation prompt used in that paper was written in
Chinese, and no official English version was available. To ensure better control over the
evaluation process and to align the task with the predominantly English-language setup of
our experiments, we translated the original Chinese prompt into English. This allowed us to
directly inspect, adjust, and verify the evaluation inputs, ensuring consistency and clarity
across all baselines.

C.5 Hyperparameter Tuning

We perform a hyperparameter grid-search on the validation set, to explore trade-offs between success
rate and cost. For this search, we use GPT-3.5-turbo, since GPT-4 would be prohibitively expensive.
The hyperparameters we consider are the number of agents, the total number of steps each agent is
allowed to perform, the discount factor -, the resampling frequency % and the resampling method.

The grid search is implemented in two steps. Initially, a broader, more general grid search is conducted
to obtain an approximate understanding of where the optimal configurations are located. Subsequently,
a more precise grid search is performed based on the findings from the initial step. The results of the
second grid search for Game of 24 are presented in Figure[7] for Mini Crosswords in Figure[§]and for
WebShop in Figure 9]

C.5.1 Game of 24

The strategy for selecting the optimal configuration for the Game of 24 involves choosing the
configuration that yields the best performance at the lowest cost. Following this approach, it is evident
that the optimal number of agents and steps is achieved when the either hyperparameter is set to 9 or
12. However, since the cost is lowest at 9, this value is chosen for both the number of agents and the
number of steps. Regarding the resampling frequency, resampling after every step (i.e., k = 1) results
in significantly better performance and is therefore selected. For the discount factor v, no notable
differences in performance or cost are observed. Thus, v = 0.5 is chosen as it represents a balanced
choice between not allowing backtracking (v = 0) and maximally encouraging backtracking by
rendering the discount factor inconsequential (v = 1). Finally, the linear filtered resampling method
provides similar results to the linear method but at a significantly lower cost, making it the preferred
choice.

The linear filtered resampling method is essentially the same as linear resampling, but it only considers
states whose values are equal to or greater than the value of the current best-evaluated state. Across
the different tasks, we found that this method is advantageous only when multiple states with sparse
values are taken into consideration during resampling.
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Game of 24 - Hyperparameter tuning

Success rate Cost ($)
1.00 1.00
—&— Number of agents —$— Number of agents
0.75 0.75 1 /
0.50 0.50
0.25 E—’—" 0.25
0.00 0.00
6 9 12 6 9 12
1.00 1.00
—$— Number of steps —$— Number of steps
075 0.75 /
0.50 0.50
0.25 }//H 0.25
0.00 T T T 0.00 T T T
6 9 12 6 9 12
1.00 1.00
—$— Resampling frequency —$— Resampling frequency
0.75 0.75
—_— o
0.50 0.50
0.25 —— 0.25
0.00 T T T 0.00 T T T
1 2 3 1 2 3
1.00 1.00
—$— Discount factor (y) —4— Discount factor (y)
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0.50 0.50
0.25 } 0.25
0.00 0.00
0.1 0.2 0.5 0.1 0.2 0.5
1.00 1.00
—&— Resampling method
0.75 0.75 4
0.50 0.50
0.25 0.25
—$— Resampling method
0.00 T u 0.00 T u
Linear Linear (filtered) Linear Linear (filtered)

Figure 7: Results of the final grid-search for Game of 24. Each subplot illustrates the performance
(left) and cost (right) as a function of a varying hyperparameter. The values of the remaining
hyperparameters are set to those of the final, optimal configuration.

C.5.2 Mini Crosswords

For the Mini Crosswords task, in our final grids-search we observed that performance plateaued at
approximately 0.4 overlap percentage, with minimal variation. Consequently, our primary strategy
for this task was to minimize cost. The overlap remained similar when tuning the number of agents,
number of steps, and the resampling frequency. However, in each case, there was always a specific
value that significantly minimized cost, and this value was selected. Thus, we opted for 2 agents,
running for 6 steps each, and resampling every k£ = 3 steps. For the discount factor and the resampling
method, there was no clear advantage in terms of performance or cost. Therefore, we selected the
most moderate options in each category: a discount factor of v = 0.5 and the linear resampling
method.
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Mini Crosswords - Hyperparameter tuning

Overlap Cost ($)
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Figure 8: Results of the final grid-search for Mini Crosswords. Each subplot illustrates the
performance (left) and cost (right) as a function of a varying hyperparameter. The values of the
remaining hyperparameters are set to those of the final, optimal configuration.

