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Abstract
Classical Mixtures of Experts (MoE) are Machine
Learning models that involve partitioning the in-
put space, with a separate “expert” model trained
on each partition. Recently, MoE-based model ar-
chitectures have become popular as a means to re-
duce training and inference costs. There, the par-
titioning function and the experts are both learnt
jointly via gradient descent-type methods on the
log-likelihood. In this paper we study theoretical
guarantees of the Expectation Maximization (EM)
algorithm for the training of MoE models. We
first rigorously analyze EM for MoE where the
conditional distribution of the target and latent
variable conditioned on the feature variable be-
longs to an exponential family of distributions
and show its equivalence to projected Mirror De-
scent with unit step size and a Kullback-Leibler
Divergence regularizer. This perspective allows
us to derive new convergence results and iden-
tify conditions for local linear convergence; In
the special case of mixture of 2 linear or logistic
experts, we additionally provide guarantees for
linear convergence based on the signal-to-noise
ratio. Experiments on synthetic and (small-scale)
real-world data supports that EM outperforms the
gradient descent algorithm both in terms of con-
vergence rate and the achieved accuracy.

1. Introduction
Classical Mixtures of Experts (MoE) (Jacobs et al., 1991;
Jordan & Jacobs, 1994) are a crucial class of parametric
latent variable models that have gained significant popular-
ity in deep learning for their ability to reduce both training
and inference costs (Chen et al., 2022). MoE are particu-
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larly effective when the feature space can be divided and
processed by specialized models, known as experts. Instead
of relying on a single, large model to handle all input-output
mappings, MoE utilize an ensemble of specialized experts.
Each expert is responsible for a specific subset of the input
space, allowing the system to efficiently route inputs to the
most appropriate expert. This partitioning enables each ex-
pert to focus on mapping its designated inputs to outputs
using a separate, optimized model. By leveraging multiple
specialized experts rather than a monolithic model, MoE
can achieve greater scalability and flexibility. This mod-
ular approach not only enhances computational efficiency
but also allows for improved performance, as each expert
can be finely tuned to handle its particular segment of the
input space effectively. Real-world applications of MoE
such as Sparse MoE span across various domains, including
language translation, speech recognition, recommendation
systems, and more (Fedus et al., 2022; Ma et al., 2018;
Hinton et al., 2012; Liu et al., 2024).

In its most generic form, training an MoE model involves
training both (a) the parameters in the individual experts,
and (b) the gating function that routes inputs to the appro-
priate expert. Typically, these are both learnt jointly by first
formulating the final loss function as applied to the ensem-
bled output, and then minimizing this joint loss function
(via SGD or its variants) over the parameters of the gate and
the experts.

In this paper we investigate, primarily from a theoretical
perspective, the training of classical MoE as defined by
Jacobs et al. (1991) using a classic algorithm: Expectation
Maximization (EM). As opposed to SGD-based methods
which are agnostic to whether a parameter is in the gate or
in an expert, EM first formulates two separate problems –
one for the router, and another for the experts – in a specific
way. It then solves each problem in isolation and in parallel,
and then collates the outputs to arrive at the updated set of
gate and expert parameters.

For our theoretical results, we consider the setting of gen-
eral MoE where the joint distribution of the target and latent
variable conditioned on the feature variable belongs to an
exponential family of distributions. We then narrow in on
two simpler instances of MoE models: Mixture of Linear
Experts (where each expert is a linear regressor) and Mix-
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ture of Logistic Experts (where each expert is a logistic
regressor). The router in each case is a linear softmax.

Main Contributions: The primary finding of this paper is
to unveil the correspondence between EM for general MoE
to projected Mirror Descent. A similar correspondence was
first discovered by Kunstner et al. (2021), but was limited
to generative models for which the joint complete data dis-
tribution belongs to an exponential family of distributions;
this did not include MoE. As such, our contributions can
be seen as a generalization of (Kunstner et al., 2021) to all
generative models for which the conditional distribution of
the target and latent variables conditioned on the feature
variable belongs to an exponential family of distributions.
We next state the details of our contributions.

1) In Theorem 4.1, we show that when EM is applied to
general MoE, the iterates are equivalent to the ones gen-
erated by projected Mirror Descent on the conditional
likelihood function with unit step-size and KL diver-
gence. Here, the projection is an expectation moment
projection over the parameter space. By leveraging this
correspondence, in Theorem 4.2, we obtain sufficient
conditions for which EM applied to general MoE con-
verges to a stationary point or the true parameters. We
further characterize the explicit convergence rate for
each of the considered settings.

2) Next, in Theorem 5.1, we narrow in on the special cases
of mixtures of 2 linear or logistic experts and show EM
is equivalent to Mirror Descent with unit step-size and
KL divergence, without requiring any extra projec-
tion. This perspective allows us to recover classic MD
convergence results which we contextualize for our
setting in Corollary B.1. Finally, we characterize the
sufficient conditions for convergence in terms of the
Missing Information Matrix (MIM) in Theorem B.2
and, subsequently, the signal-to-noise ratio (SNR) of
the generative model in Theorem B.4.

3) Finally, on synthetic and small scale proof of concept
real world datasets, we observe that EM outperforms
gradient descent both in terms of convergence rate
and the achieved performance. As well as supporting
our theoretical results, this re-iterates the power of the
EM algorithm for fitting MoE previously suggested by
(Jordan & Jacobs, 1994; Jordan & Xu, 1995).

1.1. Related Work

The EM algorithm (Dempster et al., 1977) is a powerful tool
for fitting latent variable models. Previous research on EM
has demonstrated that, under mild smoothness assumptions,
its parameter iterates converge to a stationary point of the
log-likelihood objective (Dempster et al., 1977; Wu, 1983;
Tseng, 2004). Subsequent research on EM introduced new
analytical frameworks to provide specialized guarantees,

particularly regarding the convergence of EM iterates to
the true model parameters and the rate of this convergence.
An adopted framework in the past decade, introduced by
Balakrishnan et al. (2017), interprets EM as a variant of the
gradient descent algorithm. For latent variable models with
a strongly convex EM objective that satisfies a condition
known as “first-order stability,” it was shown that EM iter-
ates converge linearly to the true parameters. Subsequent
works utilized this framework to show a local linear rate for
Mixtures of Gaussians and Mixtures of Linear Regressions
(Balakrishnan et al., 2017; Daskalakis et al., 2017; Dwivedi
et al., 2018; Kwon et al., 2019; Kwon & Caramanis, 2020b;
Kwon et al., 2021; Kwon & Caramanis, 2020a).

In a recent work, Kunstner et al. (2021) proved that EM –
where the complete data distribution belongs in an exponen-
tial family – is equivalent to the mirror descent algorithm
with unit step-size and Kullback–Leibler (KL) divergence
regularizer:

KL [p(x;θ)||p(x,ϕ)] = EX|θ

[
log

(
p(x;θ)

p(x;ϕ)

)]
. (1)

This led to the first non-asymptotic convergence rates for
EM, independent of parameterization. While this charac-
terization of EM included Mixtures of Gaussians, it failed
to extend to Mixtures of Regression or MoE. Still, the au-
thors analyzed the setting where the distribution of the latent
variable conditioned on all other variables is an exponen-
tial family distribution for which they showed EM con-
verged sub-linearly to a stationary point. Our work extends
these findings to MoE, obtaining sufficient conditions under
which EM converges sub-linearly and linearly to the true
parameters.

There have also been works attempting to explore and un-
derstand how to fit MoE. The foundational paper (Jordan
& Jacobs, 1994) was the first to empirically use EM and
EM-variants to fit MoE, yielding encouraging results. Then,
the follow-up paper by Jordan & Xu (1995) showed that for
MoE and Hierarchical MoE with strongly convex negative
log-likelihood objective, EM and EM-like iterations con-
verge linearly to the true parameters where the rate constant
depends on the eigenvalues of the Hessian matrix. How-
ever, the objective is generally non convex, raising doubts
about whether the necessary assumptions for their result
hold, even locally. Other works have remarked that the na-
ture of the gating function creates a form of competition
between the experts during training that can lead to local
minima. Bayesian methods for MoE include variational
learning and maximum aposteriori (MAP) estimation. But,
Yuksel et al. (2012) noted that these solutions are not triv-
ial due to the softmax gate not admitting a conjugate prior
and are prone to getting stuck at local minima. Makkuva
et al. (2019) analyzed a variant of the EM algorithm for
MoE which consists in 1) first recovering the expert param-
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eters using a tensor decomposition method, then 2) whilst
freezing the experts, utilizing EM to fit the gating function’s
parameters only. They proved that their approach recovers
the true parameters at a nearly linear rate. Then, Becker
et al. (2020) experimented with an EM variant algorithm for
Gaussian Mixture of Experts called Expectation Information
Maximization (EIM) which featured an extra information
projection step. They obtained promising empirical results
on both synthetic and real world datasets. Our work ex-
tends upon previous works by making the direct connection
between EM for MoE and projected mirror descent. We
also unveil the sufficient conditions for EM to converge
sub-linearly to a stationary point or true parameter, and for
special cases, characterize these sufficient conditions with
respect to the SNR of the generative model.

2. Mixture of Experts
Next, we formally describe the setting under consideration
for the Mixture of k Experts. The notation used throughout
is summarized in the Notation Section of the appendix.

Data Generation Model: First, the input or feature vector
variable x ∈ Rd is sampled based on a probability density
function p(x). Second, given the feature vector x, a latent
variable z ∈ [k], responsible for routing x to the appropriate
expert is sampled with probability mass functionP (z|x). Fi-
nally, given the pair (x, z), the target y is generated accord-
ing to the probability distribution p(y|x, z). Hence, the com-
plete data distribution is p(x, y, z) = p(y|x, z)p(z|x)p(x)
and the joint input-output probability distribution can be
written as

p(x, y) = p(x)
∑
z∈[k]

p(y|x, z)P (z|x). (2)

This is the most general form of data generation under mix-
ture of k-experts, but here we focus on the case where x
is sampled from a unit spherical Gaussian distribution, i.e.
x ∼ N (0, Id), and P (z|x) = P (z|x;w∗) is parameter-
ized by a set of vectors (w∗

1 , . . . ,w
∗
k) and can be cast as

P (z = i|x;w∗) =
ex

⊤w∗
i∑

j∈[k] e
x⊤w∗

j

, i ∈ [k]. (3)

In other words, the probability mass function of the latent
variable is the softmax function between the inner product
of x with the parameter vectors concatenated as w∗ =
(w∗

1 , ...,w
∗
k) ∈ Rd×k.

Regarding p(y|x, z), the probability distribution of the tar-
get variable y conditioned on the input variable x and
latent routing variable z = i (i.e., expert i), we also as-
sume that it is parameterized by a vector β∗

i and we have
p(y|x, z = i) = p(y|x, z = i;β∗

i ). Thus, given the con-
catenated vector β∗ = (β∗

1 , ...,β
∗
k) ∈ Rs×k, we can write

p(y|x, z) = p(y|x, z;β∗).

In this paper, we will consider three different settings. The
first, General MoE, is the most general setting we con-
sider. It comprises all MoE where the distribution of
y, z conditioned on x belongs to an exponential family
of distribution and enjoys a natural re-parameterization
p(y, z|x,θ∗) = p(y, z;θ∗x) with θ∗x = η(x,θ∗) ∈ Ω̃. That
is to say that the conditional distribution can be written as

p(y, z|x,θ∗) ∝ exp {⟨s(y, z),θ∗x⟩+A(θ∗x)} , (4)

where s(y, z),θx, and A(·) are, respectively, referred to as
the sufficient statistic, natural parameterization, and log par-
tition of the exponential family of distributions. This setting
includes the popular cases where p(y|x, z) is Gaussian or
multivariate Bernoulli. In the former case, the exponential
family of distribution corresponds to a Gaussian Mixture.

The second setting, Mixture of Linear Experts, is when

p(y|x, z = i;β∗
i ) ∝ exp

{
(y − x⊤β∗

i )
2

2

}
(5)

as the density function of the normal distribution. This is
equivalent to assume that the target y = x⊤β∗

i + ϵ where ϵ
is additive zero mean Gaussian noise with unit variance.

Finally, Mixture of Logistic Experts, is when the density
function p(y|x, z = i;β∗

i ) can be written as

P (y = 1|x, z = i;β∗
i ) =

exp(x⊤β∗
i )

1 + exp(x⊤β∗
i )

(6)

and P (y = −1|x, z= i;β∗
i ) = 1− P (y = 1|x, z= i;β∗

i ).

Maximum Likelihood Loss: Given the assumed data dis-
tribution of (x, y), our goal is to find the set of feasible
parameters β ∈ Rd×k and w ∈ Rd×k that maximize the
log likelihood function. For ease of notation we define
θ :=(β,w)∈R2d×k as the concatenation of all parameters.
Specifically, from (2), the expected log likelihood is

EX [log p(x)] + EX,Y

log
∑

z∈[k]

p(y|x, z)P (z|x)

 .
Given that only the last term of the sum depends on param-
eters θ = (w,β)⊤ the negative log-likelihood objective
function, L(θ), that we aim to minimize can be written as

−EX,Y

log
∑

z∈[k]

p(y|x, z;β)P (z|x;w)

 (7)

Note that as we will discuss in detail, for both mixtures
of linear or logistic experts, the above objective function
is known to be non convex with respect to θ. In fact, this
is generally true for Mixtures of Gaussian, Mixtures of
Regressions, and Mixtures of Experts. In the next section
we will discuss the use of the EM algorithm for solving this
optimization problem.
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3. EM for Mixtures of Experts
Next, we present the EM algorithm for MoE. EM takes a
structured approach to minimizing the objective L(θ) in (7).
Each iteration of EM is decomposed into two steps as fol-
lows. The first step is called “expectation”: For current
parameter estimate θt, we compute the expectation of the
complete-data log-likelihood with respect to the latent vari-
ables, using the current parameter estimates θt and denote
it by Q(θ|θt), i.e.,

Q(θ|θt) = −EX,Y

[
EZ|x,y;θt [log p(x, y, z;θ)]

]
. (8)

Then, in the second step called “maximization”, we simply
minimize the objective Q(θ|θt) (or maximize −Q(θ|θt))
with respect to θ ∈ Ω and obtain our new parameter as

θt+1 := argmin
θ∈Ω

Q(θ|θt). (9)

Since log p(y, z|x;θ) = log p(y|z,x;β) + log p(z|x;w),
it follows that the EM objective (8) is linearly separable
in the parameters β and w. Thus, we can rewrite Q(θ|ϕ)
as the sum of two functions that depend only on β and w,
respectively. Subsequently, the EM update (9) is obtained
as the concatenation θt+1 = (wt+1,βt+1)⊤, where

wt+1 = argmin
w∈Rd

−EX,Y

[
EZ|x,y;θt [log p(z|x;w)]

]
,

βt+1 = argmin
β∈Rd

−EX,Y

[
EZ|x,y;θt [log p(y|z,x;β)]

]
.

