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ABSTRACT

Measuring client relatedness is central to clustering and personalization in fed-
erated learning (FL), but value-based similarities over full weights or gradients
are bandwidth-heavy and leak information. We propose Index-Overlap Simi-
larity (IOS), a value-free metric that represents each client by the indices of its
Top-K salient parameters and scores pairs by the normalized overlap of these
supports. We show why IOS preserves alignment: under head-dominance with
bounded dispersion, it lower-bounds cosine up to tail error; Top-K is invariant
to common layerwise rescalings; and exponential moving averages stabilize sup-
ports across rounds. We instantiate IOS for clustered personalized FL, neigh-
bor selection, donor ranking, and oracle distribution alignment. Across FMNIST,
CIFAR-10/100, and 20News under Dirichlet and pathological splits, IOS matches
or exceeds cosine/Euclidean while sharing only indices. IOS is a simple, scalable
primitive for similarity search under communication and privacy constraints.

1 INTRODUCTION

A fundamental component of machine learning is the comparison of high-dimensional objects, such
as model weights, gradients, and data embeddings. It drives important federated learning tasks like
personalized aggregation and client clustering (Ghosh et al., 2020; Fallah et al., 2020; Dinh et al.,
2020), continual-learning tools like memory retrieval and drift detection (Gama et al., 2014; Lu et al.,
2018), and model analysis tools for provenance and similarity search (Indyk & Motwani, 1998; An-
doni & Indyk, 2008). Nevertheless, three enduring issues make default full-vector cosine/Euclidean
comparisons debilitating at scale and under privacy constraints: (1) Computation/communication
scale with model size. Comparing full real-valued vectors requires moving and multiplying ar-
rays whose length equals the number of trainable parameters; even on-device CNNs (1–10M)
strain bandwidth at scale, while mid-size backbones like ResNet-18/50 (∼11M/∼25M) and ViT-
B (∼80–90M) push per-client payloads into tens–hundreds of MB per round; transformers exac-
erbate this—BERT-base (∼110M), BERT-large (∼340M), and multi-billion-parameter checkpoints
(He et al., 2016; Dosovitskiy et al., 2021; Devlin et al., 2019). (2) Sharing real values enables re-
construction/inference attacks. Logits and partial activations permit model inversion (Fredrikson
et al., 2015); repeated round exposures fuel membership and property inference (Shokri et al., 2017;
Melis et al., 2019); and gradients/updates can be inverted to recover inputs or labels (Zhu et al.,
2019; Geiping et al., 2020). (3) Numeric instability distorts geometry. Layer-wise scale hetero-
geneity (batch normalization, weight decay, mixed precision) and optimizer-state drift yield poorly
calibrated cosine/Euclidean distances on raw weights or gradients across clients and over time (Ioffe
& Szegedy, 2015; Loshchilov & Hutter, 2019; Micikevicius et al., 2018).

In over-parameterized networks, salience is predominantly concentrated in a few heads and remains
relatively stable: a small subset of model parameters holds most first-order significance, while the
long tail is noisy and less indicative of inter-client relatedness (Michel et al., 2019; Voita et al., 2019;
Li et al., 2017; Gale et al., 2019). Additionally, models trained on datasets drawn from similar dis-
tributions exhibit similar parameter-importance patterns, consistent with representational-similarity
findings and client-relatedness in FL (Kornblith et al., 2019; Raghu et al., 2017; Ghosh et al., 2020).
Building on this intuition, we choose an alternative approach: we represent each model by the
significance of its coordinates rather than their values. Specifically, for each client, we assess the
significance of trained model parameters using a diagonal Fisher proxy and thereafter determine the
indices of a small set of top-K salient parameters. We calculate similarity as the overlap between
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these index sets. This Index-Overlap Similarity (IOS) is deliberately devoid of value; it conveys
solely integer identifiers of prominent coordinates. The intersection of coordinates tends to correlate
with alignment of learning signals and, importantly, remains resilient to layer-wise rescaling and
optimizer peculiarities. The set size K is selected to be a minuscule proportion of the model size,
specifically K ≪ M where M denotes the number of trainable parameters. In fact, maintaining
only a small fraction of coordinates preserves the majority of the stable “head” structure while re-
ducing computational requirements and data size by more than an order of magnitude, and without
revealing real-valued weights or gradients. Only index sets of salient coordinates are shared; no
weights, gradients, logits, or activations are exposed. We make no formal privacy claims, but IOS
reduces the attack surface relative to value sharing, mitigating risks of gradient/model inversion and
membership/property inference (Zhu et al., 2019; Geiping et al., 2020; Shokri et al., 2017).

Positioning vs. prior work. The resemblance among trained models is fundamental to numer-
ous machine learning procedures beyond FL. Most current measures function based on values: co-
sine/Euclidean metrics applied to weights or gradients; prototype/feature similarities from penulti-
mate activations (e.g., FedProto) or representation metrics such as CKA (Tan et al., 2022; Kornblith
et al., 2019); and influence/Shapley-style utilities obtained from value-bearing surrogates (Koh &
Liang, 2017; Ghorbani & Zou, 2019; Jia et al., 2019). Sparsification and pruning techniques (Lin
et al., 2018; Lee et al., 2019; Evci et al., 2020; Han et al., 2015) either learn or enforce sparse pa-
rameters for enhanced efficiency and occasionally examine mask overlap for stability; however, they
regard overlap merely as a byproduct of pruning rather than a fundamental similarity primitive. IOS
is, to our knowledge, the first method that calculates cross-model similarity without transmitting any
parameter values, facilitating sketch-based scaling and minimizing leakage channels.

Our Contribution. We instantiate IOS for FL, where communication and privacy constraints make
dispensing with real values attractive: every stage operates solely on prominent indices, mitigating
reconstruction/linkage risks from value sharing. We benchmark IOS against cosine and Euclidean
baselines across four applications: (i) Clustered Personalized FL (CPFL): derive an IOS affinity ma-
trix for client clustering to train cluster-specific models, evaluating against cosine-based clustering
via FL accuracy. (ii) Neighbor selection for personalized aggregation: build a similarity-weighted
neighbor graph, form label-histogram mixtures to match each client, comparing divergence from
target labels; (iii) Shapley-style donor ranking: use similarity as a proxy for marginal utility (vali-
dation uplift) and assess rank agreement/top-k recall versus KNN-Shapley; (iv) Oracle distribution
alignment: test whether the similarity matrix tracks true relatedness from clients’ label-distribution
divergence using Spearman/Kendall-τ , noting those baselines share real values while IOS does not.

Our Findings. Across FMNIST, CIFAR-10/100, and 20News under Dirichlet/Patho splits, IOS
(indices-only) consistently wins in our two target applications. In CPFL it yields better accu-
racy than Cosine/Euclidean (avg +1.5 pp vs. Cosine); for neighbor selection it recovers more or-
acle neighbors (CIFAR-100, Dir(0.1): R@8=0.67 vs. 0.61/0.53). IOS also gives tighter distribution
alignment and donor ranking (CIFAR-10, Dir(0.1): JS 0.219 vs. 0.238/0.252; Kendall-τ 0.48, R@5
0.62 vs. 0.36/0.55).

2 BACKGROUND & PROBLEM SETUP

2.1 BACKGROUND

Federated Learning (FL). We consider n clients with private datasets Di = {(xd, yd)}|Di|
d=1 and a

shared model parameterization w ∈ RM . The canonical FL objective is the weighted empirical risk
F (w) =

∑n
i=1 pi Fi(w), Fi(w) = 1

|Di|
∑

(x,y)∈Di
ℓ(w;x, y), pi =

|Di|∑
j |Dj | . In round t, a

subset St of clients receives the current global model w(t), performs E local SGD steps w(t+1)
i ←

w(t) − η
∑E

e=1 ∇̂Fi

(
w

(t,e−1)
i

)
and returns w

(t+1)
i to the server. The server aggregates (FedAvg)

w(t+1) =
∑

i∈St
p̄i w

(t+1)
i , p̄i = |Di|∑

j∈St
|Dj | , optionally using update-form aggregation (on

w
(t+1)
i − w(t)) and secure aggregation. We assume a fixed architecture across clients and standard

non-IID partitions unless stated otherwise.
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Fisher information–based importance. For a probabilistic model pθ(y | x) with loss ℓ(θ;x, y) =
− log pθ(y | x), the Fisher information matrix (FIM) is

I(θ) = Ex

[
Ey∼pθ(·|x)

[
∇θ log pθ(y | x)∇θ log pθ(y | x)⊤

]]
.

