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Abstract

Recently, there has been a surge of interest in employing neural networks for graph
generation, a fundamental statistical learning problem with critical applications like
molecule design and community analysis. However, most approaches encounter
significant limitations when generating large-scale graphs. This is due to their
requirement to output the full adjacency matrices whose size grows quadratically
with the number of nodes. In response to this challenge, we introduce a new, simple,
and scalable graph representation named gap encoded edge list (GEEL) that has a
small representation size that aligns with the number of edges. In addition, GEEL
significantly reduces the vocabulary size by incorporating the gap encoding and
bandwidth restriction schemes. GEEL can be autoregressively generated with the
incorporation of node positional encoding, and we further extend GEEL to deal
with attributed graphs by designing a new grammar. Our findings reveal that the
adoption of this compact representation not only enhances scalability but also
bolsters performance by simplifying the graph generation process. We conduct
a comprehensive evaluation across ten non-attributed and two molecular graph
generation tasks, demonstrating the effectiveness of GEEL.

1 Introduction

Learning the distribution over graphs is a challenging problem across various domains, including
social network analysis [1] and molecular design [2, 3]. Recently, neural networks gained much
attention in addressing this challenge by leveraging the advancements in deep generative models, e.g.,
diffusion models [4], to show promising results.

However, the majority of the graph generative models do not scale to large graphs, since they generate
the adjacency matrix-based graph representations [5, 6, 7, 3]. In particular, for large graphs with N
nodes, the adjacency matrix is hard to handle since they consist of N2 binary elements. For example,
employing a Transformer-based autoregressive model for all the binary elements requires O(N4)
computational complexity. Researchers have considered tree-based [8] or motif-based representations
[9, 10] to mitigate this issue, but these representations constrain the graphs being generated, e.g.,
molecules or graphs with motifs extracted from training data.

Intriguingly, a few works [11, 12] have considered generating the edge list representations as a
potential solution for large-scale graph generation. In particular, the list contains M edges that are
fewer than N2 elements in the adjacency matrix, a distinctive difference especially for sparse graphs.
However, such edge list-based graph generative models instead suffer from the vast vocabulary size
N2 for the possible edges. Consequently, they face the challenge of learning dependencies over a
larger output space and may overfit to a specific edge or an edge combination appearing only in a
few samples. Indeed, the edge list-based representations empirically perform even worse than simple
adjacency matrix-based models [13], e.g., see Table 1.
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Figure 1: Overview and advantages of gap encoded edge list (GEEL).

In this paper, we propose a simple, scalable, yet effective graph representation for graph generation,
coined Gap Encoded Edge List (GEEL). On one hand, grounded in edge lists, GEEL enjoys a
compact representation size that aligns with the number of edges. On the other hand, GEEL improves
the edge list representations by significantly reducing the vocabulary size with gap encodings that
replace the node indices with the difference between nodes, i.e., gap, as described in Figure 1a. We
also promote bandwidth restriction [14] which further reduces the vocabulary size. Next, we augment
the GEEL generation with node positional encoding. Finally, we introduce a new grammar for the
extension of GEEL to attributed graphs.

The advantages of our GEEL are primarily twofold: scalability and efficacy. First, regarding
scalability, the reduced representation and the vocabulary sizes mitigate the computational and
memory complexity, especially for sparse graphs, as described in Figure 1b. Second, concerning
the efficacy, GEEL narrows down the search space to B2 via intra- and inter-edge gap encodings,
where the size of each gap is bounded by graph bandwidth B [15]. We reduce this parameter via the
bandwidth restriction scheme [14]. This prevents the model from learning dependencies among a
vast vocabulary of size N2. This improvement is more pronounced when compared with the existing
edge list representations, as described in Figure 1c.

We present an autoregressive graph generative model to generate the proposed GEEL with node
positional encoding. In detail, we observe that a simple LSTM [16] combined with the proposed
GEEL exhibits O(M) complexity. Furthermore, combined with the node positional encoding that
indicates the current node index, our GEEL achieved superior performance across ten general graph
benchmarks while maintaining simplicity and scalability.

We further extend GEEL to attributed graphs by designing a new grammar and enforcing it to filter
out invalid choices during generation. Specifically, our grammar specifies the position of node-
and edge-types to be augmented in the GEEL representation. This approach led to competitive
performance for two molecule generation benchmarks.

In summary, our key contributions are as follows:

• We newly introduce GEEL, a simple and scalable graph representation that has a compact
representation size of M based on edge lists while reducing the large vocabulary size N2 of the
edge lists to B2 by applying gap encodings. We additionally reduce the graph bandwidth B by
the C-M ordering following Diamant et al. [14].

• We propose to autoregressively generate GEEL by incorporating node positional encoding and
combining it with an LSTM of O(M) complexity.

• We extend GEEL to deal with attributed graphs by designing a new grammar that takes the node-
and edge-types into account.

• We validate the efficacy and scalability of the proposed GEEL and the resulting generative
framework by showing the state-of-the-art performance on twelve graph benchmarks.

2



2 Related works

Adjacency matrix-based graph representation. The adjacency matrix is the most prevalent graph
representation, capturing straightforward pairwise relationships between nodes [5, 17, 18, 13, 19, 20,
21]. For instance, You et al. [13] proposed autoregressive generative models, Luo et al. and Shi et
al. [21, 20] presented normalizing flow models, and Jo et al. [17] applied score-based models for
graph generation. However, these methods suffer from the large representation size associated with
generating the full adjacency matrix, which is impractical for large-scale graphs.

To solve this problem, several works have introduced scalable graph generative models [22, 23, 14].
Specifically, Liao et al. [22] proposed a block-wise generation that enabled efficiency-quality trade-
off. Dai et al. [23] proposed to avoid consideration of every entry in the adjacency matrix, leveraging
on the sparsity of graphs. Finally, Diamant et al. [14] proposed to constrain the bandwidth via C-M
ordering, bypassing the generation of out-of-bandwidth elements, which reduces the representation
complexity to NB.

Tree-based graph representation. Researchers have developed tree-based representations by
employing tree search algorithms [8, 24]. Specifically, Segler et al. [8] employed SMILES, a
sequential representation for molecules, constructed from the DFS traversal of molecular graphs with
omitted cycles. Complementing this, Ahn et al. [24] designed a new representation that exploits the
inherent tree-like structure of molecules.