EM has two well understood characteristics: (a) its update
always minimize an objective that is an upper bound on the
likelihood, and (b) fixed points of the EM update are also
stationary points of the likelihood. We now show this below.
The original objective, L(θ), can be decomposed into the
difference between the EM objective and another function
that is bounded below by 0. Specifically, for any θ,ϕ ∈ Ω,

L(θ) = −EX,Y [log(p(y|x;θ))]
= −EX,Y EZ|x,y,ϕ [log(p(y|x, z;θ))]

= −EX,Y EZ|x,y,ϕ

[
log

(
p(y, z|x;θ)
p(z|y,x;θ)

)]
.

Denoting H(θ|ϕ) := −EX,Y EZ|x,y,ϕ [log p(z|x, y;θ)], it
follows that

L(θ) = Q(θ|ϕ)−H(θ|ϕ). (10)

where H(θ|ϕ) is bounded below by 0. Thus, Q(θ|ϕ) acts
as an upper bound on the negative log-likelihood.

Next, applying Jensen’s inequality shows that H(θ|ϕ) is
minimized at θ = ϕ where H(θ|θ) = 0. Consequently, it
follows that the negative log-likelihood gradient matches
that of the surrogate EM objective at ϕ = θ, i.e., ∇L(θ) =
∇Q(θ|θ). This suggests that any stationary point of L(θ) is
also a stationary point of the EM algorithm and vice versa.

3.1. EM for Symmetric Mixture of 2-Experts

So far, we discussed EM for the most general form of MoE.
Next, we derive EM for the special case of Symmetric Mix-
ture of Experts (SymMoE), the focus of our analysis in
Section 5. SymMoE is a simplified version of MoE where
(i) the number of experts is restricted to 2, represented as
z ∈ {−1, 1}, and (ii) the experts are symmetric around
the linear separator, i.e., β̃∗ := β∗

1 = −β∗
−1. This sym-

metric structure simplifies the probability density functions
introduced earlier, making the subsequent analysis easier to
follow. We explore these simplifications in detail below.

As we are restricted to two experts, the expression forP (z =
1|x;w∗) = 1− P (z = −1|x;w∗) is

P (z = 1|x;w∗) =
ex

⊤w∗
1

ex
⊤w∗

1 + ex
⊤w∗

2

.

For ease of notation, we define w̃∗ := w∗
1 −w∗

2 and repa-
rameterize the probability mass function of z given x as

P (z|x; w̃∗) =
exp{ z+1

2 x
⊤w̃∗}

1 + ex⊤w̃∗ . (11)

Thus, under this simplification, the EM update of the gating
parameter w is now given as

wt+1 = argmin
w∈Rd

EX,Y EZ|x,y;θt

[
log

(
1 + ex

⊤w

e
z+1
2 x⊤w

)]
.

While the above minimization problem is strongly convex,
it does not have a closed form solution. In our experiments,
we use gradient descent to obtain wt+1.

For the special case of a symmetric mixture of linear experts
(SymMoLinE), the expression for p(y|x, z;β∗) given in (5)
can be simplified as

p(y|x, z;β∗) ∝ exp

{
(y − zx⊤β̃∗)2

2

}
. (12)

Under this simplification, the EM update of the expert pa-
rameter β is now obtained more compactly as

βt+1 = EX,Y

[(
2p(z = 1|x, y;θt)− 1

)
xy
]
.

Similarly, for symmetric mixtures of logistic experts (Sym-
MoLogE) with y ∈ {−1, 1}, the expression of p(y|x, z;β∗)
given in (6) can also be simplified as

P (y|x, z;β∗) =
exp{

(
yz+1

2

)
x⊤β∗}

1 + ex⊤β∗ . (13)

Under this simplification, the EM update of the expert pa-
rameter β is now given as

βt+1 = argmin
β∈Rd

EX,Y

[
EZ|x,y,θt

[
log

(
1 + ex

⊤β

e
yz+1

2 x⊤β

)]]
.
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3.2. EM for Deep and Sparse MoE

So far, we have derived EM for the foundational formula-
tions of MoE, as initially proposed in (Jacobs et al., 1991).
While EM is straightforward to derive in these cases, the
same does not hold for deep MoE—and especially not for
Sparse MoE. A deep MoE consists of l ≥ 2 MoE blocks,
as defined in Section 2, stacked sequentially. In this setup,
the input x passes through the first MoE block and then
sequentially through all subsequent blocks to produce the
output y.

For completeness, and to encourage future work on large-
scale applications of EM for MoE, we propose a formulation
of EM for deep and sparse MoE in Appendix D.4. Instead of
solving a separate latent-variable problem at each layer—as
is done in classical MoE—we posit that the latent variable
z ∈ [k]l should represent the entire sequence of experts
selected across the network. This allows us to construct the
EM objective in Equation (8).

An EM-like solution can then be derived for Sparse MoE,
where the loss is computed solely from the sequences of
experts observed through greedy expert selection. This
formulation provides a principled approach to training deep
and sparse MoE models using EM.

4. Main Result
In the previous section, we derived the EM update for both
MoE and SymMoE as the solution to minimizing the EM
objective in (8). We further demonstrated that this solution
can be decomposed into the concatenation of the respective
solutions to two minimization sub-problems. In this section,
we will show that this update is exactly equivalent to per-
forming a single step of the projected Mirror Descent (MD)
update on L(θ) with a unit step size and the KL divergence
as a regularizer. To illustrate more clearly that minimizing
Q(θ|θt) in (8) corresponds to a projected MD step on the
loss L(θ) at the point θt, we first provide a brief overview
of the core concept behind the MD update.

In most gradient-based methods, the next iteration is ob-
tained by minimizing an upper bound of the objective func-
tion. For example, in Gradient Descent (GD), the next iterate
is found by minimizing the first-order Taylor expansion of
the objective at θt, with a squared norm regularizer. Specifi-
cally, for minimizing L(.), the GD update with step size η
at θt is equivalent to minimizing the following function:

L(θt) + ⟨∇L(θt),θ − θt⟩+ 1

2η
∥θ − θt∥22.

This function indeed serves as an upper bound for L(.) if
η ≤ 1/L, where L is the Lipschitz constant of ∇L(θ).

Mirror Descent solves a similar sub-problem where instead
of a squared norm regularizer, we employ the Bregman Di-

vergence regularizer: The Bregman divergence induced by
a differentiable, convex function h : Rd → R, measures the
difference between h(θ) and its first-order approximation
at θt,i.e.,

Dh(θ,θ
t) = h(θ)− h(θt)− ⟨∇h(θt),θ − θt⟩. (14)

Thus, the iterations of MD are derived by minimizing the
following expression:

L(θt) + ⟨∇L(θt),θ − θt⟩+ 1

η
Dh(θ

t,θ). (15)

Finally, in projected mirror descent, the update is completed
by projecting the solution obtained from minimizing (15)
onto a subspace. As mentioned, this scheme is reasonable if
the function approximation using the Bregman divergence
serves as an upper bound for the function L(θ). This can
be ensured when the step size η is sufficiently small, and
the condition of relative smoothness is satisfied (Lu et al.,
2018).

In the upcoming theorem, we formally establish that for
general MoE, minimizing the EM objective function de-
fined in equation (9) is exactly equivalent to minimizing
the subproblem associated with a single step of MD, as de-
fined in equation (15), followed by a projection step. This
result demonstrates that the EM update for General MoE
is essentially performing an MD step in a specific natural
re-parameterization space, then projecting the resulting so-
lution onto Ω. The proof of this result is involved and is
deferred to Appendix A.1.

Theorem 4.1. For General MoE, there exists a natural
reparameterization θx ∈ {η(·,θ) : θ ∈ Ω} with

L(θ) = EX [L(θx)] (16)

and a mirror map A(θx) such that the EM update in (9)
simplifies and is equivalent to the expectation moment pro-
jection,

argmin
θ∈Ω

EX

[
KL
[
p
(
y, z
∣∣∣θ̃t+1
x

)∥∥∥p (y, z|η(x,θ))]] , (17)

where for each x, θ̃t+1
x is obtained from the following MD

step,

argmin
ψ∈Ω̃

⟨∇L(θtx),ψ − θtx⟩+DA(ψ,θ
t
x), (18)

with L(θx) being 1-smooth relative to A(θx). Further,
∀ψ1,ψ2 ∈ Ω̃, the divergence functionDA(ψ1,ψ2) is equal
to the KL divergence on p(y, z, |ψ):

DA(ψ1,ψ2) = KL[p(y, z|ψ2)∥p(y, z|ψ1)]. (19)

Proof sketch. We utilize the assumed property that the con-
ditional distribution p(y, z|x,θ) belongs to an exponential
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family of distributions to decompose the EM surrogate as

Q(θ|θt)−Q(θt|θt) =
EX

[
⟨∇L(θtx),θx − θtx⟩+DA(θx,θ

t
x)
]
. (20)

The above derivation follows similar steps to Kunstner et al.
Theorem 1 and is provided in Appendix A for completeness.
We note that because θx = η(x, θ) is not necessarily linear
in x, we cannot conclude that minimizing (1) with respect to
θ results in a direct MD step. Instead, recall the point-wise
(in x) MD iterate, θ̃t+1

x := argminθx⟨∇L(θ
t
x),θx− θtx⟩+

DA(θx,θ
t
x). Differentiating and setting equal to 0, it holds

that
∇A(θ̃t+1

x ) = s(x;θt). (21)

Using (2) and the decomposing ∇L(θtx) = ∇A(θtx) −
s(x;θt), we see that (1) can be further simplified to

Q(θ|θt)−Q(θt|θt) =

EX

[
−⟨∇A(θ̃t+1

x ),θx − θtx⟩+A(θx)−A(θtx)
]
.

BecauseA(θ̃t+1
x ) andA(θtx) only depend on θt, minimizing

the above with respect to θ is equivalent to minimizing the
following with respect to θ

EX

[
DA(θx, θ̃

t+1
x )

]
. (22)

Finally, substituting the Bregman Divergence induced by
A by the KL divergence yields the claim (this derivation is
also included in Appendix A.1 for completeness).

We remark that our proof for this result is not merely limited
to the setting of MoE, but is satisfied for any mixture for
which the distribution p(y, z|x,θ) of the target and latent
variable conditioned on the feature variable belongs to an
exponential family of distribution.

4.1. Convergence Guarantees for General MoE

Before moving into the convergence results, we specify
the necessary assumptions previously outlined in (Kunstner
et al., 2021) for the iterations of the EM Algorithm to be
well-defined for our class of MoE models. See Appendix
A.2 for a more in-depth discussion of the implications of
these assumptions.

A1. The conditional distribution p(y, z|θx) is a steep, min-
imal exponential family of distribution and η(x, ·) is a
continuously differentiable function.

A2. The optimal objective function value is bounded below,
i.e., L(θ∗) > −∞, on the constraint set Ω.

A3. The following sub-level sets Ωθ := {ϕ ∈ Ω :
Q(ϕ|θ) ≤ Q(θ|θ)} are compact.

Next, we briefly introduce key definitions that will be used
later. We say θ1 is initialized in a locally average-convex
region of L(θ) with respect to the random variable X , if
there exists a convex set Θ ⊆ Ω containing θ1,θ∗ such that
for all ϕ,θ ∈ Θ,

EX [L(ϕx)] ≥ EX [L(θx) + ⟨∇L(θx),ϕx − θx⟩] (23)

where θx := η(x,θ). Furthermore, Θ is called α-average-
convex relative to h if

EX [L(ϕx)] ≥ EX [L(θx)]

+ EX [⟨∇L(θx),ϕx − θx⟩+ αDh(ϕx,θx)] (24)

Now, thanks to the previously shown correspondence be-
tween EM for general MoE and projected MD, we are able
to present novel convergence properties of the EM Algo-
rithm when applied to General MoE. The theorem that fol-
lows provides sufficient conditions and explicit rates for the
convergence of EM iterations to a stationary point or true
parameters. The proof, adapted from (Lu et al., 2018), is a
bit more involved due to the nature of the extra projection
step. It is included in Appendix A.2.

Theorem 4.2 (Convergence of EM). Assuming A1 - A3.
For general MoE with re-parameterization given by θx :=
η(x,θ), strictly convex mirror map A(θx), and if for all
θ̃t+1
x ,θt+1

x ,ϕx ∈ {θtx,θ∗x},

EX

[
DA

(
ϕx, θ̃

t+1
x

)]
≥

EX

[
DA

(
θt+1
x , θ̃t+1

x

)
+DA

(
ϕx,θ

t+1
x

)]
, (25)

then, the EM iterates {θt}t∈[T ] satisfy:

1) Stationnarity. For no additional conditions,

min
t∈[T ]

EX

[
DA(θ

t
x,θ

t+1
x )

]
≤ L(θ1)− L(θ∗)

T
; (26)

2) Sub-linear Rate to θ∗. If θ1 is initialized in Θ, a
locally average-convex region of L(θ) containing θ∗,
then

L(θT )− L(θ∗) ≤
EX

[
DA(θ

∗
x,θ

1
x)
]

T
(27)

3) Linear Rate to θ∗. If θ1 is initialized in Θ ⊆ Ω, a
locally average-convex region of L(θ) relative to A(θ)
that contains θ∗, then

L(θT )− L(θ∗) ≤ (1− α)TEX

[
DA(θ

∗
x,θ

1
x)
]

(28)

The above condition on the initialization to belong in a lo-
cally average-convex region is satisfied trivially if L(θx) is
almost surely convex relative to A(θx). Such an assump-
tion is stronger, but more in line with standard sufficient
conditions for optimality of MD.
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As noted in the literature, EM’s convergence is sensitive to
initialization. If θ1 is initialized within a locally average-
convex region of L(θ), the EM iterates for the MoE problem
will converge sub-linearly to the true parameter. However,
if θ1 is in a region where L(θ) is strongly average-convex
relative to A, the iterates will converge linearly. This last
assumption is different from that of prior work, which typi-
cally require θ1 to be initialized in a locally strongly convex
region.

4.2. Discussion of Main Result

The results show that the EM update (9) for general MoE
is equivalent to projected mirror descent with a unit step-
size and KL divergence regularizer on the complete data
distribution. We offer the following additional remarks.

First, if we have oracle access to the EM updates for w
and β, EM requires no hyper-parameters, unlike GD, which
is sensitive to the step size. This can be especially advan-
tageous for cases where the β-update has a closed-form
solution (as is the case for linear experts), making EM’s
benefits over GD more evident. Additionally, while GD
regularizes progress based on the Euclidean distance be-
tween iterates, EM adjusts progress based on the divergence
between probability distributions across iterations. This is
often more suitable for latent variable models, where small
Euclidean changes may cause large shifts in the mixture
distribution, and vice versa.

Second, whereas previous analysis of EM for various set-
tings hinged on various types of analyses ranging from
verifying obscure conditions to – less reproducible at scale –
direct proofs, the connection to MD that we unveil greatly
unifies the process of analysis and provides more intuition as
to the inner workings of EM. In particular, as we will discuss
in Section 5, our framework for analysis allows to easily
provide intuitive conditions for linear convergence to the
true parameters that are based on the MIM and subsequently,
the SNR of the generative model.

Third, while Jordan & Xu (1995) also demonstrated that
the EM algorithm for MoE converges linearly to the true
parameters, the sufficient conditions they provided are more
restrictive. Specifically, their analysis requires the Hessian
to be negative definite, and the convergence rate depends
explicitly on its eigenvalues. These conditions are similar in
nature to those typically required for GD-type methods. In
contrast, our sufficient conditions for optimality align with
those of MD, which more accurately captures the conver-
gence behavior of EM, as established by the equivalence
shown in Theorem 4.1.