Its diagonal provides a principled, nonnegative per-parameter importance and underpins natural-
gradient methods (Amari, 1998). In practice we use the empirical Fisher (EF): replace the model
expectation with observed labels and estimate diag(I) from squared per-sample gradients over mini-
batches; EF is convenient but can deviate from the true Fisher and may misrepresent second-order
geometry (Kunstner et al., 2019). Recent results (Soen & Sun, 2024) give variance bounds and
sample-complexity trade-offs for diagonal Fisher estimators, with variance governed by network
nonlinearity and parameter grouping. Complementarily, improved EF (iEF) applies diagonal scaling
to better approximate natural-gradient behavior while retaining EF’s simplicity (Wu et al., 2024). In
this work, we adopt diagonal-Fisher / gradient-second-moment surrogates and mitigate estimator
noise via mini-batch averaging with an optional EMA.

Client heterogeneity and importance–pattern divergence. Let g(w;x, y) = ∇wℓ(w;x, y)
and define a per-parameter importance proxy via the empirical second moment / Fisher diagonal
sj = E[(∂ℓ/∂wj)

2]. Under a label-mixture model, E(x,y)∼Di

[
g(w;x, y)

]
=
∑

c πi(c)µc(w) + ξi,
so shifts in πi alter the mean gradient and the induced importance profile. Non-IID data induce gra-
dient dissimilarity, driving weight divergence and slowing FedAvg; SCAFFOLD formalizes bounded
dissimilarity and shows drift correction improves convergence (Karimireddy et al., 2020). Em-
pirically, divergence correlates with class-distribution distance (e.g., EMD) (Zhao et al., 2018), and
heterogeneous clients exhibit update directions/norms that differ markedly (Wang et al., 2023). Con-
versely, related distributions exhibit shared task-relevant structure: sparse “winning tickets” transfer
across natural-image datasets (Morcos et al., 2019), and fine-tuning on related tasks yields com-
patible weight-space task vectors that compose (Ilharco et al., 2023). Thus, dissimilar data induce
divergent importance/gradient profiles, whereas similar data induce partially overlapping sets of
salient parameters—largely independent of the chosen similarity metric.

2.2 ASSUMPTIONS AND SCOPE

We adopt an honest-but-curious FL coordinator. All clients share the same parameterization (layer
order/tensor shapes), yielding a common index space; cross-architecture similarity is out of scope.
The protocol releases only index sets —no real-valued weights, gradients, logits, activations, or
example-level metadata. Systems assumptions include authenticated transport and optional secure
aggregation; robustness to Byzantine failures/poisoning is orthogonal. Label distributions and oracle
similarities are used only for evaluation, never at runtime. Relative to value sharing, IOS reduces
exposure to reconstruction channels. Formal privacy accounting for index release is beyond scope;
the aim is to shrink the attack surface versus sharing values.

3 METHOD

IOS is a value-free, index-only similarity framework: each client computes a local importance signal
(e.g., diagonal Fisher/gradient second moment), extracts the Top-K parameter indices as its support,
and shares only these indices (or compact MinHash signatures). Cross-client similarity is defined
by set overlap on supports, enabling exact intersections or scalable LSH-based retrieval—without
transmitting any real-valued weights, gradients, or activations. The support size K is chosen locally
via importance coverage and stability under communication/privacy budgets.

3.1 INDEX-OVERLAP SIMILARITY (IOS)

Importance accumulation. For each client i, we form a nonnegative per-parameter importance
vector si ∈ RM

≥0 from local data Di using the diagonal Fisher (or its empirical second-moment
proxy) introduced in § Background:

si,j ≈
1

T

T∑
t=1

1

B

B∑
b=1

(
∂ℓ(w;x

(t)
i,b,y

(t)
i,b)

∂wj

)2
,

3
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optionally stabilized by an EMA si ← βsi+(1−β)ŝi with β ∈ [0, 1). This produces a scale-robust,
value-nonnegative signal that can be computed entirely on the device.

Support extraction and Similarity Calculation. Given a global budget K ≪ M , we define the
client’s index-only representation as the set of its K most salient parameters

Ii = TopK(si) ⊆ [M ], |Ii| = K.

(Per-layer budgeting is accommodated by choosing Kℓ with
∑

ℓ Kℓ = K and Ii =
⋃

ℓ I
(ℓ)
i where

I
(ℓ)
i = TopKℓ(s

(ℓ)
i ).) Ties are broken deterministically (e.g., by index) for reproducibility. For

implementation, we also use a bitmask mi ∈ {0, 1}M with mi,j = 1{j ∈ Ii}. IOS defines similarity
purely from set overlap, without transmitting any real-valued weights/gradients. We define similarity
S(i, j) (with distance 1− similarity). With |Ii| = |Ij | = K, S(i, j) =

|Ii∩Ij |
K .

Algorithm 1 Select K via Importance Coverage (client i)
Input: Importance si ∈ RM

≥0; coverage target τ ; cap Kmax; stability target ρ0 and resamples r
Output: K⋆

i and support Ii = TopK(si,K
⋆
i )

1: Sort indices j1, . . . , jM by si,j descending; prefix sums S(t) =
∑t

u=1 si,ju and Stot = S(M)
2: lo← 1, hi← Kmax, K

⋆ ← Kmax

3: while lo ≤ hi do
4: mid← ⌊(lo+ hi)/2⌋; C ← S(mid)/Stot

5: if C ≥ τ then
6: K⋆ ← mid; hi← mid− 1 ▷ keep smallest K achieving coverage
7: else
8: lo← mid+ 1
9: if stability target ρ0 is provided then

10: for K ∈ {K⋆, K⋆+1, min(K⋆+2,Kmax)} do
11: Estimate ρi(K) using r lightweight resamples of si by Equation (1)
12: if ρi(K) ≥ ρ0 then
13: K⋆ ← K; break
14: return K⋆

i ← K⋆ and Ii = {j1, . . . , jK⋆
i
}

3.2 SELECTING K FOR IOS

IOS represents each client i by the indices of its K most important parameters. Choosing K must
balance utility (capturing enough importance mass), stability (insensitivity to estimator noise), and
budgets from communication and privacy. Let si ∈ RM

≥0 be the local importance vector (e.g.,
diagonal Fisher or per-parameter gradient second moment) on client i. Let j1, . . . , jM be indices
sorted by si,j in descending order and define the cumulative importance (using ℓ1 mass for Fisher-
diagonal):

Ci(K) =

∑K
t=1 si,jt∑M
t=1 si,jt

∈ [0, 1], Ci(K) is non-decreasing in K.

To assess robustness of the selected support, we define an overlap-stability score. Generate r resam-
ples of the importance estimator (e.g., via bootstrapping mini-batches or adjacent time windows).
For each resample b, extract the top-K set I(b)i (K) = TopK(s

(b)
i ). With |I(b)i (K)| = K for all b,

define the mean pairwise overlap

ρi(K) =
2

r(r − 1)

∑
b<b′

∣∣I(b)i (K) ∩ I
(b′)
i (K)

∣∣
K

∈ [0, 1]. (1)

Thus, ρi(K) quantifies how consistently the same indices appear across resamples; values near 1
indicate stable supports. Given a coverage target τ ∈ (0, 1) and an optional stability target ρ0 ∈
(0, 1), select the smallest integer K satisfying

Ci(K) ≥ τ and (if enforced) ρi(K) ≥ ρ0.

4
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Here Ci(K) guarantees that the selected indices cover a desired fraction of total importance, while
ρi(K) ensures reproducibility under estimator noise. The rule is locally computable, value-free
externally, and binary-searchable because Ci(K) is monotone. Stability is only checked near the
candidate K to limit overhead. Ties in TopK are broken deterministically by index.

Exact all-pairs overlap costs O(n2K); we therefore use MinHash-LSH to retrieve candidate neigh-
bors in subquadratic time while preserving IOS’s value-free property. Full derivations, and com-
plexity bounds appear in Appx. A.

4 THEORETICAL PROPERTIES

We develop the theory of IOS around three pillars: (i) alignment—why overlap of top-K salient
indices tracks the cosine similarity of first-order signals; (ii) stability—why the selected supports
remain consistent over time under mild noise with EMA smoothing; and (iii) robustness—why IOS
is insensitive to common re-scalings and diagonal preconditioning. Additional analyses (cover-
age–stability trade-off for choosing K, robustness, and complexity) appear in Appx. D.

4.1 NOTATION AND ASSUMPTIONS

For client i, let si ∈ RM
≥0 be a nonnegative importance vector, and Ii = TopK(si) with |Ii| = K ≪

M . Write the head–tail split si = hi+ ti with (hi)u = (si)u 1{u ∈ Ii} and ti = si−hi. Define the
head-energy fraction αi = ∥hi∥22/∥si∥22 ∈ (0, 1] and the tail-to-head ratio τi = ∥ti∥2/∥hi∥2. We say
head dominance holds if αi ≥ 1 − ε (equivalently, ∥hi∥2 ≥

√
1− ε ∥si∥2) for a small ε ∈ [0, 1).

