Under review as a conference paper at ICLR 2025

NGLLAVA: SCALING MULTI-MODAL

L S TO IMAGES EFFICIENTLY VIA A HYBRID
ARCHITECTURE

Anonymous authors
Paper under double-blind review

Maximum Images Processed on a Single 80G GPU

A LongLLaVA-9B

:;Fp 1173

702 Average YouTube Video Frame Count (1 FPS)

LongVA-7B
- 57

324 2 NY Central Park Remote Sensing Sub-image Count (3367 size, 0.31m Res.)

Y Qwen-VL-7B <" MiniGPT-v2-78 LWM-7B
isi LongVILA-7B
IALLa\/A-1.5-7B LLaVA-OneVnslon-?: I.ONG”H_TQ
21 Phi-3-Vision-4.28 L
>
2023-08 2023-10 2023-12 2024-02 2024-04 2024-06 2024-08 Timeline

Figure 1: Comparison of the maximum images processed by MLLMs on a single 80GB GPU (Int8
Quantization), and plotted against their release dates. Our model, LongLLaVA, leads the way with
the ability to handle up to 1173 images, demonstrating its superior processing capability. Res refers
to resolution. Although these baseline models are capable of processing these images as input, their
performance often deteriorates significantly (Song et al.,2024) with more images.

ABSTRACT

Expanding the long-context capabilities of Multi-modal Large Language Mod-
els (MLLMs) is crucial for video understanding, high-resolution image under-
standing, and multi-modal agents. This involves a series of systematic optimiza-
tions, including model architecture, data construction and training strategy, par-
ticularly addressing challenges such as degraded performance with more images
and high computational costs. In this paper, we adapt the model architecture to a
hybrid of Mamba and Transformer blocks, approach data construction with both
temporal and spatial dependencies among multiple images and employ a progres-
sive training strategy. The released model LongLLaVA (Long-Context Large
Language and Vision Assistant) is the first hybrid MLLM, which achieved a bet-
ter balance between efficiency and effectiveness. LongLLLaVA not only achieves
competitive results across various benchmarks, but also maintains high through-
put and low memory consumption. Especially, it could process nearly a thousand
images on a single A100 80GB GPU, showing promising application prospects
for a wide range of tasks.

1 INTRODUCTION

The rapid advancement of MLLMs (Liu et al., 2024b; [2023a; Dong et al.,|2024a; |Chen et al.|[20244)
has demonstrated their remarkable capabilities across various applications (Chu et al.l [2024; [Yang
et al.;,2023; /Wu et al.| |2023b; (Chen et al., [2024b). However, multi-image scenario remain an impor-
tant yet to-be-explored aspect. In particular, expanding the context of MLLLMs to understand longer
videos (Zhang et al.,[2023; |Cheng et al., [2024b), higher-resolution images (Xu et al.| 2024c; Wu &
Xiel [2023b)), and make decisions based on more historical messages (Wang et al., [2024b; |Liu et al.,
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2024c)) is crucial for enhancing user experience (Li et al.,2024b) and further broadening MLLMs’
application scope (Apple} 2024)).

However, extending the context length of MLLMSs to improve their usability poses challenges related
to degraded performance and high computational costs when processing more images. To maintain
the performance in longer context, some studies (Zhang et al.| 2024a; [Zhao et al.,|2024c) have con-
centrated on curating long-context training data involving multiple images to enhance performance.
Additionally, other research efforts have explored innovative training strategies (Liu et al., [2024aj
Zhang et al., [2024b; |Li et al.| 2024a; Zhang et al., |2024d)) to mitigate performance declines. Re-
garding the issue of high computational costs, Xue et al,| (2024) have made strides in improving
multi-node efficiency by reducing communication costs. However, there remains a gap in solutions
for accelerating the computation itself when managing longer contexts.

To address the challenges mentioned above, we propose a systematic solution called LongLLLaVA,
especially using a hybrid architecture for acceleration. This solution comprehensively optimizes
across three dimensions: Multi-modal Architecture, Data Construction, and Training Strategy.

¢ For Multi-modal Architecture, we adopt a hybrid hybrid Transformer-Mamba architec-
ture and an efficient image representation method that applies 2D pooling to compress
image tokens, significantly reducing computational costs while maintaining performance.

* For Data Construction, we have designed unique formats for different tasks, enabling the
model to distinguish between temporal and spatial dependencies among images.

* For Training Strategy, we use a three-stage method for multi-modal adaptation—Single-
image Alignment, Single-image Instruction-tuning, and Multi-image Instruction-
tuning—to incrementally enhance the model’s ability to handle multi-modal long contexts.

Experiemntal results show that Longl.LaVA excels in understanding multi-modal long contexts with
high efficiency. It leads in retrieval, counting, and ordering tasks in VNBench (Zhao et al., [2024e)
and achieves nearly 100% accuracy with 1,000 images on a single 80GB GPU for Needle-In-A-
Haystack evaluation (Zhang et al.,|2024b). Our summarized contributions are as follows:

* We introduce LongLLaVA, a solution optimized through data construction, training strate-
gies, and multi-modal architecture, effectively balancing performance and efficiency. To
the best of our knowledge, this is the first hybrid architecture for MLLMs.

» LonglLLaVA demonstrates exceptional performance in multi-modal long-context under-
standing, excelling in retrieval, counting, and ordering tasks. In our commitment to trans-
parency and community research, we will open source all models, codes, and datasets
associated with LongLLaVA.

2 TOWARDS SCALING UP THE IMAGE NUMBER IN MLLMS

2.1 THE CURSE OF IMAGE NUMBERS

Degraded Performance with More Images. While many open-source MLLMs match closed-
source models on single-image tasks (Bai et al.,[2023; [Li et al.,[2024a; |Zhang et al., 2024a;|OpenAl,
2024; |Google, 2024), their performance degrades significantly in multi-image scenarios, particularly
in tasks involving temporal or semantic relationships (Song et al., [2024). This limitation restricts
their usability and calls for systematic solutions from the open-source community.