C.5.3 WebShop

Finally, for the WebShop task, we reverted to our original strategy: achieving the best performance
at the lowest possible cost. It is noteworthy that, due to the complexity of the WebShop task, more
agents and steps were required for optimal performance. Consequently, we tested a broader range of
values for both resampling frequency and discount factor compared to the previous tasks. The results
indicated that the best average scores at the lowest cost were achieved with 15 agents running for 10
steps each. For the resampling frequency, the best scores were obtained with v € {2, 4,5}, with 4
and 5 being the most cost-effective. Since there was no significant cost difference between 4 and 5,
we selected 4 to allow for more frequent resampling. Finally, we omitted filtering during resampling
as it provided no additional advantage.
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WebShop - Hyperparameter tuning
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Figure 9: Results of the final grid-search for WebShop. Each subplot illustrates the performance
(left) and cost (right) as a function of a varying hyperparameter. The values of the remaining
hyperparameters are set to those of the final, optimal configuration.

C.6 Additional Results

C.6.1 Generalizability of the findings with other base models.

In the following section, we present our results for various models and demonstrate that the findings
generalize across different settings. You can find the results for the task of Game of 24 in Table[5]
Mini Crosswords in Table [6]and WebShop in Table

Note on the performance of Act and ReAct. Act and ReAct have essentially the same architecture
in the sense that an initial prompt is repeatedly being given to the LLM while it’s being updated by
the actions that have been chosen and the resulting environment observations. The only difference
is that the ReAct prompt introduces the possibility of a new action for the LLM : "Think". When
this action is chosen the LLM does not interact with the environment, it simply states its thoughts
and aims to come up with a strategy to solve the problem. However, these prompts came up years
ago where much less powerful models were used. As a result, more contemporary models interact
differently with them.

C.6.2 Ablation analysis for the Crosswords and WebShop tasks

In the following section, we present the remaining ablation studies we performed and display that our
findings generalize across different settings. You can find the results for the Game of 24 ablation in
Figure[I0} the Mini Crosswords in Figure[TT]and for WebShop in Figure[12]
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Table 5: Comparing FOA with previous methods using success rate (T better) and cost (. better) on
the Game of 24 task. Owing to its exorbitant cost (~ 600 US$), we could not run RAFA (shown as
DNR).

Task : Game of 24

model method success rate cost
10 0.068 0.048

CoT 0.036 0.122

CoT-SC 0.052 1.404

AoT 0.010 0.322

ToT 0.136 1.711

GPT-3.5 GoT 0112 1.603
RAFA 0.080 10.47

FoA 0.251 1.547

10 0.060 0.652

CoT 0.060 6.98

CoT-SC 0.10  49.395

AoT 0.490  20.984

GPT-4 ToT 0740 75.02
GoT 0.630 70

RAFA DNR DNR

FoA 0.760 62.93

10 0.026 0.004

CoT 0.036 0.008

CoT-SC 0.048 0.049

AoT 0.051 0.121

Llama 3.2-11B ToT 0.027 037
GoT 0.014 0.305

RAFA 0.000  23.102

FoA 0.060 0.32

10 0.060 0.027

CoT 0.068 0.054

CoT-SC 0.080 0.334

AoT 0.368 0.813

Llama 3.2-90B ToT 0355 251
GoT 0.301 2.11

RAFA DNR DNR

FoA 0.397 2.05

C.7 Details on RAFA Results and Metric Differences

In our evaluation of RAFA [23]] for the Game of 24 task, we used the official implementation provided
by the authors. However, the results we report differ from those presented in the original RAFA paper.
This difference stems from a variation in the definition of the success rate evaluation metric.