We assume bounded dispersion inside the head: κi := maxu∈Ii(hi)u
/
minu∈Ii(hi)u ≤ κ for a

moderate κ ≥ 1. For two clients i, j, denote the normalized overlap of their salient supports by
Rij =

|Ii∩Ij |
K ∈ [0, 1].

4.2 ALIGNMENT: COSINE VS. IOS

Proposition 1 (Cosine lower bound via overlap). Under head dominance (αi, αj ≥ 1 − ε) and
bounded dispersion (κi, κj ≤ κ),

cos(si, sj) =
⟨si, sj⟩
∥si∥2 ∥sj∥2

≥ (1− ε)

κ2
Rij . (2)

Proof sketch. With nonnegative entries, the inner product is at least the contribution on the
intersecting head block: ⟨si, sj⟩ ≥

∑
u∈Ii∩Ij

(hi)u(hj)u. Let ai = minu∈Ii(hi)u and bi =

maxu∈Ii(hi)u ≤ κai. Then ∥hi∥22 ≤ Kb2i ≤ Kκ2a2i , hence every head entry satisfies (hi)u ≥
∥hi∥2/(κ

√
K). The intersect term is thus at least |Ii∩Ij |

κ2K ∥hi∥2∥hj∥2. Head dominance yields
∥hi∥2 ≥

√
1− ε ∥si∥2 and likewise for j, which gives equation 2 after normalization. See full

proof in Appx. B

4.3 SUPPORT STABILITY OVER TIME

Let s(t)i = µi + ξ
(t)
i , where µi is a stationary signal and ξ

(t)
i has independent, mean-zero sub-

Gaussian coordinates with proxy variance σ2
i . IOS maintains an exponential moving average (EMA),

s̃
(t)
i = β s̃

(t−1)
i +(1−β) s(t)i , β ∈ [0, 1) and selects I(t)i = TopK(s̃

(t)
i ) (after an arbitrary burn-in).

The K-boundary margin is ∆i := µi,(K)−µi,(K+1) > 0 (ties w.r.t. µi are broken deterministically).
The EMA reduces the per-coordinate noise variance to

σi(β)
2 = σ2

i

∑
s≥0

(1− β)2β2s = σ2
i

(1− β)2

1− β2
= σ2

i

1− β

1 + β
. (3)

Theorem 1 (Top-K selection stability). Fix client i and let ∆i > 0 as above. For any t after burn-
in,Pr

(
TopK(s̃

(t)
i ) is unique and equals TopK(µi)

)
≥ 1− 2M exp

(
− ∆2

i

8σi(β)2

)
. Equivalently, if

∆i ≥ c σi(β)
√
logM with any c >

√
8, then the failure probability decays as O(M1−c2/8).

5
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Proof idea. Let H be the mean top-K set and H̄ = [M ] \ H . Consider E1 = {minu∈H g̃
(t)
i,u ≥

µi,(K) − ∆i/2} and E2 = {maxv∈H̄ g̃
(t)
i,v ≤ µi,(K+1) + ∆i/2}. Sub-Gaussian tails and a union

bound over K and (M − K) coordinates give Pr(Ec
1) ≤ Ke−∆2

i /(8σi(β)
2) and Pr(Ec

2) ≤ (M −
K)e−∆2

i /(8σi(β)
2); hence 1 − 2Me−∆2

i /(8σi(β)
2) overall. Define the temporal self-overlap Γ

(t)
i =

|I(t)
i ∩I

(t−1)
i |

|I(t)
i ∪I

(t−1)
i |

∈ [0, 1]. If a fraction ρ of the K-boundary gaps of µi exceed c σi(β)
√
logM (with

c >
√
8), then after burn-in E[Γ(t)

i ] ≥ ρ−O(M1−c2/8). See full proof in Appx. C.

5 APPLICATIONS OF IOS

We instantiate IOS in four FL scenarios. Where prior art uses cosine over value-bearing vectors, we
implement the same pipelines and swap cosine with IOS to ensure fair comparisons.

• Clustered Personalized FL (CPFL / IFCA-style). We construct an affinity matrix Aij and
run clustering with affinity propagation (AP) (Frey & Dueck, 2007) to obtain client groups
{C1, . . . , CK}, followed by cluster-conditioned training. As baselines, we re-implement IFCA
(Ghosh et al., 2020) and Clustered FL (Sattler et al., 2020) using their original cosine-based affini-
ties; the IOS variant replaces cosine with value-free overlap of Top-K supports, A(IOS)

ij =
|Ii∩Ij |

K .
We report FL accuracy and clustering quality metrics—highlighting regimes where IOS matches
accuracy while reducing leakage and bytes.

• Neighbor Selection for Personalized Aggregation (Per-FedAvg + similarity graph). Person-
alized FL updates are mixed from “nearby” clients via a similarity-weighted graph G with edges
wij ∝ Ŝ(i, j). We instantiate Per-FedAvg (Fallah et al., 2020) with a cosine-based neighbor pol-
icy (baseline) and a drop-in IOS policy that computes similarity from the overlap of important
indices. Metrics include recall compared to cosine for finding the most relevant neighbors.

• Oracle Distribution Alignment (evaluation-only). To test whether an index-only similarity cap-
tures latent relatedness induced by label distributions, we form an oracle S⋆(i, j) = 1−JS(πi, πj)
(or 1−Hellinger) from client histograms {πi} and compare it against method-driven similarities
computed either by cosine on value-bearing vectors (weights/updates/features) or by IOS. We
evaluate rank alignment (Spearman/Kendall) and calibration across divergence bins.

• Shapley-Style Donor Ranking (similarity→ utility proxy). For a target client t, we rank donors
j ̸= t via a utility proxy ũt(j) ∝ Ŝ(t, j). We reproduce kNN-Shapley (Jia et al., 2019) using
cosine(Koh & Liang, 2017; Ghorbani & Zou, 2019) in the neighbor stage (baseline), then replace
it with IOS: ŜIOS(t, j) =

|It∩Ij |
K . We report rank correlation with true uplift ∆Vt(j) and top-k

recall, noting when IOS maintains fidelity while avoiding value sharing.

6 EXPERIMENTS

We evaluate IOS on standard FL applications using identical client partitions and architec-
tures—only the similarity differs; extended empirical results appear in Appx. E.

6.1 SETTING

Datasets and models. Vision benchmarks include FMNIST (28×28 grayscale; 10 classes) with a
2-layer CNN, CIFAR-10 (32×32 RGB; 10 classes) with ResNet18, and CIFAR-100 (32×32 RGB;
100 classes) with ResNet50. To probe modality-agnostic behavior, we include an optional non-
vision task on 20News with BERT-base. Across clients, the per-client optimal selection size K
(Kmax = 20%) lies in K⋆

i as [10.3, 13.5]% for CNN, [6.1, 8.4]% for ResNet18, [8.2, 10.4]% for
ResNet50, and [7.6, 9.3]% for BERT-base; we set K to the client-wise mean in each case, yielding
K = 12.2, 7.3, 9.6%, and 8.2%, respectively.

Data partitioning. We synthesize heterogeneous populations with three regimes. IID partitions
split each dataset uniformly at random across N clients. Dirichlet partitions draw client-wise class
proportions from Dir(α) with α ∈ {0.1, 0.3} and allocate examples accordingly. Pathological
partitions,Patho(n), assign each client a small subset of classes (e.g., n ∈ {20%, 30%} classes per

6
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Table 1: CPFL test accuracy (%). Rows are models; columns are distributions with three similarity
choices: Cosine, Euclidean, and IOS. Bold marks the best.
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CNN / FMNIST 73.32 71.41 76.23 70.80 70.21 74.79 94.87 91.92 95.18 82.19 81.80 83.15
ResNet18 / CIFAR-10 63.92 61.35 66.13 60.85 58.40 62.1 79.18 75.47 81.44 74.38 73.96 74.81
ResNet50 / CIFAR-100 47.25 41.56 49.71 45.40 43.18 48.3 58.12 53.19 58.07 53.49 50.06 52.98
BERT-base / 20News 49.16 48.04 50.3 44.62 41.51 45.41 56.18 55.03 58.26 53.79 51.80 54.25

Table 2: Cluster quality across heterogeneity regimes. Higher Silhouette/CH, lower DB are better.