Excessive Input Length. Processing multiple images results in excessive input length due to the
large number of tokens generated by visual encoders like CLIP (Radford et al.||2021). For example,
representing a three-minute video at 1 FPS requires 103,680 tokens, causing increased computa-
tional demand and memory usage. Compression methods (Chen et al., [2023a; |Zhang et al., [2024b;
Xu et al.| |2024b)) partially alleviate this issue but often compromise performance.

High Computational and Memory Complexity. The quadratic scaling of Transformer architec-
tures with sequence length leads to high computational and memory overhead when handling mul-
tiple images. Techniques like ring attention (Liu et al.| 2024a}; Zhang et al., 2024b), sequence par-
allelism (Xue et al., [2024), and Mamba architectures (Gu & Dao, 2024} [Zhao et al., 2024a) offer
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partial relief but introduce trade-offs, such as time overhead or reduced in-context learning capabil-
ities (Lieber et al,2024). A balanced solution is needed to address these challenges in multimodal
contexts.

2.2  MOTIVATION FOR HYBRID ARCHITECTURE

Table 1: Comparative Analysis of Architectures. A checkmark (v') indicates that the architecture
supports in-context learning (ICL) capabilities, while a cross (X) denotes a relatively weaker ICL
ability. For a more detailed experimental analysis, please refer to Sec.[5.1]

Architecture | Compute Complexity ICL Representative models

Transformer | Quadratic v Gemma (Team et al.| 2024), LLaMA (Touvron et al., 2023

Mamba Linear X Mamba (Gu & Dao}, [2024), Mamba-2 (Dao & Gul 7%%715

Hybrid Quasi-Linear v Jamba éﬁ , Zamba (Glorioso et al.;[2024)
Transformer architectures are highly effective in multimodal tasks but face significant computa-
tional challenges due to their quadratic complexity with sequence length. This inefficiency becomes
a bottleneck in long-context scenarios, requiring high memory and computation resources. Mamba
architectures address this issue with their linear computational complexity, making them signif-
icantly more efficient. However, they exhibit notable weaknesses in In-Context Learning (ICL)
tasks, particularly those involving complex retrieval or reasoning (Park et all, [2024). These limi-
tations may attributed to Mamba’s reliance on reduced attention mechanisms (Olsson et al.| 2022]),

which constrain its ability to learn contextual patterns effectively. While explicit training can enable
Mamba models to perform simple ICL tasks, this approach restricts the utilization of the model’s

full capacity and training data (Dao & Gul,[2024).

Recent advancements have demonstrated the potential of hybrid Mamba-Transformer architectures,
which integrate Mamba’s efficiency with the robust ICL capabilities of Transformers
2024; [Wang et all,[2024a)). Comparative experiments show that these hybrids achieve superior per-
formance on ICL tasks and maintain computational efficiency. For instance, Jamba
[2024), a hybrid model, can process 256K tokens with only 4GB of KV-Cache memory, far sur-
passing the capabilities of Mixtral (Jiang et al., [2024a), which has the same activation parameters.
This balance between effectiveness and efficiency makes hybrid architectures an ideal solution for
long-context multimodal tasks, addressing both computational and functional limitations.

2.3 THE BENEFIT OF SCALING UP THE IMAGE NUMBER

Adopting more images significantly broadens the application scenarios for current MLLMs. We will
explore this from two dimensions: Temporal Expansion and Spatial Expansion.

Temporal Expansion. Understanding the temporal dependencies between images is crucial for a
variety of applications. In multi-modal assistants, it enhances real-time recall capabilities, which is
particularly beneficial for the elderly (Li et al 2024} [Coveys et al.,[2022). For mobile agents, it
enables more personalized services and improves task planning (Deng et al., 2024} [Li et al.| 2024f}
20234). In the healthcare sector, it assists in anomaly detection in 3D medical videos,

thereby reducing diagnostic errors (Bai et al.| 2024a).

Spatial Expansion. When dealing with high-resolution images (Xu et al.| 2024¢; [Dong et all,
or when detailed understanding of images (Wu & Xie| [2023b) is required, images are often
decomposed into sub-images. This process highlights the importance of grasping spatial dependen-
cies among these sub-images. In remote sensing, an increased number of images enhances both
coverage and granularity (Guo et al.} 2024} [Liu et al.}[2022)). In pathology, it minimizes information
loss and improves diagnostic accuracy (Sun et al., [2024; Xu et al.} [2024a)). In the field of Molecu-
lar Learning, it facilitates the processing of complex reactions and the analysis of larger molecular

graphs (Zhang et al )}, 2024¢; [Le et al} 2024).

3 LONGLLAVA: SCALING LLAVA TO LONGER CONTEXT

To address the aforementioned challenges and enhance the model’s adaptability to long-context,
multi-image scenarios, we introduce improvements from three perspectives: multi-modal model
architecture (Sec.[3.1), data processing protocol (Sec.[3.2), and training strategy (Sec.[3.3).
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3.1 MULTI-MODAL ARCHITECTURE

Our multimodal architecture is constructed around three core components inspired by LLaVA (Li
et al.l 2024a)): the Vision Encoder, the Projector, and the LLM. The primary strategies for adapting
to multimodal long-context are predominantly derived from two aspects.
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Figure 2: Architecture of LongLLL.aVA. The Longl.LLaVA model is capable of (1) accommodating a
variety of multimodal inputs and efficiently processing image tokens via 2D token compression; (2)
uniformly managing the preprocessed inputs within its hybrid LLM architecture, which comprises
four stacks of hybrid layers, each blending Transformer and Mamba layers in a 7:1 ratio.