Motif-based graph representation. Researchers have investigated motif-based representations [9,
10, 25], aiming to capture meaningful subgraphs with lower computational costs. In detail, Jin et
al. [9, 10] focused on extracting common fragments from datasets. Since these techniques rely on
domain-specific knowledge, Guo et al. [25] introduced a domain-agnostic methodology to learn
motif-based vocabulary by running reinforcement learning. However, it is still restricted to generating
graphs with seen motifs that are included in the training set.

Edge list-based graph representation. A few works have presented edge list-based representa-
tions [11, 12]. Employing an edge list as a graph representation reduces the representation size to
M , which is smaller than that of the adjacency matrix, N2. However, these methods suffer from the
large vocabulary size N2, resulting in a large search space and subsequently degrading the generation
quality. They also face difficulties in capturing long-term dependencies due to their reliance on
depth-first search (DFS) traversal for edge construction. Specifically, DFS traversal fails to closely
place edges connected to the same node, so the model must span a broader range of steps to account
for edges connected to the same node.

3 Method

In this section, we introduce our new graph representation, gap encoded edge list (GEEL), and
the autoregressive generation using GEEL. GEEL has a small representation size M by employing
edge lists. In addition, GEEL enjoys a reduced vocabulary size with gap encodings and bandwidth
restriction, narrowing down the search space and resulting in the high-quality graph generation.

3.1 Gap encoded edge list representation (GEEL)

First, we present our GEEL representation, which leverages the small representation size of edge
lists and the reduced vocabulary size with gap encoding and bandwidth restriction. Consider a graph
with N nodes, M edges, and graph bandwidth B [15]. The associated edge list has a representation
size of M which is smaller compared to the size of the adjacency matrix N2. However, it has a large
vocabulary size of N2, consisting of tuples of node indices. To address this, we reduce the vocabulary
size into B2 by replacing the node indices in the original edge list with gap encodings as illustrated
in Figure 1a. We encode two types of gaps: (1) the inter-edge gap between the source and the target
nodes and (2) the intra-edge gap between source nodes in a pair of consecutive edges.

To this end, consider a connected undirected graph G = (V, E) with N nodes and M edges. We
define the ordering as an invertible mapping π : V → {1, . . . , N} from a vertex into its rank for a
particular order of nodes. Then we define the edge list τEL as a sequence of pairs of integers:

τEL = (s1, t1), (s2, t2), . . . , (sM , tM ),

3



where sm, tm ∈ {1, . . . , N} are the m-th source and target node indices that satisfy
(π−1(sm), π−1(tm)) ∈ E , respectively. Without loss of generality, we assume that sm < tm and the
edge list is sorted with respect to the ordering, i.e., if m < ℓ, then sm < sℓ or sm = sℓ, tm < tℓ. For
example, (1, 2), (1, 3), (2, 3), (3, 5) is a sorted edge list while (1, 2), (2, 3), (3, 5), (1, 3) is not.

Consequently, we define our GEEL τGEEL as a sequence of gap encoding pairs as follows:

τGEEL = (a1, b1), (a2, b2), . . . , (aM , bM ),

where am and bm are the inter- and intra-edge gap encodings, respectively. To be specific, the
inter-edge gap encoding indicates the difference between consecutive source indices as follows:

am = sm − sm−1, m = 1, . . . ,M, s0 = 0.

Furthermore, the intra-edge gap encoding bm indicates the difference between the associated source
and target node indices as follows:

bm = tm − sm, m = 1, . . . ,M.

Then one can recover the original edge list τEL from GEEL τGEEL as follows:

sm =

m∑
ℓ=1

aℓ, tm = bm +

m∑
ℓ=1

aℓ.

Note that the gap encodings are always positive and GEEL can be generalized to directed graphs by
allowing negative intra-edge gap encodings.

<latexit sha1_base64="lIOrnAN/LQVmXgufk7hmFsqQy9w=">AAACHXicbVDLTgJBEJzFF+Jr1aOXicTEE9k1vo6gF4+YyCMBJLPDLIzMzm5meg1kw9Xf8Ae86h94M16NP+B3OMAeBKykk0pVd7q7vEhwDY7zbWWWlldW17LruY3Nre0de3evqsNYUVahoQhV3SOaCS5ZBTgIVo8UI4EnWM3rX4/92iNTmofyDoYRawWkK7nPKQEjtW3cBDYAz09KnQdCmaRDHBBQfIBHuHTfjHjbzjsFZwK8SNyU5FGKctv+aXZCGgdMAhVE64brRNBKiAJOBRvlmrFmEaF90mUNQyUJmG4lk09G+MgoHeyHypQEPFH/TiQk0HoYeKbTnNnT895Y/M9rxOBfthIuoxjMk9NFfiwwhHgcC+5wxSiIoSGEKm5uxbRHFKFgwpvZMpiemjPBuPMxLJLqScE9L5zdnuaLV2lEWXSADtExctEFKqIbVEYVRNETekGv6M16tt6tD+tz2pqx0pl9NAPr6xd1H6Kn</latexit>

Adjacency matrix A⇡<latexit sha1_base64="Zid2Xfb3vQsoiL4kBlPkrf/Zr4k=">AAACDXicbVDLTsJAFJ3iC/FVdelmIjFxRVrja0l0gUtM5JFAQ6bDFCZMp83MLYE0fIM/4Fb/wJ1x6zf4A36HA3Qh4ElucnLOvbknx48F1+A431ZubX1jcyu/XdjZ3ds/sA+P6jpKFGU1GolINX2imeCS1YCDYM1YMRL6gjX8wf3UbwyZ0jySTzCOmReSnuQBpwSM1LHtNrAR+EFaUSTu40mlYxedkjMDXiVuRoooQ7Vj/7S7EU1CJoEKonXLdWLwUqKAU8EmhXaiWUzogPRYy1BJQqa9dJZ8gs+M0sVBpMxIwDP170VKQq3HoW82QwJ9vexNxf+8VgLBrZdyGSfAJJ0/ChKBIcLTGnCXK0ZBjA0hVHGTFdM+UYSCKWvhy2getWCKcZdrWCX1i5J7Xbp6vCyW77KK8ugEnaJz5KIbVEYPqIpqiKIhekGv6M16tt6tD+tzvpqzsptjtADr6xcUS5wV</latexit>

