
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

PREDICTING TRAINING RE-EVALUATION CURVES EN-
ABLES EFFECTIVE DATA CURRICULUMS FOR LLMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Data curriculums have become central to successful LLM training, yet princi-
ples governing optimal data placement remain unclear. We introduce the training
re-evaluation curve (TREC), a diagnostic that retrospectively evaluates training
batches using the final model weights. The TREC characterizes how well a trained
model retains training data as a function of when the data was encountered dur-
ing training. Analyzing TRECs for models from 111M to 3.9B parameters, we
show that placing high-quality data at low points on the TREC significantly im-
proves performance. Importantly, while a TREC is initially observable only after
training, we demonstrate it can be predicted in advance from AdamW’s implicit
EMA coefficients, enabling proactive curriculum design. By predicting TRECs
for published training recipes, we explain prior ablations and reveal suboptimal
data placements. We also align high-quality data with TREC minima in order to
improve continual pre-training of a 3.9B-parameter LLM trained on 900B tokens.

0 2 4

Ordered training tokens ×1010

2.2

2.4

2.6

2.8

3.0

3.2

3.4

L
os

s

TREC predicts best data place

LR drops 100×
Train loss

TREC

Val loss vs HQ data pos

0.00 0.25 0.50 0.75 1.00

Fraction of training tokens, t̂

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

T
R

E
C

TRECs as weight decay/τ varies

λ
0.0000

0.0010

0.0125

0.025

0.05

0.1

0.2

0.4

0.8

1.0

0.00 0.25 0.50 0.75 1.00

Fraction of training tokens, t̂

2.2

2.4

2.6

2.8

3.0

T
R

E
C

TRECs align across scale (same τ)

N
111M

266M

610M

1.7B

3.3B

Figure 1: Left: (610M params, learning rate drop at 70%): While train loss steadily falls, optimal
high-quality (HQ) data placement is in TREC valley, not at end. Middle: (610M, linear LR decay):
TREC shape varies with AdamW timescale τ (varied via weight decay λ). Right: (size varies, linear
LR decay, 20 TPP): TRECs align across 1000× scaling of training compute, when τ matches.

1 INTRODUCTION

LLM training now often includes mid-training or annealing phases that upsample special datasets
in the final stages of pre-training. These datasets are typically high-quality (Shen et al., 2024),
recent (Dubey et al., 2024), or domain-specific—e.g., math (OLMo et al., 2024), code (Zhang et al.,
2024a), or instructions (Hu et al., 2024). These efforts assume presenting such data at the very end
of training, when learning rate is near zero, maximizes the data’s effectiveness. While some work
explores when this phase should begin (Feng et al., 2024; Parmar et al., 2024), “many interesting
questions remain around finding the optimal dataset distribution for pre-training” (Anil et al., 2023).

We introduce the training re-evaluation curve (TREC), a diagnostic for understanding LLM training
and data placement. A TREC measures how well a fully trained model performs on training batches
as a function of when they appeared. Defined over homogeneous data, we construct it by evaluating
the final model on the i.i.d. training sequence in order. If data were retained equally, the TREC
would be flat; in practice, models perform better on tokens from specific points in training.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Under Step-decay learning rate (LR) schedules, e.g., as used in DeepSeek LLM (Bi et al., 2024),
the TREC may bottom out well before the end of training (Fig. 1, left), while the standard training
curve (on unseen batches) continues to decline. We hypothesize that high-quality (HQ) data should
be placed where the TREC is lowest—that is, where the final model would achieve its lowest retro-
spective loss. Indeed, when retraining different models, each with the same HQ data inserted into a
different 10% segment of the training trajectory, placing HQ data where the TREC is lowest yields
the best validation loss (loss-by-segment plotted as blue points in Fig. 1, left).

Of course, it is impractical to train a very large model, measure its TREC, and then retrain with
a TREC-informed curriculum. Fortunately, we show the TREC is predictable, enabling proactive
curriculum design. For AdamW (Loshchilov & Hutter, 2017)—the dominant optimizer in LLM pre-
training—TRECs are governed by the EMA timescale (Wang & Aitchison, 2024): AdamW parame-
ters can be viewed as an EMA over weight updates (over data), so timescale τ controls data influence
across training, and thus where TREC performance peaks (Fig. 1, middle). Sweeping learning rate,
weight decay, or batch size with matching timescales yields identical TREC shapes (Fig. 3). Shape
also persists across scale: despite 1000× more training FLOPs, a 3.3B model matches a 111M
model’s shape (Fig. 1, right; all trained to a compute-optimal 20 tokens-per-parameter [TPP]). In
Sec. 4, we formalize a predictive model of TRECs based on an expanded view of the AdamW
timescale (Bergsma et al., 2025b) that handles arbitrary LR schedules, including Step drops.