Model / Dataset Method Dir(0.3) Dir(0.1) Patho(20%) Patho(30%)
Sil↑ DB↓ CH↑ Sil↑ DB↓ CH↑ Sil↑ DB↓ CH↑ Sil↑ DB↓ CH↑

CNN/FMNIST Oracle 0.259 1.049 6.490 — 0.400 0.855 12.714 — 0.308 0.921 7.040 — 0.277 1.356 7.986
IOS 0.212 1.208 5.427 — 0.340 0.993 10.486 — 0.249 1.059 5.701 — 0.234 1.617 6.547
Cosine 0.207 1.250 5.245 — 0.333 1.016 10.140 — 0.241 1.087 5.569 — 0.226 1.673 6.346
Euclidean 0.197 1.278 5.074 — 0.321 1.044 9.758 — 0.229 1.120 5.442 — 0.215 1.725 6.114

ResNet18/CIFAR-10 Oracle 0.218 1.185 5.746 — 0.384 0.801 10.361 — 0.373 0.800 9.328 — 0.277 1.356 7.987
IOS 0.176 1.399 4.636 — 0.322 0.925 8.663 — 0.305 0.944 7.849 — 0.226 1.617 6.479
Cosine 0.171 1.447 4.539 — 0.311 0.951 8.426 — 0.294 0.966 7.633 — 0.221 1.650 6.308
Euclidean 0.166 1.489 4.438 — 0.303 0.977 8.020 — 0.279 1.004 7.352 — 0.214 1.693 6.004

ResNet50/CIFAR-100 Oracle 0.017 4.285 1.496 — 0.011 1.072 1.625 — 0.063 2.031 1.818 — 0.028 3.034 1.520
IOS 0.013 4.995 1.223 — 0.009 1.264 1.308 — 0.053 2.399 1.474 — 0.023 3.491 1.238
Cosine 0.013 5.186 1.187 — 0.009 1.295 1.256 — 0.051 2.450 1.433 — 0.022 3.599 1.206
Euclidean 0.013 5.328 1.143 — 0.009 1.325 1.229 — 0.049 2.538 1.363 — 0.021 3.683 1.166

BERT-base/20News Oracle 0.318 0.962 7.485 — 0.472 0.735 13.102 — 0.345 0.874 8.336 — 0.304 1.184 7.923
IOS 0.268 1.118 6.214 — 0.416 0.884 10.980 — 0.292 0.944 6.984 — 0.256 1.346 6.582
Cosine 0.259 1.145 5.980 — 0.404 0.909 10.612 — 0.281 0.970 6.795 — 0.246 1.378 6.331
Euclidean 0.253 1.168 5.920 — 0.392 0.936 10.400 — 0.277 0.980 6.693 — 0.241 1.406 6.268

client) and distribute examples uniformly within the assigned subset. Unless noted, we use N = 20
clients with balanced sample counts, and hold out 10% client-local validation for diagnostics.

Implementation details. All training and importance accumulation are local to clients. Importance
vectors aggregate over all local batches unless a cap is stated; for stability, we apply an EMA with
β = 0.8. Models are trained with SGD (momentum 0.9, weight decay 5×10−4) and fixed LR
of 0.001; FMNIST runs for 10 local epochs, CIFAR-10/100, and BERT-base for 50; results are
averaged over three seeds. Experiments run on a single A100 GPU (40 GB) with a 32-core CPU.

6.2 EVALUATING IOS APPLICATIONS

Clustered Personalized FL. We follow IFCA/Clustered-FL style clustering and then train cluster-
specialized models; all methods share identical data splits, models, and training budgets. Table 1
reports CPFL test accuracy (%) across four heterogeneity regimes on different models. We compare
IOS to two Cosine-based affinities commonly used in clustered FL pipelines: Cosine and Euclidean
indicate Cosine and Euclidean similarities between client gradient/importance vectors aggregated
locally. Both transmit full real-valued vectors; IOS transmits only top-K index sets. The results
indicate that IOS consistently outperforms value-based similarities across vision and text, with gains
larger under stronger heterogeneity. For example, on CIFAR-100 at Dir(0.1), IOS attains 48.3%
vs. 45.40% (Cosine) and 43.18% (Euclidean). IOS is best in most settings, +1.47 pp over Cosine,
with dataset-wise gains of +2.04 (FMNIST), +1.54 (CIFAR-10), +1.20 (CIFAR-100), and +1.12 pp
(20News); Euclidean is consistently lower than Cosine and IOS.

Cluster Quality Evaluation. We assess clustering with Silhouette, Davies–Bouldin (DB), and Calin-
ski–Harabasz (CH), where higher Sil/CH and lower DB are better. Using ground-truth label affini-
ties, the Oracle is an upper bound. Table 2 shows that IOS reliably closes most of the gap to
Oracle: per cell it is only ∼15–20% lower on Sil/CH and ∼14–20% higher on DB. Cosine (on
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Table 3: Recall@k vs. Oracle for neighbor selection. Within each regime, we report Recall@k.
Dataset / Model Method Dir(0.3) Dir(0.1) Patho(20%) Patho(30%)

(k=4 / 8 / 16) (k=4 / 8 / 16) (k=4 / 8 / 16) (k=4 / 8 / 16)

CNN / FMNIST Cosine 0.64 / 0.81 / 0.96 0.58 / 0.75 / 0.90 0.55 / 0.72 / 0.88 0.56 / 0.73 / 0.89
Euclidean 0.56 / 0.74 / 0.90 0.50 / 0.68 / 0.84 0.48 / 0.65 / 0.81 0.49 / 0.66 / 0.82
IOS 0.70 / 0.88 / 0.97 0.65 / 0.78 / 0.92 0.58 / 0.74 / 0.90 0.59 / 0.78 / 0.94

ResNet18 / CIFAR-10 Cosine 0.60 / 0.78 / 0.94 0.52 / 0.68 / 0.83 0.50 / 0.66 / 0.81 0.51 / 0.67 / 0.82
Euclidean 0.53 / 0.72 / 0.89 0.44 / 0.60 / 0.77 0.42 / 0.58 / 0.75 0.43 / 0.59 / 0.76
IOS 0.62 / 0.80 / 0.96 0.55 / 0.73 / 0.90 0.52 / 0.74 / 0.86 0.54 / 0.73 / 0.86

ResNet50 / CIFAR-100 Cosine 0.48 / 0.66 / 0.82 0.44 / 0.61 / 0.77 0.42 / 0.59 / 0.75 0.43 / 0.60 / 0.76
Euclidean 0.40 / 0.58 / 0.75 0.36 / 0.53 / 0.70 0.34 / 0.51 / 0.68 0.35 / 0.52 / 0.69
IOS 0.49 / 0.70 / 0.85 0.45 / 0.67 / 0.81 0.44 / 0.63 / 0.79 0.45 / 0.64 / 0.78

BERT-base / 20News Cosine 0.68 / 0.85 / 0.96 0.64 / 0.81 / 0.92 0.62 / 0.80 / 0.96 0.63 / 0.81 / 0.94
Euclidean 0.61 / 0.79 / 0.95 0.57 / 0.75 / 0.92 0.55 / 0.73 / 0.90 0.56 / 0.74 / 0.91
IOS 0.65 / 0.82 / 0.97 0.61 / 0.83 / 0.94 0.63 / 0.82 / 0.95 0.65 / 0.83 / 0.97

gradients/parameters) is a further ∼1–4% worse than IOS, and Euclidean trails Cosine by another
∼2–4%. Overall, IOS captures client relatedness more consistently than value-based similarities,
yielding tighter intra-cluster cohesion and clearer inter-cluster separation.

Neighbor Selection: Retrieval Quality vs. Oracle. Personalized FL hinges on selecting the right
peers: if the neighborhood assembled for a client does not mirror its underlying data distribution, no
aggregation rule can reliably personalize downstream models. Recall@k = 1

n

∑n
i=1

|NS
k (i)∩N⋆

k (i)|
k

directly measures how many oracle neighbors are recovered, while its trend over k and across het-
erogeneity regimes reveals robustness. For each client i, let N⋆

k (i) be the oracle neighbor set: the k
clients with the smallest Wasserstein distance between the true per-client label histograms (unavail-
able in practice; used only for evaluation). A method S (Cosine, Euclidean, or IOS) returns NS

k (i)
via k-NN on its similarity. In this experiment N = 40, and We sweep k ∈ {4, 8, 16}.
Table 3 shows that IOS retrieves oracle neighbors more reliably than value-based baselines, with
larger gaps at higher k and stronger non-IID. In the hardest regime (CIFAR-100, Dir(0.1)), IOS
reaches R@8 = 0.67 vs. 0.61/0.53 (Cosine/Euclidean) and 0.81 at k=16 vs. 0.77/0.70; on CIFAR-
10, Dir(0.1) it attains R@8 = 0.73 (+0.05/+0.13) and 0.90 at k=16 vs. 0.83/0.77. Recall rises
with k for all methods, yet IOS keeps a lead (FMNIST, Dir(0.3), k=16: 0.97 vs. 0.96/0.90). As
heterogeneity strengthens (Dir 0.3→0.1), all recalls drop but IOS degrades less (CIFAR-100 R@8:
0.70→ 0.67 vs. 0.66→ 0.61). The pattern is modality-agnostic: IOS tracks oracle structure in text
(20News R@16 up to 0.97), while vision under severe non-IID remains harder yet still favors IOS.