Graph G

𝑣
𝑎 𝑐

𝑓𝑑

𝑒

𝑏
654321

111
1112
1113
1114
1115

116

<latexit sha1_base64="Lk2Hobm1358rmBodnyNV84oOY5g=">AAAB/nicdVDJSgNBEK2JW4xb1KOXxiB4GmaSyXYLevEY0SyQDKGn00ma9Cx094hhCPgDXvUPvIlXf8Uf8DvsLIIRfVDweK+KqnpexJlUlvVhpNbWNza30tuZnd29/YPs4VFThrEgtEFCHoq2hyXlLKANxRSn7UhQ7Huctrzx5cxv3VEhWRjcqklEXR8PAzZgBCst3XQj1svmLDNvV+yCgyyzVC04TlWTYtEqlavINq05crBEvZf97PZDEvs0UIRjKTu2FSk3wUIxwuk0040ljTAZ4yHtaBpgn0o3mZ86RWda6aNBKHQFCs3VnxMJ9qWc+J7u9LEayd/eTPzL68RqUHETFkSxogFZLBrEHKkQzf5GfSYoUXyiCSaC6VsRGWGBidLprGy5X5ya0cF8f4/+J828aZfM4rWTq10sI0rDCZzCOdhQhhpcQR0aQGAIj/AEz8aD8WK8Gm+L1pSxnDmGFRjvXwrwlrM=</latexit>⇡

<latexit sha1_base64="6FuWind18uhNT3d4LjK9FSU3yQ8=">AAACCXicbVDLSsNAFL2pr1pfVZduBovgqiTF10YounFZwT6gjWEynbRDZ5IwM5GW0C/wB9zqH7gTt36FP+B3OG2zsK0HLhzOuZd7OH7MmdK2/W3lVlbX1jfym4Wt7Z3dveL+QUNFiSS0TiIeyZaPFeUspHXNNKetWFIsfE6b/uB24jefqFQsCh/0KKauwL2QBYxgbaTHjsBDTyDfS8X4uuIVS3bZngItEycjJchQ84o/nW5EEkFDTThWqu3YsXZTLDUjnI4LnUTRGJMB7tG2oSEWVLnpNPUYnRili4JImgk1mqp/L1IslBoJ32wKrPtq0ZuI/3ntRAdXbsrCONE0JLNHQcKRjtCkAtRlkhLNR4ZgIpnJikgfS0y0KWruy3AWtWCKcRZrWCaNStm5KJ/fn5WqN1lFeTiCYzgFBy6hCndQgzoQkPACr/BmPVvv1of1OVvNWdnNIczB+voFhPGauQ==</latexit>

max
m

bm = 2

<latexit sha1_base64="ghGqzaHANfsHNcsIqhaY2KZ9Yo8=">AAACEXicbVDLTsJAFJ36RHzVx87NRGLiirTG15LgxiUm8kiAkOl0ChOm02bmVsGGr/AH3OofuDNu/QJ/wO9wgC4EPMlNTs65N/fkeLHgGhzn21paXlldW89t5De3tnd27b39mo4SRVmVRiJSDY9oJrhkVeAgWCNWjISeYHWvfzP26w9MaR7JexjGrB2SruQBpwSM1LEPW8AG4AVpmUj/kfvQw6Nyxy44RWcCvEjcjBRQhkrH/mn5EU1CJoEKonXTdWJop0QBp4KN8q1Es5jQPumypqGShEy300n6ET4xio+DSJmRgCfq34uUhFoPQ89shgR6et4bi/95zQSC63bKZZwAk3T6KEgEhgiPq8A+V4yCGBpCqOImK6Y9oggFU9jMl8E0at4U487XsEhqZ0X3snhxd14olbOKcugIHaNT5KIrVEK3qIKqiKIn9IJe0Zv1bL1bH9bndHXJym4O0Aysr19Zj53b</latexit>

Bandwidth B

<latexit sha1_base64="UalU7YclP5K/Vf9ByIqzajBT2Qo=">AAACDXicbVDLSsNAFJ3UV62vqEs3wSK4Kon4WhZFcOGign1AE8JkOm2HTiZh5qa0hHyDP+BW/8CduPUb/AG/w2mbhW09cOFwzr3cwwlizhTY9rdRWFldW98obpa2tnd298z9g4aKEklonUQ8kq0AK8qZoHVgwGkrlhSHAafNYHA78ZtDKhWLxBOMY+qFuCdYlxEMWvJN0wWc+KkLdATp3UOW+WbZrthTWMvEyUkZ5aj55o/biUgSUgGEY6Xajh2Dl2IJjHCaldxE0RiTAe7RtqYCh1R56TR5Zp1opWN1I6lHgDVV/16kOFRqHAZ6M8TQV4veRPzPayfQvfZSJuIEqCCzR92EWxBZkxqsDpOUAB9rgolkOqtF+lhiArqsuS+jWdSSLsZZrGGZNM4qzmXl4vG8XL3JKyqiI3SMTpGDrlAV3aMaqiOChugFvaI349l4Nz6Mz9lqwchvDtEcjK9fwpycgg==</latexit>⌧EL

(1,2),
(1,3),
(2,3),
(2,4),
(3,5),
(4,5),
(4,6),
(5,6),

𝑎: 1
𝑏: 2
𝑐: 3
𝑑: 4
𝑒: 5
𝑓: 6

<latexit sha1_base64="OjpoonMM9V1hFEtFKwqSrRNR1oM="></latexit>

t1 � s1 = 1
<latexit sha1_base64="oBy36xkPdfFEf1AIcAvQkBcNxm4="></latexit>

t4 � s4 = 2
<latexit sha1_base64="O3oMxlHrBFP6Iy7j1SytQ2uTXzE="></latexit>

t7 � s7 = 2

<latexit sha1_base64="OTmk1E9DZMwtbauibNfsKPNgNWI=">AAAB/nicdVDLSgMxFM3UV62vqks3wSK4CjPt9LUrunFZ0T6gHUomTdvQTGZIMmIZCv6AW/0Dd+LWX/EH/A7Th2BFD1w4nHMv997jR5wpbdsfVmptfWNzK72d2dnd2z/IHh41VRhLQhsk5KFs+1hRzgRtaKY5bUeS4sDntOWPL2d+645KxUJxqycR9QI8FGzACNZGukEI9bI5G+WdilNwoY1K1YLrVg0pFu1SuQodZM+RA0vUe9nPbj8kcUCFJhwr1XHsSHsJlpoRTqeZbqxohMkYD2nHUIEDqrxkfuoUnhmlDwehNCU0nKs/JxIcKDUJfNMZYD1Sv72Z+JfXifWg4iVMRLGmgiwWDWIOdQhnf8M+k5RoPjEEE8nMrZCMsMREm3RWttwvTs2YYL6/h/+TZh45JVS8dnO1i2VEaXACTsE5cEAZ1MAVqIMGIGAIHsETeLYerBfr1XpbtKas5cwxWIH1/gX5rJYI</latexit> ..
.