Specifically, the RAFA paper reports results using a relaxed version of the success rate metric (see
Footnote 1, page 50, ICML’24 camera-ready), which differs from the stricter formulation used in
other benchmarks. To ensure consistency and fairness across all methods evaluated in our study, we
applied the success rate implementation as defined in the original ToT [51] paper uniformly across all
baselines.

As shown in Table[8] when we apply the relaxed success rate metric used in the original RAFA paper,
our results align closely with those reported by its authors. This adjustment ensures that readers can
understand the basis of any apparent discrepancies and interpret our comparisons across methods
accurately.
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Table 6: Comparing FOA with previous methods using overlap (1 better) and cost ({ better) on the
Crosswords task .

Task : Mini Crosswords

model method  overlap cost

10 0.312 0.008

CoT 0.331 0.019
CoT-SC 0.331 0.063
ToT 0.333 0.479

GPT-3.5 GoT 0.345 0.398
FoA 0.362 0.246

10 0.368 0.511

CoT 0.394 1.064

P4 CoT-SC 0394  2.822

ToT 0.397  48.988
GoT 0412  30.281
FoA 0.460 12938

10 0.062 0.006

CoT 0.210 0.008
CoT-SC 0.210 0.037
ToT 0.465 0.440
GoT 0.415 0.567
FoA 0.509 0.160

Llama 3.2-11B

10 0.050 0.038

CoT 0.306 0.044
CoT-SC 0.306 0.129
ToT 0.628 6.010
GoT 0.625 4.715
FoA 0.649 1.550

Llama 3.2-90B
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Figure 10: Ablation analysis to study the impact of (a) Selection phase, (b) Resampling, (c) Back-
tracking, (d) Caching, and (e) Batching on the performance of FOA using the Game of 24 task with
GPT-3.5, Llama3.2-11B, and 90B as base models.
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Table 7: Comparing FOA with previous methods using average score (1 better) and cost (J. better) on
the WebShop task.

Task : WebShop

model method  average score cost
Act 0.581 0.095

ReAct 0.487 0.17

Reflexion 0.563 0.652

LASER 0.572 0.405

GPT-3.5 LATS 0.661 23227
FoA 0.756 1.68

Act 0.282 0.096

ReAct 0.167 0.116

Reflexion 0.248 0.493

Llama 3.2-11B LASER 0.54 0.75
LATS - -

FoA 0.772 2.6

1L 0.599 -

DL IL+RL 0.624 -
WebN-T5 [12] 0.610 -

WebGUM 0.675 -

Human experts 0.821 -

I FoA I No selection HEE No resampling Bl y=1 (no decay) Bl y=0 (no backtrack) B No caching Bl No batching
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Figure 11: Ablation analysis to study the impact of (a) Selection phase, (b) Resampling, (c) Back-
tracking, (d) Caching, and (e) Batching on the performance of FOA using the Mini Crosswords task
with GPT-3.5, Llama3.2-11B, and 90B as base models.
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Figure 12: Ablation analysis to study the impact of (a) Selection phase, (b) Resampling, (c) Back-
tracking, (d) Caching, and (e) Batching on the performance of FOA using the WebShop task with
GPT-3.5 and Llama3.2-11B base models.
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Figure 13: Comparing (Left) quality and (Right) cost of FOA with the second most efficacious
method (labeled SOTA) on each benchmark task.
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Figure 14: Evaluating the trade-off between (Left) model size and quality on benchmarked tasks with
Llama3.2-11B and 90B, and (Right) cost and quality of SOTA methods with GPT-3.5 on Game of 24.

RAFA results (Game-of-24) | Accuracy (%) | Low interval | High interval
Our run with RAFA metric 26 23 28
Our run with ToT metric 8 6 9
RAFA run with RAFA metric 29 - -

Table 8: Comparison of RAFA results across different runs and evaluation metrics.
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