Vision Information Processing. We employ CLIP[H as the vision encoder to encode visual infor-
mation and a two-layer MLP as the projector to map vision features into the text embedding space
suitable for the LLM. Prior to projection, bilinear pooling is applied, reducing the token representa-
tion of an image from 576 to 144 by aggregating 2 x 2 patch units into a single token. This approach
effectively conserves training and inference time while maintaining essential spatial relationships
between patches. Further details on the effectiveness of this strategy are provided in Section[4.3]

Hybrid LLM Architecture. Our model employs a hybrid LLM architecture comprising four stacks
of hybrid layers, each integrates Transformer and Mamba layers in a 7:1 ratio, as depicted in Fig-
ure[2] It also features a Mixture of Experts (MoE) approach in every other layer, utilizing 16 experts
and selecting the top-2 experts for each token. RMSNorm (Zhang & Sennrichl 2019) is used be-
tween layers to enhance normalization, although positional embeddings are omitted. The model
incorporates Grouped Query Attention (GQA) (Ainslie et al.l [2023)) and SwiGLU activation func-
tions (Shazeer, 2020), similar to other large language models. The total parameter count of the
model is 53B, with activation parameters during inference totaling 13B; we designate this model
as LongLLLaVA-A13B. In an effort to make the model more efficient, we have retained only the
Expert-0 in the Mamba MoE Layerﬂ thereby constructing LongL.LaVA-9B.

3.2 DATA PROCESSING PROTOCOL

To ensure that the model effectively distinguishes between temporal and spatial dependencies among
images in multi-image scenarios and performs well across various tasks, we meticulously differenti-
ated special characters in different scenarios. As shown in Figure[3] these special characters compre-
hensively address the various relationships between images in different contexts, thereby enhancing
the model’s adaptability to diverse tasks.

Regular Single and Multiple Images. For this type of inputs, we use <img> and </img> to
enclose image tokens, helping the model differentiate between image and text tokens.

Video. For video inputs, to enable the model to understand the temporal relationship between
frames, we first use <vid> and </vid> to enclose image tokens. Additionally, we add the special
symbol <t > between different frames to represent the temporal dependency between them.

High Resolution Image. For complex single-image understanding that require dividing an image
into multiple sub-images, we use \n to separate the main image from its sub-images. For the ar-
rangement of sub-images, we traverse from the top-left to the bottom-right, adding \n between split
lines to preserve the relative spatial positions of the sub-images.

lopenaj_/cl ip-vit-base-patch32
>We chose Expert-0 due to minimal performance differences, detailed in Appendix
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Data Processing Protocol

In the Following Statement: <Image>=<img><img token>...</img>

For Single-image: “<Image>\n What is this?”

For Multi-image: “<Image>\n This is a cat. <Image>\nThis is a:”

For Video: “<vid><Image><t>...<Image></vid>\n What are they?”

For Patched-image: “<Image>\n<Image>..\n..<Image>\n What are they?”

Figure 3: Data Processing Protocol for Longl.LaVA.We utilized different tokens to distinguish
various modal information, and to identify the spatial and temporal relationships within images.

3.3 TRAINING STRATEGY

In our training strategy, we implement single-modal and multi-modal adaptations to transform a
pre-trained language model into a multimodal long-context model.

Unimodal Data Multimodal Data

Evol-instruct-GPT4

WildChat ALLaVA-Caption LLaVA-1.5 VideoChat2 Mantis
LongAlign ShareGPT4V Mantis-Single ShareGPT4Video
278K 600K 932K S hTmaest Benlay!

Figure 4: Dataset Taxonomy of LongLLLaVA. Replay refers to data sampled from former phase
to maintain single-image and dialogue understanding ability. SubImage denotes a constructed
dataset for understanding complex single images divided into sub-images. Ins-T. and Align. refer to
instruction-tuning and alignment, respectively.

Pure-text Instruction Tuning. We initially enhance the pre-trained language model’s ability to
follow instructions of varying lengths in pure-text contexts. This is achieved using a comprehensive
dataset totaling 278k pure text entries from Evol-instruct-GPT4 (Xu et al., 2023)), WildChat (Zhao
et al.,[2024d), and LongAlign (Bai et al.,2024b).

For multi-modal adaptation, following the Single-image Alignment and Single-image Instruction-
tuning stages in LLaVA (Li et al., 2024a), we introduce a Multi-image Instruction-tuning stage to
progressively enhance the model’s long-context capabilities. We adopt progressive training not only
for better control of variables but also to increase model reusability (Fu et al.,[2024b)). The specific
dataset usage is detailed in Figure 4]

Stage I: Single-image Alignment. This stage is to align visual modal features with textual modality.
We utilize datasets such as ALLaVA-Caption (Chen et al.| 2024a) and ShareGPT4V (Chen et al.|
2023b)), which comprise approximately 600K high-quality image-caption pairs. During this phase,
only the projector is trained while freezing the parameters of the Visual Encoder and LLM.

Stage II: Single-image Instruction Tuning. This stage aims to endow the model with multimodal
instruction-following capabilities. We use datasets like LLaVA-1.5 (Liu et al., [2023b)) and Mantis-
Single (Jiang et al., 2024b), totaling around 932K high-quality question-answer pairs. Here, only
the Visual Encoder is frozen, and the projector and LLM parts are trained. This process ultimately
results in the development of Longl.LaVA (single image).

Stage III: Multi-image Instruction Tuning. In this stage, the model is trained to follow instruc-
tions in multimodal long-context scenarios. We sample 200K, 200K and 50K data items from Man-
tis (Jiang et al.l [2024b)), VideoChat2 (Li et al.l 2024d) and ShareGPT4Video (Chen et al., [2024c)
respectively. To preserve the model’s single-image comprehension and pure-text dialogue capabil-
ities, we include an additional 200K and 50K data items from the Single-image Instruction-tuning
and Pure-text Instruction-tuning phases as the Replay component. Furthermore, to enhance the
model’s ability to interpret complex single images segmented into multiple sub-images, we extract
50K data items from the Single-image Instruction-tuning phase, perform padding and segmentation,
and divide the original images into sub-images of size 336 x 336 as the Sub—-Image component.
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Table 2: Results of Multi-image Evaluation. PFLOPs represents the number of floating-point oper-
ations required to infer 128 images. The highest scores for proprietary and open-source MLLMs are
marked in bold. Video-MME is evaluated under the settings of without subtitles. Precision is FP16.