Figure 2: Bandwidth of an adjacency matrix.

Reduction of the vocabulary size. n training a
generative model for edge lists and GEEL, the
vocabulary size of (sm, tm) and (am, bm) deter-
mines the complexity of the model. Here, we
show that the vocabulary size of our GEEL is
B2 for the graph bandwidth B, which is smaller
than the vocabulary size N2 of the original edge
list representation. Many real-world graphs,
such as molecules and community graphs, ex-
hibit low bandwidths as shown in Appendix C
and by Diamant et al. [14].

The vocabulary size of our GEEL representation
is bounded by maxm am · maxm bm. On one
hand, the maximum intra-edge gap encoding coincides with the definition of the graph bandwidth,
i.e., the maximum difference between a pair of adjacent nodes, denoted as maxm bm = B (Figure 2
illustrates the definition). On the other hand, we can obtain the following upper bound for the
inter-edge encoding:

max
m

am = max
m

(sm − sm−1) ≤ max
m

(
max
ℓ<m

tℓ − sm−1

)
≤ max

m
max
ℓ<m

(tℓ − sℓ) ≤ B,

where the first inequality is based on deriving sm ≤ maxℓ<m tℓ from the graph connectivity con-
straint: each source node index sm must appear as a target node index in prior for the graph to
be connected, i.e., sm = tℓ for some ℓ < m. Consequently, the vocabulary size of our GEEL
representation is upper-bounded by maxm am ·maxm bm ≤ B2.

Given that the vocabulary size of GEEL is bounded by B2, small bandwidth benefits graph generation
by reducing the computational cost and the search space. We follow Diamant et al. [14] to restrict the
bandwidth via the Cuthill-McKee (C-M) node ordering [26]. We also provide an ablation study with
various node orderings in Section 4.3.

3.2 Autoregressive generation of GEEL and node positional encoding

Autoregressive generation. We first describe our method for the autoregressive generation of GEEL.
To this end, we propose to maximize the evidence lower bound of the log-likelihood with respect to
the latent ordering. To be specific, following prior works on autoregressive graph generative models
[13, 22, 23], we maximize the following lower bound:

log p(G) ≥ Eq(π|G)[log p(G, π)] + C,
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Edge-type

Figure 3: An example of attributed GEEL. The colored parts of the attributed GEEL denote the
node features (i.e., C and N) and edge features (i.e., single bond -). The shaded parts denote the
self-loops added to the original GEEL, where self-loops are added to the nodes that are not connected
to the nodes with larger node indices (i.e., nodes with indices 3 and 4).

where C is a constant and q(π|G) is a variational posterior of the ordering given the graph G. Under
this framework, our choice of choosing the C-M ordering for each graph corresponds to a choice of
the variational distribution q(π|G). Fixing a particular ordering for each graph yields the maximum
log-likelihood objective for log p(G, π) = log p(τGEEL).

We generate GEEL using an autoregressive model formulated as follows:

p(τGEEL) = p(a1, b1)

M∏
m=2

p(am, bm|{aℓ}m−1
ℓ=1 , {bℓ}m−1

ℓ=1 ).

Notably, we treat each tuple (am, bm) as one token and generate a token at each step. Similar to text
generative models, we also introduce the begin-of-sequence (BOS) and the end-of-sequence (EOS)
tokens to indicate the start and end of the sequence generation process, respectively [27].

Finally, it is noteworthy that we train a long short-term memory (LSTM) model [16] to minimize
the proposed objective. Adopting LSTM as our backbone ensures an O(M) complexity for our
generative model, due to the linear complexity of the LSTM. The model architecture can be freely
changed to more powerful architectures such as Transformers [28], as demonstrated in Section 4.3.

Source node positional encoding. While the gap encoding allows a significant reduction in vocabu-
lary size, it also complicates the inherent semantics since each source node index is represented by
the cumulative summation over the intra-edge gap encodings. Instead of burdening the generative
model to learn the cumulative summation, we directly supplement the token embeddings with the
node positional encoding of the source node index, i.e.,

∑m
ℓ=1 aℓ at the (m+ 1)-th step as:

ϕ
(
(am, bm)

)
= ϕtuple

(
(am, bm)

)
+ ϕPE

( m∑
ℓ=1

aℓ

)
,

where ϕ is the final embedding, ϕtuple is the token embedding, and ϕPE is the positional encoding.

3.3 GEEL for attributed graphs

In this section, we elaborate on the extension of GEEL to attributed graphs. To this end, we augment
the GEEL representation with node- and edge-types. Our attributed GEEL follows a specific grammar
that filters out invalid choices of tokens.

Grammar of attributed GEEL. For the generation of attributed graphs with node- and edge-types,
we not only generate the edge-tuples (ak, bk) as in Section 3.1 but also generate node- and edge-types
according to the following rules. We provide an illustrative example of attribute GEEL in Figure 3.

• Before describing edge-tuples starting with a new source node, add the paired node-type.
• After adding an edge-tuple, add the paired edge-type.

One can observe that our rules are intuitive: for each source node, we first describe the node-type
and then generate the associated edge-tuple and types. For nodes that are not associated with any
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Table 1: General graph generation performance. The baseline results are from prior works
[17, 29, 30, 23, 14] or obtained by running the open-source codes. Note that OOM indicates Out-Of-
Memory and N.A. for BwR indicates that the generated samples are all invalid. For each metric, the
numbers that are superior or comparable to the MMD of the training graphs are highlighted in bold.
The comparability is determined by whether the MMD falls within one standard deviation.

Planar Lobster Enzymes SBM

|V | = 64 10 ≤ |V | ≤ 100 10 ≤ |V | ≤ 125 31 ≤ |V | ≤ 187

Method Deg. Clus. Orb. Deg. Clus. Orb. Deg. Clus. Orb. Deg. Clus. Orb.