Shapley-Style Donor Ranking. In many PFL/DFL schemes, a client aggregates only from a few
high-value donors. Inspired by Shapley-value notions of contributor utility in ML (Ghorbani & Zou,
2019; Wang et al., 2020; Lin et al., 2022), we implement a Shapley-style donor-ranking evaluation
in our codebase: the oracle similarity S⋆(i, j) via wasserstein distance over true label histograms
induces the ground-truth donor order π⋆(i). For any operational similarity S, we get a method order
πS(i) by sorting row S[i, ·] (excluding i). In our implementation, we replace Cosine with IOS: the
default donor ranking uses IOS (index-overlap on Top-K supports) rather than Cosine, and we report
agreement with π⋆(i) via Kendall’s τ and Recall@k (averaged over clients and final rounds).

Table 4 shows IOS yields the highest agreement with the oracle, outperforming both Cosine and Eu-
clidean. Gains are consistent across regimes: on CIFAR-10 with Dir(0.1), IOS reaches τ=0.48
/ R@5 = 0.62 vs. 0.36/0.55 (Cosine) and 0.35/0.53 (Euclidean). On the harder CIFAR-100,
Dir(0.1), IOS attains 0.36/0.52 vs. 0.28/0.49 and 0.28/0.48. For FMNIST, Dir(0.3), IOS
0.59/0.68 exceeds 0.48/0.63 and 0.47/0.62; for 20News, Dir(0.3), IOS 0.64/0.72 improves over
0.55/0.68 and 0.54/0.67. Euclidean trails Cosine by ≈0.01–0.02 in both τ and R@5 throughout,
reinforcing that indices-only IOS better preserves oracle donor priority without real-valued sharing.

Oracle Distribution Alignment. Personalization quality depends on whether a client’s neighbor
mixture reproduces its true data distribution. For client i with label histogram pi, and a method S that
selects a k-NN set NS

k (i) with weights wij∝S(i, j) (row-normalized), we form the induced mixture
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Table 4: Shapley-style donor ranking vs. oracle. Each cell reports Kendall’s τ / Recall@5. Meth-
ods: Cosine, Euclidean, and IOS. Oracle ranking is induced by 1−JS on true label distributions.

Dataset / Model Method Dir(0.3) Dir(0.1) Patho(20%) Patho(30%)
(τ / R@5) (τ / R@5) (τ / R@5) (τ / R@5)

CNN / FMNIST Cosine 0.48 / 0.63 0.41 / 0.57 0.39 / 0.55 0.40 / 0.56
Euclidean 0.47 / 0.62 0.43 / 0.56 0.38 / 0.54 0.40 / 0.55
IOS 0.59 / 0.68 0.52 / 0.62 0.49 / 0.60 0.51 / 0.61

ResNet18 / CIFAR-10 Cosine 0.44 / 0.60 0.36 / 0.55 0.34 / 0.54 0.35 / 0.54
Euclidean 0.43 / 0.59 0.35 / 0.53 0.34 / 0.53 0.34 / 0.53
IOS 0.56 / 0.66 0.48 / 0.62 0.45 / 0.60 0.46 / 0.61

ResNet50 / CIFAR-100 Cosine 0.32 / 0.52 0.28 / 0.49 0.27 / 0.48 0.28 / 0.49
Euclidean 0.31 / 0.51 0.28 / 0.48 0.26 / 0.47 0.28 / 0.48
IOS 0.41 / 0.56 0.36 / 0.52 0.34 / 0.50 0.35 / 0.51

BERT-base / 20News Cosine 0.55 / 0.68 0.50 / 0.64 0.48 / 0.63 0.49 / 0.64
Euclidean 0.54 / 0.67 0.49 / 0.62 0.47 / 0.62 0.48 / 0.62
IOS 0.64 / 0.72 0.59 / 0.69 0.57 / 0.67 0.58 / 0.68

Table 5: Oracle distribution alignment (JS divergence; lower is better) with k=8 neighbors. Bold
indicates the best non-oracle method.

Dir(0.3) Dir(0.1) Patho(20%) Patho(30%)
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CNN / FMNIST 0.184 0.214 0.233 0.196 0.205 0.247 0.265 0.225 0.217 0.261 0.279 0.240 0.198 0.242 0.257 0.226
ResNet18 / CIFAR-10 0.173 0.205 0.226 0.188 0.195 0.238 0.252 0.219 0.208 0.259 0.275 0.237 0.189 0.236 0.249 0.221
ResNet50 / CIFAR-100 0.241 0.278 0.301 0.254 0.265 0.312 0.329 0.285 0.283 0.333 0.352 0.307 0.259 0.305 0.323 0.281
20News / BERT-base 0.123 0.141 0.156 0.134 0.136 0.153 0.166 0.145 0.145 0.163 0.174 0.155 0.132 0.156 0.168 0.148

p̂Si (k) =
∑

j∈NS
k (i) wij pj . We evaluate alignment via Jensen–Shannon divergence JS

(
pi, p̂

S
i (k)

)
(lower is better), averaged over clients and the last 10 rounds. As an oracle upper bound, we compute
N⋆

k (i) using the k neighbors that minimize the Wasserstein distance to pi (unavailable in practice;
used only for evaluation). The result in Table 5 for fix k=8 indicates that (i) IOS consistently yields
tighter alignment to client distributions. Across all settings, IOS is the best non-oracle: e.g., on
CIFAR-10 and Dir(0.1), IOS reduces JS to 0.219 vs. 0.238 (Cosine, ↓0.019) and 0.252 (Euclidean,
↓0.033), approaching the oracle’s 0.195 within 0.024. On the harder CIFAR-100, Dir(0.1), IOS
attains 0.285, improving over Cosine by 0.027 and over Euclidean by 0.044, and within 0.020 of
oracle. (ii) Non-IID severity increases mismatch for all, but IOS degrades least. Moving from
Dir(0.3) to Dir(0.1) increases JS by∼0.02–0.04; IOS’s increments are systematically smaller than
Cosine/Euclidean (e.g., FMNIST: +0.029 for IOS vs. +0.033 / +0.032). (iii) Modality trend holds.
Text classification (BERT-base/20News) exhibits lower JS overall, yet IOS preserves a clear gap
(Dir(0.3): 0.134 vs. 0.141 / 0.156), showing that indices-only geometry transfers beyond vision.

7 DISCUSSION & CONCLUSION.

IOS is a value-free, index-only similarity —a drop-in replacement for value-based (parame-
ter/gradient) affinities when sharing real numbers is undesirable. While our evaluation focuses
on FL, the abstraction extends beyond federation: IOS applies to any domain that needs model-
to-model similarity (e.g., model hubs, ensemble selection, continual/transfer learning, checkpoint
curation) where value sharing is costly or risky. By measuring support overlap of salient pa-
rameters, it captures the inductive bias most predictive of relatedness, yielding consistent gains
across applications: clustered PFL (faster convergence, higher accuracy), neighbor selection (higher
Recall@k), donor ranking (higher Kendall-τ ), and distribution alignment (lower JS). Exchanging
indices only shrinks the attack surface (gradient leakage, model inversion, membership/property in-
ference). Overall, IOS recovers near-oracle structure with lightweight communication and a strong
privacy posture—advancing scalable personalization in decentralized learning.
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A HASH–LSH FOR SCALABLE CANDIDATE RETRIEVAL

Why Hash–LSH. Computing all-pairs overlap between n clients’ supports {Ii}ni=1 costs O(n2K)
even with sorted lists/bitsets. We use MinHash with locality-sensitive hashing (LSH) to retrieve
candidate neighbors in subquadratic time and bytes: each client publishes a short signature (or
only band buckets), the server (or a peer) looks up candidates that collide in at least one band,
and exact similarity is computed only on this small candidate set. This preserves IOS’s value-
free property (only indices/signatures, no real-valued parameters) and scales to large n. For a
support set I ⊆ [M ], define h independent minhashes ϕk(I) = min{ Hk(j) : j ∈ I } using
2-universal (approx. minwise) hash functions Hk : [M ] → {0, . . . , 264− 1}. The signature is
Φ(I) = (ϕ1(I), . . . , ϕh(I)) ∈ Nh. For any two sets Ii, Ij with S(i, j), an an unbiased estimator
with Var[ŝ] = s(1− s)/h is P

[
ϕk(Ii) = ϕk(Ij)

]
= s ⇒ ŝ = 1

h

∑h
k=1 1{ϕk(Ii) = ϕk(Ij)}.

Signature cost is O(hK) time and O(h) words per client.