MileBench VideoMME w/o subs

Model PFLOPs #P. Temporal Semantic IR Avg.|Short Medium Long Avg. MVBench
Proprietary Models
GPT-4V - - 45.6 589 86.7 63.7|70.5 558 535 59.9| 435
GPT-40 - - 56.2 63.5 888 69.5]|725 63.1 58.6 64.7 -
Gemini-1.5-Pro - - 50.2 583 88.0 655788 688 61.1 69.6 -
Claude3-Opus - - 37.4 48.1 250 36.8|70.5 574 512 59.7 -

Open-source MLLMs

Video-LLaMA2 371 7B - - - - | 559 454 421 478 34.1
VideoChat2 024 7B 25.5 255 9.2 20.1483 370 332 395 51.9
LongVILA 3.90 - 8B - - - | 61.8 497 39.7 50.5 -
LongVA 4.90 - &B - - - | 61.1 504 462 52.6 -
Phi-3-Vision 268 3.8B| 469 50.0 187 385 - - - - -
OmChat 390 8B 514 520 342 459 - - - - 50.2

LongLLaVA-9B 0.15 9B 48.6 47.6 482 48.1]542 441 382 455 50.2
+ More Data” 0.15 9B 522 514 528 52.1|584 483 417 495 54.2
LongLLaVA-A13B 022 53B| 54.1 55.0 685 59.2|1629 522 464 53.8| 56.2

" ‘More Data’ indicates model trained for around two epochs (82 hours X 8 x A800-80G) to ensure comparable training time to LongVA
(84 hours X 8 X A100-80G).

4 EXPERIMENTS

4.1 TRAINING DETAILS

For training, we utilize random sampling to concatenate data items into a token length of 176,000,
separated by the <eos> token. This approach helps in managing extensive datasets and ensuring
diverse coverage of different data segments. Training is executed across three compute nodes, each
equipped with eight A800 GPUs, leveraging DeepSpeed Zero-3 as the distributed strategy to en-
hance scalability and efficiency. We employ a cosine learning rate scheduler with a warm-up rate of
0. 03, set the training epoch to 1, and the learning rate to 1e-5.

4.2 EVALUATION SETUP

Benchmarks. We mainly focus on evaluating the model’s multimodal long-context understanding
ability using three multi-image benchmarks: MileBench (Song et al.,[2024)) for assessing multimodal
long-context scenario performance, and Video-MME (Fu et al.l 2024a) along with MVBench (L1
et al.,2024d) for video analysis capabilities. Detailed descriptions of these benchmarks are available
in Appendix [B] For basic single-image evaluations, please refer to Appendix [C|for details.

Models. We compare our model against four commercial models: GPT—4(OpenAI, 2024)), GPT-
4dﬂ Gemini-1 .S—Prcf](Google, 2024), and Claude3—OpusE|, as well as five open-source models: Phi-
3—Visionﬂ OmChat (Zhao et al., [2024b), LongVILA (Xue et al., [2024), Video-LLaMA-2 (Cheng
et al.l 2024a) and VideoChat2 (Li et al) 2024d). Additionally, the temperature is set to zero
to guarantee consistent performance evaluation. Unless specified otherwise, LongL.LaVA-9B and
Longl.LaVA-A13B are evaluated using Int 8 quantization, a method designed to reduce computa-
tional costs while preserving performance and "LongLLaVA” refers to LongL.LaVA-A13B.

4.3 MAIN RESULTS

As shown in Table 2] LongLLaVA demonstrates superior performance among open-source models
on MileBench, even surpassing Claude3-Opus, and particularly excels in retrieval tasks. This high-
lights LongLLLaVA’s impressive capabilities in handling multi-image tasks. Notably, LongLLaVA’s
effectiveness is further underscored by its performance on video benchmarks such as Video-MME

3gpt—4—vision—preview
*https://openai.com/index/hello-gpt-40/

5qeminifl .5-pro

6claude—3—opus—2024022 9
"https://huggingface.co/microsoft/Phi-3-vision-128k-instruct



Under review as a conference paper at ICLR 2025

and MVBench. It shows exceptional results, especially in tasks involving medium to long-length
videos, outperforming traditional video models like Video-LLaMA?2 and VideoChat?2.

Remarkably, despite achieving these impressive results, LongL.LaVA operates with an order of mag-
nitude fewer FLOPs compared to other models. This efficiency in computational resources not only
underscores Longl.LLaVA’s advanced performance but also its optimization in resource management.
These results reflect a significant advancement in the research community’s efforts to close the per-
formance gap with commercial models.

4.4 DIAGNOSTIC EVALUATION OF LONG-CONTEXT MLLMSs

Table 3: Long Context MLLMs’ Atomic Capabilities Analysis using VNBench (Zhao et al., 2024e).
PFLOPs refers to the number of floating-point operations required for inference on 54 images, which
corresponds to the average number of frames extracted from the dataset videos at 1 FPS.

. Retrieval Ordering Counting
Video MLLM PFLOPs E L1 2 E L1 2 E1 E2 1 Avg.
Proprietary Models
Gemini-1.5 - 100.0 96.0 76.0 | 90.7 953 327|607 73 420 | 66.7
GPT-40 - 100.0 98.0 873 | 88.4 86.6 452|368 00 36.1 | 644
GPT-4V - 100.0 993 82.0 | 426 228 230|376 00 324 489
Open-source MLLMs

Video-LLama2 0.85 1.2 260 6.0 00 00 00 [20 47 07 4.5
VideoChat2 0.08 434 400 146 |00 00 13 |44 80 124 | 124
LongLLaVA-9B  0.07 983 572 963 | 242 572 243|245 210 26.0 | 444
LongLLaVA-A13 0.09 100 73.3 100.0 | 37.5 353 348 | 36.0 23.7 28.0 | 52.1

Considering that former evaluations cannot adequately capture the abilities of MLLMs over long
contexts, we use a diagnostic evaluation set, VNBench (Zhao et al.| [2024e)), to further analyze the
atomic capabilities of models in long contexts. VNBench is a benchmark construction framework
based on synthetic video generation, encompassing tasks such as retrieval, ordering, and counting.