Training 0.001 0.002 0.000 0.005 0.000 0.007 0.006 0.018 0.007 0.016 0.002 0.047

GraphVAE - - - - - - 1.369 0.629 0.191 - - -
GraphRNN 0.005 0.278 1.254 0.000 0.000 0.000 0.017 0.062 0.046 0.006 0.058 0.079
GRAN 0.001 0.043 0.001 0.038 0.000 0.001 0.023 0.031 0.169 0.011 0.055 0.054
EDP-GNN - - - - - - 0.023 0.268 0.082 - - -
GraphGen 1.762 1.423 1.640 0.548 0.040 0.247 0.146 0.079 0.054 1.230 1.752 0.597
GraphGen-Redux 1.105 1.809 0.517 1.189 1.859 0.885 0.456 0.035 0.251 - - -
GraphAF - - - - - - 1.669 1.283 0.266 - - -
GraphDF - - - - - - 1.503 1.283 0.266 - - -
BiGG 0.002 0.004 0.000 0.000 0.000 0.000 0.010 0.018 0.011 0.029 0.003 0.036
GDSS 0.250 0.393 0.587 0.117 0.002 0.149 0.026 0.061 0.009 0.496 0.456 0.717
DiGress 0.000 0.002 0.008 0.021 0.000 0.004 0.011 0.039 0.010 0.006 0.051 0.058
GDSM - - - - - - 0.013 0.088 0.010 - - -
GraphARM - - - - - - 0.029 0.054 0.015 - - -
BwR + GraphRNN 0.609 0.542 0.097 0.316 0.000 0.247 0.021 0.095 0.025 N.A. N.A. N.A.
BwR + Graphite 0.971 0.562 0.636 0.076 1.075 0.060 0.213 0.270 0.056 1.305 1.341 1.056
BwR + EDP-GNN 1.127 1.032 0.066 0.237 0.062 0.166 0.253 0.118 0.168 0.657 1.679 0.275

GEEL (ours) 0.001 0.010 0.001 0.002 0.000 0.001 0.005 0.018 0.006 0.025 0.003 0.026

(a) Small graphs (|V |max ≤ 187)

Ego Grid Proteins 3D point cloud

50 ≤ |V | ≤ 399 100 ≤ |V | ≤ 400 13 ≤ |V | ≤ 1575 8 ≤ |V | ≤ 5037

Method Deg. Clus. Orb. Deg. Clus. Orb. Deg. Clus. Orb. Deg. Clus. Orb.

Training 0.010 0.003 0.016 0.000 0.000 0.000 0.002 0.003 0.002 0.004 0.090 0.015

GraphVAE - - - 1.619 0.000 0.919 - - - OOM
GraphRNN 0.117 0.615 0.043 0.011 0.000 0.021 0.011 0.140 0.880 OOM
GRAN 0.026 0.342 0.254 0.001 0.004 0.002 0.002 0.049 0.130 0.018 0.510 0.210
EDP-GNN - - - 0.455 0.238 0.328 - - - - - -
GraphGen 0.578 1.199 0.776 1.550 0.017 0.860 1.392 1.743 0.866 OOM
GraphGen-Redux 1.088 0.702 0.155 - - - - - - - - -
SPECTRE - - - - - - 0.013 0.047 0.029 - - -
BiGG 0.010 0.017 0.012 0.000 0.000 0.001 0.001 0.026 0.023 0.003 0.210 0.007
GDSS 0.393 0.873 0.209 0.111 0.005 0.070 0.703 1.444 0.410 OOM
DiGress 0.063 0.031 0.024 0.016 0.000 0.004 OOM OOM
GDSM - - - 0.002 0.000 0.000 - - - - - -
BwR + GraphRNN N.A. N.A. N.A. 0.385 1.187 0.083 0.092 0.229 0.489 1.820 1.295 0.869

BwR + Graphite 0.229 0.123 0.054 0.483 1.142 0.083 0.239 0.245 0.492 OOM
BwR + EDP-GNN OOM 0.574 0.983 0.602 0.184 0.208 0.738 OOM
SwinGNN - - - 0.000 0.000 0.000 0.002 0.016 0.003 - - -

GEEL (ours) 0.053 0.017 0.016 0.000 0.000 0.000 0.003 0.005 0.003 0.002 0.081 0.020

(b) Large graphs (399 ≤ |V |max ≤ 5037)

edge-tuple as a source node, we add a “dummy” edge-tuple with the node as its source. As a result,
our representation size for attributed graphs is at most 2M +N and the vocabulary size is 2B.

Autoregressive generation with grammar constraints. To enforce the attribute grammar, we
introduce an algorithm to filter out invalid choices of tokens.

• The first token is always the node-type token.

• The node-type tokens are always followed by edge-tuple tokens.

• The edge-tuple tokens are always followed by edge-type tokens.

• The edge-type tokens are always followed by node-type tokens or edge-tuple tokens.
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Figure 4: Infer. time on various graph sizes.

Table 2: Inference time (sec) to generate one graph.

Method Type Enzymes Planar Grid

GRAN Auto. Reg. 0.24 0.66 1.39
BiGG Auto. Reg. 2.70 0.61 3.58
GDSS Diffusion 15.21 15.25 30.89
DiGress Diffusion 8.82 12.09 32.29

GEEL (ours) Auto. Reg. 0.12 0.25 1.11

These rules prevent the generation process from generating invalid GEEL such as the list that consists
of only node-types or the list that has an edge-tuple without a following edge-type token. This
procedure is done by computing the probability only over valid choices.

4 Experiment

4.1 General graph generation

Evaluation protocol. We adopt maximum mean discrepancy (MMD) as our evaluation metric to
compare three graph property distributions between test and generated graphs: degree, clustering
coefficient, and 4-node-orbit counts. Results that are either superior to or comparable with the
MMD of training graphs are highlighted in bold in Table 1. The comparability of MMD values is
determined by examining whether the MMD falls within a range of one standard deviation. Notably,
our work stands out as a baseline for graph generative models, given its comprehensive evaluation
across ten diverse graph datasets and its state-of-the-art performance. Further details regarding our
experimental setup are in Appendix A.

We validate the general graph generation performance of our GEEL on eight general graph datasets
with varying sizes: 10 ≤ |V | ≤ 5037. Four small-sized graphs are: (1) Planar, 200 synthetic planar
graphs, (2) Lobster, 100 random Lobster graphs [31], (3) Enzymes [32], 587 protein tertiary structure
graphs, and (4) SBM, 200 stochastic block model graphs. Four large-sized graphs are: (5) Ego,
757 large Citeseer network dataset [33], (6) Grid, 100 synthetic 2D grid graphs, (7) Proteins, 918
protein graphs, and (8) 3D point cloud, 41 3D point cloud graphs of household objects. Additional
experimental results on two smaller datasets (Ego-small and Community-small) are provided in
Appendix E.

We compare our GEEL with sixteen deep graph generative models. They can be categorized into
two according to the type of representation they use. On one hand, fourteen adjacency matrix-based
methods are: GraphVAE [5], GraphRNN [13], GNF [34], GRAN [22], EDP-GNN [19], GraphAF
[20], GraphDF [21], SPECTRE [30], BiGG [23], GDSS [17], DiGress [18], GDSM [35], GraphARM
[29], and BwR [14]. On the other hand, two edge list-based methods are GraphGen [11] and
GraphGen-Redux [12]. We provide a detailed implementation description in Appendix B.

