
Under review as a conference paper at ICLR 2021

LEARNING LATENT TOPOLOGY FOR
GRAPH MATCHING

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph matching (GM) has been traditionally modeled as a deterministic optimiza-
tion problem characterized by an affinity matrix under pre-defined graph topology.
Though there have been several attempts on learning more effective node-level
affinity/representation for matching, they still heavily rely on the initial graph
structure/topology which is typically obtained through heuristic ways (e.g. Delau-
nay or k-nearest) and will not be adjusted during the learning process to adapt to
problem-specific patterns. We argue that such a mechanism for learning on the
fixed topology may restrict the potential of a GM solver for specific tasks, and
propose to learn latent graph topology in replacement of the fixed topology as
input. To this end, we devise two types of latent graph generation procedures in
a deterministic and generative fashion, respectively. Particularly, the generative
procedure emphasizes the across-graph consistency and thus can be viewed as a
matching-guided generative model. Our methods show superior performance over
previous state-of-the-arts on public benchmarks.

1 INTRODUCTION

Being a long standing NP-hard problem (Loiola et al., 2007), graph matching (GM) has received per-
sistent attention from the machine learning and optimization communities for many years. Concretely,
for two graphs with n nodes for each, graph matching seeks to solve1:

max
z

z>Mz s.t. Z ∈ {0, 1}n×n, Hz = 1 (1)

where the affinity matrix M ∈ Rn
2×n2

+ encodes node (diagonal elements) and edge (off-diagonal)
affinities/similarities and z is the column-wise vectorization form of the permutation matrix Z. H
is a selection matrix ensuring each row and column of Z summing to 1. 1 is a column vector filled
with 1. Eq. (1) is the so-called quadratic assignment problem (QAP) (Cho et al., 2010). Maximizing
Eq. (1) amounts to maximizing the sum of the similarity induced by matching vector Z. While
Eq. (1) does not encode the topology of graphs, Zhou & Torre (2016) further propose to factorize
M to explicitly incorporate topology matrix, where a connectivity matrix A ∈ {0, 1}n×n is used
to indicate the topology of a single graph (Aij = 1 if there exists an edge between nodes i and j;
Aij = 0 otherwise). To ease the computation, Eq. (1) is typically relaxed by letting z ∈ [0, 1]n

2

and keeping other parts of Eq. (1) intact. Traditional solvers to such relaxed problem generally fall
into the categories of iterative update (Cho et al., 2010; Jiang et al., 2017) or numerical continuation
(Zhou & Torre, 2016; Yu et al., 2018), where the solvers are developed under two key assumptions:
1) Affinity M is pre-computed with some non-negative metrics, e.g. Gaussian kernel, L2-distance or
Manhattan distance; 2) Graph topology is pre-defined as input either in dense (Schellewald & Schnörr,
2005) or sparse (Zhou & Torre, 2016) fashion. There have been several successful attempts towards
adjusting the first assumption by leveraging the power of deep networks to learn more effective
graph representation for GM (Wang et al., 2019a; Yu et al., 2020; Fey et al., 2020). However, to
our best knowledge, there is little previous work questioning and addressing the problem regarding
the second assumption in the context of learning-based graph matching2. For example, existing

1Without loss of generality, we discuss graph matching under the setting of equal number of nodes without
outliers. The unequal case can be readily handled by introducing extra constraints or dummy nodes. Bipartite
matching and graph isomorphism are subsets of this quadratic formulation (Loiola et al., 2007).

2There are some loosely related works (Du et al., 2019; 2020) on network alignment and link prediction
without learning, which will be discussed in detail in the related works.

1



Under review as a conference paper at ICLR 2021

standard pipeline of keypoint matching in computer vision will construct initial topology by Delaunay
triangulation or k-nearest neighbors. Then this topology will be freezed throughout the subsequent
learning and matching procedures. In this sense, the construction of graph topology is peeled from
matching task as a pre-processing stage. More examples can be found beyond the vision communities
such as in social network alignment (Zhang & Tong, 2016; Heimann et al., 2018; Xiong & Yan, 2020)
assuming fixed network structure for individual node matching in two networks.

We argue that freezing graph topology for matching can hinder the capacity of graph matching
solvers. For a pre-defined graph topology, the linked nodes sometimes result in less meaning-
ful interaction, especially under the message-passing mechanism in graph neural networks (Kipf
& Welling, 2017). We give a schematic demonstration in Fig. 1. Though some earlier at-
tempts (Cho & Lee, 2012; Cho et al., 2013) seek to adjust the graph topology under traditional
non-deep learning setting, such procedures cannot be readily integrated into end-to-end deep
learning frameworks due to undifferentiable nature. Building upon the hypothesis that there
exists some latent topology better than heuristically created one for GM, our aim is to learn
it (or its distribution) for GM. Indeed, jointly solving matching and graph topology learning
can be intimidating due to the combinatorial nature, which calls for more advanced approaches.

Generate

Generate

Positive	matching Negative	matching

BBGM:	11/13 DLGM-G:	13/13

Delaunay source graph: 22/29

Delaunay target graph: 22/29

Generated source graph: 26/33

Generated target graph: 26/33

Figure 1: Matching of BBGM (Rolı́nek et al.,
2020) 11/13 with Delaunay triangulation and
our DLGM-G 13/13 using generated graph
(Pascal VOC). DLGM-G generates graph with
4 more edges than Delaunay (33 vs 29) for both
source and target. But with 4 more common
edges across source and target than Delaunay
triangulation (26 vs. 22), it leads to better accu-
racy. Blue and red edges denote common edges
in Delaunay and learned graph pairs.

In this paper, we propose an end-to-end framework
to jointly learn the latent graph topology and per-
form GM, termed as deep latent graph matching
(DLGM). We leverage the power of graph genera-
tive model to automatically produce graph topology
from given features and their geometric relations,
under specific locality prior. Different from gener-
ative learning on singleton graphs (Kipf & Welling,
2016; Bojchevski et al., 2018), our graph generative
learning is performed in a pairwise fashion, lead-
ing to a novel matching-guided generative paradigm.
The source code will be made publicly available.

Contributions: 1) We explore a new direction
for more flexible GM by actively learning latent
topology, in contrast to previous works using fixed
topology as input; 2) Under this setting, we pro-
pose a deterministic optimization approach to learn
graph topology for matching; 3) We further present
a generative way to produce latent topology un-
der a probabilistic interpretation by Expectation-
Maximization. This framework can also adapt to
other problems where graph topology is the latent
structure to infer; 4) Our method achieves state-of-
the-art performance on public benchmarks.

2 RELATED WORKS

In this section, we first discuss existing works for graph topology and matching updating whose
motivation is a bit similar to ours while the technique is largely different. Then we discuss relevant
works in learning graph matching and generative graph models from the technical perspective.

Topology updating and matching. There are a few works for joint graph topology updating and
matching, in the context of network alignment. Specifically, given two initial networks for matching,
Du et al. (2019) show how to alternatively perform link prediction within each network and node
matching across networks based on the observation that these two tasks can benefit to each other.
In their extension (Du et al., 2020), a skip-gram embedding framework is further established under
the same problem setting. In fact, these works involve a random-walk based node embedding
updating and classification based link prediction modules and the whole algorithm runs in a one-shot
optimization fashion. There is neither explicit training dataset nor trained matching model (except

2



Under review as a conference paper at ICLR 2021

for the link classifier), which bears less flavor of machine learning. In contrast, our method involves
training an explicit model for topology recovery and matching solving. Specifically, our deterministic
technique (see Sec. 3.4.1) solves graph topology and matching in one-shot, while the proposed
generative method alternatively estimates the topology and matching (see Sec. 3.4.2). Our approach
allows to fully leverage multiple training samples in many applications like computer vision to boost
the performance on test set. Moreover, the combinatorial nature of the matching problem is not
addressed in (Du et al., 2019; 2020), and they adopt a greedy selection strategy instead. While we
develop a principled combinatorial learning approach to this challenge. Also their methods rely on a
considerable amount of seed matchings, yet this paper directly learns the latent topology from scratch
which is more challenging and seldom studied.