Based on our work, practitioners can use TRECs to guide data ordering, avoiding flawed heuristics
and costly ablations. More specifically, our main contributions are:

• Introducing train re-evaluation curves, showing they predict optimal data placement (Sec. 2).
• A large-scale study of 600 TRECs in models from 111M to 3.9B parameters, and datasets from

20 to 1280 TPP. The study connects TRECs to the AdamW timescale (Sec. 3), and enables an
analytical model for predicting curves in advance of training (Sec. 4).

• Explaining findings in sparse mixture-of-experts (Sec. 5.1) and prior data curriculum work
(Sec. 5.2). For example, TREC prediction can explain why Llama-3 405B did not benefit, on
GSM8k validation, from annealing on the GSM8k training set.

• Leveraging TRECs to improve a 3.9B-parameter LLM trained on 900B tokens (Sec. 5.3).

2 TRECS PREDICT EFFECTIVE DATA PLACEMENT

We now formally define TRECs, state our key hypothesis, and describe its evaluation.
Definition 1 (TREC). Let B1, . . . ,BT denote the sequence of batches used during training, drawn
independently and identically from data distribution D, and let θT represent the fully-trained model
parameters. The training re-evaluation curve (TREC) is the sequence of scalar loss values: Lre(t) :=
L(Bt; θT ), for t = 1, . . . , T , where L(Bt; θT ) denotes the loss (e.g., cross-entropy) evaluated on
training batch Bt from step t using final parameters θT . Intuitively, lower TREC loss suggests
greater alignment with θT , and may indicate Bt contributed more significantly to the final model.
Definition 2 (High-Quality Data). Given training distribution DOrig, a distribution DHQ is high-
quality for a task if replacing DOrig samples with DHQ samples improves task performance.

We define and predict Lre(t) under the assumption that training batches are exchangeable (sampled
i.i.d. from D), isolating data influence from heterogeneity effects. Although defined under homoge-
neous conditions, we hypothesize the TREC remains predictive even when data distributions vary:

Hypothesis 1: Placing a fixed number of high-quality samples at steps where Lre(t) is lowest
maximizes performance on a target task.

Experimental setup. Experiments use 610M-parameter GPT2-style LLMs trained with AdamW,
µP (Yang et al., 2021), and LR warmup over 10% of steps. Full architecture and tuning details are
in Appendix C. Models are trained on SlimPajama splits (Soboleva et al., 2023) (blend weights in
Table 1), using the general blend (GB) as DOrig and code blend (CB) as DHQ, with CB validation
loss as the target task. We use 45B (90%) GB tokens and 5B (10%) CB tokens. We also construct
an aggregate blend (AB) with a uniform 90/10 GB/CB mix. All models train on 50B tokens total
(82 TPP) with no repetition. Train and TREC losses are computed on homogeneous AB batches.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Table 1: SlimPajama mixes used
in Fig. 2 placement tests: Gen-
eral blend is original distribution,
code blend is HQ data.

SlimPJ General Code
Subset Blend Blend

Commcrawl 55.1 37.1
C4 28.2 19.0

GitHub 0.0 30.0↑

Books 4.4 3.0
ArXiv 4.9 3.3

Wikipedia 4.0 2.7
StackExch. 3.5 5.0↑

0 1 2 3 4

Ordered training tokens ×1010

2.2

2.4

2.6

2.8

3.0

3.2

3.4

L
os

s

Loss for this pos

Step decay (step at 70% of training)

General blend

Code blend

Train loss

TREC

Val loss vs HQ data pos

0 2 4

Ordered training tokens ×1010

2.2

2.4

2.6

2.8

3.0

3.2

3.4

L
os

s

10× decay

Train loss

TREC

Val loss vs HQ data pos

Val loss using agg. blend

Figure 2: TRECs predict best placement. Left: Example place-
ment curriculum 5-of-10 for Step decay. Right: Results for 10×.

To evaluate Hypothesis 1, we conduct a data placement sweep: for each LR schedule, we train 10
models, each with the 5B CB tokens inserted into a different 10% segment of the training data. An
example curriculum is shown in Fig. 2, left. Also plotted is the standard training curve (loss on
unseen batches during training). While the train loss shows a familiar decrease with LR anneal-
ing (Tissue et al., 2024; Schaipp et al., 2025), note the TREC increases after the LR drops.