The results, as presented in Table [3] indicate that LongLLaVA exhibits performance that is on par
with leading closed-source models in tasks such as cross-context retrieval, ordering, and technical
capabilities, even outperforms GPT-4V. Among open-source models, LongLLaVA also shows its su-
perior performance. This positions LongLLLaVA as a prominent contender in the field, demonstrating
its advanced capabilities in managing and interpreting long contexts. To further assess the retrieval
ability of LongLLaVA, we conducted multimodal needle-in-a-haystack experiment, the specifics of
which are outlined in Appendix

4.5 ABLATION STUDY

As demonstrated in Figure [3]
setting 144 tokens per image 70 11
effectively maintains perfor-
mance while significantly

60 i 10
reducing inference  costs, 50
particularly noticeable in the
case of SEEDBench. Regard- 40 | |
ing data construction, after |
training on our single-image 30 [ Ph 1 e
data, the model achieved a 1
20 6
36 576

Performance
(o]
(c121) obew| Jod s4OT14

@

~

1.5% accuracy improvement
on SEEDBench and 12.3%
on MileBench. Subsequent
multi-image  training  led
to a further 7.4% increase
on MileBench, validating
the dataset construction’s
effectiveness.

100 144
Token Number per Image

MMMU © MileBench " SEEDBench B SQA M GQA

Figure 5: Performance across five datasets and inference costs with
varying token numbers per image.
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As shown in Table [ signif- Table 4: Ablation on  model architecture,  dataset construction
icant improvements were ob- and  training strategy. Each strategy builds upon the previous row,
served across all evaluation except for 1D Pooling. Mile7,,  is the average score of MileBench.
sets when using the hybrid 1D and 2D denote different pooling strategies. #T refers to the to-

LLM architecture, Jamba, ken count for one image. & refers to the combination of the stages.
with identical data and model Method #T ‘GQA MMMU SQAI SEED;)}ng Milezvg

parameters, demonstrating its Architecture & Data Abalati LoneLLaVA-A13B
. 1 . l . l _ rcnitecture ata alation on L.ong a -
potential in_multimodal sce- T g O T s 116 682 276

narios.  For ht"ke“ hc"g]‘)' +lambaasLLM  576| 63.2 414 754 698 382
pression, we choose the +1D Pooling 144| 604 420 739 663 36.2
pooling, which significantly  ,5p pooling 144| 613 421 752 674 377

reduces computational load  4Single-image Data 144| 622 421 759  68.9 50.0
while keeping performance  +Multi-image Data 144|599 392 734 653 57.4

degradation within acceptable Training Strategy Abalation on LongLLaVA-9B

limits (less than 2.2%). Com-  ¢:/007 4243 144569 328 672 669 422
pared to 1D pooling, the 2D 14007 243 144) 576 332 702 684 442
pooling method, which pools  4Stagel, 2, 3 144|584 344 699 679 46.5

along the height and width di-
rections to obtain a 12x12 token arrangement, yields better results (0.1~1.5 improvement). For
training strategy, the results indicate that progressive training achieves better performance on
multi-image tasks while maintaining comparable results on single-image tasks. For more abla-
tion studies on LLM architecture and replay data, please see Appendices and [E.2] for details.

5 MORE ANALYSIS

In this section, we conduct further analysis to understand the inner workings and multimodal long-
context capability of LongLLaVA.

5.1 ON THE MOTIVATION FOR THE HYBRID ARCHITECTURE

Table 5: ICL Capability and Efficiency Analysis across Different Architectures. TP and Mem. refer
to throughput and memory usage.

Acti #Few-shot of VL-ICL 100K Token (Efficiency)
Model Arch. p ctive Prefil TP  Mem. Max TP

aram.| | 5 4 5 (s) (tokens/s) (GB) (tokens/s)
Falcon-mamba Mamba 7B 49.0 519 524 532 243 32.4 48.8 90.7
LLaVA-1.6 Transformer 13B  [50.0 52.3 54.6 58.9 | 34.0 147 794 14.7
LongLLaVA-9B  Hybrid 9B [51.6 57.8 584 60.2| 16.5 62.1 387 1552
LongLLaVA-A13B Hybrid 13B |523 59.0 59.0 61.3| 255 376 79.1 37.6

We explore the strengths and weaknesses of different architectures in terms of ICL capabilities
and inference efficiency, highlighting the balanced advantages of multimodal hybrid architectures
that combine the strengths of both. For Mamba Architecure, we train and evaluate the Falcon-
mamba (Zuo et al.| [2024) model with 7.3B parameters using the same settings as our model, as it
represents the largest available Mamba configuration, despite the difficulty in aligning parameter
counts in MLLMs. For Transformer, we choose the 13B parameter LLaVA-1.6, which has inference
parameters consistent with LongLLLaVA, to enable a more accurate efficiency comparison.

ICL Analysis. We evaluate the performance on the Matching Image task from VL-ICL bench-
mark (Zong et al.l 2024) for multi-modal in-context learning. This task’s inputs contain an im-
age pair x = {z1,22}, and output y indicates whether a specific relation  holds between them.
MLLMs are required to learn the relation from examples. As shown in the Table[5] both Hybrid and
Transformer architectures exhibit rapid performance improvements with the increase in examples,
whereas the Mamba architecture shows a slower improvement, confirming its ICL shortcomings.
Building on the concept of many-shot fine-tuning (Agarwal et al.| [2024), we further investigated the
inference scalability of the hybrid architecture model with respect to the larger number of ICL shots.
Additional details are provided in the Appendix
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Efficiency Analysis. We focus on four aspects: Prefill Time (first inference latency), Through-
put (next tokens per second), Memory Usage and Maximum Throughput (throughput under max-
imum batch size). We control the input text length to 100K and measure time and maximum
memory usage for generating outputs of 1 token and 1000 tokens. Throughput is calculated as
(1000 — 1)/(time1pop — times). To better simulate real application scenario, Transformer and
Hybrid architectures are evaluated using vLLM framework (Kwon et al., 2023) with Int 8 quan-
tization (Frantar et al., [2023). As shown in the Table E] the Hybrid architecture achieves 2.5 times
the Throughput, 4.1 times the Maximum Throughput, 75% of the Prefill Time, and reduced memory
usage compared to the Transformer architecture with similar inference parameters.