Learning of graph matching. Early non-deep learning-based methods seek to learn effective
metric (e.g. weighted Euclid distance) for node and edge features or affinity kernel (e.g. Gaussian
kernel) in a parametric fashion (Caetano et al., 2009; Cho et al., 2013). Recent deep graph matching
methods have shown how to extracte more dedicated feature representation. The work (Zanfir &
Sminchisescu, 2018) adopts VGG16 (Simonyan & Zisserman, 2014) as the backbone for feature
extraction on images. Other efforts have been witnessed in developing more advanced pipelines,
where graph embedding (Wang et al., 2019a; Yu et al., 2020; Fey et al., 2020) and geometric
learning (Zhang & Lee, 2019; Fey et al., 2020) are involved. Rolı́nek et al. (2020) study the way of
incorporating traditional non-differentiable combinatorial solvers, by introducing a differentiatiable
blackbox GM solver (Pogancic et al., 2020). Recent works in tackling combinatorial problem with
deep learning (Huang et al., 2019; Kool & Welling, 2018) also inspire developing combinatorial deep
solvers, for GM problems formulated by both Koopmans-Beckmann’s QAP (Nowak et al., 2018;
Wang et al., 2019a) and Lawler’s QAP (Wang et al., 2019b). Specifically, Wang et al. (2019a) devise
a permutation loss for supervised learning, with an improvement in Yu et al. (2020) via Hungarian
attention. Wang et al. (2019b) solve the most general Lawler’s QAP with graph embedding technique.

Generative graph model. Early generative models for graph can date back to (Erdos & Renyi,
1959), in which edges are generated with fixed probability. Recently, Kipf & Welling (2016) present
a graph generative model by re-parameterizing the edge probability from Gaussian noise. Johnson
(2017) propose to generate graph in an incremental fashion, and in each iteration a portion of the
graph is produced. Gómez-Bombarelli et al. (2018) utilized recurrent neural network to generate
graph from a sequence of molecule representation. Adversarial graph generation is considered in (Pan
et al., 2018; Wang et al., 2018; Bojchevski et al., 2018). Specifically, Wang et al. (2018); Bojchevski
et al. (2018) seek to unify graph generative model and generative adversarial networks. In parallel,
reinforcement learning has been adopted to generate discrete graphs (De Cao & Kipf, 2018).

3 LEARNING LATENT TOPOLOGY FOR GM

In this section, we describe details of the proposed framework with two specific algorithms de-
rived from deterministic and generative perspectives, respectively. Both algorithms are motivated
by the hypothesis that there exists some latent topology more suitable for matching rather than a
fixed one. Note the proposed deterministic algorithm performs a standard forward-backward pass
to jointly learn the topology and matching, while our generative algorithm consists of an alterna-
tive optimization procedure between estimating latent topology and learning matching under an
Expectation-Maximization (EM) interpretation. In general, the generative algorithm assumes that a
latent topology is sampled from a latent distribution, where the expected matching accuracy sufficing
this distribution is maximized. Therefore, we expect to learn a topology generator sufficing such
distribution. We reformulate GM into Bayesian fashion for consistent discussion in Sec. 3.1, detail
deterministic/generative latent module in Sec. 3.2 and discuss the loss functions from a probabilistic
perspective in Sec. 3.3. We finally elaborate on the holistic framework and the optimization procedure
for both algorithms (deterministic and generative) in Sec. 3.4.

3.1 PROBLEM DEFINITION AND BACKGROUND

GM problem can be viewed as a Bayesian variant of Eq. (1). In general, let G(s) and G(t) represent the
initial source and target graphs for matching, respectively. We represent graph as G := {X,E,A},
where X ∈ Rn×d1 is the representation of n nodes with dimension d1. E ∈ Rm×d2 are features of

3



Under review as a conference paper at ICLR 2021

m edges and A ∈ {0, 1}n×n is initial connectivity (i.e. topology) matrix by heuristics e.g. Delaunay
triangulation. For notational brevity, we assume d1 and d2 keep intact after updating the features
across each convolutional layers of GNN (i.e., feature dimensions of both nodes and edges will
not change after each layer’s update). Denote the matching Z ∈ {0, 1}n×n between two graphs,
where Zij = 1 indicates a correspondence exists between node i in G(s) and node j in G(t), and
Zij = 0 otherwise. Given training samples {Zk,G(s)k ,G(t)k } with k = 1, 2, ..., N , the objective of
learning-based GM aims to maximize the likelihood:

max
θ

∏
k

Pθ

(
Zk|G(s)k ,G(t)k

)
(2)

where θ denotes model parameters. Pθ(·) measures the probability of matching Zk given the k-th
pair, and is instantiated via a network parameterized by θ.

Being a generic module for producing latent topology, our method can be flexibly integrated into
existing deep GM frameworks. We build up our method based on state-of-the-art (Rolı́nek et al.,
2020), which utilizes SplineCNN (Fey et al., 2018) for node/edge representation learning. SplineCNN
is a specific graph neural networks which updates a node representation via a weighted summation of
its neighbors. The update rule at node i of a standard SplineCNN reads:

(x ∗ g)(i) = 1

|N (i)|

d1∑
l=1

∑
j∈N (i)

xl(j) · gl(e(i, j)) (3)

where xl(j) performs the convolution on node j and outputs a d1-dimensional feature. gl(·) delivers
the message weight given the edge feature e(i, j). N (i) refers to i’s neighboring nodes Summation
over neighbors follows the topology A. Since our algorithm learns to generate topology, we need to
explicitly express Eq. (3) in a differentiable way w.r.t. A. To this end, we rewrite Eq. (3) as:

(x ∗ g|A) = (Â ◦G)X̂ (4)

where Â is the normalized connectivity with each row normalized by the degree |N (i)| (see Eq. (3))
of the corresponding node i. G and X̂ correspond to outputs of gl(·) and xl(·) operators, respec-
tively. (· ◦ ·) is the Hadamard product. With Eq. (4), we thus can perform back-propagation on
connectivity/topology A. See more details in Appendix A.2.

3.2 LATENT TOPOLOGY LEARNING

Existing learning-based graph matching algorithms consider A to be fixed throughout the computation
without questioning if the input topology is optimal or not. This can be problematic since input graph
construction is heuristic, and it never takes into account how suitable it is for the subsequent GM task.
In our framework, instead of utilizing a fixed pre-defined topology, we consider to produce latent
topology under two settings: 1) a deterministic and 2) a generative way. The former is often more
efficient while the latter method can be more accurate at the cost of exploring more latent topology.
Note both methods produce discrete topology to verify our hypothesis about the existence of more
suitable discrete latent topology for GM problem. The followings describe two deep structures.

Deterministic learning: Given input features X and initial topology A, the deterministic way of
generating latent topology A ∈ {0, 1}n×n is3:

Aij = Rounding(sigmoid(y>i Wyj)) with Y = GCN(X,A) (5)

where GCN(·) is the graph convolutional networks (GCN) (Kipf & Welling, 2017) and yi corresponds
to the feature of node i in feature map Y. W is the learnable parameter matrix. Note function
Rounding(·) is undifferentiable, and will be discussed in Sec. 3.4.1.