Generation quality. We provide experimental results in Table 1. We observe that the proposed GEEL
consistently shows superior or competitive results across all the datasets. This verifies the ability
of our model to effectively capture the topological information of both large and small graphs. The
visualization of generated samples can be found in Appendix D. It is worth noting that the generation
performance on small graphs has reached a saturation point, yielding results that are either superior
or comparable to training graphs.

Scalability analysis. Next, we empirically validate the time complexity of our model. We first verify
if the actual inference time aligns well with the theoretical O(M) curve. To this end, we generated
Grid graphs with varying numbers of nodes: [10, 100, 200, 500, 1k, 2k, 5k, 10k]. The results shown
in Figure 4 indicate an alignment between the actual inference time and the ideal curve.

Then we conduct further experiments to compare the inference time of our model with that of other
baselines. Note that we used the same computational resource for all models and other experimental
details are in Appendix B. The results presented in Table 2 represent the time required to generate
a single sample. Notably, our model shows a shorter inference time owing to the compactness of
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Table 4: Molecular graph generation performance of the QM9 and ZINC datasets. The baseline
results are from prior works [17, 24]. The best results of molecule-specific generative models and
domain-agnostic generative models are both highlighted in bold.

QM9 ZINC250k

Method Val. (%) NSPDK FCD Scaf. SNN Frag. Val. (%) NSPDK FCD Scaf. SNN Frag.
(↑) (↓) (↓) (↑) (↑) (↑) (↑) (↓) (↓) (↑) (↑) (↑)

Molecule-specific generative models

CharRNN 99.57 0.0003 0.087 0.9313 0.5162 0.9887 96.95 0.0003 0.474 0.4024 0.3965 0.9988
CG-VAE 100.0 - 1.852 0.6628 0.3940 0.9484 100.0 - 11.335 0.2411 0.2656 0.8118
MoFlow 91.36 0.0169 4.467 0.1447 0.3152 0.6991 63.11 0.0455 20.931 0.0133 0.2352 0.7508
STGG 100.0 - 0.585 0.9416 0.9998 0.9984 100.0 - 0.278 0.7192 0.4664 0.9932

Domain-agnostic graph generative models

EDP-GNN 47.52 0.0046 2.680 0.3270 0.5265 0.8313 63.11 0.0485 16.737 0.0000 0.0815 0.0000
GraphAF 74.43 0.0207 5.625 0.3046 0.4040 0.8319 68.47 0.0442 v16.023 0.0672 0.2422 0.5348
GraphDF 93.88 0.0636 10.928 0.0978 0.2948 0.4370 90.61 0.1770 33.546 0.0000 0.1722 0.2049
GDSS 95.72 0.0033 2.900 0.6983 0.3951 0.9224 97.01 0.0195 14.656 0.0467 0.2789 0.8138
DiGress 98.19 0.0003 0.095 0.9353 0.5263 0.0023 94.99 0.0021 3.482 0.4163 0.3457 0.9679
DruM 99.69 0.0002 0.108 0.9449 0.5272 0.9867 98.65 0.0015 2.257 0.5299 0.3650 0.9777
GraphARM 90.25 0.0020 1.220 - - - 88.23 0.0550 16.260 - - -

GEEL (ours) 100.0 0.0002 0.089 0.9386 0.5161 0.9891 99.31 0.0068 0.401 0.5565 0.4473 0.992

our representation, GEEL, even compared to other scalable graph generative models [22, 23]. This
evidence underscores the scalability advantages of our GEEL.

Table 3: Vocabulary and representation sizes.
The vocabulary size is B2 and the representation
size is M where B is bandwidth, N is the number
of nodes, and M is the number of edges.

Dataset Vocab. size Rep. size N2

Planar 676 181 4096
Lobster 2401 99 9604
Enzymes 361 149 15625
SBM 12321 1129 34969
Ego 58081 1071 > 106

Grid 361 684 467856
Proteins 62500 1575 > 106

3D point cloud 111556 10886 > 107

In addition, we provide the reduced represen-
tation and vocabulary sizes in Table 3. Note
that the vocabulary size of the original edge list
and the representation size of the adjacency ma-
trix are both N2. We can observe that GEEL is
significantly efficient in terms of both represen-
tation and vocabulary sizes.

4.2 Molecular graph generation

To show that GEEL is capable of represent-
ing attributed graphs, we extend our evaluation
to molecular graphs that have node- and edge-
types. This ensures a comprehensive assessment
of the ability of GEEL to generate attributed
graphs in chemistry and bioinformatics.

Experimental setup. We use two molecular datasets: QM9 [36] and ZINC250k [37]. Following the
previous work [17], we evaluate 10,000 generated molecules using six metrics: (a) the ratio of valid
molecules without correction (Val.), (b) neighborhood subgraph pairwise distance kernel (NSPDK),
(c) Frechet ChemNet Distance (FCD) [38], (d) scaffold similarity (Scaf.), (e) similarity to the nearest
neighbor (SNN), and (f) fragment similarity (Frag.). We use the same split with Jo et al. [17] for
a fair comparison. Note that in contrast to other general graph generation methods, our approach
uniquely facilitates the direct representation of ions by employing them as a node type. We provide
details in Appendix A.

Baselines. We compare GEEL with seven general deep graph generative models: EDP-GNN [19],
GraphAF [20], GraphDF [21], GDSS [17], DiGress [18], DruM [39], and GraphARM [29]. In
addition, for further comparison, we also compare GEEL with four molecule-specific generative
models: CharRNN [8], CG-VAE [10], MoFlow [40], and STGG [24]. We provide a detailed
implementation description in Appendix B.

Results. The experimental results are reported in Table 4. We observe that our GEEL shows superior
results to domain-agnostic graph generative models and competitive results with molecule-specific
generative models. In particular, for the QM9 dataset, we observe that our GEEL shows superior
results on FCD and Scaffold scores even compared to the molecule-specific models. We also provide
the visualization of generated molecules in Appendix D.
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Table 5: Average MMD results for
different model architectures.

Backbone Planar Enzymes Grid

LSTM 0.002 0.009 0.000
Transformer 0.003 0.008 0.000

Table 6: Average MMD for different representations.
We adopted LSTM as a model architecture and OOM de-
notes out-of-memory error.