Results. Results in Fig. 1 (left, Step schedule), Fig. 2 (right, 10× linear decay), and appendix
Fig. 11 (decay-to-zero) show, in all cases, placing CB data at the step with lowest Lre(t) yields the
best validation loss. Data placement also outperforms uniform training on AB (appendix Fig. 12).
These results validate our hypothesis within individual training runs, but note that absolute Lre(t)
values do not consistently generalize across schedules for placement prediction (Appendix D.2).

Key takeaway 1: TRECs reliably indicate the best point for high-quality data insertion.

3 TREC SHAPE IS GOVERNED BY THE ADAMW TIMESCALE

To apply the insights of Sec. 2 (without having to train a model twice), we need to predict TRECs
in advance. Before presenting our predictive model (Sec. 4), we build intuition for what controls
TRECs (under a fixed LR schedule), finding they are mainly governed by the AdamW timescale.

Background: the AdamW EMA and its timescale. AdamW updates at step t can be expressed
in terms of learning rate η and weight decay λ as: θt = (1−ηλ)θt−1−η m̂t√

v̂t+ϵ
, where m̂t and v̂t are

bias-corrected exponentially-weighted moving averages (EMAs) of gradients and squared gradients,
respectively (Kingma & Ba, 2014).

Wang & Aitchison (2024) observed that AdamW parameters θt can also be viewed as an EMA —
of weight updates. Specifically, the standard EMA form yt = (1− α)yt−1 + αxt matches AdamW
when yt = θt, α = ηλ, and xt = − 1

λ
m̂t√
v̂t+ϵ

. The timescale 1/α = 1/ηλ, denoted τiter by Wang &
Aitchison, represents the approximate number of iterations over which updates are averaged.

When expressed in epochs as τepoch = τiter/M , where M is the number of iterations per epoch,
Wang & Aitchison found the optimal τepoch remained stable under model and dataset scaling in
image tasks. Maintaining a constant τepoch requires decreasing λ proportionally when M increases.

Since LLM pre-training typically uses a single epoch, we follow Dey et al. (2025) and Bergsma et al.
(2025a) in defining a normalized timescale τ = τiter/T , where T is the total number of optimization
steps. As T = D/B (total tokens D divided by batch size B):

τ =
1

ηλT
=

B

ηλD
. (1)

Hypothesis 2: For a given learning-rate decay schedule (Linear, Cosine, Step, etc.), the TREC
is controlled by the AdamW timescale τ .

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

In other words, because parameters in AdamW are implicitly weighted averages over updates (de-
rived from training data), the EMA timescale τ governs the scope of data influence on the final
model, and thus the TREC. Yet higher EMA weight alone may not lower TREC loss: earlier updates
can lose influence as our position on the loss surface shifts (discussed more in Sec. 4).

Training fraction. Viewing training in terms of discrete optimizer steps becomes limiting when
batch sizes and sequence lengths vary. Instead, we view optimization as a continuous stochastic pro-
cess over a fixed dataset, with different batch sizes yielding different discretizations. In this perspec-
tive, we plot TRECs against training fraction t̂ = t/T = tB/D; this naturally facilitates comparing
curves across different batch sizes, step counts, and dataset sizes. To reduce noise in small-batch
settings (and align with large-batch models), we also smooth TRECs using a moving-average filter
(typically over a window of 100 steps), smoothing curves without altering the underlying trajectory.

Results. We follow the architecture and setup of Sec. 2, but apply: (a) a linear decay-to-zero LR
schedule, (b) a context length of 2048, and (c) the original GPT2 vocabulary (50257 tokens). We
train on standard SlimPajama splits with original source weightings. Plot axes indicate whether the
TREC is shown in absolute loss or normalized (min-max scaled) form.

0.00 0.25 0.50 0.75 1.00

Fraction of training tokens, t̂

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

T
R

E
C

B=504, λ=0.1, η varies

η (τ)

4.05e-03 (0.421)

8.09e-03 (0.210)

1.62e-02 (0.105)

3.24e-02 (0.053)

6.48e-02 (0.026)

0.00 0.25 0.50 0.75 1.00

Fraction of training tokens, t̂

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

T
R

E
C

B=504, η=1.62e-02, λ varies

λ (τ)

0.025 (0.421)

0.05 (0.210)

0.1 (0.105)

0.2 (0.053)

0.4 (0.026)

0.00 0.25 0.50 0.75 1.00

Fraction of training tokens, t̂

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

T
R

E
C

η=1.62e-02, λ=0.1, B varies

B (τ)

126 (0.026)

252 (0.053)

504 (0.105)

1008 (0.210)

2016 (0.421)

Figure 3: Timescale τ determines TREC shape (610M, 80 TPP). Sweeping η (left), λ (middle),
or B (right) produces matching variations in TRECs when τ (Eq. (1)) varies identically.