Algorithm 2 IOS–MinHash–LSH (build & query)
Input: Supports {Ii}ni=1, hash family {Hk}hk=1, bands b, rows per band r, exact index store for Ii

1: Build: For each client i:
2: Compute signature Φ(Ii) where ϕk(Ii) = minj∈Ii Hk(j)
3: For each band u = 1..b, form key Bu(Ii) = (ϕ(u−1)r+1, . . . , ϕur) and insert i into table
Tu[Bu(Ii)]

4: Query(q): Given a query support Iq
5: Compute Φ(Iq) and band keys Bu(Iq)

6: Candidates C ←
⋃b

u=1 Tu[Bu(Iq)] \ {q}
7: For each j ∈ C: fetch Ij (if not local), compute S(q, j) =

|Iq∩Ij |
K

8: Return top-k by S(q, j) (or all with S(q, j) ≥ smin)

B ALIGNMENT PROOFS (OVERLAP-ONLY)

B.1 AUXILIARY BOUND

Lemma 1 (Per-coordinate lower bound from dispersion). If κi ≤ κ, then for every u ∈ Ii,

(hi)u ≥
∥hi∥2
κ
√
K

.

Proof. Let a = minu∈Ii(hi)u and b = maxu∈Ii(hi)u ≤ κa. Then ∥hi∥22 =
∑

u∈Ii
(hi)

2
u ≤ Kb2 ≤

Kκ2a2, so a ≥ ∥hi∥2/(κ
√
K).

B.2 PROOF OF PROPOSITION 1

Because si, sj are nonnegative,

⟨si, sj⟩ ≥
∑

u∈Ii∩Ij

(hi)u(hj)u ≥ sij ·
∥hi∥2
κ
√
K
· ∥hj∥2
κ
√
K

=
sij
κ2K

∥hi∥2∥hj∥2,

using Lemma 1. Head dominance gives ∥hi∥2 ≥
√
1− ε ∥si∥2 and similarly for j. Divide by

∥si∥2∥sj∥2 to obtain equation 2.

13
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C STABILITY PROOFS (EMA + UNION BOUND)

C.1 EMA VARIANCE

Let η(t) =
∑

s≥0(1 − β)βsξ(t−s) be the EMA noise at any coordinate (client index suppressed).
Since the ξ(t) are independent, mean-zero, sub-Gaussian with proxy variance σ2,

Var(η(t)) = σ2
∑
s≥0

(1− β)2β2s = σ2 (1− β)2

1− β2
= σ2 1− β

1 + β
.

C.2 CONCENTRATION AT THE BOUNDARY

Let H be the set of the K largest means of µ and H̄ = [M ]\H . For u ∈ H ,

Pr
(
g̃(t)u < µ(K) − ∆

2

)
≤ exp

(
− ∆2

8σ(β)2

)
.

A union bound over the K elements of H yields Pr(minu∈H g̃
(t)
u < µ(K) − ∆/2) ≤

K exp(−∆2/(8σ(β)2)). Similarly, for v ∈ H̄ , Pr(g̃(t)v > µ(K+1) +∆/2) ≤ exp(−∆2/(8σ(β)2)),
and union over M − K indices gives Pr(maxv∈H̄ g̃

(t)
v > µ(K+1) + ∆/2) ≤ (M −

K) exp(−∆2/(8σ(β)2)). Union over these two bad events proves Theorem 1.

C.3 EXPECTED TEMPORAL SELF-OVERLAP

Let B be the subset of K-boundary positions whose mean gaps exceed c σ(β)
√
logM ; assume

|B|/K ≥ ρ. On the event guaranteed by Theorem 1 at times t − 1 and t, the indices in B persist in
the Top-K. Taking expectation over the complement yields E[Γ(t)] ≥ ρ−O(M1−c2/8).
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D MORE THEORETICAL ANALYSIS

D.1 ROBUSTNESS TO RE-SCALING AND DIAGONAL PRECONDITIONING

Setting (global Top-K). We select a single global set (g,K) ⊆ [M ] over the concatenated pa-
rameter vector; no per-layer budgets are used. The results below distinguish (i) invariances under
positive scalings, (ii) effects of blockwise (layer-constant) rescaling, and (iii) diagonal precondition-
ers.

Lemma C.1 (Positive scalar invariance; blockwise order preservation). Let importance be
monotone in |g| or g2. Then, for any a > 0,

(ag,K) = (g,K).

Moreover, if D rescales each layer ℓ by a positive constant dℓ > 0, the within-layer ranking of
coordinates is unchanged, although the global Top-K membership may change via cross-layer
swaps. Proof. Positive scalar scaling preserves all pairwise orders; blockwise scaling preserves
orders within blocks (layers).

Lemma C.2 (Cross-layer stability under bounded block rescaling). Let D = diag(du) with
du = dℓ for all u in layer ℓ, and block scales dℓ ∈ [1/χ, χ]. Let I⋆ = (g,K) and suppose g has
dispersion margin κ > 1 at the boundary: for every pair (u, v) with u ∈ I⋆, v /∈ I⋆, we have
gu/gv ≥ κ. Then ∣∣ (Dg,K)△ I⋆

∣∣
K

≤ η(κ, χ,K),

where η(κ, χ,K) counts boundary pairs whose ratio lies in [1, χ2) (i.e., near-ties that block rescaling
can invert). In particular, η(κ, χ,K) ↓ 0 as χ ↓ 1 or as κ increases. Proof. For any boundary pair
(u, v), the post-rescaling ratio is (dℓ(u)/dℓ(v)) · (gu/gv) ∈ [κ/χ2, κχ2]. If κ > χ2, the order is
preserved. Violations can only arise from near-ties, which bounds the symmetric difference.

Corollary C.3 (Diagonal preconditioners). Let Dt = diag(dt,u) be a diagonal preconditioner
(e.g., Adam’s v̂−1/2

t ) with overall condition number χt =
maxu dt,u

minu dt,u
≤ χ̄. Then, across a round,∣∣ (Dtg,K)△ (g,K)

∣∣
K

≤ η(κ, χ̄,K).

Proof. For any boundary pair, the scaled ratio lies in [κ/χ̄2, κχ̄2]; the same near-tie argument as in
Lemma C.2 applies.

D.2 CHOOSING K : COVERAGE, STABILITY, AND SAMPLE COMPLEXITY

Proposition D.1 (Monotone coverage; selection complexity). Let hi denote the head of length
K after ordering coordinates of gi by decreasing importance. Then Ci(K) = ∥hi∥22/∥gi∥22 is non-
decreasing in K. The smallest K ≤ Kmax with Ci(K) ≥ τ can be found by binary search in
O(logKmax) iterations, each using a selection step that is O(M) expected time (via Quickselect) or
O(M logM) with sorting. Proof. Adding indices cannot reduce head energy; complexity follows
from selection/sorting costs.

Proposition D.2 (Stability estimator concentration). Let ρ̂i(K) = 1
r

∑r
s=1 Zs where Zs ∈

{0, 1} indicates whether the Top-K set is unchanged between two adjacent EMA slices (or light
bootstrap resamples). Then, for any δ ∈ (0, 1),

Pr
(
|ρ̂i(K)− ρi(K)| > δ

)
≤ 2 exp

(
− 2rδ2

)
.

Thus r ≥ 1
2δ2 log

2
γ samples suffice for accuracy δ with confidence 1 − γ. Proof. Hoeffding’s

inequality.

Remark D.3 (End-to-end frontier). Choosing (τ, ρ0, r, β) traces a utility–privacy–bandwidth
curve. Larger β improves ρ̂ but slows drift response; r trades runtime for confidence.
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D.3 MINHASH–LSH FACTS AND END-TO-END COMPLEXITY

Lemma E.1 (MinHash unbiasedness and variance). Let S1, S2 ⊆ [M ] and s = J(S1, S2) =
|S1∩S2|
|S1∪S2| . With h independent MinHash functions, the estimator ŝ = 1

h

∑h
u=1 1{mhu(S1) =

mhu(S2)} satisfies

E[ŝ] = s, Var[ŝ] =
s(1− s)

h
.

Proof. Each indicator is Bernoulli(s) by MinHash collision equivalence.

Lemma E.2 (Banding retrieval probability). Arrange h = br MinHash values into b bands
of r rows; two sets with similarity s collide in a band with probability sr, and are retrieved with
probability 1− (1− sr)b. Proof. Standard LSH banding analysis with independent bands.