Generative learning: We reparameterize the representation as:

P (yi|X,A) = N (yi|µi,diag(σ2)) (6)

3We consider the case when only node feature E and topology A are necessary. Edge feature E can be
readily integrated as another input.

4



Under review as a conference paper at ICLR 2021

with µ = GCNµ(X,A) and σ = GCNσ(X,A) are two GCNs producing mean and covariance. It
is equivalent to sampling a random vector from i.i.d. uniform distribution s ∼ U(0,1), then applying
y = µ+ s · σ, where (·) is element-wise product.

Similar as Eq. (5) by introducing learnable parameter W, the generative latent topology is sampled
following i.i.d. distribution over each edge (i, j):

P (A|Y) =
∏
i

∏
j

P (Aij |yi,yj) with P (Aij = 1|yi,yj) = sigmoid(y>i Wyj) (7)

Since sigmoid(·) maps any input into (0, 1), Eq. (7) can be interpreted as the probability of sampling
edge (i, j). As the sampling procedure is undifferentiable, we apply Gumbel-softmax trick (Jang
et al., 2017) as another reparameterization procedure. As such, a latent graph topology A can be
sampled fully from distribution P (A) and the procedure becomes differentiable.

3.3 LOSS FUNCTIONS

In this section, we explain three loss functions and the behind motivation: matching loss, locality
loss and consistency loss. The corresponding probabilistic interpretation of each loss function can
be found in Sec. 3.4.2. These functions are selectively activated in DLGM-D and DLGM-G (see
Sec. 3.4). In DLGM-G, different loss functions are activated in inference and learning steps.

i) Matching loss. This common term measures how the predicted matching Ẑ diverges from ground-
truth Z. Following Rolı́nek et al. (2020), we adopt Hamming distance on node-wise matching:

LM = Hamming(Ẑ,Z) (8)

ii) Locality loss. This loss is devised to account for the general prior that the produced/learnt graph
topology should advocate local connection rather than distant one, since two nodes may have less
meaningful interaction once they are too distant from each other. In this sense, locality loss serves as
a prior or regularizer in GM. As shown in multiple GM methods (Yu et al., 2018; Wang et al., 2019a;
Fey et al., 2020), Delaunay triangulation is an effective way to deliver good locality. Therefore in our
method, the locality loss is the Hamming distance between the initial topology A (obtained from
Delaunay) and predicted topology A for both source graph and target graph:

LL = Hamming(A(s),A(s)) + Hamming(A(t),A(t)) (9)

We emphasize that locality loss serves as a prior for latent graph. It focuses on advocating locality,
but not reconstructing the initial Delaunay triangulation (as in Graph VAE (Kipf & Welling, 2016)).

iii) Consistency loss. One can imagine that a GM solver is likely to deliver better performance if two
graphs in a training pair are similar. In particular, we anticipate the latent topology A(s) and A(t) to
be isomorphic under a specific matching, since isomorphic topological structures tend to be easier
to match. Driven by this consideration, we devise the consistency loss which measures the level of
isomorphism between latent topology A(s) and A(t):

LC(·|Z) = |Z>A(s)Z−A(t)|+ |ZA(t)Z> −A(s)| (10)

Note Z does not necessarily refer to the ground-truth, but can be any predicted matching. In this
sense, latent topology A(s) and A(t) can be generated jointly given the matching Z as guidance
information. This term can also serve as a consistency prior or regularization. We given a schematic
example showing the merit of introducing consistency loss in Fig. 2(b).

3.4 FRAMEWORK

A schematic diagram of our framework is given in Fig. 2(a) which consists of a singleton pipeline for
processing a single image. It consists of three essential modules: a feature backbone (NB), a latent
topology module (NG) and a feature refinement module (NR). Specifically, module NG corresponds
to Sec. 3.2 with deterministic or generative implementations. Note the geometric relation of keypoints
provide some prior for generating topology A. We employ VGG16 (Simonyan & Zisserman, 2014)

5



Under review as a conference paper at ICLR 2021

NB

NG

NR

Im
ag

e 
w

ith
 k

ey
po

in
ts locality prior

X, E

latent A

global feature

up
da

te
d
X,
E

Singleton pipeline

(a) Singleton pipeline of DLGM.

1

2
3

4
5

1

2

3

4
5

1

2
3

4
5

1

2

3

4
5

Matching Z

Delauney:		 ℒ
!
=
4

Generated:		 ℒ
!
=
0

generate

A(s)

A (s)

A(t)

A(t)

(b) Example of consistency loss.

Figure 2: (a) One of the two branches of our DLGM framework (see the complete version in Appendix
A.1). NB: VGG16 as backbone producing a global feature of input image, and initial X and E;
NG: deterministic or generative module producing latent topology A; NR: SplineCNN for feature
refinement producing updated X and E. (b) A schematic figure showing the merit of introducing
consistency loss Lc for training. Initial topology A(s) and A(t) are constructed using Delaunay
triangulation. Given matching Z as guidance, latent topology A(s) and A(t) are generated from
inputs A(s) and A(t), respectively. Note the learned topology A(s) and A(t) are isomorphic (Lc = 0)
w.r.t. Z which is easier to match in test, comparing to non-isomorphic input structures (Lc = 4).

as NB and feed the produced node feature X and edge feature E to NG. NB also produces a global
feature for each image. After generating the latent topology A, we pass over X and E together with
A to NR (SplineCNN (Fey et al., 2018)). The holistic pipeline handling pairwise graph inputs can be
found in Fig. 4 in Appendix A.1 which consists of two copies of singleton pipeline processing source
and target data (in a Siamese fashion), respectively. Then the outputs of two singleton pipelines are
formulated into affinity matrix, followed by a differentiable Blackbox GM solver (Pogancic et al.,
2020) with message-passing mechanism (Swoboda et al., 2017). Note once without NG, the holistic
pipeline with only NB +NR is identical to the method in (Rolı́nek et al., 2020). Readers are referred
to this strong baseline (Rolı́nek et al., 2020) for more mutual algorithmic details.

3.4.1 OPTIMIZATION WITH DETERMINISTIC LATENT GRAPH

We show how to optimize with deterministic latent graph module, where the topology A is produced
by Eq. (5). The objective of matching conditioned on the produced latent topology A becomes:

max
∏
k

P
(
Zk|A(s)

k ,A
(t)
k ,G(s)k ,G(t)k

)
(11)

Eq. (11) can be optimized with standard back-propagation with three loss terms activated, except for
the Rounding function (see Eq. (5)), which makes the procedure undifferentiable. To address this,
we use straight-through operator (Bengio et al., 2013) which performs a standard rounding during the
forward pass but approximates it with the gradient of identity during the backward pass on [0, 1]:

∂Rounding(x)/∂x = 1 (12)

Though there exist some unbiased gradient estimators (e.g., REINFORCE (Williams, 1992)), the
biased straight-through estimator proved to be more efficient and has been successfully applied in
several applications (Chung et al., 2017; Campos et al., 2018). All the network modules (NG +NB +
NR) are simultaneously learned during the training. All three losses are activated in the learning
procedure (see Sec. 3.3), which are applied on the predicted matching Ẑ, the latent topology A(s)

and A(t). We term the algorithm under this setting DLGM-D.