Finally, large-scale applications often favor a mini-batch
training paradigm, as it tends to yield better performance
for a given computational cost. Large-scale implementation

of EM can directly benefit from this paradigm for solving
each iteration’s convex optimization subproblem (i.e., Equa-
tion (9)) where a GD-style method is typically used. Scaling
laws for the mini-batch paradigm suggest that reducing the
batch size should be accompanied by a proportional reduc-
tion in the learning rate (Shuai et al., 2024; Malladi et al.,
2022; Goyal et al., 2017). However, since EM is equivalent
to MD with a fixed learning rate of 1, this kind of modular
tuning is not directly applicable to EM. This does not imply
that there is no optimal batch size for EM. Rather, extending
theoretical guarantees to stochastic and mini-batch settings
can be approached through the framework of stochastic mir-
ror descent (SMD) and mini-batch MD (MBMD), both of
which have been studied in the context of composite opti-
mization (Duchi et al., 2010). We highlight this as an open
direction for future research on scalable implementations of
EM for MoE.

5. Special case of SymMoLinE and
SymMoLogE

In this section, we narrow in on two special cases: the
Symmetric Mixture of Linear Experts (SymMoLinE) and
the Symmetric Mixture of Logistic Experts (SymMoLogE)
models. We first show that minimizing the EM objective
function defined in (9) is exactly equivalent to minimizing
the subproblem associated with a single step of MD as
defined in equation (15), with a step size of η = 1. This
time, we fully specify the mirror map and show it is strictly
convex. Unlike the previous result, this correspondence
between EM and MD does not feature the extra projection
step that was present for general MoE. This allows us to
more easily characterize the sufficient condition of EM for
linear convergence to the true parameters, relating it to the
MIM and SNR of the generative model (see Appendix B.5
and B.6). The proof is provided in Appendix B.2.

Theorem 5.1. For SymMoLinE and SymMoLogE, there
is a mirror map A(θ) such that the EM update in (9) is
equivalent to

argmin
θ∈Ω

⟨∇L(θt),θ − θt⟩+DA(θ,θ
t), (29)

where, ∀ϕ,θ ∈ Ω, the divergence function DA(θ,θ
t) is

equal to the KL divergence on the complete data:

DA(ϕ,θ) = KL[p(x, y, z;θ)∥p(x, y, z;ϕ)]. (30)

In particular, in the case of SymMoLinE,

A(θ) = EX
[
(x⊤β)2

2
+ log

(
1 + ex

⊤w
)]
, (31)

while in the case of SymMoLogE,

A(θ) = EX
[
log
((

1 + ex
⊤β
)(

1 + ex
⊤w
))]

. (32)
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Finally, in both cases, the map A(θ) is strictly convex in θ
and L(θ) is 1-smooth relative to A(θ).

As shown in the proof of the result, it is evident from (41)
and (45) that p(x, y, z;θ) does not belong to an exponen-
tial family of distributions for either SymMoLinE or Sym-
MoLogE. Therefore, this result does not simply follow as
a corollary of (Kunstner et al., 2021, Proposition 1), but
stands as an independent finding, introducing another class
of latent variable models where EM is equivalent to MD. A
couple of follow-up remarks are in order.

First, as the loss is 1-smooth relative to A, this validates the
choice of η = 1 for the Mirror Descent update, and subse-
quent convergence results from the MD literature. Specifi-
cally, in Corollary B.1 of Appendix B.4, we contextualize
convergence results from (Lu et al., 2018; Kunstner et al.,
2021) for SymMoLinE and SymMoLogE that feature 1) a
guaranteed sub-linear rate of convergence to a stationary
point at no additional assumption, 2) a sub-linear rate of con-
vergence to the true parameter if initialized within a convex
region of the loss-function that includes the true parameters,
and 3) a linear rate of convergence to the true parameter
if initialized within a region of the loss function that con-
tains the true parameters and is strongly-convex relative to
the mirror map. Then, in Theorem B.2 of Appendix B.5,
we further characterize the assumptions required for linear
convergence by relating the relative strong convexity of the
objective to the eigenvalues of the MIM. Lastly, in Theo-
rem B.4 of Appendix B.6, we characterize the existence of
the local region of convergence as a function of the SNR
of the generative model for the cases of SymMoLinE and
SymMoLogE. We then conclude in Appendix B.7 with a
discussion of the implications of the results.

6. Experiments
In this section, we empirically validate our theoretical re-
sults by comparing the performance of EM with Gradient
EM (Algorithm 2), and Gradient Descent (GD, Algorithm
3). Recall that EM for MoE obtains its next parameter iter-
ate as the concatenation to the solutions of two minimization
problems. Instead, Gradient EM obtains its next parameter
iterate as the concatenation of a single gradient update on
the respective sub-minimization problems of EM. This dif-
fers from GD that obtains its next parameter iterate as the
gradient update on the negative log-likelihood objective θ.
We evaluate these methods on both a synthetic dataset and
the real-world Fashion MNIST dataset, consistently report-
ing significant improvements for EM and Gradient EM over
GD. We also provide mini-batch CIFAR-10 experiments
with more than 2-experts in Appendix C.1. Note that our
aim is not to achieve state-of-the-art accuracy, but to reiter-
ate that EM can be more suitable than GD for fitting specific
models.

(a) (b)

Figure 1. Convergence of objective errors L(θt) − L(θ∗) and
L(θt)− L(θT ) in Fig 1a and Fig 1b, respectively, averaged over
50 instances when fitting a SymMoLinE.

(a) (b)

Figure 2. This figure shows the progress made towards the true
parameters, ∥βt−β∗∥2

∥β∗∥2
and ∥wt−w∗∥2

∥w∗∥2
in figures 2a and 2b respec-

tively, averaged over 50 instances when fitting a SymMoLinE

Synthetic Dataset. We created the synthetic dataset so
as to simulate a population setting of SymMoLinE. We
sampled 103 data points from an SymMoLinE with known
additive unit Gaussian noise (i.e. N (0, 1)) and true param-
eters β∗,w∗ ∈ R10 that sastisfy ∥β∗∥2 = ∥w∗∥2 = 4.
Subsequently, we run full-batch EM, Gradient EM, and GD
for 50 iterations and report the results on the training set
averaged over 50 instances. Each time, re-sampling the
true parameters, initial parameters, and whole dataset. The
initial parameters, are randomly initialize within a neighbor-
hood of the true parameters, and are consistent across all
benchmarks.

Figure 1 shows the objective function progress. EM requires
fewer iterations to fit the mixture compared to both Gradient
EM and GD, with Gradient EM also outperforming GD
in fitting time. Figure 2 illustrates the progress toward
recovering the true SymMoLinE parameters. Once again,
EM requires significantly fewer iterations to fit the mixture
compared to both Gradient EM and GD, with Gradient EM
also taking considerably less time than GD.

Overall, we observe that all three algorithms exhibit a linear
convergence rate, both in optimizing the objective function
and fitting the true parameters. This aligns with our theo-
retical results for MoE and is consistent with findings for
Mixtures of Gaussians and Mixtures of Linear Regression
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in high SNR scenarios. To validate our results further, we
perform a paired t-test (Ross & Willson, 2018). For EM and
Gradient EM compared to GD, we obtain a T-statistic ≥ 22
indicating that the difference in final accuracy is statistically
significant (p-value ∼ 0.000).

Validation Experiment on Fashion MNIST. For the small
scale proof of concept experiment on Fashion MNIST (Xiao
et al., 2017), we alter the dataset so as to simulate a mixture
of 2 Logistic Experts. To do so, we perform an inversion
transformation on the images at random with probability 1

2 .
Effectively, the transformation inverts the images from a
white article of clothing on a black background to a black
article of clothing on a white background. As shown in Table
1, the single expert on the original Fashion MNIST dataset
reaches an accuracy of 83.2% on the test set. Meanwhile,
the single expert cannot achieve better than an accuracy of
10.2% on the altered dataset. This suggests a 2-component
MoLogE is appropriate for fitting the altered dataset, so long
as the ground truth partitioning is linear in image space.

The 2-component MoLogE to be trained consists of one
Linear gating layer of dimension 2× 28× 28, and 2 logistic
experts of dimension 10 × 28 × 28 each. We randomly
initialize each linear layer to be unit norm and execute the
algorithms on the same datasets and with the same initial-
izations. For Gradient EM, the only additional code needed
over GD is to define the EM Loss function appropriately,
and then perform a Gradient Step on the Gating parameters
and the Expert parameters separately as describe in Algo-
rithm 2. For EM, for each iteration, we perform several
gradient steps in an inner loop to approximately recover the
solutions to the sub-problems described in (9). We report
our findings for the full-batch iteration of the respective
algorithms in Table 2 and Figure 3.

In Table 2, we report the respective final test accuracy and
cross-entropy loss values after 100 iterations of EM, Gradi-
ent EM and GD for fitting a 2-component MoLogE on the
altered Fashion MNIST dataset, averaged over 25 instances.
We see that EM boasts a much improved final test accuracy
that nearly recovers the single expert accuracy on the origi-
nal unaltered Fashion MNIST dataset of 79.2%. Meanwhile,
Gradient EM also registers an improvement over GD. In
Figure 3, we report the progress made on the accuracy and
objective function for the test set over the 100 iterations, av-
eraged over 25 instances. As was observed in our synthetic
experiment, EM takes considerably less iterations to fit the
mixture than both Gradient EM and GD, where the former
also takes considerably less time to fit the mixture than GD.
To validate our results further, we perform a paired t-test.
For EM and Gradient EM compared to GD, we obtain a T-
statistic ≥ 17 indicating that the difference in final accuracy
is statistically significant (p-value ∼ 0.000).

Table 1. Performance for single Logistic Expert

Accuracy Random Invert
Single Expert 83.2% No
Single Expert 10.2% Yes

Table 2. Performance for 2-Component MoLogE

Accuracy Cross Entropy
EM 78.5% 0.827
Gradient EM 66.0% 1.29
Gradient Descent 62.4% 1.30

(a) (b)

Figure 3. Test accuracy and objective function, 1
n

∑n
i=1 1ŷi=yi

and L(θt) in 3a and 3b, respectively, averaged over 25 instances
for a 2-component MoLogE train on Random Invert FMNIST.

7. Conclusion
In this paper, we theoretically addressed the problem of
Mixtures of Experts (MoE) with the use of the EM algo-
rithm. We first showed that the EM update for MoE could
be interpreted as a projected Mirror Descent step on the
log-likelihood with a unit step size and a KL divergence
regularizer, extending the result of (Kunstner et al., 2021)
beyond complete data distribution belonging to an expo-
nential family. Building on this, we characterized different
convergence rates for EM in this setting under various as-
sumptions about the log-likelihood function and specified
when these assumptions held. Lastly, we empirically ob-
served that EM can outperform gradient descent in both
convergence rate and final performance.
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Appendix Contents
A) EM, Projected Mirror Descent, and General MoE

A.1) EM is Projected Mirror Descent for General MoE.
A.2) Convergence Results for EM applied to General MoE.

B) EM, Mirror Descent, and SymMoLogE and SymMoLinE.

B.1) EM is Mirror Descent for SymMoLogE and SymMoLinE
B.2) Proof of Theorem 5.1 for SymMoLinE
B.3) Proof of Theorem 5.1 for SymMoLogE
B.4) Convergence Guarantees of EM for SymMoLogE and SymMoLinE
B.5) Satisfiability of Conditions from Corollary B.1
B.6) Correspondence Between the MIM and SNR for SymMoLinE and SymMoLogE
B.7) Existence of Locally Convex Region

C) Additional Experiments

C.1) Experiment on Grayscale CIFAR-10

D) Algorithms

D.1) EM for MoE
D.2) Gradient EM for MoE
D.3) Gradient Descent for MoE
D.4) EM for Deep and Sparse MoE

Notations

We summarize here the notations used throughout the paper. For clarity, we distinguish between different types of
mathematical objects (e.g., vectors, random variables, distributions) and follow standard conventions where possible.

The Kullback-Leibler (KL) divergence of a distribution p from a distribution q is denoted by KL[q ∥ p] :=∫
q(x) log (q(x)/p(x)) dx. We use lowercase letters such as p to denote continuous probability density functions and

uppercase letters such as P to denote discrete probability mass functions. The Euclidean (or ℓ2) norm of a vector is denoted
by ∥ · ∥2. We use the compact notation [k] := {1, 2, ..., k}.

We denote vectors using bold lowercase letters (e.g., x), and random variables using uppercase letters (e.g., X). Bold
uppercase letters (e.g.,X) are used to represent either vector-valued random variables or matrices; the distinction between
the two is clear from context. For a matrixM , we denote its ith eigenvalue by λi, and the corresponding eigenvector by vi.
The minimum and maximum eigenvalues ofM are denoted by λmin and λmax, respectively. We use Id to denote the d× d
identity matrix, and ei to denote the ith standard basis (unit) vector in Rd.

Expectations are written as EX [f(X)] =
∫
p(x)f(x)dx, where the distribution ofX is implicitly defined by the context.

When needed, we make the dependence on parameters explicit by writing X;θ, where θ denotes the parameters of the
distribution ofX . The notation N (µ,Σ) refers to the multivariate normal distribution with mean vector µ and covariance
matrix Σ.
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A. EM, Projected Mirror Descent, and General MoE.
In this Section, we provide all the complete proofs and discussions relating to results from Section 4.

A.1. EM is Projected Mirror Descent for General MoE.

In this section, we provide the full and detailed proof of the main result, Theorem 4.1. For ease of comprehension and in
the hope that this will provide useful insights into other types of non-exponential family mixtures for which EM is also
connected to MD, we prove our result following the same general ideas as that of Kunstner et al. (2021, Proposition 1).

For ease of reading, we re-state the theorem below:

Theorem 4.1: For General MoE, there exists a natural re-parameterization θx ∈ {η(·,θ) : θ ∈ Ω} with

L(θ) = EX [L(θx)]

and a mirror map A(θx) such that the EM update in (9) simplifies and is equivalent to the expectation moment projection,

argmin
θ∈Ω

EX

[
KL
[
p
(
y, z
∣∣∣θ̃t+1
x

)∥∥∥p (y, z|η(x,θ))]] ,
where for each x, θ̃t+1

x is obtained from the following MD step,

argmin
ψ∈Ω̃

⟨∇L(θtx),ψ − θtx⟩+DA(ψ,θ
t
x),

with L(θx) being 1-smooth relative to A(θx). Further, ∀ψ1,ψ2 ∈ Ω̃, the divergence function DA(ψ1,ψ2) is equal to the
KL divergence on p(y, z, |ψ):

DA(ψ1,ψ2) = KL[p(y, z|ψ2)∥p(y, z|ψ1)].