5.2 SCALING LAW OF THE IMAGE NUMBER

With more images processed, it could support more image patches for high-resolution image un-
derstanding and more video frames for video understanding. To explore the impact of increas-
ing the number of sub-images and video frames, we evaluate LonglLLaVA on the benchmarks V*
Bench (Wu & Xie|,|2023a)) and Video-MME (Fu et al.,[2024a) respectively.
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creasing sub-image counts on V* creasing frame counts on Video-MME

Scale up Number of SubImages. V* Bench evaluates a model’s ability to locate small objects
within large images. As shown in Figure [f] increasing the number of sub-images initially improves
model performance significantly, indicating better understanding of image details. However, we also
find that further increasing the number of sub-images slightly degraded the performance, suggesting
that an excessive number of sub-images may interfere with performance on this task.

Scale up Number of Frames. Video-MME (Fu et al., [2024a) is a benchmark that tests a model’s
ability to extract information from videos. We can see from Figure|[/|that as the number of sampled
frames increases, the model’s performance on the benchmark improves significantly, reaching its
peak when 256 frames are extracted. This indicates that the model can effectively understand and
utilize the information contained in the additionally sampled frames to provide better responses.

6 MORE APPLICATIONS FOR LONGLLAVA

Apart from the long video understanding task introduced in Section[d.3] which demands a prolonged
temporal image comprehension ability, we have investigated three additional domains, Healthcare,
Science and Many-shot ICL. These areas necessitate the utilization of LongL.LLaVA’s fine-grained
image understanding capability and multimodal long-context understanding ability, providing us a
broader platform to further probe its potential applications.

6.1 APPLICATION IN HEALTHCARE

To evaluate the potential of Longl.LLaVA in the Healthcare domain, we selected two tasks: Pathology
Image Understanding and 3D CT Image Understanding. Initially, we trained LongL.LLaVA-9B for
one epoch using PubMedVision to equip it with basic multimodal medical capabilities, a process
which took five hours with eight A800 GPUs. As a result, we obtained Longl.LaVA-Med.
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Table 6: Performance of the models on the  Taple 7: Performance on 3D CT image under-

pathology image understanding tasks. standing task. Acc., Rec. and Prec. refer to
Model | Size | VQA-RAD PathVQA  Accuracy, Recall and Precision, respectively.
GPT-4V - 39.5 -
LLaVA 34B 58.6 59.1
LLaVA-Med 7B 55.5 35.9 Model | Acc. Rec. Prec. F1
HuawoGPT-V_ | 8B 63.8 59.9 CT-CLIP 651 738 304 43.0
LongLLaVA-Med | 9B | 68.5 55.0 LonglLLaVA-Med | 86.7 77.6 35.5 48.5

Pathology Image Understanding. We chose pathological image understanding task, which requires
the model to possess fine-grained recognition capabilities and medical knowledge. We evaluated

LonglLLaVA using two benchmarks, VQA-RAD (Lau et al.}[2018) and PathVQA (He et al., 2020).

As presented in Table [6] our model proves competitive in comparison to SOTA models (LLaVA-

Med and HuatuoGPT-V (Chen et al., [2024b)) with less training data.

3D CT Image Understanding. To evaluate LonglLL.aVA’s capability in 3D vision tasks, we selected
the CT image understanding task. Since 3D CT images can be viewed as a combination of multiple
slices of the human body, all slices were converted to RGB format and processed as a multi-image
sequence for model interpretation. We conducted a zero-shot evaluation on the CT-RATE
validation set, with random selection of varying resolutions from the same patients. The
dataset contains 1304 samples, with slice resolutions ranging from 512x512 to 1024 x 1024, and an
average of 690. The number of slices per sample ranges from a maximum of 984 to a minimum of
100, with an average of 300. Table [7]indicate that LongLLaVA-Med outperforms the SOTA model
by 21.6 points in terms of accuracy, establishing a new precedent for 3D CT images understanding.

6.2 APPLICATION IN SCIENCE

In science domain, we focus on geology and deal with understand-  Taple 8: FIT-RSFG-VQA
ing remote sensing images, which needs models are required to per-

form Visual Question Answering (VQA) based on high-resolution Model S.1ze Acc.
remote sensing images (Zhou et al) 2024). We followed Sky- Zero-shot Setting
SenseGPT (Luo et al.| 2024), the latest MLLM in this domain and ~ LLaVAL5-7B 7B 58.6
selected the latest FIT-RSFG-VQA task from their work, which ~ GeoChat 7B 53.5
. . , . . - LongLLaVA 9B 65.2
is designed to evaluate a model’s fine-grained perception capabil-

ities and instruction-following ability in this domain. As shown in Fine-tuned Setting

Table [8] LongLLaVA maintains excellent performance among all ~ SkySenseGPT 7B 79.8
models. Moreover, it surpasses existing SOTA models after fine- ~LongLLaVA-RS* 9B  82.3
tuned on only 27% of the SkySenseGPT data.