Representation Repr. Vocab. Com.-small Grid Point

Flattened adj. N2 2 0.029 OOM OOM
Edge list M N2 0.010 0.000 OOM
Edge list + intra gap M NB 0.013 0.000 OOM

GEEL (ours) M B2 0.016 0.000 0.044

4.3 Ablation studies

Different model architectures. Here, we discuss the results of generating GEEL with Transformers
[28]. We evaluate four datasets: Planar, Lobster, Enzymes, and Grid, employing three MMD
metrics for assessment. As presented in Table 5, LSTM shows competitive results to Transformers.
Notably, LSTM achieves this performance with significantly reduced computational cost, having a
linear complexity of O(n), in contrast to the quadratic complexity O(n2) of Transformers, where n
represents the sequence length.
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Figure 5: Training curve with various
node orderings.

Different representations. We discuss the results of gen-
erating graphs with various representations here. We com-
pare our GEEL with three alternative representations: flat-
tened adjacency matrix, the edge list, and the edge list with
node-wise distance using LSTM. The last one is an edge
list wherein the target node of each edge is substituted by
its intra-edge gap. Note that the edge lists are sorted in
the same way we sort the edge list, as explained in Sec-
tion 3.1. The comparative results are in Table 6. We can
observe that GEEL effectively reduces the vocabulary size
compared to other edge list-based representations. This
enables the generation of large-scale graphs, such as 3D
point clouds, without encountering memory constraints.
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Figure 6: Orbit MMD with various
graph sizes.

Different node orderings. We here assess the effect of
node ordering on graph generation. We compare our C-
M ordering to BFS, DFS, and random ordering using the
Grid dataset. As illustrated in Figure 5, the C-M ordering
outperforms other orderings with faster convergence of
training loss and small bandwidth. Notably, the BFS also
shows competitive loss convergence with C-M as it mit-
igates the burden of long-term dependency. Specifically,
both C-M and BFS orderings position edges related to the
same node more closely than other baselines. These results
highlight the effectiveness of C-M ordering on bandwidth
reduction and generating high-quality graphs.

Quality with various graph sizes. We also evaluate the generated graph quality with respect to the
graph size. Following a prior work [23], we conduct experiments on grid data with {0.5k, 1k, 5k,
10k} nodes and reported orbit MMD. The results are in Figure 6 and we can see GEEL preserves
high quality on large-scale graphs with up to 10k nodes.

5 Conclusion

In this work, we introduce GEEL, an edge list-based graph representation that is both simple and
scalable. By combining GEEL with an LSTM, our graph generative model achieves an O(M)
complexity, showing a significant enhancement in generation quality and scalability over prior graph
generative models. An interesting direction for future work is to present a new graph generation
benchmark as the performance for small graphs is already saturated.
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A Experimental Details

In this section, we provide the details of the experiments.

A.1 General graph generation

Table 7: Hyperparameters of GEEL in general graph generation.
Planar Lobster Enzymes SBM Ego Grid Proteins 3D point cloud

Learning rate 0.001 0.0001 0.0005 0.0001 0.0001 0.001 0.0001 0.0012
Batch size 128 64 128 8 8 64 8 4

Table 8: Default hyperparameters of GEEL.
Input dropout rate Dim. of token embedding Num. of layers

0.1 512 3

We used the same split with GDSS [17] for Enzymes and Grid datasets, with DiGress [18] for Planar
and SBM datasets, with BiGG [23] for Lobster, Proteins, and 3D point cloud datasets, and with
GraphRNN [13] for ego dataset. We perform the hyperparameter search to choose the best learning
rate in {0.0001, 0.0005, 0.001, and 0.0012}. We select the model with the best MMD with the lowest
average of three graph statistics: degree, clustering coefficient, and 4-orbit count. In addition, we
report the means of 5 different runs. We provide the best learning rates in Table 7 and other default
hyperparameters that we have not tuned in Table 8.

A.2 Molecular graph generation

We used the same split with GDSS [17] for a fair evaluation. Following general graph generation, we
perform the hyperparameter search to choose the best learning rate in {0.0001, 0.001} and select the
model with the best FCD score. The best learning rates are 0.001 for both QM9 and ZINC datasets
and other default hyperparameters are in Table 8 which is the same as the general graph generation.

For ion tokenization, we used 13 node tokens for QM9: [C-], [CH-], [C], [F], [N+], [N-], [NH+],
[NH2+], [NH3+], [NH], [N], [O-], [O]. In addition, we used 29 tokens for ZINC: [Br], [CH-], [CH2-],
[CH], [C], [Cl], [F], [I], [N+], [N-], [NH+], [NH-], [NH2+], [NH3+], [NH], [N], [O+], [O-], [OH+],
[O], [P+], [PH+], [PH2], [PH], [P], [S+], [S-], [SH+], [S].
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B Implementation Details

B.1 Computing resources

We used Pytorch [41] to implement GEEL and trained the LSTM [16] models on GeForce RTX
3090 GPU. Note that we used A100-40GB for the 3D point cloud dataset. In addition, due to the
CUDA compatibility issue of BiGG [23], we used GeForce GTX 1080 Ti GPU and 40 CPU cores for
inference time evaluation in Figure 1c.

B.2 Details for baseline implementation

Table 9: Reproduced dataset for each baselines.
Planar Lobster Enzymes SBM Ego Grid Proteins 3D point cloud

GRAN - - O - O - - -
GraphGen O O O O O O O O
BiGG O - O O O - - -
GDSS O O - O O - O O
DiGress - O O - O O O O

General graph generation. The baseline results from prior works are as follows. We reproduced
GRAN [22], GraphGen [11], DiGress [18], GDSS [17] and BiGG [23] for the datasets that are not
reported in the original paper using their open-source codes. The reproduced datasets are explained
in Table 9. The other results for GraphVAE [5], GNF [34], EDP-GNN [19], GraphAF [20], GraphDF
[21], and GDSS [17] are obtained from GDSS, while the results for GRAN [22], GraphRNN [13],
and BiGG [23] are from BiGG and SPECTRE [30]. Finally, the remaining results for SPECTRE and
GDSM [35] are derived from their respective paper. We used original hyperparameters when the
original work provided them.

Molecular graph generation. The baseline results from prior works are as follows. The results for
five domain-agnostic graph generative models: EDP-GNN [19], GraphAF [20], GraphDF [21], GDSS
[17], DruM [39] are from DruM, and the GraphARM [29] result is extracted from the corresponding
paper. Moreover, we reproduced DiGress [18] using their open-source codes.