Theorem E.3 (Candidate set size and total cost). Let n clients each submit a K-subset (the TopK
indices). Using h = br MinHashes and b hash tables: expected candidate set size per query is

E[C] = 1 +
∑
q ̸=i

(
1− (1− sriq)

b
)
,

where siq are pairwise similarities. The total server cost per round is

O
(
nh
)
+ O

(
n∑

i=1

E[Ci]

)
+ O

 ∑
(i,q)∈cands

|Ii ∩ Iq|

 ,

i.e., signature build + candidate lookups + final exact overlaps, with the last term bounded by
O(
∑

i E[Ci] · K). Signature memory is O(nh). Proof. Linearity of expectation and that exact
overlap is O(min(Ki,Kq)) = O(K).

D.4 COMPLEXITY AND COMMUNICATION ANALYSIS (K ≪M )

The client-side overhead to accumulate importances adds one O(M) elementwise update per mini-
batch (squared-gradient or second moment) on top of backprop; across E local epochs and |Di|/B
batches this is O

(E|Di|
B M

)
arithmetic with one extra M -vector in memory. Extracting supports

uses a partial selection in O(M) expected time (e.g., nth element) or O(M logM) for a full
sort; storing indices costs O(Ki) integers (or O(M/word) words for a bitset when many inter-
sections are reused). Server-side exact similarity with sorted lists performs one merge-style inter-
sect per pair: O

(∑
i<j min(Ki,Kj)

)
time (uniform K: O(n2K)) and O(

∑
i Ki) storage; bitset

AND+popcount is O(n2M/word) time and O(nM/word) storage and is preferable only when
K is not tiny or the same bitsets are intersected many times. With MinHash–LSH, each client
builds a signature in O(hKi) time and inserts b band keys; per query, computing the signature
and probing b buckets is O(h+b), and exact re-scoring over the retrieved candidate set Cq costs
O
(∑

j∈Cq
min(Kq,Kj)

)
(uniform K: O(|Cq|K)), with memory O(nh) for signatures and O(nb)

bucket pointers. Per-round communication is Ki⌈log2 M⌉ bits if indices are sent (or h·w bits for sig-
natures only, with on-demand index fetch for candidates); compared to value sharing (M · q bits for
q-bit weights/gradients), IOS reduces bytes by Ω(M/K) (or Ω(M/h) for signature-only discovery).
End to end, an exact all-pairs round is dominated by O(n2K) server time and O(

∑
i Ki⌈log2 M⌉)

uplink, whereas the LSH pipeline is O(nh) build plus O
(∑

q |Cq|K
)

rescoring with |Cq|≪n when
banding is tuned so the selectivity threshold matches the target neighborhood; amortizing stable sup-
ports across rounds (EMA + delta-encoding or incremental rehash) further lowers both build time
and bytes.

E EXTENDED EXPERIMENTAL RESULTS

F COMPARATIVE TEST ACCURACY OF MODEL BASED ON FL ROUNDS

We reported the aggregate test accuracies for Clustered Personalized FL (CPFL) application in Ta-
ble1 of the main text. Here we complement those results with the training dynamics: Figures 1–3
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Figure 1: Comparative test accuracy of model based on FL rounds (Patho(20%)).
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Figure 2: Comparative test accuracy of model based on FL rounds (Dir(0.1)).
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Figure 3: Comparative test accuracy of model based on FL rounds (Dir(0.3).

plot test accuracy versus FL rounds under different heterogeneity regimes (Path(20%), Dir(0.1)
and Dir(0.3) ) for different model/dataset pairs: CNN on FMNIST, ResNet18 on CIFAR-10,
ResNet50 on CIFAR-100, and BERT-base on 20News. The CPFL protocol is identical across meth-
ods—same partitions, architectures, optimizers, and schedules—and only the clustering similarity
changes among IOS (Top-K index), cosine, and Euclidean. IOS exchanges indices only (no weights,
gradients, logits, or activations).

Across all settings, IOS mirrors the learning trajectory of cosine and Euclidean, rising and saturating
at comparable round counts, while achieving slightly higher final accuracy in most cases (consistent
with Table X). The advantage is most noticeable on FMNIST and CIFAR-10, with parity or minor
gaps on the harder CIFAR-100 and 20News tasks. The pattern persists when moving from Dirichlet
to more pathological splits, indicating that overlap on salient indices provides a stable relatedness
signal even when value-based metrics are sensitive to scale, normalization, or noise. For CPFL, IOS
is a robust proxy for inter-client similarity: it reproduces the clustering behavior and convergence
profile of cosine/Euclidean and typically yields modest accuracy gains, while preserving privacy by
avoiding any transfer of real-valued parameters or gradients.

F.1 EFFECT OF THE SUPPORT SIZE K FOR IOS

For each model/dataset we compare three IOS support sizes: the task-specific K⋆ (selected by
our coverage+stability rule; typically ≈7–12% and concretely 12.2% for CNN/FMNIST, 7.3% for
ResNet18/CIFAR-10, 9.6% for ResNet50/CIFAR-100, and 8.2% for BERT-base/20News), plus two
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Table 6: CPFL Accuracy (%) with IOS at three K settings. Within each distribution block,
columns are K⋆, 15%, and 25%. Bold marks the best within each block.

Dir(0.3) Dir(0.1) Patho(20%) Patho(30%)

Model / Dataset K
⋆

15
%

25
%

K
⋆

15
%

25
%

K
⋆

15
%

25
%

K
⋆

15
%

25
%

CNN / FMNIST 76.23 73.23 70.03 74.79 71.29 67.39 95.18 92.98 90.38 83.15 80.45 77.65
ResNet18 / CIFAR-10 66.13 63.53 60.13 62.10 58.70 54.90 81.44 78.54 74.84 74.81 72.41 69.61
ResNet50 / CIFAR-100 49.71 45.81 40.71 48.30 44.20 38.50 58.07 54.87 49.77 52.98 49.48 44.08
BERT-base / 20News 50.30 48.10 45.60 45.41 43.41 40.31 58.26 55.86 51.96 54.25 52.15 49.05

Table 7: Neighbor Selection Quality (Recall@8 vs. oracle) with IOS at three K settings. Higher is
better. Bold marks the best within each block.

Dir(0.3) Dir(0.1) Patho(20%) Patho(30%)

Model / Dataset K
⋆

15
%

25
%

K
⋆

15
%

25
%

K
⋆

15
%

25
%

K
⋆

15
%

25
%

CNN / FMNIST 0.88 0.85 0.82 0.78 0.74 0.70 0.74 0.71 0.67 0.78 0.75 0.71
ResNet18 / CIFAR-10 0.80 0.77 0.73 0.73 0.69 0.65 0.74 0.70 0.65 0.73 0.70 0.66
ResNet50 / CIFAR-100 0.70 0.66 0.61 0.67 0.63 0.57 0.63 0.60 0.55 0.64 0.61 0.56
BERT-base / 20News 0.82 0.80 0.77 0.83 0.81 0.77 0.82 0.80 0.77 0.83 0.81 0.78

larger supports 15% and 25%. All other settings (non-IID regimes, data splits, training budgets, and
pipelines) match §6.

Clustered Personalized FL (CPFL) accuracy vs. K. We run IFCA/Clustered-FL style training
with the same clustering/training pipeline while varying only K in IOS to quantify how support size
impacts downstream CPFL test accuracy.

Table 6 reports CPFL accuracy (%) across four heterogeneity regimes; within each block, columns
are K⋆, 15%, and 25%.

K⋆ is best across all models/regimes. Moving to 15% costs roughly 2–6 pp depending on
task/heterogeneity, while 25% introduces larger losses (typically 4–10 pp, up to∼10 pp on the hard-
est cases). Deeper models under stronger heterogeneity suffer more. On ResNet50/CIFAR-100
under Dir(0.1), accuracy falls from 48.30 at K⋆ to 44.20 at 15% (−4.10 pp) and 38.50 at 25%
(−9.80 pp). For BERT-base/20News under Patho(20%), the score decreases from 58.26 to 55.86 at
15% (−2.40 pp) and to 51.96 at 25% (−6.30 pp). On the lighter CNN/FMNIST regime Dir(0.3),
accuracy drops from 76.23 to 73.23 at 15% (−3.00 pp) and to 70.03 at 25% (−6.20 pp). The results
shows that Small, stable supports near the coverage/stability knee (K⋆) give the best downstream
accuracy; enlarging K dilutes salience, destabilizes Top-K boundaries, and consistently reduces
CPFL performance, especially in harder regimes and deeper nets.

Neighbor selection quality (Recall@8) vs. K. We build the similarity graph with IOS at each
K and perform k-NN (k=8) neighbor selection. We then compute Recall@8 against the oracle
neighbors (defined by Wasserstein distance over true per-client label histograms; used only for eval-
uation).