Since the image resolution of FIT-

, | g o rewmaveses RSFG-VQA is only 512x512, we ex-
%" ﬁ v v & e )x tracted two remote sensing images from

STAR (Li et al., 2024¢)), with resolutions

1 (o e T of 1024x768 and 3327x4083 respec-
%é‘; _you telwhere this o7 J tively to conduct a comparative study. As
NN (6 oo mpepeern | shown in Figure ] LongLLaVA success-
; ; fully answered VQA questions requiring
The image you uploaded shows an aerial view of an . .. .
airport. | can see text on the runways and taxiways that ﬁne_gralned recognltlon after Sublmage
might in.dicaFe its location, but it's too small for me to x . .
S syt or zo0m s and s cloare e of e segmentation, outperforming GPT-4V.

text, | might be able to help identify the airport.
Figure 8: Comparative Study on Remote Sensing
7 CONCLUSION

In this study, we introduce Longl.LLaVA, an innovative hybrid architecture model that excels in long-
context multi-modal understanding. The model integrates Mamba and Transformer blocks, lever-
aging temporal and spatial dependencies between multiple images to construct data, and employs
a progressive training strategy. LongL.LLaVA demonstrates competitive performance across various
benchmarks while ensuring efficiency, setting a new standard for long-context MLLMs.
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A  PRELIMINARY EXPERIMENTS ON EXPERT SELECTION FOR
LONGLLAVA-9B

To determine the optimal expert selection method in the MoE layers we also conducted preliminary
experiments. Using prevalent LLM benchmarks, MMLU (Hendrycks et al., [2020) and BBH (Suz-
gun et al., 2022), we evaluated three expert selection strategies: numerical averaging, spherical
averaging, and random expert selection.

Table 9: Performance of Different Downcycling Strategies on MMLU and BBH
Downcycling Strategy  Arithmetic Spherical Expert- Expert- Expert- Expert-

Mean Mean 0 5 12 15
MMLU 52.7 53.2 53.2 51.9 52.6 52.2
Aft. Train 53.8 54.3 54.3 53.3 53.8 53.3
BBH 36.7 36.7 37.2 36.7 374 36.3
Aft. Train 37.8 37.9 38.4 38.9 38.9 37.9

These methods were compared both before and after Pure-text Instruction Tuning. As shown in Ta-
ble[9] the differences in model performance were minimal across the selection methods. Therefore,
for simplicity, we opted to use Expert-0.

B DETAILS OF BENCHMARKS

Single-image Benchmarks. We select seven commonly used evaluations to assess the model’s
single-image understanding capabilities. These include:

* GQA (Hudson & Manning},2019): A benchmark for real-world visual reasoning and com-
positional question answering.

* MME (Fu et al.|[2023): A comprehensive benchmark focused on perception and cognition,
from which we use the perception component.

* MM-Vet (Yuetal.,|2023): Examines six core visual-linguistic (VL) capabilities and sixteen
integrations derived from these capabilities.

* ScienceQA (Lu et al., |2022): Consists of 4,210 questions across various science topics,
with detailed annotations.

* SEED-Bench-v1 (Li et al.|[2023)): Evaluates comprehension across twelve dimensions in
both image and video modalities; we use the image set.

* MMBench (Liu et al.|[2023c)): A systematically-designed benchmark across twenty ability
dimensions.

e MMMU (Yue et al., 2024)): Tests multi-modal models on multidisciplinary tasks requiring
university-level knowledge, covering 183 subfields and 30 types of images.

Multi-image Benchmarks. To explore multi-image capabilities, we utilized:

* MileBench (Song et al., 2024): Assesses long-context scenario performance, focusing on
Temporal, Semantic, and Information Retrieval (IR) components.

* Video-MME (Fu et al.}[2024a): Covers 30 sub-fields to evaluate video analysis capabilities.
We analyze 128 frames extracted uniformly from each video, independent of subtitles.

* MVBench (Li et al., [2024d)): Addresses 20 challenging video tasks that are not effectively
solved with a single frame.

C DETAILS OF SINGLE-IMAGE EVALUATION

The single-image evaluation aims to explore the model’s fundamental capabilities and the impact of
extended long-context training on single-image understanding.
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C.1 BENCHMARKS

We utilized a series of benchmarks, including GQA (Hudson & Manning, 2019), MME (Fu et al.|
2023), MM-Vet (Yu et al.l 2023)), ScienceQA (Lu et al. 2022)), SEED-Bench-v1 (Li et al., 2023,
MMBench (Liu et al., 2023c), MMMU (Yue et al., [2024), ChartQA (Masry et al., 2022) and
DocVQA (Mathew et al.| [2021). These benchmarks assess various aspects of visual understand-
ing and cognitive processing within a single-image context.

C.2 COMPARISON MODELS

For a comprehensive comparison, we selected three commercial models for the single-image eval-
uation: GPT-4Vf¥| (OpenAl, 2024), Gemini-1.5] (Google, [2024), and Claude3-Opud™®l Addition-
ally, we included five open-source models to broaden the scope of evaluation: LLaVA-1.5-13B (Liu
et al.,)2023b), LLaVA-1.6-13B (Liu et al., 2024b)), Phi-3—Vision—4.2BE] and OmChat-8B (Zhao et al.|
2024D).

Model [TFLOPs  #P #T |ChartQA DocQA GQA MM-Vet MME” MMBMMMU SQA’ SEED;), ,
Proprietary Models
GPT-4V - - - - - - 677 19265 813 568 821 69.1
Gemini-1.5 - - - - - 658 21489 736 489 8l4 629
Claude3-Opus - - - - - 742 15868 633 549 - 42.0
Open-source MLLMs
OmChat 7.61 8B576| - - - 396 - 788 459 - -
Phi-3-Vision 3.563.8B576| - - - - - 805 404 90.8 -
LLaVA-1.6 11.86 13B576| - - 654 449 14450 700 362 736 714
LLaVA-1.5 11.86 13B576| - - 633 361 1531.1 677 344 716 682

LongLLaVA-9B 1.04 9B144| 448 474 584 323 15046 656 344 699 679
LongLLaVA-A13B 1.52 53B144| 463 512 599 352 15239 63.7 392 734 653

Table 10: Single-image Evaluation. TFLOPs represents the number of floating-point operations
required to infer 1 images. The highest scores for proprietary and open-source MLLMs are marked
in bold. #Token refers to the token count for one image.