Proof. The EM is centered around iterative minimization of the surrogate upper-boundQ(ϕ|θ). For conditionally exponential
family of distribution, We can decompose it in terms of the sufficient statistic and log-partition:

Q(θ|θt) = −EY,X

[∑
z

ln(p(y,x, z;θ))P (z|y,x;θt)

]

= −EY,X

[∑
z

(ln(p(y, z|x;θ)) + ln(p(x)))P (z|y,x;θt)

]

= −EY,X

[∑
z

(
⟨S(y, z), θx⟩ −A(θtx)) + ln(p(x))

)
P (z|y,x;θt)

]

= EX

−⟨EY |x,θ∗EZ|y,x,θt [S(y, z)]︸ ︷︷ ︸
s(x;θt)

,θx⟩+A(θx)− ln(p(x))


= EX

[
−⟨s(x;θt),θx⟩+A(θx)− ln(p(x))

]
.

Therefore, the above also implies

EX

[
∇L(θtx)

]
= EX

[
∇Q(θtx|θtx)

]
(33)

= EX

[
∇A(θx)− s(x;θt)

]
(34)

Simple algebra then shows that

Q(θ|θt)−Q(θt|θt) = EX

[
−⟨s(x;θt),θx⟩+A(θx) + ⟨s(x;θt),θtx⟩ −A(θtx)

]
= EX

[
−⟨s(x;θt),θx − θx⟩+A(θx)−A(θtx)

]
i)
= EX

[
−⟨s(x;θt)−∇A(θtx),θx − θtx⟩+DA(θx,θ

t
x)
]

= EX

[
⟨∇L(θtx),θx − θtx⟩+DA(θx,θ

t
x)
]

13
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where i) adds and subtracts ⟨∇A(θtx),θx − θtx⟩. This is especially important as EM minimizes Q(θ|θt) −Q(θt|θt) in
each iteration. Now recall that L(θ) = Q(θ|θt)−H(θ|θt) and H(θt|θt)−H(θ|θt) ≤ 0, it follows that

L(θ)− L(θt) = Q(θ|θt)−Q(θt|θt)−H(θ|θt)−H(θt|θt)
≤ Q(θ|θt)−Q(θt|θt)
= EX

[
⟨∇L(θtx),θx − θtx⟩+DA(θx,θ

t
x)
]

Thus far, we have shown that the EM iteration under the considered setting is equivalent to minimizing the following upper
bound on L(θ), w.r.t. θ:

L(θt) + EX

[
⟨∇L(θtx),θx − θtx⟩+DA(θx,θ

t
x)
]

(35)

Now, recall θ̃t+1
x := argminθx⟨∇L(θ

t
x),θx − θtx⟩+DA(θx,θ

t
x) which is the outcome of a mirror descent step. Differen-

tiating and setting equal to 0, it holds that
∇A(θ̃t+1

x ) = s(x;θt). (36)

Using this and decomposing ∇L(θx) above, we see that (35) is equal to

= L(θt) + EX

[
⟨∇A(θtx)− s(x;θtx),θx − θtx⟩+DA(θx,θ

t
x)
]

= L(θt) + EX

[
⟨∇A(θtx)−∇A(θ̃t+1

x ),θx − θtx⟩+DA(θx,θ
t
x)
]

= L(θt) + EX

[
−⟨∇A(θ̃t+1

x ),θx − θtx⟩+A(θx)−A(θtx)
]
.

Thus, minimizing (35) with respect to θx is equivalent to minimizing

EX

[
DA(θx, θ̃

t+1
x )

]
. (37)

Substituting the Bregman Divergence induced by A by the KL divergence yields the claim.

It remains to verify that DA(θx, θ̃
t+1
x ) = KL

[
p(y, z|θ̃t+1

x )||p(y, z|θx)
]

and that the function L(θx) is 1-smooth relative
to A(θx). This follows directly from previous work by Kunstner et al. (2021) since L(θx) is the expected negative
log-likelihood of y|x where A(θx) is the log-partition of the exponential distribution p(y, z|θx). For completeness, the
derivation is as follows. For Y, Z|x belonging to an exponential family of distribution, the KL divergence can be decomposed
directly using (36) as follows to obtain the Bregman Divergence:

KL
[
p(y, z|θ̃t+1

x )||p(y, z|θx)
]
:= EY,Z|x;θ̃t+1

x

[
log

(
p(y, z; θ̃t+1

x )

p(y, z;θx)

)]
= EY,Z|x;θ̃t+1

x

[
⟨S(y, z), θ̃t+1

x − θx⟩+A(θx)−A(θ̃t+1
x )

]
= ⟨∇A(θ̃t+1

x ), θ̃t+1
x − θx⟩+A(θx)−A(θ̃t+1

x )

= DA(θx, θ̃
t+1
x ).

A.2. Convergence Results for EM applied to General MoE.

In this section, we provide the full proof of Theorem 4.2. Before we begin, we recall and discuss the regularity assumptions
previously made. Recall assumptions A1, A2, and A3:

A1 The conditional distribution p(y, z|θx) is a steep, minimal exponential family of distribution and η(x, ·) is a continu-
ously differentiable function,

A2 The optimal objective function values is bounded below, i.e., L(θ∗) > −∞, on the constraint set Ω,

A3 The following sub-level sets Ωθ := {ϕ ∈ Ω : Q(ϕ|θ) ≤ Q(θ|θ)} are compact. .

14
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Assumption A1 serves to ensure that L(θ) = EX [L(θx)] is differentiable, that the EM surrogate is also differentiable and
has a solution. It further serves to guarantee the mirror map A is smooth, ensuring that projecting into the dual space is
well-defined. We note that if the re-parametrization function is continuously differentiable in θ, it will hold that A1 is
satisfied for the popular case that p(y, z|x) is a Gaussian mixture (this includes MoE with Gaussian experts). Next, A2 and
A3 are classical optimization assumptions that serve to guarantee the solution of the M-step is unique and exists within the
constraint set Ω, thereby ensuring the EM iterations are well defined.

Further, we make the additional remark that the projection, (17), in Theorem 4.1 can be seen to be equivalent to the following
projection over the space of functions on x.

η(x,θt+1) = θt+1
x = argmin

ϕx∈{η(·,θ):θ∈Ω}
EX

[
DA(ϕx, θ̃

t+1
x )

]
(38)

We can see that the set {η(·,θ) : θ ∈ Ω} is not necessarily guaranteed to be convex. Such a result would require the
re-parametrization function η(x,θ) to be affine. In situations where this set is not convex, we cannot take our weak
generalized Pythagorean identity (25) for granted, and thus we include it as an extra assumption to be satisfied for these
convergence results. Still, convexity is not necessary for our generalized Pythagorean inequality to hold. For instance,
ensuring θ̃t+1

x is in the relative interior of {η(·,θ) : θ ∈ Ω}, or simply satisfying the inequality in expectation will suffice,
but may be difficult to show.

For ease of reading, we re-state the result below:
Theorem 4.2: For general MoE with re-parameterization given by θx := η(x,θ), strictly convex mirror map A(θx), and if
for all θ̃t+1

x ,θt+1
x ,ϕx ∈ {θtx,θ∗x},

EX

[
DA

(
ϕx, θ̃

t+1
x

)]
≥ EX

[
DA

(
θt+1
x , θ̃t+1

x

)
+DA

(
ϕx,θ

t+1
x

)]
,

then, the EM iterates {θt}t∈[T ] satisfy:

1) Stationnarity. For no additional conditions,

min
t∈[T ]

EX

[
DA(θ

t
x,θ

t+1
x )

]
≤ L(θ1)− L(θ∗)

T
;

2) Sub-linear Rate to θ∗. If θ1 is initialized in Θ, a locally average-convex region of L(θ) containing θ∗, then

L(θT )− L(θ∗) ≤
EX

[
DA(θ

∗
x,θ

1
x)
]

T

3) Linear Rate to θ∗. If θ1 is initialized in Θ ⊆ Ω, a locally average-strongly convex region of L(θ) relative to A(θ)
that contains θ∗, then

L(θT )− L(θ∗) ≤ (1− α)TEX

[
DA(θ

∗
x,θ

1
x)
]

Proof. The proof is divided into three parts that correspond to each of the three sub-results of the corollary.

To aid the reader’s comprehension, we re-state the cosine law for Bregman divergence (also known as 3-point lemma).

Lemma A.1 (cosine law for Bregman divergence). Assume the mapping A is proper and convex. Then, for all a, b, c ∈ Ω̃, it
holds that

DA(a, b) = DA(a, c) +DA(c, b)− ⟨∇A(b)−∇A(c), a− c⟩. (39)

Part 1): Stationarity.
We begin by utilizing the result from Theorem 4.1 that the conditional log-likelihood L(θx) is 1-smooth relative to the
mirror map A(θx). For all θx ∈ Ω̃,

L(θt+1
x ) ≤ L(θtx) + ⟨∇L(θtx),θt+1

x − θtx⟩+DA(θ
t+1
x ,θtx).

Taking the expectation on both sides with respect to the random feature variable x yields:

L(θt+1) ≤ L(θt) + EX

[
⟨∇L(θtx),θt+1

x − θtx⟩+DA(θ
t+1
x ,θtx)

]
.
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Combining (33) and (36) then plugging into the above, we obtain

L(θt+1) ≤ L(θt) + EX

[
⟨∇A(θtx)−∇A(θ̃t+1

x ),θt+1
x − θtx⟩+DA(θ

t+1
x ,θtx)

]
.

Decomposing DA(θ
t+1
x ,θtx) above and canceling appropriate terms yields

L(θt+1) ≤ L(θt) + EX

[
−⟨∇A(θ̃t+1

x ),θt+1
x +A(θt+1

x )−A(θtx)
]

︸ ︷︷ ︸
i)

.

It can then be checked that i) is equal to EX

[
DA(θ

t+1
x , θ̃t+1

x )−DA(θ
t
x, θ̃

t+1
x )

]
. Therefore, substituting the above and

utilizing the inequality (25), it follows that

L(θt+1) ≤ L(θt)− EX

[
DA(θ

t
x,θ

t+1
x )

]
.

Re-arranging the terms and averaging over T -iterations yields the claim:

EX

[
DA(θ

t
x,θ

t+1
x )

]
≤ L(θt+1)− L(θt)

=⇒ min
t≤T

EX

[
DA(θ

t
x,θ

t+1
x )

]
≤ 1

T

T∑
t=1

L(θt+1)− L(θt) = L(θ1)− L(θT )
T

Part 2): Sub-linear rate to θ∗.
We begin by utilizing the result from Theorem 4.1 that the conditional log-likelihood L(θx) is 1-smooth relative to the
mirror map A(θx). For all θx ∈ Ω̃, then apply expectation with respect to x on both sides yielding:

L(θt+1) ≤ L(θt) + EX

[
⟨∇L(θtx),θt+1

x − θtx⟩+DA(θ
t+1
x ,θtx)

]
.

We then add and subtract EX [⟨∇L(θtx),θ∗x⟩] to obtain

L(θt+1) ≤ L(θt) + EX

[
⟨∇L(θtx),θt+1

x − θ∗x + θ∗x − θtx⟩+DA(θ
t+1
x ,θtx)

]
.

We then use the average local convexity assumption, (23), and obtain

L(θt+1) ≤ L(θ∗) + EX

[
⟨∇L(θtx),θt+1

x − θ∗x⟩+DA(θ
t+1
x ,θtx)

]
.

Combining (33) and (36) then plugging into the above, we obtain

L(θt+1) ≤ L(θ∗) + EX

[
⟨∇A(θtx)−∇A(θ̃t+1

x ),θt+1
x − θ∗x⟩+DA(θ

t+1
x ,θtx)

]
. (40)

We now decompose DA(θ
t+1
x ,θtx) using Lemma A.1 with a = θ̃t+1

x , b = θtx, and c = θt+1
x and obtain

⟨∇A(θtx)−∇A(θ̃t+1
x ),θt+1

x − θ∗x⟩+DA(θ
t+1
x ,θtx)

=⟨∇A(θtx)−∇A(θ̃t+1
x ),θt+1

x − θ∗x⟩+DA(θ̃
t+1
x ,θtx)−DA(θ̃

t+1
x ,θt+1

x ) + ⟨∇A(θtx)−∇A(θt+1
x ), θ̃t+1

x − θt+1
x ⟩

=A(θ̃t+1
x )−A(θtx) + ⟨∇A(θtx),θtx − θ∗x⟩+ ⟨−∇A(θ̃t+1

x ),θt+1
x − θ∗x⟩+A(θt+1

x )−A(θ̃t+1
x )

We now add and subtract ⟨∇A(θtx), θ̃t+1
x ⟩ and ⟨A(θ̃t+1

x ), θ̃t+1
x ⟩ and group terms to obtain

DA(θ
t+1
x , θ̃t+1

x ) +DA(θ̃
t+1
x ,θtx) + ⟨∇A(θtx)−∇A(θ̃t+1

x ), θ̃t+1
x − θ∗x⟩︸ ︷︷ ︸

ii)

We now apply Lemma A.1 again to ii) with a = θ∗x, b = θtx, c = θ̃t+1
x and obtain the sub-result:

⟨∇A(θtx)−∇A(θ̃t+1
x ),θt+1

x − θ∗x⟩+DA(θ
t+1
x ,θtx) = DA(θ

∗
x,θ

t
x)−DA(θ

∗
x, θ̃

t+1
x ) +DA(θ

t+1
x , θ̃t+1

x )
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Plugging the above equality into (40), we obtain

L(θt+1) ≤ L(θ∗) + EX

[
DA(θ

∗
x,θ

t
x)−DA(θ

∗
x, θ̃

t+1
x ) +DA(θ

t+1
x , θ̃t+1

x )
]
.

Then, using 25, we obtain
L(θt+1) ≤ L(θ∗) + EX

[
DA(θ

∗
x,θ

t
x)−DA(θ

∗
x,θ

t+1
x )

]
.

Re-arranging, then averaging over T iterations yields the claim:

T (L(θT )− L(θ∗)) ≤
T∑

t=1

(
L(θt)− L(θ∗)

)
≤

T∑
t=1

EX

[
DA(θ

∗
x,θ

t
x)−DA(θ

∗
x,θ

t+1
x )

]
=⇒ L(θT )− L(θ∗) ≤

EX

[
DA(θ

∗
x,θ

1
x)−DA(θ

∗
x,θ

T
x )
]

T
≤

EX

[
DA(θ

∗
x,θ

1
x)
]

T

Part 3): Linear rate to θ∗.
We begin by utilizing the result from Theorem 4.1 that the conditional log-likelihood L(θx) is 1-smooth relative to the
mirror map A(θx). For all θx ∈ Ω̃, then apply expectation with respect to x on both sides yielding:

L(θt+1) ≤ L(θt) + EX

[
⟨∇L(θtx),θt+1

x − θtx⟩+DA(θ
t+1
x ,θtx)

]
.

We then add and subtract EX [⟨∇L(θtx),θ∗x⟩] to obtain

L(θt+1) ≤ L(θt) + EX

[
⟨∇L(θtx),θt+1

x − θ∗x + θ∗x − θtx⟩+DA(θ
t+1
x ,θtx)

]
.

We then use the local α-strongly average-convexity assumption, (23), and obtain

L(θt+1) ≤ L(θ∗) + EX

[
⟨∇L(θtx),θt+1

x − θ∗x⟩+DA(θ
t+1
x ,θtx)− αDA(θ

∗
x,θ

t
x)
]
.