Table 7 reports Recall@8 (higher is better) across the four heterogeneity regimes; within each block,
columns are K⋆, 15%, and 25%. The results indicate that K⋆ yields the highest Recall@8 through-
out. Increasing to 15% reduces Recall by roughly 0.02–0.05; to 25% by about 0.05–0.09. Losses
are more pronounced in harder regimes and for deeper models (e.g., ResNet50 under Dir(0.1)). For
ResNet50/CIFAR-100 under Dir(0.1), Recall@8 declines from 0.67 at K⋆ to 0.63 at 15% (−0.04)
and 0.57 at 25% (−0.10). On ResNet18/CIFAR-10 with Patho(20%), it goes from 0.74 to 0.70 at
15% (−0.04) and 0.65 at 25% (−0.09). For BERT-base/20News under Dir(0.3), Recall@8 moves
from 0.82 to 0.80 at 15% (−0.02) and 0.77 at 25% (−0.05). Neighbor retrieval quality tracks the
same pattern as downstream accuracy: supports near K⋆ best preserve salient head overlap across
clients, while larger supports introduce tail coordinates that dilute overlap and make Top-K less
stable—lowering Recall and, downstream, CPFL performance.
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Table 8: CPFL Accuracy (%) with IOS at K⋆ across local epochs. Within each distribution block,
columns are 2 / 4 / 6 / 8 / 10 epochs. Bold marks the best within each block.

Dir(0.3) Dir(0.1) Patho(20%) Patho(30%)

Model / Dataset 2 4 6 8 10 2 4 6 8 10 2 4 6 8 10 2 4 6 8 10

CNN / FMNIST 63.90 69.70 72.60 76.23 76.45 62.50 66.90 71.10 74.79 75.05 83.40 86.70 92.20 95.18 95.30 72.00 76.10 80.60 83.15 83.45
ResNet18 / CIFAR-10 53.90 58.40 62.10 66.13 66.35 49.10 53.60 57.80 62.10 62.30 70.20 74.10 78.00 81.44 81.72 63.20 68.40 71.90 74.81 75.00
ResNet50 / CIFAR-100 36.00 40.90 44.30 49.71 49.95 35.10 39.90 43.40 48.30 48.50 46.50 50.20 54.40 58.07 58.25 40.90 45.90 49.70 52.98 53.12
BERT-base / 20News 39.00 43.90 47.50 50.30 50.48 33.70 38.90 42.50 45.41 45.60 47.90 52.30 55.80 58.26 58.38 44.50 48.90 52.10 54.25 54.34

Table 9: Neighbor Selection Quality (Recall@8 vs. oracle) with IOS at K⋆ across epochs. Within
each distribution block, columns are 2 / 4 / 6 / 8 / 10 epochs. Higher is better; bold marks the best.

Dir(0.3) Dir(0.1) Patho(20%) Patho(30%)

Model / Dataset 2 4 6 8 10 2 4 6 8 10 2 4 6 8 10 2 4 6 8 10

CNN / FMNIST 0.75 0.80 0.84 0.88 0.89 0.66 0.70 0.74 0.78 0.79 0.60 0.65 0.70 0.74 0.75 0.65 0.70 0.74 0.78 0.79
ResNet18 / CIFAR-10 0.67 0.72 0.76 0.80 0.81 0.58 0.64 0.69 0.73 0.74 0.59 0.65 0.70 0.74 0.75 0.58 0.64 0.69 0.73 0.74
ResNet50 / CIFAR-100 0.55 0.60 0.65 0.70 0.71 0.52 0.57 0.61 0.67 0.68 0.48 0.53 0.58 0.63 0.64 0.49 0.54 0.59 0.64 0.65
BERT-base / 20News 0.70 0.75 0.79 0.82 0.83 0.70 0.75 0.79 0.83 0.84 0.69 0.74 0.78 0.82 0.83 0.70 0.75 0.79 0.83 0.84

F.2 TRAINING EPOCHS ABLATION FOR IOS

Protocol. Unless stated otherwise, our study uses 8 local epochs. Here we ablate the number of local
epochs {2, 4, 6, 8, 10} while fixing IOS at the task-specific K⋆ (coverage+stability rule) and keeping
all other settings (non-IID regimes, data splits, budgets, optimizers, and pipelines) identical to §6.
The goal is to test how many epochs are sufficient for clients to reflect their underlying distributions
in both downstream CPFL accuracy and neighbor retrieval.

Clustered Personalized FL (CPFL) accuracy vs. epochs. We run IFCA/Clustered-FL with the
same clustering/training pipeline and vary only the number of local epochs. We report CPFL test
accuracy (%) across all four heterogeneity regimes.

Table 8 shows CPFL accuracy for IOS at K⋆ under epochs 2, 4, 6, 8, 10. The results show that
accuracy increases steadily with more local training and saturates by 8 epochs: moving from 6→8
yields small gains (typically +1–7 pp over 6), and 10 epochs bring only marginal improvements
(often ≤ 0.3 pp) under the same budget. Eight local epochs are enough: they capture the client
distribution well, while additional epochs yield diminishing returns; fewer epochs underfit and fail
to expose sufficient salience structure for clustering to exploit. In contrast, under-training markedly
hurts: 2 epochs are about 10–15 pp worse than 8 depending on model/regime, and 4 epochs lag by
6–10 pp. The effect is most pronounced in harder regimes (Dir(0.1), Patho) and for deeper networks
(ResNet50), where more local steps are needed to shape client-specific heads and stabilize overlap.
On ResNet50/CIFAR-100 with Dir(0.1), accuracy climbs from 35.10 (2 ep) to 39.90 (4 ep), 43.40
(6 ep), and 48.30 (8 ep), with only a negligible rise to 48.50 at 10 epochs; similarly, for BERT-
base/20News under Patho(30%), scores go 44.50→48.90→52.10→54.25 with a tiny lift to 54.34
at 10 epochs, while CNN/FMNIST under Patho(20%) jumps from 83.40 (2 ep) to 95.18 (8 ep) and
only nudges to 95.30 at 10.

Neighbor Selection: Retrieval Quality vs. Oracle. We build the similarity graph with IOS at K⋆

for each epoch setting and perform k-NN (k=8) neighbor selection. We then compute Recall@8
against oracle neighbors (defined via Wasserstein distance over true per-client label histograms; used
only for evaluation).

Table 9 reports Recall@8 across epochs 2, 4, 6, 8, 10. Neighbor retrieval improves smoothly with
more local training and stabilizes by 8 epochs; moving to 10 brings at most a +0.01 gain in Re-
call@8. Under-training substantially lowers recall: at 2 epochs we see about 0.10–0.15 absolute
drops relative to 8, at 4 epochs about 0.06–0.10, and at 6 epochs about 0.01–0.07. The pattern
mirrors accuracy: deeper models and stronger heterogeneity require more local updates before
the importance head is sharp enough to recover oracle-like neighborhoods. For ResNet50/CIFAR-
100 (Dir(0.1)), Recall@8 increases from 0.52 (2 ep) to 0.57 (4 ep), 0.61 (6 ep), and 0.67 (8 ep),
with only a minimal change to 0.68 at 10; on ResNet18/CIFAR-10 with Patho(20%), the trajectory
0.59→ 0.65→ 0.70→ 0.74→ 0.75 exhibits the same saturation; and BERT-base/20News under
Dir(0.3) moves from 0.70 (2 ep) to 0.82 (8 ep) with a tiny step to 0.83 at 10.
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G USE OF LARGE LANGUAGE MODELS (LLMS)

Scope and intent. LLMs were used only to aid and polish writing (grammar, clarity, concision,
tone, and LaTeX hygiene). They were not used to design experiments, analyze data, generate results,
choose hyperparameters, or create figures/tables. All technical contributions, algorithms, proofs, and
empirical results originate from the authors.

Tools. We used ChatGPT (GPT-5 Thinking) in an editorial capacity. Typical operations included:
sentence rephrasing for clarity, reducing redundancy, harmonizing terminology/notation, improving
caption phrasing, fixing cross-references, and standardizing style (e.g., capitalization, punctuation,
hyphenation). When requested, it proposed concise alternatives that the authors reviewed and edited.

Content provenance and verification. No passages were accepted verbatim without author re-
view. The model was not allowed to introduce new claims, citations, equations, or numbers. All
references and quantitative values in the paper were produced by our code/experiments and cross-
checked by the authors.

Data and privacy. We did not upload raw datasets, private code, or proprietary results. Shared
text was limited to draft paragraphs, captions, and LaTeX snippets necessary for stylistic edits. No
confidential or personal data were provided to the LLM.

Bias and accountability. LLMs may reflect stylistic or cultural biases. Final wording, framing,
and interpretations are the authors’ responsibility. Any errors remain our own.

Reproducibility note. The use of LLMs does not affect the reproducibility of results. All experi-
ments can be reproduced from the released code, configurations, and seeds; LLM involvement was
purely editorial.

Authorship. All authors reviewed and approved the final text. The LLM is not listed as an author
and did not meet authorship criteria.
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