3.4.2 OPTIMIZATION WITH GENERATIVE LATENT GRAPH

See more details in Appendix A.3. In this setting, the source and target latent topology A(s) and A(t)

are sampled according to Eq. (6) and (7). The objective becomes:

max
∏
k

∫
A

(s)
k ,A

(t)
k

Pθ

(
Zk,A

(s)
k ,A

(t)
k |G

(s)
k ,G(t)k

)
(13)

6



Under review as a conference paper at ICLR 2021

Unfortunately, directly optimizing Eq. (13) is difficult due to the integration over A which is
intractable. Instead, we maximize the evidence lower bound (ELBO) (Bishop, 2006) as follows:

logPθ(Z|G(s),G(t)) ≥

EQφ(A(s),A(t)|G(s),G(t))

[
logPθ(Z,A

(s),A(t)|G(s),G(t))− logQφ(A
(s),A(t)|G(s),G(t))

] (14)

where Qφ(A
(s),A(t)|G(s),G(t)) can be any joint distribution of A(s) and A(t) given the in-

put graphs G(s) and G(t). Equality of Eq. (14) holds when Qφ(A
(s),A(t)|G(s),G(t)) =

Pθ(A
(s),A(t)|Z,G(s),G(t)). For tractability, we rationally introduce the independence by assum-

ing that we can use an identical latent topology module Qφ (corresponding to NG in Fig. 2(a)) to
separately handle each input graph:

Qφ(A
(s),A(t)|G(s),G(t)) = Qφ(A

(s)|G(s))Qφ(A(t)|G(t)) (15)
which can greatly simplify the model complexity. Then we can utilize a neural network to model Qφ
(similar to modeling Pθ). The optimization of Eq. (14) is studied in (Neal & Hinton, 1998), known as
the Expectation-Maximization (EM) algorithm. Optimization of Eq. (14) alternates between E-step
and M-step. During E-step (inference), Pθ is fixed and the algorithm seeks to find an optimal Qφ to
approximate the true posterior distribution (see Appendix A.3 for explanation):

Pθ(A
(s),A(t)|Z,G(s),G(t)) (16)

During M-step (learning), Qφ is instead fixed and algorithm alters to maximize the likelihood:

EQφ(A(s)|G(s)),Qφ(A(t)|G(t))

[
logPθ(Z,A

(s),A(t)|G(s),G(t))
]
∝ −LM (17)

We give more details on the inference and learning steps as follows.

Inference. This step focuses on deriving posterior distribution Pθ(A(s),A(t)|Z,G(s),G(t)) using
its approximation Qφ. To this end, we fix the parameters θ in modules NB and NR, and only
update the parameters φ in module NG corresponding to Qφ. As stated in Sec. 3.2, we employ the
Gumbel-softmax trick for sampling discrete A (Jang et al., 2017). To this end, we can formulate a
2D vector aij = [P (Aij = 1), 1− P (Aij = 1)]>. Then the sampling becomes:

softmax (log(aij) + hij ; τ) (18)
where hij is a random 2D vector from Gumbel distribution, and τ is a small temperature parameter.
We further impose prior on latent topology A given A through locality loss:

log
∏
i,j

P (Aij |Aij) ∝ −LL(A,A) (19)

which is to preserve the locality in initial topology A. It should also be noted that Z is the predicted
matching from current Pθ, as Qφ is an approximation. Besides, we also anticipate two generated
topology A(s) and A(t) from a graph pair should be similar (isomorphic) given matching Z:

logP
(
A(s),A(t)|Z

)
∝ −LC

(
A(s),A(t)|Z

)
(20)

In summary, we activate locality loss and consistency loss during the inference step, where the latter
loss is conditioned with the predicted matching rather than the ground-truth. Note that the inference
step involves twice re-parameterization tricks corresponding to Eq. (6) and (18), respectively. While
the first generates the continuous topology distribution under edge independence assumption, the
second performs discrete sampling sufficing the generated topology distribution.

Learning. This step optimizes Pθ by fixing Qφ. We sample discrete graph topologies As completely
from the probability of edge P (Aij = 1). Once latent topology As are sampled, we feed them to
module NR together with the node-level features from NB . Only NB and NR are updated in this step,
and only matching loss LM is activated.

Remark. Note for each pair of graphs in training, we use an identical random vector s for generating
both graphs’ topology (see Eq. (6)). We pretrain the network Pθ before alternativly training Pθ
and Qφ. During pretraining, we activate NB + NR modules and LM loss during pretraining, and
feed the network the topology obtained from Delaunay as the latent topology. After pretraining, the
optimization will switch between inference and learning steps until convergence. We term the setting
of generative latent graph matching as DLGM-G and summarize it in Alg. 1.

7



Under review as a conference paper at ICLR 2021

Algorithm 1: Deep latent graph matching with generative latent graph (DLGM-G)

1: Input: Gs, Gt and ground-truth Z; Output: matching Ẑ;
2: Pretrain Pθ using Eq. (11), given Delaunay as input topology;
3: while not converge do
4: # Inference (E-step):
5: Obtain predicted matching Ẑ using fixed Pθ;
6: Update Qφ (i.e. NG) with loss LL + LC(·|Ẑ) according to Eq. (16);
7: # Learning (M-step):
8: Obtain predicted graph topology A(s) and A(t) using Qφ;
9: Update Pθ (i.e. NB and NR) with loss LM given A(s) and A(t) according to Eq. (17);

10: end while
11: Predict topology and the matching Ẑ with whole network activated (i.e. NG +NB +NR);

Table 1: Accuracy (%) on Pascal VOC (best in bold). Only inlier keypoints are considered.
method aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv Ave

GMN 31.1 46.2 58.2 45.9 70.6 76.4 61.2 61.7 35.5 53.7 58.9 57.5 56.9 49.3 34.1 77.5 57.1 53.6 83.2 88.6 57.9
GAT-H 47.2 61.6 63.2 53.3 79.7 70.1 65.3 70.5 38.4 64.7 62.9 65.1 66.2 62.5 41.1 78.8 67.1 61.6 81.4 91.0 64.6

PCA 40.9 55.0 65.8 47.9 76.9 77.9 63.5 67.4 33.7 65.5 63.6 61.3 68.9 62.8 44.9 77.5 67.4 57.5 86.7 90.9 63.8
CIE1-H 51.2 69.2 70.1 55.0 82.8 72.8 69.0 74.2 39.6 68.8 71.8 70.0 71.8 66.8 44.8 85.2 69.9 65.4 85.2 92.4 68.9
DGMC 50.4 67.6 70.7 70.5 87.2 85.2 82.5 74.3 46.2 69.4 69.9 73.9 73.8 65.4 51.6 98.0 73.2 69.6 94.3 89.6 73.2
BBGM 61.5 75.0 78.1 80.0 87.4 93.0 89.1 80.2 58.1 77.6 76.5 79.3 78.6 78.8 66.7 97.4 76.4 77.5 97.7 94.4 80.1

DLGM-D (ours) 60.8 76.0 77.5 79.6 88.0 95.0 90.4 81.6 67.3 82.4 94.1 79.6 81.2 80.5 68.9 98.6 77.1 87.5 97.0 95.3 82.9
DLGM-G (ours) 64.7 78.1 78.4 81.0 87.2 94.6 89.7 82.5 68.5 83.0 93.9 82.3 82.8 82.7 69.6 98.6 78.9 88.9 97.4 96.7 83.8

Table 2: F1-score (%) on Pascal VOC. Experiment are performed on a pair of images where both
inlier and outlier keypoints are considered. BBGM-max is a setting in Rolı́nek et al. (2020).

method aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv Ave
BBGM-max 35.5 68.6 46.7 36.1 85.4 58.1 25.6 51.7 27.3 51.0 46.0 46.7 48.9 58.9 29.6 93.6 42.6 35.3 70.7 79.5 51.9

BBGM 42.7 70.9 57.5 46.6 85.8 64.1 51.0 63.8 42.4 63.7 47.9 61.5 63.4 69.0 46.1 94.2 57.4 39.0 78.0 82.7 61.4
DLGM-D (ours) 42.5 71.8 57.8 46.8 86.9 70.3 53.4 66.7 53.8 67.6 64.7 64.6 65.2 70.1 47.9 95.5 59.6 47.7 77.7 82.6 63.9
DLGM-G (ours) 43.8 72.9 58.5 47.4 86.4 71.2 53.1 66.9 54.6 67.8 64.9 65.7 66.9 70.8 47.4 96.5 61.4 48.4 77.5 83.9 64.8

4 EXPERIMENT

We conduct experiments on datasets including Pascal VOC with Berkeley annotation (Everingham
et al., 2010; Bourdev & Malik, 2009), Willow ObjectClass (Cho et al., 2013) and SPair-71K (Min
et al., 2019). We report the per-category and average performance. The objective of all experiments
is to maximize the average matching accuracy. Both our DLGM-D and DLGM-G are tested.

Peer methods. We conduct comparison experiments against the following algorithms: 1) GMN
(Zanfir & Sminchisescu, 2018), which is a seminal work incorporating graph matching into deep
learning framework equipped with a spectral solver (Egozi et al., 2013); 2) PCA (Wang et al.,
2019a). This method treats graph matching as feature matching problem and employs GCN (Kipf
& Welling, 2017) to learn better features; 3) CIE1/GAT-H (Yu et al., 2020). This paper develops
a novel embedding and attention mechanism, where GAT-H is the version by replacing the basic
embedding block with Graph Attention Networks (Veličković et al., 2018); 4) DGMC (Fey et al.,
2020). This method devises a post-processing step by emphasizing the neighborhood similarity; 5)
BBGM (Rolı́nek et al., 2020). It integrates a differentiable linear combinatorial solver (Pogancic
et al., 2020) into a deep learning framework and achieves state-of-the-art performance.

Results on Pascal VOC. The dataset (Everingham et al., 2010; Bourdev & Malik, 2009) consists
of 7,020 training images and 1,682 testing images with 20 classes in total, together with the object
bounding boxing for each. Following the data preparation in (Wang et al., 2019a), each object within
the bounding box is cropped and resized to 256× 256. The number of nodes per graph ranges from 6
to 23. We further follow (Rolı́nek et al., 2020) under two evaluating metrics: 1) Accuracy: this is the
standard metric evaluated on the keypoints by filtering out the outliers; 2) F1-score: this metric is
evaluated without keypoint filtering, being the harmonic mean of precision and recall.

Experimental results on the two setting are shown in Tab. 1 and Tab. 2. The proposed method
under either settings of DLGM-D and DLGM-G outperforms counterparts by accuracy and f1-score.
DLGM-G generally outperforms DLGM-D. Discussion can be found in Appendix A.5.

8



Under review as a conference paper at ICLR 2021

Table 4: Accuracy (%) on SPair-71K compared with state-of-the-art methods (best in bold).
method aero bike bird boat bottle bus car cat chair cow dog horse mbike person plant sheep train tv Ave
DGMC 54.8 44.8 80.3 70.9 65.5 90.1 78.5 66.7 66.4 73.2 66.2 66.5 65.7 59.1 98.7 68.5 84.9 98.0 72.2
BBGM 66.9 57.7 85.8 78.5 66.9 95.4 86.1 74.6 68.3 78.9 73.0 67.5 79.3 73.0 99.1 74.8 95.0 98.6 78.9

DLGM-D (ours) 69.8 64.4 86.8 79.9 69.8 96.8 87.3 77.7 77.5 83.1 76.7 69.6 85.1 75.1 98.7 76.4 95.8 97.9 81.3
DLGM-G (ours) 70.4 66.8 86.7 81.7 69.2 96.4 85.8 79.5 78.4 84.0 79.4 69.4 84.5 76.6 99.1 75.9 96.4 98.5 82.0

Quality of generated topology. We further show the consistency/locality curve vs epoch in Fig. 3,
since both consistency and locality losses can somewhat reflect the quality of topology generation. It
shows that both locality and consistency losses descend during the training. Note that the consistency
loss with Delaunay triangulation (green dashed line) is far more larger than our generated ones
(blue/red dashed line). This clearly supports the claim that our method generates similar (more
isomorphic) typologies, as well as preserving locality.

5 10 15 20 25

Epoch

0

0.5

1

1.5

2

2.5

3

3.5

4

Lo
ss

Consistency/Locality loss

DLGM-D: locality loss
DLGM-D: consistency loss
DLGM-G: locality loss
DLGM-D: consistency loss
Delaunay: consistency loss

Figure 3: Consistency and locality loss
(Eq. (9) and (10)) keep decrease over
training showing the effectiveness for
adaptive topology learning for matching.

Table 3: Accuracy (%) on Willow Object.

Method setting face mbike car duck wbottle

GMN Pt 98.1 65.0 72.9 74.3 70.5
Wt 99.3 71.4 74.3 82.8 76.7

PCA Pt 100.0 69.8 78.6 82.4 95.1
Wt 100.0 76.7 84.0 93.5 96.9

CIE Pt 99.9 71.5 75.4 73.2 97.6
Wt 100.0 90.0 82.2 81.2 97.6

DGMC Pt 98.6 69.8 84.6 76.8 90.7
Wt 100.0 98.8 96.5 93.2 99.9

BBGM Pt 100.0 95.8 89.1 89.8 97.9
Wt 100.0 98.9 95.7 93.1 99.1

DLGM-D (ours) Pt 100.0 95.5 91.3 91.4 97.9
Wt 100.0 99.4 95.9 92.8 99.3

DLGM-G (ours) Pt 99.9 96.4 92.0 91.8 98.0
Wt 100.0 99.3 96.5 93.7 99.3

Results on Willow Object. The benchmark (Cho et al., 2013) consists of 256 images in 5 categories,
where two categories (car and motorbike) are subsets selected from Pascal VOC. Following the
preparation protocol in Wang et al. (2019a), we crop the image within the object bounding box and
resize it to 256 × 256. Since the dataset is relatively small, we conduct the experiment to verify
the transfer ability of different methods under two settings: 1) trained on Pascal VOC and directly
applied to Willow (Pt); 2) trained on Pascal VOC then finetuned on Willow (Wt). Results under the
two settings are shown in Tab. 3. Since this dataset is relatively small, further improvement is difficult.
It is shown both DLGM-D and DLGM-G have good transfer ability.

Results on SPair-71K. The dataset (Min et al., 2019) is much larger than Pascal VOC and WillowOb-
ject since it consists of 70,958 image pairs collected from Pascal VOC 2012 and Pascal 3D+ (53,340
for training, 5,384 for validation and 12,234 for testing). It improves Pascal VOC by removing
ambiguous categories sofa and dining table. This dataset is considered to contain more difficult
matching instances and higher annotation quality. Results are summarized in Tab. 4. Our method
consistently improves the matching performance, agreeing with the results in Pascal VOC and Willow.