Then, following the same steps as for the sub-linear case, we Combining (33) and (36), utilize the cosine law for Bregman
Divergence DA(·, ·) twice, then apply (25) to obtain:

L(θt+1) ≤ L(θ∗) + EX

[
DA(θ

∗
x,θ

t
x)−DA(θ

∗
x,θ

t+1
x )− αDA(θ

∗
x,θ

t
x)
]

≤ L(θ∗) + EX

[
(1− α)DA(θ

∗
x,θ

t
x)
]
.

Unraveling the recurrence over T iterations, yields the result:

L(θT )− L(θ∗) ≤ (1− α)TEX

[
DA(θ

∗
x,θ

1
x)
]

This completes the proof.
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B. EM, Mirror Descent, and SymMoLogE and SymMoLinE.
In this section, we provide all results, proofs, and discussion pertaining to EM for symmetric mixtures of logistic or linear
experts.

B.1. EM is Mirror Descent for SymMoLogE and SymMoLinE

In this section, we provide the full and detailed proof of Theorem 5.1. For ease of comprehension and in the hope that this
will provide useful insights into other types of non-exponential family mixtures for which EM is also connected to MD, we
prove our result following the same general ideas as that of (Kunstner et al., 2021, Proposition 1). We split the proof into
two parts (SymMoLinE and SymMoLogE) which can be found in Appendix B.2 and B.3.

For ease of reading, we re-state the theorem below:
Theorem 5.1: For SymMoLinE and SymMoLogE, there is a mirror map A(θ) such that the EM update in (9) simplifies and
is equivalent to

argmin
θ∈Ω

⟨∇L(θ),θ − θt⟩+DA(θ,θ
t),

where ∀ϕ,θ ∈ Ω the divergence function DA(θ,θ
t) is equal to the KL divergence on the complete data:

DA(ϕ,θ) = KL[p(x, y, z;θ)∥p(x, y, z;ϕ)].

In particular, in the case of SymMoLinE,

A(θ) = EX
[
(x⊤β)2

2
+ log

(
1 + ex

⊤w
)]
,

while in the case of SymMoLogE,

A(θ) = EX
[
log
((

1 + ex
⊤β
)(

1 + ex
⊤w
))]

.

Finally, in both cases, the map A(θ) is strictly convex in θ and L(θ) is 1-smooth relative to A(θ).

B.2. Proof of Theorem 5.1 for SymMoLinE

Proof. Recall that we consider a 2 component SymMoLinE (see Section 3.1) where z ∈ {−1, 1} is the latent unobserved
variable, and

1) x ∼ N (0, Id),

2) P (z|x;w) =
exp{ z+1

2 x⊤w}
1+ex⊤w

,

3) p(y|x, z;β) =
exp

{
− (y−zx⊤β)2

2

}
√
2π

.

We begin by deriving a near exponential form of the complete data probability density function p(x, z, y;θ):

p(x, y, z;θ)

= p(y|x, z;θ)P (z|x;θ)p(x)
= exp{log p(y|x, z;β) + logP (z|x;w) + log p(x)}

= exp

{
−(y − zx⊤β)2

2
− 1

2
log(2π) +

(
z + 1

2

)
x⊤w − log(1 + ex

⊤w) + log p(x)

}
= exp

{
−y2

2
+ yzx⊤β − z2(x⊤β)2

2
+

(
z + 1

2

)
x⊤w − log(1 + ex

⊤w) + log p(x)− 1

2
log(2π)

}
= exp

{〈[
yzx
zx
2

]
,

[
β
w

]〉
+
x⊤w

2
− (x⊤β)2

2
− log(1 + ex

⊤w) + log p(x)− y2

2
− 1

2
log(2π)

}
.
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Thus we have recovered the decomposition,

p(x, y, z;θ) = exp


〈[

zx
2
yzx

]
︸ ︷︷ ︸
S(x,y,z)

,

[
w
β

]〉
+ a(x, y,θ)

 , (41)

where in a(x, y,θ), the feature variable x cannot be linearly separated from the parameter θ:

a(x, y,θ) =
x⊤w

2
− (x⊤β)2

2
− log

(
1 + ex

⊤w
)
+ log p(x)− y2

2
− 1

2
log(2π).

At this point, we pause and discuss the implications of the obtained form. First we recall that for a random variable U to
belong to an exponential family, it must satisfy

p(u;θ) = h(u) exp {⟨s(u),θ⟩ −A(θ)}

for some h(·), s(·),θ, A(·) that are called the normalization function, sufficient statistics, natural parameters, and log-
partition function respectively. To clarify, we note that 1) A(θ) must be a function of the parameters only and cannot depend
on u and 2) h(u) must be a function of the variable u only and cannot depend on the parameters. In other words, it must
be that h(u) and A(θ) are linearly separated inside the exp. With the above in mind, we see that SymMoLinE is not an
exponential family. Further, we remark that the above formulation showing S(x, y, z) is linear with (w,β)⊤ does not
extend beyond the symmetric setting of the Mixture of Linear Experts; for k ≥ 3, this relationships becomes non-linear.
This turns out to be problematic for showing EM is equivalent to MD for k ≥ 3. Lastly, note that taking the expectation of
a(x, y,θ) over (x, y) ∼ p(x, y;θ∗) yields,

EX,Y [a(x, y,θ)] = −EX
[
(x⊤β)2

2
+ log

(
1 + ex

⊤w
)]

− C

= −A(θ)− C,

where the above follows from EX [x
⊤w
2 ] = 0 and C := −EX,Y [log p(x) − y2

2 − 1
2 log(2π)] is not a function of the

parameter θ. With the obtained form (41), we now continue with the proof.

Part a): Show EM is MD, i.e., argminθ∈ΩQ(θ|θt) = argminθ∈Ω⟨∇L(θ),θ − θt⟩+DA(θ,θ
t).

Taking the appropriate expectation, the EM objective Q can be written as

Q(θ|θt) = −EX,Y

[
EZ|x,y;θt [log p(x, y, z;θ)]

]
= −EX,Y

[
EZ|x,y;θt [⟨S(x, y, z),θ⟩+ a(x, y,θ)]

]
= −EX,Y [a(x, y,θ)]− EX,Y

[
EZ|x,y;θt [⟨S(x, y, z),θ⟩]

]
= A(θ)−

〈
s(θt),θ

〉
+ C

where s(θt) := EX,Y EZ|x,y;θt [S(x, y, z)]. As a consequence, it is also true that

∇Q(θt|θt) = ∇A(θt)− s(θt). (42)

Continuing, we use the above to simplify the expression for Q(θ|θt)−Q(θt|θt) that will subsequently give us the MD loss:

Q(θ|θt)−Q(θt|θt) = A(θ)−
〈
s(θt),θ

〉
−A(θt) +

〈
s(θt),θt

〉
= −

〈
s(θt),θ − θt

〉
+ ⟨∇A(θt),θ − θt⟩ − ⟨∇A(θt),θ − θt⟩+A(θ)−A(θt)

i)
=
〈
∇Q(θt|θt),θ − θt

〉
+DA(θ,θ

t)

ii)
=
〈
∇L(θt),θ − θt

〉
+DA(θ,θ

t)
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where we first adding and subtracting ⟨∇A(θt),θ− θt⟩ then i) follows from (42) and ii) follows from ∇L(θ) = ∇Q(θ|θ)
(see Section 3 for the derivation).

Finally, the first part of our result follows trivially as

argmin
θ∈Ω

Q(θ|θt) = argmin
θ∈Ω

Q(θ|θt)−Q(θt|θt).

Part b): Show DA(ϕ,θ) = KL[p(x, y, z;θ)∥p(x, y, z;ϕ)]

This result follows simply from decomposing KL[p(x, y, z;θ)∥p(x, y, z;ϕ)] as follows:

KL[p(x, y, z;θ)∥p(x, y, z;ϕ)] = EX,Y,Z|θ

[
log

p(x, y, z;θ)

p(x, y, z;ϕ)

]
(41)
= ⟨s(θ),θ − ϕ⟩ −A(θ) +A(ϕ)± EX,Y |θ

[
log p(x)− y2

2
− 1

2
log(2π)

]
= A(ϕ)−A(θ)− ⟨s(θ),ϕ− θ⟩
i)
= A(ϕ)−A(θ)− ⟨∇A(θ),ϕ− θ⟩.

where i) follows from the fact that ϕ = θ minimizes −EX,Z,Y |θ [log p(x, y, z;ϕ)]. To see this, we use Jensen’s inequality:

0 ≤ −EX,Z,Y |θ [log p(x, y, z;θ)]

Jensen’s
≤ − logEX,Z,Y |θ [p(x, y, z;θ)] = − log

∫
x,y,z

p(x, y, z : θ)2dxdzdy

Jensen’s
≤ − log

(∫
x,y,z

p(x, y, z;θ)dxdzdy

)2

= − log(1) = 0.

Finally, taking the derivative with respect to ϕ and setting equal to 0 completes the proof:

0 =
∂

∂θ
EX,Z,Y |θ [log p(x, y, z;ϕ)] |ϕ=θ

= EX,Z,Y |θ

[
S(x, y, z) +

∂

∂ϕ
a(x, y,ϕ)|ϕ=θ

]
= s(θ)−∇A(θ).

Part c): Show L(θ) is 1-smooth relative to A(θ).
The function L(θ) is said to be 1-smooth relative to A(θ) if for all ϕ,θ, it holds that

L(θ) ≤ L(ϕ) + ⟨∇L(ϕ,θ − ϕ⟩+DA(θ,ϕ).

Recall the following from Section 3. The objective function L(θ) is related to the EM objective Q(ϕ|θ) by (10),

L(θ) = Q(θ|ϕ)−H(θ|ϕ),

where H(ϕ|θ) ≥ 0 and H(θ|θ) = 0 for all ϕ,θ ∈ Ω. Consequently, it then holds that for all ϕ,θ ∈ Ω,

L(θ) = Q(θ|θ) (43)
L(θ) ≤ Q(θ|ϕ). (44)

Recall also from part a) that Q(θ|ϕ)−Q(ϕ|ϕ) = ⟨∇L(ϕ),θ − ϕ⟩+DA(θ,ϕ). Then, the claim follows naturally from
the above as follows:

L(θ)
(44)
≤ Q(θ|ϕ)
a)
= Q(ϕ|ϕ) + ⟨∇L(ϕ),θ − ϕ⟩+DA(θ,ϕ)

(43)
= L(ϕ) + ⟨∇L(ϕ),θ − ϕ⟩+DA(θ,ϕ)
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It follows that L(θ) is 1-smooth relative to A(θ).

Part d): A(θ) and the MD objective is convex with respect to θ.
Here, we will show that the mirror descent objective is strongly convex in θ. It is important for this to hold so that the
iterations of MD are well-defined; the minimizer of a strongly convex objective exists and is unique.

Note that the mirror descent objective, ⟨∇L(θ),θ − θt⟩+DA(θ,θ
t), is strongly convex in θ if A(θ) is strongly convex in

θ. Therefore, since A(θ) given in (31) is twice continuously differentiable, it is strongly convex with respect to θ if and
only if ∇2A(θ) ⪰ rI2d, for some r > 0. We begin:

∇2A(θ) =
∂2

∂θ2
EX

[
(x⊤β)2

2
+ log

(
1 + ex

⊤w
)]

= EX
[
∂2

∂θ2

(
(x⊤β)2

2
+ log

(
1 + ex

⊤w
))]

=

EX
[
xx⊤ ex

⊤w

(1+ex⊤w)
2

]
0

0 EX
[
xx⊤]


=

EX
[
xx⊤ ex

⊤w

(1+ex⊤w)
2

]
0

0 Id


where the last line follows from the assumption that x is sampled from a unit spherical Gaussian distribution: EX

[
xx⊤] =

Id for x ∼ N (0, Id).

From the above, we see that A(θ) is strictly convex, and it is strongly convex if EX
[
xx⊤ ex

⊤w

(1+ex⊤w)
2

]
⪰ rId for some

r > 0. This follows from Lemma B.5 where we show its eigenvalues are bounded below by min
{
Ω
(

1
∥w∥2

)
,Ω
(

1
∥w∥3

2

)}
.

Thus, it holds that

∇2A(θ) ⪰ min

{
Ω

(
1

∥w∥2

)
,Ω

(
1

∥w∥32

)
, 1

}
I2d.

Restricting the feasible set Ω to be all θ ∈ R2d with ∥θ∥2 ≤ N for some N ∈ [0,∞), it holds that A(θ) is strongly convex
with respect to θ on Ω.

With part d) proven, this concludes the proof of Theorem 5.1 for SymMoLinE. We now prove the same for SymMoLogE,
referring to this section where necessary.

B.3. Proof of Theorem 5.1 for SymMoLogE

Proof. Recall that we consider a 2 component SymMoLogE (see Section 3.1) where z ∈ {−1, 1} is the latent unobserved
variable, and

1) x ∼ N (0, Id),

2) P (z|x;w) =
exp{ z+1

2 x⊤w}
1+ex⊤w

.

3) P (y|x, z;β) = exp{( yz+1
2 )x⊤β}

1+ex⊤β
.
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We begin by deriving a near exponential form of the complete data probability density function p(x, z, y;θ):

p(x, z, y;θ)

= P (y|x, z;θ)P (z|x;θ)p(x)
= exp{logP (y|x, z;β) + logP (z|x;w) + log p(x)}

= exp

log

(exp{x⊤β}
1 + ex⊤β

) yz+1
2
(

1

1 + ex⊤β

)1− yz+1
2

+

(
z + 1

2

)
x⊤w − log(1 + ex

⊤w) + log p(x)


= exp

{
yz + 1

2
log

(
exp{x⊤β}
1 + ex⊤β

)
+

(
1− yz + 1

2

)
log

(
1

1 + ex⊤β

)
+

(
z + 1

2

)
x⊤w − log(1 + ex

⊤w) + log p(x)

}
= exp

{(
yz + 1

2

)
x⊤β − log

(
1 + ex

⊤β
)
+

(
z + 1

2

)
x⊤w − log(1 + ex

⊤w) + log p(x)

}
= exp

{〈[
yzx
2
zx
2

]
,

[
β
w

]〉
+
x⊤(w + β)

2
− log

[(
1 + ex

⊤β
)(

1 + ex
⊤w
)]

+ log p(x)

}
.

Thus we have recovered the decomposition,

p(x, y, z;θ) = exp

{〈[
yzx
2
zx
2

]
,

[
β
w

]〉
+ a(x, y,θ)

}
, , (45)

where in a(x, y,θ), x cannot be linearly separated from the parameter θ:

a(x, y,θ) =
x⊤(w + β)

2
− log

[(
1 + ex

⊤β
)(

1 + ex
⊤w
)]

+ log p(x).

Similar to SymMoLinE, we can see that p(x, y, z;θ) does not belong to an exponential family of distribution. Also, note
that taking the expectation of a(x, y,θ) over (x, y) ∼ p(x, y;θ∗) yields,

EX,Y [a(x, y,θ)] = −EX
[
log
[(

1 + ex
⊤β
)(

1 + ex
⊤w
)]]

− C

= −A(θ)− C,

where the above follows from EX [x
⊤(w+β)

2 ] = 0 and C := −EX,Y |θ∗ [log p(x)] is not a function of the parameter θ. We
now continue with the proof.

From here on, the proofs of part a), part b) and part c) follow identically from that of SymMoLinE, so we will refer to
Appendix B.2 for those proofs. We will now show part d).