In addition, for molecule generative models, the result of MoFlow [40] is from DruM, the results of
CG-VAE [10] and STGG [24] is from STGG. Furthermore, we reproduced CharRNN [8].
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C Graph statistics of datasets

C.1 General graphs

Table 10: Statstics of general datasets.
Dataset # of graphs # of nodes Max. B Max. # of edges

Planar 200 |V | = 64 26 181
Lobster 100 10 ≤ |V | ≤ 100 49 99
Enzymes 587 10 ≤ |V | ≤ 125 19 149
SBM 200 31 ≤ |V | ≤ 187 111 1129
Ego 757 50 ≤ |V | ≤ 399 241 1071
Grid 100 100 ≤ |V | ≤ 400 19 684
Proteins 918 13 ≤ |V | ≤ 1575 125 1575
3D point cloud 41 8 ≤ |V | ≤ 5037 167 10886

Table 11: Standard deviation of MMD in training dataset.
Planar Lobster Enzymes SBM

Deg. Clus. Orb. Deg. Clus. Orb. Deg. Clus. Orb. Deg. Clus. Orb.

0.000 0.001 0.000 0.003 0.000 0.006 0.001 0.003 0.002 0.008 0.002 0.017

(a) Small graphs (|V |max ≤ 187)

Ego Grid Proteins 3D point cloud

Deg. Clus. Orb. Deg. Clus. Orb. Deg. Clus. Orb. Deg. Clus. Orb.

0.005 0.001 0.004 0.000 0.000 0.000 0.001 0.002 0.001 0.04 0.062 0.017

(b) Large graphs (|V |max ≤ 187)

The statistics of general graphs are summarized in Table 10. It is notable that the bandwidths are
relatively low compared to the number of nodes for real-world graphs, which enables the reduction of
the vocabulary size of GEEL. In addition, we provide the standard deviations of MMD of training
graphs that we used as a criterion to verify comparability in Table 11.

C.2 Molecular graphs

Table 12: Statstics of molecular datasets: QM9 and ZINC250k.
Dataset # of graphs # of nodes Max. B Max. # of edges # of node types # of edge types

QM9 133,885 1 ≤ |V | ≤ 9 5 13 13 4
ZINC250k 249,455 6 ≤ |V | ≤ 38 10 45 29 4

The statistics of molecular graphs are summarized in Table 12. Note that the # of node types indicate
the number of ionized node type tokens as explained in Appendix A.
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D Generated samples

D.1 General graph generation

Planar

(a) Train (b) GDSS (c) GraphGen

(d) BiGG (e) DiGress (f) GEEL (ours)

Figure 7: Visualization of the graphs from the Planar dataset and the generated graphs.

Lobster

(a) Train (b) GraphGen

(d) DiGress (e) GEEL (ours)

(c) GDSS

Figure 8: Visualization of the graphs from the Lobster dataset and the generated graphs.

16



Enzymes

(a) Train (b) GRAN (c) GraphGen

(d) BiGG (e) DiGress (e) GEEL (ours)

Figure 9: Visualization of the graphs from the Enzymes dataset and the generated graphs.

SBM

(a) Train (c) GraphGen

(d) BiGG (e) GEEL (ours)

(b) GDSS

Figure 10: Visualization of the graphs from the SBM dataset and the generated graphs.
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Ego

(a) Train (b) GRAN (c) GraphGen

(d) BiGG (e) GDSS (e) GEEL (ours)

Figure 11: Visualization of the graphs from the Ego dataset and the generated graphs.

Grid

(a) Train (b) GDSS

(d) DiGress (e) GEEL (ours)

(c) GraphGen

Figure 12: Visualization of the graphs from the Grid dataset and the generated graphs.
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Proteins

(a) Train (b) GraphGen

(d) GEEL (ours)(c) GDSS

Figure 13: Visualization of the graphs from the Proteins dataset and the generated graphs.

We present visualizations of graphs from the training dataset and generated samples from GRAN,
GraphGen, BiGG, GDSS, DiGress, and GEEL in Figure 7, Figure 8, Figure 9, Figure 10, Figure 11,
Figure 12, and Figure 13. Note that we only provide the visualization that we have reproduced, which
is detailed in Appendix B. We additionally give the number of nodes and edges of each graph, where
n denotes the number of nodes and e denotes the number of edges.

19



D.2 Molecular graph genereation

Figure 14: Visualization of the molecules generated from the QM9 dataset.

Figure 15: Visualization of the molecules generated from the ZINC250k dataset.
We provide visualizations of generated molecules using GEEL in Figure 14 and Figure 15.
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E Additional Experimental Results

Ego-small Community-small

4 ≤ |V | ≤ 18 12 ≤ |V | ≤ 20

Method Deg. Clus. Orb. Deg. Clus. Orb.

Training 0.025 0.035 0.012 0.020 0.044 0.003

GraphVAE 0.130 0.170 0.050 0.350 0.980 0.540
GraphRNN 0.090 0.220 0.003 0.080 0.120 0.040
GRAN 0.009 0.038 0.009 0.005 0.142 0.090
GNF 0.030 0.100 0.001 0.200 0.200 0.110
EDP-GNN 0.052 0.093 0.007 0.053 0.144 0.026
GraphGen 0.085 0.102 0.425 0.075 0.065 0.014
GraphAF 0.030 0.110 0.001 0.180 0.200 0.020
GraphDF 0.040 0.130 0.010 0.060 0.120 0.030
BiGG 0.013 0.030 0.005 0.004 0.005 0.000
GDSS 0.021 0.024 0.007 0.045 0.086 0.007
DiGress 0.021 0.026 0.024 0.012 0.025 0.002
GDSM - - - 0.011 0.015 0.001
GraphARM 0.019 0.017 0.010 0.034 0.082 0.004
GEEL (ours) 0.020 0.035 0.012 0.020 0.022 0.006

Table 13: General graph generation on small graphs (|V |max ≤ 20)

We provide general graph generation results for smaller graph datasets: Ego-small and Community-
small. The Ego-small dataset consists of 300 small ego graphs from larger Citeseer network [33]
and Community-small dataset consists of 100 randomly generated community graphs. We used the
same split with GDSS [17] and the results are reported in Table 13.

21


	Introduction
	Related works
	Method
	Gap encoded edge list representation (GEEL)
	Autoregressive generation of GEEL and node positional encoding
	GEEL for attributed graphs

	Experiment
	General graph generation
	Molecular graph generation
	Ablation studies

	Conclusion
	Experimental Details
	General graph generation
	Molecular graph generation

	Implementation Details
	Computing resources
	Details for baseline implementation

	Graph statistics of datasets 
	General graphs
	Molecular graphs

	Generated samples
	General graph generation
	Molecular graph genereation

	Additional Experimental Results