5 CONCLUSION

Graph matching involves two essential factors: the affinity model and topology. By incorporating
learning paradigm for affinity/feature, the performance of matching on public datasets has significantly
been improved. However, there has been little previous work exploring more effective topology for
matching. In this paper, we argue that learning a more effective graph topology can significantly
improve the matching, thus being essential. To this end, we propose to incorporate a latent topology
module under an end-to-end deep network framework that learns to produce better graph topology.
We also present the interpretation and optimization of topology module in both deterministic and
generative perspectives, respectively. Experimental results show that, by learning the latent graph,
the matching performance can be consistently and significantly enhanced on several public datasets.

9



Under review as a conference paper at ICLR 2021

REFERENCES

Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients through
stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432, 2013.

Christopher M Bishop. Pattern recognition and machine learning. springer, 2006.

Aleksandar Bojchevski, Oleksandr Shchur, Daniel Zügner, and Stephan Günnemann. Netgan:
Generating graphs via random walks. In ICML, 2018.

Lubomir Bourdev and Jitendra Malik. Poselets: Body part detectors trained using 3d human pose
annotations. In ICCV, 2009.

T. Caetano, J. McAuley, L. Cheng, Q. Le, and A. J. Smola. Learning graph matching. TPAMI, 31(6):
1048–1058, 2009.

Vı́ctor Campos, Brendan Jou, Xavier Giró-i Nieto, Jordi Torres, and Shih-Fu Chang. Skip rnn:
Learning to skip state updates in recurrent neural networks. In ICLR, 2018.

M. Cho and K. M. Lee. Progressive graph matching: Making a move of graphs via probabilistic
voting. In CVPR, 2012.

M. Cho, J. Lee, and K. M. Lee. Reweighted random walks for graph matching. In ECCV, 2010.

M. Cho, K. Alahari, and J. Ponce. Learning graphs to match. In ICCV, 2013.

Junyoung Chung, Sungjin Ahn, and Yoshua Bengio. Hierarchical multiscale recurrent neural networks.
In ICLR, 2017.

Nicola De Cao and Thomas Kipf. Molgan: An implicit generative model for small molecular graphs.
arXiv preprint arXiv:1805.11973, 2018.

Xingbo Du, Junchi Yan, and Hongyuan Zha. Joint link prediction and network alignment via
cross-graph embedding. IJCAI, 2019.

Xingbo Du, Junchi Yan, Rui Zhang, and Hongyuan Zha. Cross-network skip-gram embedding
for joint network alignment and link prediction. IEEE Transactions on Knowledge and Data
Engineering, 2020.

A. Egozi, Y. Keller, and H. Guterman. A probabilistic approach to spectral graph matching. TPAMI,
2013.

Paul Erdos and Alfred Renyi. On random graphs i. In Publicationes Mathematicae Debrecen 6, 1959.

Mark Everingham, Luc Gool, Christopher K. Williams, John Winn, and Andrew Zisserman. The
pascal visual object classes (voc) challenge. Int. J. Comput. Vision, 88(2):303–338, June 2010.

Matthias Fey, Jan Eric Lenssen, Frank Weichert, and Heinrich Müller. Splinecnn: Fast geometric
deep learning with continuous b-spline kernels. In CVPR, 2018.

Matthias Fey, Jan E Lenssen, Christopher Morris, Jonathan Masci, and Nils M Kriege. Deep graph
matching consensus. In ICLR, 2020.

Rafael Gómez-Bombarelli, Jennifer N Wei, David Duvenaud, José Miguel Hernández-Lobato,
Benjamı́n Sánchez-Lengeling, Dennis Sheberla, Jorge Aguilera-Iparraguirre, Timothy D Hirzel,
Ryan P Adams, and Alán Aspuru-Guzik. Automatic chemical design using a data-driven continuous
representation of molecules. ACS central science, 4(2):268–276, 2018.

Mark Heimann, Haoming Shen, Tara Safavi, and Danai Koutra. Regal: Representation learning-based
graph alignment. In Proceedings of the 27th ACM International Conference on Information and
Knowledge Management, pp. 117–126. ACM, 2018.

Jiayi Huang, Mostofa Patwary, and Gregory Diamos. Coloring big graphs with alphagozero.
arXiv:1902.10162, 2019.

10



Under review as a conference paper at ICLR 2021

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. In
ICLR, 2017.

Bo Jiang, Jin Tang, Chris Ding, Yihong Gong, and Bin Luo. Graph matching via multiplicative
update algorithm. In NIPS, 2017.

Daniel D Johnson. Learning graphical state transitions. In ICLR, 2017.

Thomas N Kipf and Max Welling. Variational graph auto-encoders. arXiv preprint arXiv:1611.07308,
2016.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In ICLR, 2017.

Woute Kool and Max Welling. Attention solves your tsp. arXiv:1803.08475, 2018.

E. M. Loiola, N. M. de Abreu, P. O. Boaventura-Netto, P. Hahn, and T. Querido. A survey for the
quadratic assignment problem. EJOR, pp. 657–90, 2007.

Juhong Min, Jongmin Lee, Jean Ponce, and Minsu Cho. Spair-71k: A large-scale benchmark for
semantic correspondence. arXiv preprint arXiv:1908.10543, 2019.

Radford M Neal and Geoffrey E Hinton. A view of the em algorithm that justifies incremental, sparse,
and other variants. In Learning in graphical models, pp. 355–368. Springer, 1998.

A. Nowak, S. Villar, A. Bandeira, and J. Bruna. Revised note on learning quadratic assignment with
graph neural networks. In DSW, 2018.

Shirui Pan, Ruiqi Hu, Guodong Long, Jing Jiang, Lina Yao, and Chengqi Zhang. Adversarially
regularized graph autoencoder for graph embedding. 2018.

Les Piegl and Wayne Tiller. The NURBS book. Springer Science & Business Media, 2012.

Marin Vlastelica Pogancic, Anselm Paulus, Vı́t Musil, Georg Martius, and Michal Rolı́nek. Differen-
tiation of black-box combinatorial solvers. In ICLR, 2020.

Michal Rolı́nek, Paul Swoboda, Dominik Zietlow, Anselm Paulus, Vı́t Musil, and Georg Martius.
Deep graph matching via blackbox differentiation of combinatorial solvers. In ECCV, 2020.

Christian Schellewald and Christoph Schnörr. Probabilistic subgraph matching based on convex
relaxation. In EMMCVPR, 2005.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. In ICLR, 2014.

Paul Swoboda, Carsten Rother, Hassan Abu Alhaija, Dagmar Kainmuller, and Bogdan Savchynskyy.
A study of lagrangean decompositions and dual ascent solvers for graph matching. In CVPR, 2017.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph Attention Networks. In ICLR, 2018.

Hongwei Wang, Jia Wang, Jialin Wang, Miao Zhao, Weinan Zhang, Fuzheng Zhang, Xing Xie, and
Minyi Guo. Graphgan: Graph representation learning with generative adversarial nets. In AAAI,
2018.

R. Wang, J. Yan, and X. Yang. Learning combinatorial embedding networks for deep graph matching.
In ICCV, 2019a.

Runzhong Wang, Junchi Yan, and Xiaokang Yang. Neural graph matching network: Learning lawler’s
quadratic assignment problem with extension to hypergraph and multiple-graph matching. arXiv
preprint arXiv:1911.11308, 2019b.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine Learning, 8(3):229–256, 1992.

11



Under review as a conference paper at ICLR 2021

Hao Xiong and Junchi Yan. Btwalk: Branching tree random walk for multi-order structured network
embedding. IEEE Transactions on Knowledge and Data Engineering, 2020.