Part d):A(θ) and the MD objective is convex with respect to θ.
Here, we will show that the mirror descent objective is strongly convex in θ. It is important for this to hold so that the
iterations of MD are well-defined; the minimizer of a strongly convex objective exists and is unique.

Note that the mirror descent objective, ⟨∇L(θ),θ − θt⟩+DA(θ,θ
t), is strongly convex in θ if A(θ) is strongly convex in

θ. Therefore, since A(θ) given in (31) is twice continuously differentiable, it is strongly convex with respect to θ if and
only if ∇2A(θ) ⪰ rI2d, for some r > 0. We begin:

∇2A(θ) =
∂2

∂θ2
EX

[
log
((

1 + ex
⊤β
)(

1 + ex
⊤w
))]

= EX
[
∂2

∂θ2

(
log
(
1 + ex

⊤β
)
+ log

(
1 + ex

⊤w
))]

=

EX
[
xx⊤ ex

⊤w

(1+ex⊤w)
2

]
0

0 EX
[
xx⊤ ex

⊤β

(1+ex⊤β)
2

]


=

EX
[
xx⊤ ex

⊤w

(1+ex⊤w)
2

]
0

0 EX
[
xx⊤ ex

⊤β

(1+ex⊤β)
2

]
 .
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From the above, we see that A(θ) is strictly convex, and it is strongly convex if EX
[
xx⊤ ex

⊤w

(1+ex⊤w)
2

]
⪰ rId and

EX
[
xx⊤ ex

⊤β

(1+ex⊤β)
2

]
⪰ rId for some r > 0. This follows from Lemma B.5 where we show their respective eigenvalues

are bounded below by, min
{
Ω
(

1
∥w∥2

)
,Ω
(

1
∥w∥3

2

)}
and min

{
Ω
(

1
∥β∥2

)
,Ω
(

1
∥β∥3

2

)}
. Thus, it holds that

∇2A(θ) ⪰ min

{
Ω

(
1

∥w∥2

)
,Ω

(
1

∥w∥32

)
,Ω

(
1

∥β∥2

)
,Ω

(
1

∥β∥32

)}
I2d.

Restricting Ω to be all θ with ∥θ∥2 ≤ N for some N ∈ [0,∞), it holds that A(θ) is strongly convex with respect to θ on Ω.

With part d) proven, this concludes the proof of Theorem 5.1 for SymMoLinE. We now prove the same for SymMoLogE,
referring to this section where necessary.

B.4. Convergence Guarantees of EM for SymMoLogE and SymMoLinE

In this section, we provide the proofs of Corollary B.1. Building on prior work (Lu et al., 2018), we contextualize
convergence properties of MD for SymMoLinE and SymMoLogE. Before presenting the result, we briefly review key
concepts. We say θ1 is initialized in a locally convex region of L(θ) if there exists a convex set Θ ⊆ Ω containing θ1,θ∗

such that for all ϕ,θ ∈ Θ,
L(ϕ) ≥ L(θ) + ⟨∇L(θ),ϕ− θ⟩. (46)

Furthermore, Θ is called α-strongly convex relative to h if

L(ϕ) ≥ L(θ) + ⟨∇L(θ),ϕ− θ⟩+ αDh(ϕ,θ). (47)

The corollary that follows provides conditions for convergence of EM to (1) a stationary point in the KL divergence, (2) the
true parameters at a sub-linear rate, and (3) the true parameters at a linear rate. We further note that the proof is adapted
from (Kunstner et al., 2021, Proposition 2, Corollary 1, and Corollary 3) and (Lu et al., 2018, Theorem 3.1), we provide it
here for completeness.

Corollary B.1 (Convergence of EM). For SymMoLinE, SymMoLogE with mirror map A(θ) given as (31) (32) respectively,
and denoting DA(θ

t,θt+1) :=KL[p(x, y, z;θt+1)∥p(x, y, z;θt)], the EM iterates {θt}t∈[T ] satisfy:

1) Stationarity. For no additional conditions,

min
t∈[T ]

DA(θ
t+1,θt) ≤ L(θ1)− L(θ∗)

T
; (48)

2) Sub-linear Rate to θ∗. If θ1 is initialized in Θ, a locally convex region of L(θ) containing θ∗, then

L(θT )− L(θ∗) ≤ DA(θ
∗,θ1)

T
(49)

3) Linear Rate to θ∗. If θ1 is initialized in Θ ⊆ Ω, a locally strongly convex region of L(θ) relative to A(θ) that contains
θ∗, then

L(θT )− L(θ∗) ≤ (1− α)T (L(θ1)− L(θ∗)). (50)

Proof. The proof is divided into three parts that correspond to each of the three sub-results of the corollary.

Part 1): Stationarity.
Given Theorem 5.1, this proof follows from identical arguments to that of (Kunstner et al., 2021, Proposition 2). We write it
below for completeness.

Recall from Theorem 5.1 that θt+1 is obtained as the minimizer of the convex objective, (15):

⟨∇L(θt),θ − θt⟩+DA(θ,θ
t).
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As such, differentiating and setting equal to 0, it holds that θt+1 satisfies

∇L(θt) = ∇A(θt)−∇A(θt+1) (51)

Further, by the above together with relative smoothness, it holds that

L(θt+1) ≤ L(θt) + ⟨∇L(θt),θt+1 − θt⟩+DA(θ
t+1,θt)

= L(θt) + ⟨∇A(θt)−∇A(θt+1),θt+1 − θt⟩+DA(θ
t+1,θt)

= L(θt)− ⟨∇A(θt+1),θt+1 − θt⟩+A(θt+1)−A(θt)

= L(θt)−DA(θ
t,θt+1).

Thus it we have shown that
DA(θ

t,θt+1) ≤ L(θt)− L(θt+1). (52)

The claim then follows from taking the mean over T iterations:

min
t≤T

DA(θ
t,θt+1) ≤ 1

T

T∑
t=1

DA(θ
t,θt+1) ≤ 1

T

T∑
t=1

L(θt)− L(θt+1) =
L(θ1)− L(θT )

T
≤ L(θ1)− L(θ∗)

T
.

Part 2): Sub-linear Rate to θ∗.
Given Theorem 5.1, this proof follows from identical arguments to that of Kunstner et al. (2021, Corollary 1) and Lu et al.
(2018, Theorem 3.1). We write it below for completeness.

Here, we assume that L(θ) is convex on the set Θ. In part 1), we used (51) to show,

⟨∇L(θt),θt+1 − θt⟩+DA(θ
t+1,θt) = −DA(θ

t,θt+1),

where the right hand side is non-positive since the Bregman divergence is non-negative if the inducing function A is convex
– which it is. Now, starting from relative smoothness, we see that

L(θt+1) ≤ L(θt) + ⟨∇L(θt),θt+1 − θt⟩+DA(θ
t+1,θt)

= L(θt) + ⟨∇L(θt),θt+1 − θ∗ + θ∗ − θt⟩+DA(θ
t+1,θt)

= L(θt) + ⟨∇L(θt),θt+1 − θ∗⟩+ ⟨∇L(θt),θ∗ − θt⟩+DA(θ
t+1,θt)

i)

≤ L(θ∗) + ⟨∇L(θt),θt+1 − θ∗⟩+DA(θ
t+1,θt)

(51)
= L(θ∗) + ⟨∇A(θt)−∇A(θt+1),θt+1 − θ∗⟩+DA(θ

t+1,θt)

where i) follows from convexity of L(θ) on the set Θ. Subsequently, we apply the 3-point lemma, DA(θ
∗,θt) =

DA(θ
∗,θt+1) + ⟨θ∗ − θt+1,∇A(θt+1)−A(θt)⟩+DA(θ

t+1,θt), and obtain,

L(θt+1) ≤ L(θ∗) +DA(θ
∗,θt)−DA(θ

∗,θt+1). (53)

Finally, the result follows from summing the left and right hand side over T iterations:

T (L(θT )− L(θ∗)) ≤
T∑

t=1

L(θt+1)− L(θ∗) ≤
T∑

t=1

DA(θ
∗,θt)−DA(θ

∗,θt+1) ≤ DA(θ
∗,θ1)

Part 3): Linear Rate to θ∗.
Given Theorem 5.1, this proof follows from identical arguments to that of Kunstner et al. (2021, Corollary 3) and Lu et al.
(2018, Theorem 3.1). We write it below for completeness.

In addition to convexity, we now assume that L(θ) is α-strongly convex relative to A(θ) on the set Θ. Specifically, we have
that for any ϕ,θ ∈ Θ,

L(θ) ≥ L(ϕ) + ⟨∇L(ϕ),θ − ϕ⟩+ αDA(θ,ϕ). (54)
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Using the three point lemma again, we have

DA(θ
∗,θt+1) = DA(θ

∗,θt) + ⟨θ∗ − θt,∇A(θt)−∇A(θt+1)⟩+DA(θ
t,θt+1)

(51)
= DA(θ

∗,θt) + ⟨∇L(θt),θ∗ − θt⟩+DA(θ
t,θt+1)

(54)
≤ DA(θ

∗,θt) + L(θ∗)− L(θt)− αDA(θ
∗,θt) +DA(θ

t,θt+1)

= (1− α)DA(θ
∗,θt) + L(θ∗)− L(θt) +DA(θ

t,θt+1)

(52)
≤ (1− α)DA(θ

∗,θt) + L(θ∗)− L(θt) + L(θt)− L(θt+1)

≤ (1− α)DA(θ
∗,θt)

≤ (1− α)TDA(θ
∗,θ1).

Finally, from (53), we see that

L(θt+1)− L(θ∗) ≤ DA(θ
∗,θt)−DA(θ

∗,θt+1)

≤ (1− α)TDA(θ
∗,θ1)−DA(θ

∗,θt+1)

≤ (1− α)TDA(θ
∗,θ1).

B.5. Satisfiability of Conditions from Corollary B.1

The above result raises an important question: when does a locally convex or relatively strongly convex region of L(θ)
containing θ∗ exist? Interestingly, this is closely tied to the Signal-to-Noise Ratio (SNR). Before exploring this connection,
we first introduce the concept of the Missing Information Matrix (MIM) introduced in (Orchard & Woodbury, 1972).

The MIM relates the level of information the pair (x, y) holds about the latent expert label z given parameters θ, and it is
formally defined as

M(θ) = I−1
x,z,y|θIz|x,y,θ. (55)

Here, Ix,z,y|θ is the Fisher information matrix of the complete data distribution and Iz|x,y,θ is the Fisher information matrix
of the conditional distribution of the latent unobserved variable given the observed ones, denoted by

Ix,z,y|θ : = −EX,Y,Z|θ

[
∂2

∂θ2
log p(x, z, y;θ)

]
= ∇2Q(ϕ|θ)|ϕ=θ = ∇2A(θ)

Iz|x,y,θ : = −EX,Y EZ|x,y,θ

[
∂2

∂θ2
logP (z|x, y;θ)

]
= ∇2H(ϕ|θ)|ϕ=θ.

Thus, it also holds that the MIM is a function of A(θ) and H(ϕ|θ), i.e.,

M(θ) = ∇2A(θ)
−1∇2H(ϕ|θ)|ϕ=θ. (56)

Due to the pairwise independence of X and its rotational invariance, there exists an orthonormal matrix R such that
∆ := RI−1

x,z,y|θR
⊤ is positive semi-definite and diagonal and J := RIz|x,y,θR

⊤ is symmetric positive semi-definite (see
Lemma B.3). As such, the MIM in (55) is also symmetric and positive semi-definite: M(θ) = R⊤∆RR⊤JR = R⊤∆JR.
Note that the MIM quantifies the difficulty of estimating parameters when only x, y are observed. To understand its
significance, consider the following: large eigenvalues ofM indicate that x, y contain little information about the true value
of the latent variable z, making estimation more difficult. Conversely, small eigenvalues suggest that x, y provide enough
information to effectively constrain the possible values of z. Thus, the MIM can be seen as analogous to the Signal-to-Noise
Ratio (SNR).

In the theorem below, we show how the eigenvalues ofM(θ) are related to the satisfiability of the conditions for Corollary
B.1 regarding the relative strong convexity of L(θ) with respect to the mirror map A(θ).
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Theorem B.2. For SymMoLinE and SymMoLogE and their respective mirror mappings (31) and (32), the objective L(θ) is
α-strongly convex relative to the mirror map A(θ) on the convex set Θ if and only if

λmax(M(θ)) ≤ (1− α) for all θ ∈ Θ. (57)

Proof. Recall that L(θ) is strongly convex relative to A(θ) on Θ if for all θ,ϕ ∈ Θ, it holds that

L(ϕ) ≥ L(θ) + ⟨∇L(θ),ϕ− θ⟩+ αDA(ϕ,θ).

For L(θ) andA(θ) twice continuously differentiable, it was shown by (Lu et al., 2018) that this is equivalent to the following
bound on the Hessian:

∇2L(θ) ⪰ α∇2A(θ).

Now, using L(ϕ) = Q(ϕ|θ)−H(ϕ|θ), we see that

∇2L(θ) = ∇2(Q(ϕ|θ)−H(ϕ|θ))|ϕ=θ
= ∇2Q(ϕ|θ)|ϕ=θ −∇2H(ϕ|θ)|ϕ=θ
= ∇2A(θ)−∇2H(ϕ|θ)|ϕ=θ

Therefore, since ∇2A(θ) is symmetric positive definite (proven in Appendix B.1), our condition simplifies to

(1− α)∇2A(θ) ⪰ ∇2H(ϕ|θ)|ϕ=θ
⇐⇒ (1− α)I2d ⪰ ∇2A(θ)−1∇2H(ϕ|θ)|ϕ=θ =M(θ).

Finally, for x from a unit spherical Gaussian distribution, we know thatM(θ) is symmetric positive-definite (see Lemma
B.3). As a result, the above inequality is equivalent to the following bound on the eigenvalues of the MIM:

1− α ≥ λmax(M(θ)).

We now provide the simple Lemma that the MIM is a symmetric matrix for SymMoLinE and SymMoLogE.

Lemma B.3 (M(θ) is symmetric). For SymMoLinE and SymMoLogE, the MIM is a symmetric matrix, i.e. M(θ) =
M(θ)⊤.

Proof. Recall the assumption that x is sampled from a unit spherical Gaussian distribution: x ∼ N (0, Id). As such, for any
orthonormal d× d matrixR, we know thatRX ∼ N (0, Id); this is called rotational invariance of the Gaussian distribution.
Thus, consider orthonormalRu ∈ Rd×d, such that Ruu = e1∥u∥2 where ej ∈ Rd is the 0 vector with a 1 at index j. Now,

we can observe that for any w ∈ Rd, EX
[
xx⊤ ex

⊤u

(1+ex⊤u)
2

]
, is diagonalizable by an orthonormal matrixR:

Ru

(
EX

[
xx⊤ ex

⊤u(
1 + ex⊤u

)2
])

R⊤
u = EX

[
Ruxx

⊤R⊤
u

ex
⊤R⊤

uRuu(
1 + ex

⊤R⊤
uRuu

)2
]

= ERux

[
x̃x̃⊤

ex̃
⊤e1∥u∥2(

1 + ex̃⊤e1∥u∥2
)2
]

=


ERux

[
x̃21

ex̃1∥u∥2

(1+ex̃1∥u∥2)
2

]
0 0

0 . . . 0

0 0 ERux

[
x̃2d

ex̃1∥u∥2

(1+ex̃1∥u∥2)
2

]


Where in the above, 1)R⊤R = Id sinceR⊤ = R−1 for orthonormal matrices and 2) non diagonal elements evaluate to 0
because for all i ̸= j, the 0 mean random variables X̃j is independent from X̃i.
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Finally, we put the above together to showM(θ) is symmetric. We define the block diagonal orthonormal matrixRM as

RM :=

(
Rw 0
0 Rβ

)
.