C.3 RESULTS ANALYSIS

As shown in Table[I0] LongLLaVA (single image) generally outperforms LLaVA-1.6-13B, despite
both models having the same inference parameter size. This advantage is particularly notable in the
MMMU benchmarks, highlighting Longl.LaVA (single image)’s strengths in handling comprehen-
sive knowledge-based questions. Although Longl.LaVA (single image)’s performance is slightly
lower compared to some recently emerged high-performing models, it still demonstrates the po-
tential of hybrid architectures in multi-model scenarios. To ensure complete reproducibility of our
results, we only focus on four representative public datasets. Additionally, we find that LongL.LaVA
tends to underperform relative to LongLLaVA (single image). Addressing this issue may require
incorporating more single-image data during the Multi-image Instruction-tuning phase.

D MULTIMODAL NEEDLE-IN-THE-AYSTACK EVALUATION

Using the V-NIAH evaluation framework proposed in LongVA (Zhang et al., 2024b), we conduct a
needle-in-the-haystack test to evaluate the model’s performance. As shown in Figure[9] LongLLaVA
achieves nearly 100% retrieval accuracy on a set of 1200 images without requiring additional train-

ing.

8gpt—4—vision—preview

9gemini—l .5-flash

0claude-3-opus-20240229
"https://huggingface.co/microsoft/Phi-3-vision-128k-instruct
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Figure 9: Video-NIAH (Zhang et al.}, [2024b)) evaluated on one A800 80GB GPU.

E ADDITIONAL ABLATION STUDIES

E.1 ARCHITECTURE ABLATION STUDY ON 9B DENSE MODEL

To investigate whether the hybrid architecture impacts MLLM performance, we conducted experi-
ments based on a 9B dense model. Ensuring alignment in the initial performance of the LLMs prior
to MLLM adaptation is essential. Thus, we first compared the initial performance of the LLMs
before adaptation. The results, presented in Table[TT] demonstrate that the two models exhibit com-
parable performance.

Table 11: Initial Performance Table 12: Performance Comparison of Different Architectures on

Comparison of LLMs Multimodal Benchmarks
MMLU BBH Model GQA MMMU SQA’ SEED},, Mile},,
Vicuna-13B 553  40.5 LLaVA-1.5-13B 63.3 344 71.6 68.2 27.6
Jamba-9B 543 38.4 Jamba-9B 62.3 36.2 71.9 70.1 28.2
(+LLaVA-1.5 Recipe)
Difference -1.0 +1.8 +0.3 +1.9 +0.6

Subsequently, we conducted an additional ablation experiment by replacing the LLM base in
LLaVA-1.5-13B with Jamba-9B (after pure-text instruction tuning) while following the LLaVA-1.5
training recipe. As shown in Table [I2] given the comparable initial performance of the LLMs and
using the same training data combination, the hybrid architecture achieves competitive results.
Furthermore, the hybrid architecture requires fewer FLOPs for inference.

E.2 REPLAY DATA ABLATION STUDY
To assess the impact of replay data, we conducted three experiments as part of the Replay Data
Ablation Study.
Table 13: Comparison of Model Performance With and Without Replay Data
MMLU BBH GQA MMMU SQA’ SEEDj,, Mile},,

LongLLaVA-9B 53.9 38.8 58.4 344 69.9 67.9 46.5
w/o Replay Data 52.3 36.2 57.5 31.2 535 64.3 46.8
Replace with Multi-Image 52.6 35.9 57.2 29.8 52.6 63.8 47.2

Comparison With and Without Replay Data. We first conducted experiments comparing mod-
els trained with and without replay data. To isolate the effect of replay data from the impact of
increased training data, we performed an ablation study by replacing replay data in the original
training recipe with an equivalent amount of multi-image data. The results, presented in Table [T3]
demonstrate that replay data is essential for preserving the model’s original single-image un-
derstanding and text-following capabilities.
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Table 14: Impact of Text Replay Data Quantity

MMLU BBH
LongLLaVA-9B (w/o Replay Data) 52.3 36.2
with 10K 52.9 37.3
with 20K 534 38.1
with 50K 53.9 38.8
with 100K 53.9 39.2

Table 15: Impact of Single-Image Replay Data Quantity
GQA MMMU SQA’ SEED;,, Mile},,

LongLLaVA-9B (w/o Replay Data) 57.5 31.2 53.5 64.3 46.8
with 50K 57.9 323 58.2 66.2 46.5
with 100K 57.9 335 62.7 67.1 46.5
with 200K 58.2 34.5 67.1 67.9 46.8
with 400K 58.5 35.2 73.2 68.2 46.4

Replay Data Quantity Ablation. We also examined the impact of varying the quantity of replay
data. For text replay data, the supplementary experiments reveal that adding text replay data en-
hances the model’s text-following ability, although the improvement eventually saturates, as shown
in Table [T4]For single-image replay data, the results in Table [I3]indicate that the model’s single-
image capability continues to improve with increased data volume and has not yet reached saturation.
However, the improvement in multi-image tasks is limited.

F THE INFERENCE SCALABILITY OF LONGLLAVA IN MANY-SHOT ICL

SCENARIOS.
To investigate the potential of LonglL.LaVA-9B on many- -
shot ICL task, we expanded our evaluation of ICL ca- _._Erlw_e—t in 3
70 ine-tuning 692 __—o

pabilities from Section [5.I] We compared the model’s
performance with varying numbers of shots to its perfor-
mance after fine-tuning with the same number of samples.
As shown in Figure[T0] LongLLaVA-9B exhibits superior

70.4

Performance

ICL performance with up to 100 shots. However, when s

the number of shots increases to around 1000, the advan-

tage of adding more shots diminishes, and fine-tuning be- %0801 s 10 s 100 1000
gins to yield better results. Shot Number

Figure 10: Performance of ICL and
Fine-tuning in LongLLaVA on VL-ICL
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