Tianshu Yu, Junchi Yan, Yilin Wang, Wei Liu, et al. Generalizing graph matching beyond quadratic
assignment model. In NIPS, 2018.

Tianshu Yu, Runzhong Wang, Junchi Yan, and Baoxin Li. Learning deep graph matching with
channel-independent embedding and hungarian attention. In ICLR, 2020.

A. Zanfir and C. Sminchisescu. Deep learning of graph matching. In CVPR, 2018.

Si Zhang and Hanghang Tong. Final: Fast attributed network alignment. In Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.
1345–1354. ACM, 2016.

Zhen Zhang and Wee Sun Lee. Deep graphical feature learning for the feature matching problem. In
ICCV, 2019.

F. Zhou and F. Torre. Factorized graph matching. IEEE PAMI, 2016.

A APPENDIX

A.1 HOLISTIC PIPELINE

We show the holistic pipeline of our framework in Fig. 4 consisting of two “singleton pipelines” (see
introduction part of Sec. 3 for more details). In general, the holistic pipeline follows the convention
in a series of deep graph matching methods by utilizing an identical singleton pipeline to extract
features, then exploits the produced features to perform matching (Yu et al., 2020; Wang et al., 2019a;
Fey et al., 2020; Rolı́nek et al., 2020). Except for the topology module NG, all others parts of our
network are the same as those in Rolı́nek et al. (2020).

A.2 SPLINECNN

SplineCNN is a method to perform graph-based representation learning via convolution operators
defined based on B-splines (Fey et al., 2018). The initial input to SplineCNN is G = {X,E,A},
where X ∈ Gn×d1 and A ∈ {0, 1}n×n indicate node features and topology, respectively (same
as in Sec. 3.1). E ∈ [0, 1]n×n×d2 is so-called pseudo-coordinates and can be viewed as n2 × d2-
dimensional edge features for a fully connected graph (in case m = n2, see Sec. 3.1). Let normalized
edge feature e(i, j) = Ei,j,: ∈ [0, 1]d2 if a directed edge (i, j) exists (Ai,j = 1), and 0 otherwise
(Ai,j = 0). Note topology A fully carries the information of N (i) which defines the neighborhood

Fo
rm

in
g 

af
fin

ity

Singleton pipeline

Singleton pipeline

concatenation

global feature

global feature

So
ur

ce
Ta

rg
et

updated
X(s),	E(s)

updated
X(t),	E(t)

G
M

 so
lv

er

M
at

ch
in

g 
lo

ss

Figure 4: Holistic pipeline of DLGM consisting of two singleton pipelines.

12



Under review as a conference paper at ICLR 2021

of node i. During the learning, X and E will be updated while topology A will not. Therefore
SplineCNN is a geometric graph embedding method without adjusting the latent graph topology.

B-spline is employed as basic kernel in SplineCNN, where a basis function has only support on
a specific real-valued interval (Piegl & Tiller, 2012). Let ((Nq

1,i)1≤i≤k1 , ..., (N
q
d,i)1≤i≤kd2 ) be d2

B-spline bases with degree q. The kernel size is defined in k = (k1, ..., kd2). In SplineCNN, the
continuous kernel function gl : [a1, b1]× ...× [ad2 , bd2 ]→ G is defined as:

gl(e) =
∑
p∈P

wp,l ·Bp(e) (21)

where P = (Nq
1,i)i × ... × (Nq

d,i)i is the B-spline bases (Piegl & Tiller, 2012) and wp,l is the
trainable parameter corresponding to the lth node feature in X, with Bp being the product of the
basis functions in P:

Bp =

d∏
i=1

Nq
i,pi

(ei) (22)

where e is the pseudo-coordinate in E. Then, given the kernel function g = (g1, ..., gd1) and the node
feature X ∈ Gn×d1 , one layer of the convolution at node i in SplineCNN reads (same as Eq. (3)):

(x ∗ g)(i) = 1

|N (i)|

d1∑
l=1

∑
j∈N (i)

xl(j) · gl(e(i, j)) (23)

where xl(j) indicates the convolved node feature value of node j at lth dimension. This formulation
can be tensorized into Eq. (4) with explicit topology matrix A. In this sense, we can back-propagate
the gradient of A. Reader are referred to Fey et al. (2018) for more comprehensive understanding of
this method.

A.3 DERIVATION OF DLGM-D

We give more details of the optimization on DLGM-D in this section. This part also interprets some
basic formulation conversion (e.g. from Eq. (2) to its Bayesian form). First, we assume there is no
latent topology A(s) and A(s) at the current stage. In this case, the objective of GM is simply:

max
∏
k

Pθ

(
Zk|G(s)k ,G(t)k

)
(24)

where Pθ measures the probability of a matching Zk given graph pair G(s)k and G(t)k . If we impose
the latent topology A(s) and A(t), as well as some distribution over them, then Eq. (24) can be
equivalently expressed as:

max
∏
k

Pθ

(
Zk|G(s)k ,G(t)k

)
= max

∏
k

∫
A

(s)
k ,A

(t)
k

Pθ

(
Zk,A

(s)
k ,A

(t)
k |G

(s)
k ,G(t)k

)
(25)

where Pθ
(
Zk|G(s)k ,G(t)k

)
is the marginal distribution of Pθ

(
Zk,A

(s)
k ,A

(t)
k |G

(s)
k ,G(t)k

)
with respect

to Zk, since A
(s)
k and A

(t)
k are integrated over some distribution. Herein we can impose another

distribution of the topology Qφ(A
(s)
k ,A

(t)
k |G

(s)
k ,G(t)k ) characterized by parameter φ, then we have:

log

∫
A

(s)
k ,A

(t)
k

Pθ

(
Zk,A

(s)
k ,A

(t)
k |G

(s)
k ,G(t)k

)
= log

∫
A

(s)
k ,A

(t)
k

Pθ

(
Zk,A

(s)
k ,A

(t)
k |G

(s)
k ,G(t)k

) Qφ(A(s)
k ,A

(t)
k |G

(s)
k ,G(t)k )

Qφ(A
(s)
k ,A

(t)
k |G

(s)
k ,G(t)k )

= log

E
Qφ(A

(s)
k ,A

(t)
k |G

(s)
k ,G(t)

k )

Pθ
(
Zk,A

(s)
k ,A

(t)
k |G

(s)
k ,G(t)k

)
Qφ(A

(s)
k ,A

(t)
k |G

(s)
k ,G(t)k )


≥E

Qφ(A
(s)
k ,A

(t)
k |G

(s)
k ,G(t)

k )

[
logPθ(Z,A

(s),A(t)|G(s),G(t))− logQφ(A
(s),A(t)|G(s),G(t))

]
(26)

13



Under review as a conference paper at ICLR 2021

where the final step is derived from Jensen’s inequality. Since optimizating Eq. 25 is difficult, we
can alter to maximize the right hand side of inequality of Eq. (26) instead, which is the Evidence
Lower Bound (ELBO) (Bishop, 2006). Since two input graphs are handled separately by two
identical subroutines (see Fig. 2a), we can then impose the independence of topology A

(s)
k and A

(t)
k :

Qφ(A
(s),A(t)|G(s),G(t)) = Qφ(A

(s)|G(s))Qφ(A(t)|G(t)). In this sense, we can utilize the same
parameter φ to characterize two identical neural networks (generators) for modeling Qφ.