From the above, it follows that both for SymMoLinE and SymMoLogE,RM∇2A(θ)−1R⊤
M is a diagonal matrix. We can

now use this change of basis matrix to show the MIM is a symmetric matrix:

M(θ) = ∇2A(θ)
−1∇2H(θ|θ)

= R⊤
M

(
RM∇2A(θ)

−1
R⊤
M

) (
RM∇2H(θ|θ)R⊤

M

)
RM

= R⊤
M

(
RM∇2H(θ|θ)R⊤

M

) (
RM∇2A(θ)

−1
R⊤
M

)
RM

= ∇2H(θ|θ)⊤(∇2A(θ)−1)⊤

=M(θ)⊤.

B.6. Correspondence Between the MIM and SNR for SymMoLinE and SymMoLogE

The above result states ifM(θ) ≺ I2d for all θ ∈ Ω and θ∗ ∈ Ω, then the EM updates will converge linearly to θ∗. This
offers a unified framework for analyzing EM for MoE, linking the rate of convergence to a classical statistical metric. To
determine whether EM achieves linear or sub-linear convergence, we need to understand the behavior ofM(θ) andM(θ∗),
which indicates the existence and size of the local region where EM enjoys such convergence.

Theorem B.4. For SymMoLinE, the eigenvalues of I−1
x,z,y|θ belong to the set

λ
(
I−1
x,z,y|θ

)
= {Θ(∥w∥32),Θ(∥w∥2), 1} (58)

and Iz|x,y,θ, is given as the expectation over (X, Y ) of a function that is decreasing as a function of ∥θ∥2:

Iz|x,y,θ = EX,Y


exp

〈[
x

2yx

]
,θ

〉[
x

2yx

] [
x

2yx

]⊤
(
1 + exp

〈[
x

2yx

]
,θ

〉)2

 . (59)

Similarly, For SymMoLogE, the eigenvalues of I−1
x,z,y|θ belong to the set

λ
(
I−1
x,z,y|θ

)
= {Θ(∥w∥32),Θ(∥w∥2),Θ(∥β∥32),Θ(∥β∥2)} (60)

and Iz|x,y,θ is given as the expectation over (X, Y ) of a function that is decreasing as a function of ∥θ∥2:

Iz|x,y,θ = EX,Y


exp

〈[
x
yx

]
,θ

〉[
x
yx

] [
x
yx

]⊤
(
1 + exp

〈[
x
yx

]
,θ

〉)2

. (61)

Proof. We divide the proof into two parts. In the first part, we consider the SymMoLinE setting and, in the second part, we
consider the SymMoLogE setting.

Part a): SymMoLinE.
For Ix,z,y|θ, recall that is has the following form:

Ix,y,z|θ =

EX
[
xx⊤ ex

⊤w

(1+ex⊤w)
2

]
0

0 Id

 .
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By Lemma B.5, we see that Ix,z,y|θ can be diagonalized into the following form:

Ix,y,z|θ = RM


λ1 0 0 0
0 . . . 0 0
0 0 λ2 0
0 0 0 Id

R⊤
M

where RM is an orthonormal rotation matrix and λ1 = Θ
(

1
∥w∥3

2

)
and λ2 = Θ

(
1

∥w∥2

)
. Therefore, Ix,z,y|θ has three

eigenvalues given as
{
Θ
(

1
∥w∥3

2

)
,Θ
(

1
∥w∥2

)
, 1
}

. It follows that I−1
x,z,y|θ has the form

I−1
x,y,z|θ = R⊤

M


1/λ1 0 0 0
0 . . . 0 0
0 0 1/λ2 0
0 0 0 Id

RM .

Therefore, I−1
x,y,z|θ has three eigenvalues given as

{
Θ
(
∥w∥32

)
,Θ(∥w∥2) , 1

}
.

Now, for Iz|x,y,θ, we first derive a more compact form for the conditional distribution of the latent variable, p(z|x, y;θ).
From simple Bayes rule and algebraic manipulation, we see that

p(z|x, y;θ) = p(y|x, z;θ)p(z|x;θ)p(x)
p(x, y;θ)

=

1√
2π

exp
{
− (y−zx⊤β)2

2

}
exp{ z+1

2 x⊤w}
1+ex⊤w

1√
2π

exp
{
− (y−x⊤β)2

2

}
exp{x⊤w}
1+ex⊤w

+ 1√
2π

exp
{
− (y+x⊤β)2

2

}
1

1+ex⊤w

=
exp

{
− (y−zx⊤β)2

2 + z+1
2 x

⊤w
}

exp
{
− (y−x⊤β)2

2 + x⊤w
}
+ exp

{
− (y+x⊤β)2

2

}
=

exp
{
zyx⊤β + z+1

2 x
⊤w
}

exp {yx⊤β + x⊤w}+ exp {−yx⊤β}

=
exp

{
z+1
2 (2yx⊤β + x⊤w)

}
exp {2yx⊤β + x⊤w}+ 1

=

exp

{
z+1
2

〈[
x

2yx

]
,

[
w
β

]〉}
exp

{〈[
x

2yx

]
,

[
w
β

]〉}
+ 1

Now that we have this simplified form, we are able to derive (59) for Iz|x,y,θ:

Iz|x,y,θ = −EX,Y EZ|x,y,θ

[
∂2

∂θ2
log p(z|x, y;θ)

]
= −EX,Y EZ|x,y,θ

[
∂2

∂θ2

(
z + 1

2

〈(
x

2yx

)
,θ

〉
− log

(
1 + exp

〈[
x

2yx

]
,θ

〉))]
= EX,Y EZ|x,y,θ

[
∂2

∂θ2
log

(
1 + exp

〈[
x

2yx

]
,θ

〉)]
= EX,Y

[
∂2

∂θ2
log

(
1 + exp

〈[
x

2yx

]
,θ

〉)]

= EX,Y


exp

〈[
x

2yx

]
,θ

〉[
x

2yx

] [
x

2yx

]⊤
(
1 + exp

〈[
x

2yx

]
,θ

〉)2

 .
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This expression depends only on the random variable (X, Y ) and the parameter iterate θ.

Part b): SymMoLogE.
Recall that for SymMoLogE, Ix,z,y|θ has the following form:

Ix,z,y|θ =

EX
[
xx⊤ ex

⊤w

(1+ex⊤w)
2

]
0

0 EX
[
xx⊤ ex

⊤β

(1+ex⊤β)
2

]
 .

By Lemma B.5, we see that Ix,z,y|θ can be diagonalized into the following form:

Ix,z,y|θ = RM


λ1 0 0 0 0
0 λ2 0 0 0
0 0 . . . 0 0
0 0 0 λ3 0
0 0 0 0 λ4

R⊤
M

where RM is an orthonormal rotation matrix and λ1 = Θ
(

1
∥w∥3

2

)
, λ2 = Θ

(
1

∥w∥2

)
, λ3 = Θ

(
1

∥β∥3
2

)
, and λ4 = Θ

(
1

∥β∥3
2

)
.

Therefore, Ix,z,y|θ has four eigenvalues given as{
Θ
(

1
∥w∥3

2

)
,Θ
(

1
∥w∥2

)
,Θ
(

1
∥β∥3

2

)
,Θ
(

1
∥β∥2

)}
. It follows that I−1

x,z,y|θ has the form

I−1
x,z,y|θ = RM


1/λ1 0 0 0 0
0 1/λ2 0 0 0
0 0 . . . 0 0
0 0 0 1/λ3 0
0 0 0 0 1/λ4

R⊤
M .

Therefore, I−1
x,z,y|θ has four eigenvalues given as

{
Θ
(
∥w∥32

)
,Θ(∥w∥2) ,Θ

(
∥β∥32

)
,Θ(∥β∥2)

}
.

Now, for Iz|x,y,θ, we first derive a more compact form for the conditional distribution of the latent variable, P (z|x, y;θ).
From simple Bayes rule and algebraic manipulation, we see that

P (z|x, y;θ) = P (y|x, z;θ)P (z|x;θ)p(x)
p(x, y;θ)

=

exp{ yz+1
2 x⊤β}

1+ex⊤β

exp{ z+1
2 x⊤w}

1+ex⊤w

exp{ y+1
2 x⊤β}

1+ex⊤β

exp{x⊤w}
1+ex⊤w

+
exp{−y+1

2 x⊤β}
1+ex⊤β

1

1+ex⊤w

=
exp

{
yz+1

2 x⊤β + z+1
2 x

⊤w
}

exp
{

y+1
2 x⊤β + x⊤w

}
+ exp

{−y+1
2 x⊤β

}
=

exp
{

z+1
2

(
yx⊤β + x⊤w

)}
exp {yx⊤β + x⊤w}+ 1

=

exp

{
z+1
2

〈[
x
yx

]
,

[
w
β

]〉}
exp

{〈[
x
yx

]
,

[
w
β

]〉}
+ 1
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Now that we have this simplified form, we are able to derive (61) for Iz|x,y,θ:

Iz|x,y,θ = −EX,Y EZ|x,y,θ

[
∂2

∂θ2
logP (z|x, y;θ)

]
= −EX,Y EZ|x,y,θ

[
∂2

∂θ2

(
z + 1

2

〈(
x
yx

)
,θ

〉
− log

(
1 + exp

〈[
x
yx

]
,θ

〉))]
= EX,Y EZ|x,y,θ

[
∂2

∂θ2
log

(
1 + exp

〈[
x
yx

]
,θ

〉)]
= EX,Y

[
∂2

∂θ2
log

(
1 + exp

〈[
x
yx

]
,θ

〉)]

= EX,Y


exp

〈[
x
yx

]
,θ

〉[
x
yx

] [
x
yx

]⊤
(
1 + exp

〈[
x
yx

]
,θ

〉)2


This expression depends only on the random variable (X, Y ) and the parameter iterate θ.

Lemma B.5. For x ∼ N (0, Id) and u ∈ Rd and ∥u∥2 ≥
√
2, the symmetric positive definite matrix

EX

[
xx⊤ ex

⊤u(
1 + ex⊤u

)2
]

(62)

is diagonalizable by an orthonormal matrixRu ∈ Rd×d and has two eigenvalues, λ1, λ2 ≥ 0, that satisfy

λ1 = Θ

(
1

∥u∥32

)
(63)

λ2 = Θ

(
1

∥u∥2

)
. (64)

Proof. Recall that Gaussian random variables are rotationally invariant. Specifically, for orthonormal matrix R ∈ Rd×d

and X ∼ N (0, Id), it follows that RX ∼ N (0, Id). Moreover, R⊤R = RR⊤ = Id. Using this notion, we will 1)
diagonalize (62), then 2) evaluate the eigenvalues of (62) as the diagonal elements.

Consider the orthonormal rotation matrixRu ∈ Rd×d that is such thatRuu = e1∥u∥2 where ej is the jth canonical vector
of Rd. Using this change of basis matrix, we can now obtain the diagonal matrix,

Ru

(
EX

[
xx⊤ ex

⊤u(
1 + ex⊤u

)2
])

R⊤
u = EX

[
Ruxx

⊤R⊤
u

ex
⊤R⊤

uRuu(
1 + ex

⊤R⊤
uRuu

)2
]

= ERux

[
x̃x̃⊤

ex̃
⊤e1∥u∥2(

1 + ex̃⊤e1∥u∥2
)2
]

=


ERux

[
x̃2
1e

x̃1∥u∥2

(1+ex̃1∥u∥2)
2

]
0 0

0 . . . 0

0 0 ERux

[
ex̃1∥u∥2

(1+ex̃1∥u∥2)
2

]
 .

It has only two eigenvalues given in closed form as

λ1 = EX̃1

[
x̃21e

x̃1∥u∥2(
1 + ex̃1∥u∥2

)2
]
=

∫ ∞

−∞

x̃21e
x̃1∥u∥2(

1 + ex̃1∥u∥2
)2 p(x̃1)dx̃1

λ2 = EX̃1

[
ex̃1∥u∥2(

1 + ex̃1∥u∥2
)2
]
=

∫ ∞

−∞

ex̃1∥u∥2(
1 + ex̃1∥u∥2

)2 p(x̃1)dx̃1.
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The rest of the proof is spent evaluating tight lower and upper bounds on λ1, λ2 in terms of ∥u∥2.

Part a): Bounds for λ1.
For x̃1 ∼ N (0, 1) the probability density function is bounded above by 1: p(x̃1) ≤ 1. Then we can upper bound λ1 as
follows:

λ1 =

∫ ∞

−∞

x̃21e
x̃1∥u∥2(

1 + ex̃1∥u∥2
)2 p(x̃1)dx̃1

≤
∫ ∞

−∞

x̃21e
x̃1∥u∥2(

1 + ex̃1∥u∥2
)2 dx̃1

= 2

∫ ∞

0

x̃21e
−x̃1∥u∥2dx̃1

=
4

∥u∥32

= O
(

1

∥u∥32

)

For the lower bounds, we will use the fact that e−(∥u∥2x̃+x̃
2
1/2) ≥ e−∥u∥2

2x̃
2/2 for x ∈

[
4

∥u∥2
,∞
]

and ∥u∥2 ≥
√
2. Then,

we can lower bound λ1 as follows:

λ1 =

∫ ∞

−∞

x̃21e
x̃1∥u∥2(

1 + ex̃1∥u∥2
)2 p(x̃1)dx̃1

≥ 2

∫ ∞

0

x̃21e
x̃1∥u∥2(

2ex̃1∥u∥2
)2
e− x̃2

1
2

√
2π

 dx̃1

=
1

2
√
2π

∫ ∞

0

x̃21e
−x̃1∥u∥2−

x̃2
1
2 dx̃1

≥ 1

2
√
2π

∫ ∞

4
∥u∥2

x̃21e
−∥u∥2

2x̃
2/2dx̃1

≥ 1

4
√
2π∥u∥32

(√
πerf(x̃1∥u∥2)− 2∥u∥2x̃1e

−∥u∥2
2x̃

2
1

)∞
4

∥u∥2

≥ Ω

(
1

∥u∥32

)
.

Therefore, it holds that λ1 = Θ
(

1
∥u∥3

2

)
.