Assuming θ is fixed, ELBO is determined by Qφ. According to Jensen’s inequality, equality of
Eq. (26) holds when:

Pθ

(
Zk,A

(s)
k ,A

(t)
k |G

(s)
k ,G(t)k

)
Qφ

(
A

(s)
k ,A

(t)
k |G

(s)
k ,G(t)k

) = c (27)

where c 6= 0 is a constant. We then have:∫
A

(s)
k ,A

(t)
k

Pθ

(
Zk,A

(s)
k ,A

(t)
k |G

(s)
k ,G(t)k

)
= c

∫
A

(s)
k ,A

(t)
k

Qφ

(
A

(s)
k ,A

(t)
k |G

(s)
k ,G(t)k

)
(28)

As Qφ is a distribution, we have:∫
A

(s)
k ,A

(t)
k

Qφ

(
A

(s)
k ,A

(t)
k |G

(s)
k ,G(t)k

)
= 1 (29)

Therefore, we have: ∫
A

(s)
k ,A

(t)
k

Pθ

(
Zk,A

(s)
k ,A

(t)
k |G

(s)
k ,G(t)k

)
= c (30)

We now have:

Qφ

(
A

(s)
k ,A

(t)
k |G

(s)
k ,G(t)k

)
=
Pθ

(
Zk,A

(s)
k ,A

(t)
k |G

(s)
k ,G(t)k

)
c

=
Pθ

(
Zk,A

(s)
k ,A

(t)
k |G

(s)
k ,G(t)k

)
∫
A

(s)
k ,A

(t)
k

Pθ

(
Zk,A

(s)
k ,A

(t)
k |G

(s)
k ,G(t)k

)
=
Pθ

(
Zk,A

(s)
k ,A

(t)
k |G

(s)
k ,G(t)k

)
Pθ

(
Zk|G(s)k ,G(t)k

)
=Pθ

(
A

(s)
k ,A

(t)
k |Zk,G

(s)
k ,G(t)k

)

(31)

Eq. (31) shows that, once θ is fixed, maximizing ELBO amounts to finding a distribution Qφ

approximating the posterior probability Pθ
(
A

(s)
k ,A

(t)
k |Zk,G

(s)
k ,G(t)k

)
. This can be done by training

the generatorQφ to produce latent topology A given graph pair and the matching Z. This corresponds
to the Inference part in Sec. 3.4.2.

A.4 ABLATION STUDY

In this part, we evaluate the performance of DLGM-D and DLGM-G by selectively deactivating
different loss functions (refer Sec. 3.3 for more details of the functions). We also conduct the test on
DLGM-G using different sample size of the generator. This ablation test is conducted on Pascal VOC
dataset and average accuracy is reported in Tab. 5.

We first test the performance of both settings of DLGM by selectively activate the designated loss
functions. Experimental results are summarized in Tab. 5a. As matching loss LM is essential for GM
task, we constantly activate this loss for all settings. We see that the proposed novel losses LC and
LL can consistently enhance the matching performance. Besides, DLGM-G indeed delivers better
performance than DLGM-D under fair comparison.

We then test the impact of sample size from the generator Qφ under DLGM-G. Experimental results
are summarized in Tab. 5b. We see that along with the increasing sample size, the average accuracy
ascends. The performance becomes stable when the sample size reaches over 16.

14



Under review as a conference paper at ICLR 2021

Table 5: Ablation test on Pascal VOC dataset. (a) Selectively deactivating loss functions on Pascal
VOC. LM , LC and LL are selectively activated in DLGM-D and DLGM-G. “full” indicates all loss
functions are activated. Average accuracy (%) is reported. (b) Average matching accuracy under
different sampling sizes from the generator Qφ with “full” DLGM-G setting.

(a) On losses

method Ave
DLGM-D (LM + LC) 79.8
DLGM-D (LM + LL) 79.5
DLGM-G (LM + LC) 80.9
DLGM-G (LM + LL) 80.4

DLGM-D (full) 82.9
DLGM-G (full) 83.8

(b) On sample size

#Sample Ave
1 82.5
2 83.2
4 83.2
8 83.5

16 83.8
32 83.7

Class

aero & bike

bird & boat

bottle & bus

car & cat

chair & cow

table & dog

horse & mbike

person & plant

sheep & sofa

train & tv

Table 6: Matching examples of DLGM-G on 20 classes of Pascal VOC. The coloring of graphs and
matchings follows the principle of Fig. 1 in the manuscript. Zoom in for better view.

A.5 MORE VISUAL EXAMPLES AND ANALYSIS

We show more visual examples of matchings and generated topology using DLGM-G on Pascal VOC
in Tab. 6 and Tab. 7, respectively. Each table follows distinct coloring regulation which will be
detailed as follows:

15



Under review as a conference paper at ICLR 2021

• Tab. 6. For each class, the left and right images corresponds to Delaunay triangulation. The
image in the middle refers to the predicted matching and generated graph topology. Cyan
solid and dashed lines correspond to correct and wrong matchings, respectively. Green
dashed lines are the ground-truth matchings that are missed by our model.
• Tab. 7. In this table, the leftmost and the rightmost columns correspond to original topology

constructed using Delaunay triangulation. The two columns in the middle are the generated
topology using our method given Delaunay triangulation as prior. Blue edges are the edges
that Delaunay and generated ones have in common. Green edges corresponds to the ones
that are in Delaunay but not in generated topology, while red edges are the ones that are
generated but not in Delaunay.

We give some analysis for the following questions.

In what case a different graph is generated?

Since there are some generated graphs are identical to Delaunay, this question may naturally arise.
We observe that, DLGM tends to produce an identical graph to Delaunay when objects are rarely
with distortion and graphs are simple (e.g. tv, bottle and plant in Tab. 6 and last two rows in Tab. 7).
However, when Delaunay is not sufficient to reveal the complex geometric relation or objects are
with large distortion and feature diversity (e.g. cow and cat in Tab. 6 and person in Tab. 7), DLGM
will resort to generating new topology with richer and stronger hint for graph matching. In other
words, DLGM somewhat finds a way to identify if current instance pair is difficult or easy to match,
and learns an adaptive strategy to handle these two cases.

Why DLGM-G delivers better performance than DLGM-D?

In general, DLGM-D is a deterministic gradient-based method. That is, the solution trajectory of
DLGM-D almost follows the gradient direction at each iteration (with some variance from mini-
batch). Though it is assured to reach a local optima, only following gradient is too greedy since
generated graph is coupled with predicted matching. Besides, as the topology is discrete, the optimal
continuous solution will have a large objective score gap to its nearest discrete sampled solution once
the landspace of the neural network is too sharp. On the other hand, DLGM-G performs discrete
sampling under feasible graph distribution at each iteration, which generally but not fully follows
the gradient direction. This procedure can thus find better discrete direction with probability, hence
better exploring the searching space. This behavior is similar to Reinforcement Learning, but with
much higher efficiency. Additionally, EM framework can guarantee the convergence (Bishop, 2006).

16



Under review as a conference paper at ICLR 2021

Delaunay 1 Generated 1 Generated 2 Delaunay 2

Table 7: Generated topology compared with original Delaunay triangulation in a pairwise fashion.
Note the 1st and the 4th columns correspond to two input images with topology constructed by
Delaunay triangulation, respectively. 2nd and 3rd columns are the generated topology given Delaunay
results as prior.

17


	Introduction
	Related Works
	Learning Latent Topology for GM
	Problem Definition and Background
	Latent Topology Learning
	Loss Functions
	Framework
	Optimization with Deterministic Latent Graph
	Optimization with Generative Latent Graph


	Experiment
	Conclusion
	Appendix
	Holistic pipeline
	SplineCNN
	Derivation of DLGM-D
	Ablation study
	More visual examples and analysis