Part b): Bounds for λ2.
For x̃1 ∼ N (0, 1) the probability density function is bounded above by 1: p(x̃1) ≤ 1. Then we can upper bound λ2 as
follows:

λ2 =

∫ ∞

−∞

ex̃1∥u∥2(
1 + ex̃1∥u∥2

)2 p(x̃1)dx̃1

≤
∫ ∞

−∞

ex̃1∥u∥2(
1 + ex̃1∥u∥2

)2 dx̃1

= 2

∫ ∞

0

e−x̃1∥u∥2dx̃1

=
1

∥u∥2

= O
(

1

∥u∥2

)

31



Learning Mixtures of Experts with EM: A Mirror Descent Perspective

For the lower bounds, we will use the fact that e−(∥u∥2x̃1+x̃
2
1/2) ≥ e−∥u∥2

2x̃
2
1/2 for x ∈

[
4

∥u∥2
,∞
]

and ∥u∥2 ≥
√
2. Then,

we can lower bound λ2 as follows:

λ2 =

∫ ∞

−∞

ex̃1∥u∥2(
1 + ex̃1∥u∥2

)2 p(x̃1)dx̃1

≥ 2

∫ ∞

0

ex̃1∥u∥2(
2ex̃1∥u∥2

)2
e− x̃2

1
2

√
2π

 dx̃1

=
1

2
√
2π

∫ ∞

0

e−x̃1∥u∥2−
x̃2
1
2 dx̃1

≥ 1

2
√
2π

∫ ∞

4
∥u∥2

e−∥u∥2
2x̃

2/2dx̃1

≥ 1

4
√
2π∥u∥2

(√
πerf(x̃1∥u∥2)

)∞
4

∥u∥2

≥ Ω

(
1

∥u∥2

)
.

Therefore, it holds that λ2 = Θ
(

1
∥u∥2

)
.

B.7. Existence of Locally Convex Region

In this section, we further discuss the consequences of Corollary B.1, Theorem B.2, and Theorem B.4.

To begin, we will discuss the sufficient condition for Gradient Descent to converge linearly to the true parameters θ∗ and
compare it to that of EM. For Gradient Descent, it is well understood that if θ1 is initialized in a convex set Θ that contains
θ∗ and where L(θ) is strongly convex, i.e.

∇2L(θ) ⪰ αI2d for all θ ∈ Θ, (65)

then the parameter iterates converge linearly to θ∗. However, as we have shown for SymMoLinE and SymMoLogE, the
sufficient condition for EM to converge linearly to θ∗ is slightly different. Instead, we require Θ to satisfy that L(θ) is
strongly convex relative toA(θ), i.e.,

∇2L(θ) ⪰ α∇2A(θ) for all θ ∈ Θ. (66)

Interestingly, if it holds that A(θ) is 1-smooth, we see that (66) is weaker than (65), i.e.,

∇2A(θ) ⪯ I2d and (65) holds =⇒ (66). (67)

But more interestingly, as long as A(θ) is µ-smooth for some µ > 0, it will hold that any set Θ satisfying (65) for some
α > 0 will also satisfy (66) with α̃ = α

µ > 0. We note that the converse holds for A(θ) strongly convex. In summary, it
then holds that, for SymMoLinE and SymMoLogE, EM’s sufficient conditions for a linear rate is strictly weaker than that of
Gradient Descent when the mirror map A(θ) is convex, but not strongly convex.

Next, we will further discuss the implications of Theorem B.4. In the theorem, we obtain clear lower and upper bounds for
the eigenvalues of Ix,y,z|θ. However, it is not clear how to do the same for Iz|x,y,θ as the trick to rotate the axis with an
orthonormal matrix R to simplify the expression will not work here because the distribution of the vector (x, yx)⊤ is not
invariant to rotation. Still, there are some things that we can say for special cases. For this discussion, we will constrain
ourselves to SymMoLogE. However, the same lines of reasoning also apply to SymMoLinE. First we recall from Theorem
B.4 that

Iz|x,y,θ = EX,Y


exp

〈[
x
yx

]
,θ

〉[
x
yx

] [
x
yx

]⊤
(
1 + exp

〈[
x
yx

]
,θ

〉)2

 .
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From here, one easy way to approach bounding the above is to 1) recall that any outer product of the form uu⊤ has a single
eigenvalue given as ∥u∥22, and 2) the inner product between two vectors is equal to the product of their norms and the cosine
of the angle between them, i.e. s⊤u = ∥s∥2∥u∥2 cos(ϕs,u). Thus, denoting ϕ to be the angle between θ and the vector
(x, yx)⊤, we obtain

Iz|x,y,θ ⪯ EX,Y,Φ

e√(1+y2)∥x∥2
2∥θ∥2 cos(ϕ)(1 + y2)∥x∥22(

1 + e
√

(1+y2)∥x∥2
2∥θ∥2 cos(ϕ)

)2
 I2d

⪯ EX,Y,Φ

[
e
−
∣∣∣√(1+y2)∥x∥2

2∥θ∥2 cos(ϕ)
∣∣∣
(1 + y2)∥x∥22

]
I2d.

Denoting s :=
∣∣∣√(1 + y2)∥x∥22

∣∣∣, we can write the above expectation as

8

∫ π/2

0

∫ ∞

0

s2e−s∥θ∥2 cos(ϕ)p(s, ϕ)dsdϕ.

Subsequently, the idea is bound p(s, ϕ) = p(s)p(ϕ|s) in a way that makes integration easy.

The case where x,w, β ∈ R is fairly easy. Under this scenario, x ∼ N (0, 1) and Ix,y,z|θ can be upper-bounded as

Iz|x,y,θ = EX,Y

[(
x2 yx2

yx2 y2x2

)
ex(w+yβ)(

1 + ex(w+yβ)
)2
]

≤ EX,Y

[
x2(1 + y2)e−|x(w+yβ)|

]
I2.

Now, recall that y ∈ {−1, 1}, P (y|x) ≤ 1, p(x) = e−x2/2
√
2π

≤ 2e−|x|
√
2π

, and see that

Iz|x,y,θ = EX

[
2x2

(
e−|x(w−β)|P (y = 1|x) + e−|x(w+β)|P (y = −1|x)

)]
≤ EX

[
2x2

(
e−|x(w−β)| + e−|x(w+β)|

)]
= 4

∫ ∞

0

x2
(
e−|x(w−β)| + e−|x(w+β)|

)
p(x)dx

≤ 4

∫ ∞

0

x2
(
e−x(|w−β|+1) + e−x(|w+β|+1)

)
dx

≤ 8

(
1

(1 + |w − β|)3
+

1

(1 + |w + β|)3

)
≤ O

(
1

(1 + |w − β|)3
+

1

(1 + |w + β|)3

)
.

Subsequently, together with the fact that I−1
x,y,z,θ ≤ max

{
O
(
∥w∥32

)
,
(
∥β∥32

)}
, it holds that the eigenvalues of the MIM

are upper-bounded by

max

{
O

((
w

1 + |w − β|

)3

+

(
w

1 + |w + β|

)3
)
,O

((
β

1 + |w − β|

)3

+

(
β

1 + |w + β|

)3
)}

.

This special case is closely related to the case where β is parallel to w; a similar approach will work.
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C. Additional Experiments
C.1. Experiment on Grayscale CIFAR-10

In this section, we consider an additional mini-batch experiment on grayscale CIFAR-10 with a 5-component MoE. The
MoE to be trained consists of individual experts that each consist of a single hidden layer MLP with hidden dimension
100 and ReLU activation. The gating function also consists of a single hidden layer MLP with hidden dimension 100 and
ReLU activation. We randomly initialize each linear layer to have rows that are unit-norm and execute the algorithms on the
same datasets and with the same initializations. For Gradient EM, the only additional code needed over GD is to define the
EM Loss function appropriately, and then perform a Gradient Step on the Gating parameters and the Expert parameters
separately as describe in Algorithm 2. For EM, for each iteration, we perform several gradient steps in an inner loop to
approximately recover the solutions to the sub-problems described in (9). We report our findings for the mini-batch iteration
of the respective algorithms in Figure 4.

We report the respective final test accuracy and cross-entropy loss values after 50 epochs of EM, Gradient EM and GD
for fitting a 5-component MoE on the CIFAR-10. We see that EM boasts a much improved final test accuracy of 41.6%.
Meanwhile, Gradient EM also registers an improvement over GD at 37.4%. Finally, GD obtained a final accuracy of 34.5%.
While these accuracies are themselves not good, the challenge was to find an optimal partitioning of the data and utilize very
weak experts. In Figure 4, we report the progress made on the accuracy for the test set over the 50 epochs, averaged over
25 instances. As was observed in our synthetic experiment and Fashion MNIST experiments, EM takes considerably less
iterations to fit the mixture than both Gradient EM and GD, where the former also takes considerably less time to fit the
mixture than GD. To validate our results further, we perform a paired t-test. For EM and Gradient EM compared to GD, we
obtain a T-statistic ≥ 22 indicating that the difference in final accuracy is statistically significant (p-value ∼ 0.000).

Figure 4. Convergence in predicted label Accuracy for different optimization methods.

34



Learning Mixtures of Experts with EM: A Mirror Descent Perspective

D. Algorithms
In this section, we provide explicit formulations of EM, Gradient EM and Gradient Descent for the context of MoE
optimization and EM for deep and sparse MoE.

D.1. EM for MoE

Expectation-Maximization (EM): EM takes a structured approach to minimizing the objective L(θ) in (7). Each iteration
of EM is decomposed into two steps as follows. The first step is called “expectation”: For current parameter estimate θt, we
compute the expectation of the complete-data log-likelihood with respect to the latent variables, using the current parameter
estimates θt and denote it by Q(θ|θt), i.e.,

Q(θ|θt) = −EX,Y

[
EZ|x,y;θt [log p(x, y, z;θ)]

]
. (68)

Then, in the second step called “maximization”, we simply minimize the objective Q(θ|θt) (or maximize −Q(θ|θt)) with
respect to θ ∈ Ω and obtain our new parameter as

θt+1 := argmin
θ∈Ω

Q(θ|θt). (69)

For MoE described in Section 2, log p(y, z|x;θ) = log p(y|z,x;β) + log p(z|x;w). It follows that the EM objective (8) is
linearly separable in the parameters β andw. Thus, we can rewrite Q(θ|ϕ) as the sum of two functions that depend only on
β and w, respectively. Subsequently, the EM update (9) is obtained as the concatenation θt+1 = (wt+1,βt+1)⊤, where

wt+1 = argmin
w∈Rd

−EX,Y

[
EZ|x,y;θt [log p(z|x;w)]

]
,

βt+1 = argmin
β∈Rd

−EX,Y

[
EZ|x,y;θt [log p(y|z,x;β)]

]
.

Algorithm 1 EM for MoE

Input: Initial θ1 ∈ Ω, data: (X, Y ) ∼ p(x, y;θ∗)
for t = 1 to T do
θ-Update: Obtain θt+1 as
θt+1 := argminθ∈ΩQ(θ | θt)

end for
Output: θT = (wT ,βT )

D.2. Gradient EM for MoE

Gradient EM. Whereas EM performs the global minimization of the EM objective given in (68), Gradient EM obtains its
next parameter iterate as the concatenation of two gradient updates on the sub objectives,

− EX,Y

[
EZ|x,y;θt [logP (z|x;w)]

]
(70)

− EX,Y

[
EZ|x,y;θt [log p(y|z,x;β)]

]
(71)

where the EM objective is given as the summation of (70) and (71).
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Algorithm 2 Gradient EM for MOE

Input: Initial θ1 ∈ Ω, data: (X, Y ) ∼ p(x, y;θ∗)), step-size: γ1, γ2 ∈ (0,∞).
for t = 1, . . . , T : do
β-Update: Obtain βt+1 as

βt+1 = βt + γ1EX,Y EZ|x,y;θt

[
∂

∂β
log p(y|z,x;β)

]
.

w-Update: Obtain wt+1 as

wt+1 = wt + γ2EX,Y EZ|x,y;θt

[
∂

∂w
logP (z|x;w)

]
.

end for
Output: θT = (wT ,βT )

D.3. Gradient Descent for MoE

Gradient Descent. Gradient descent is given as the global minimizer of the first order approximation of L(θ) at θ plus a
quadratic regularizer, i.e.,

L(θt) + ⟨∇L(θt),θ − θt⟩+ 1

2η
∥θ − θt∥22.

Differentiating, and solving for equality at 0 yields the well known gradient update.

Algorithm 3 Gradient Descent for MoE

Input: Initial θ1 ∈ Ω, data: (X, Y ) ∼ p(x, y;θ∗), step-size: γ ∈ R+

for t = 1 to T do
θ-Update:
θt+1 := θt − γ∇L(θt)

end for
Output: θT = (wT ,βT )

D.4. EM for Deep and Sparse MoE

We begin by formalizing the concepts of Deep and Sparse Mixtures of Experts (MoE), extending the classical MoE
framework.

Deep MoE: A deep MoE is a composition of l ≥ 2 MoE blocks, denoted as MoE1,MoE2, . . . ,MoEl, stacked sequentially.
Each block MoEi consists of a gating function gi(x;wi) and a set of k experts {fi,j(x;βi,j)}kj=1. The input x is processed
through each MoE block in sequence, producing intermediate representations h1,h2, . . . ,hl, where:

h1 =

k∑
j=1

g1(x;w1)jf1,j(x;β1,j),

hi =

k∑
j=1

gi(hi−1;wi)jfi,j(hi−1;βi,j) for i = 2, . . . , l.

The final output is y = hl.

Sparse MoE: The Sparse MoE is a variant of the MoE that is popular in deep MoE applications where, at each MoE block,
only a small subset of experts (typically one or a few) are activated per input both during training and inference. This is
achieved via a deterministic or stochastic selection mechanism (e.g., top-k gating), resulting in a sparse latent variable
z = (z1, z2, . . . , zl) ∈ [k]l that encodes the sequence of selected experts across the l blocks.
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EM for Deep and Sparse MoE: We now describe an EM-like algorithm for training deep and sparse MoE models. The key
idea is to treat the expert selection sequence z = (z1, . . . , zl) as a latent variable and optimize the expected complete-data
log-likelihood. We let θ = (w1, . . . ,wl,β1,1, . . . ,βl,k) denote all model parameters.

In the classical non-sparse MoE setting where we do not choose a subset of experts to go through at each layer, the latent
variables can only be resolved at the last layer. The EM surrogate is then given as follows:

Q(θ|θt) = −EX,Y

[
EZl|x,y;θt [log p(y|x, zl;θ)P (zl|x;θ)]

]
. (72)

where the given probability functions is given at the last layer as

p(y|x, z1, ..., zl;θ) = p (y|hl−1)

P (z1, ..., zl|x;θ) = p(zl|hl−1; θ).

In the sparse MoE setting where p experts are chosen at each layer, we re-define the latent variables Zi to be defined over
the set of all possible ordered combinations of p experts that could have been chosen out of the k available experts. The
latent space embeddings is now given to be ĥi :=

∑
j∈zi

gi(hi−1;wi)jfi,j(hi−1;βi,j). The EM surrogate is given by

Q(θ|θt) = −EX,Y

[
EZ1,..,Zl|x,y;θt [log p(y|x, z1, ..., zl;θ)P (z1, ..., zl|x;θ)]

]
. (73)

where the given probability functions are decomposed per layer as

p(y|x, z1, ..., zl;θ) = p
(
y|ĥl−1

)
P (z1, ..., zl|x;θ) = P (z1|x; θ) · · · p(zl|z1, ..., zl−1; θ).

In practice, constructing the above EM surrogate this would require to make a combinatorial number of forward passes
through the model to evaluate the surrogate loss function. To remediate this, we will use the strategy to only evaluate the
loss on the greedily chosen sequence through the model as is the case for GD-type solutions for Sparse MoE.
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