Fig. 3 shows normalized TRECs for 610M models trained to 80 TPP, sweeping η, λ, or B in each
subplot. Across hyperparameters, curves with matching τ exhibit very similar shapes, reflecting
consistent timescale control. This alignment is especially clear here since all models use the same
ordered training data. Similar patterns hold across other scales and dataset sizes. Generally, as the
timescale expands (τ increases), the TREC minimum (valley) shifts earlier.1

We next examine TREC alignment as models and datasets scale. When models share the same τ
and TPP, their TRECs largely align (Fig. 4, left), with small τ differences causing corresponding
shifts. The size of absolute TREC drops is also similar across scales when training to the same TPP
(Fig. 1, right). As TPP increases, the TRECs move slightly right (Fig. 4, middle, right); e.g., at
111M, increasing TPP by 64× moves the TREC valley slightly later in training. Interestingly, as
TPP increases, the size of the TREC drop diminishes (appendix Fig. 15): at lower TPP, training
appears to emphasize memorization. This finding aligns with a recent study of LLM memorization
from an information theoretic perspective (Morris et al., 2025).

Finally, Appendix E.3 shows that large changes in AdamW’s β1 and β2 parameters do not signif-
icantly alter TREC shape (even when β1 = 0, i.e., no momentum). This suggests the timescale
imposed by weight decay is far more influential than the timescales of momentum and velocity.

Key takeaway 2: Overall, the data broadly supports Hypothesis 2: the AdamW timescale (τ )
predominantly controls TREC shape, with TPP playing a secondary, smaller role.

However, as seen in Fig. 2, the LR schedule itself significantly affects TREC shape. To integrate LR
schedules into our analysis, we next adopt an expanded view of the AdamW timescale.

1This shift has a limit: as λ → 0 (τ → ∞), the curves converge (Fig. 1, middle). This occurs because the
EMA coefficients (Sec. 4) themselves converge to the shape of the LR schedule (Appendix F.3).

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

0.00 0.25 0.50 0.75 1.00

Fraction of training tokens, t̂

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

T
R

E
C

111M-3.3B, 20TPP, τ≈0.3

N (τ)

111M (0.333)

266M (0.274)

610M (0.211)

1.7B (0.298)

3.3B (0.307)

0.00 0.25 0.50 0.75 1.00

Fraction of training tokens, t̂

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

T
R

E
C

111M, τ=0.021

TPP
20

80

320

1280

0.00 0.25 0.50 0.75 1.00

Fraction of training tokens, t̂

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

T
R

E
C

610M, τ=0.105

TPP
20

80

320

Figure 4: Timescale τ and TREC shape across model/dataset scales. Left: Similar τ yields
similar TREC shapes across model scales when training to 20 TPP (τ ≈ 0.3). At 111M (middle,
τ = 0.021) and 610M (right, τ = 0.105), increasing TPP shifts TRECs slightly right.

4 PREDICTING TRECS: ADJUSTING FOR TRAINING FRACTION

Following Sec. 3, one could in principle predict a TREC for any model by re-evaluating a smaller
model with matching τ , TPP, and LR schedule. More generally, we propose a functional form that
extends the AdamW EMA perspective to time-varying learning rates, while also incorporating a
training-fraction term to capture minimizer drift, described below.

Background: the extended AdamW EMA perspective. Bergsma et al. (2025b) extend Wang &
Aitchison (2024) by considering EMAs with time-varying smoothing parameters αt ∈ [0, 1]. Setting
α1 = 1 (so y1 = x1), they show the recursion y2 = (1− α2)α1x1 + α2x2, and in general:

yt =

t∑
i=1

 t∏
j=i+1

(1− αj)

αixi =

t∑
i=1

ct,ixi, (2)

where ct,i quantifies the contribution of input xi to the output yt.

With AdamW, the LR/weight decay schedule defines the time-varying smoothing αt = ηtλ (Sec. 3).
The EMA operates over weight updates xt = − 1

λ
m̂t√
v̂t+ϵ

, with larger ct,i indicating the ith update
contributes more to model weights yt = θt at step t. We focus on coefficients for final model
weights θT , dropping subscript T for clarity: ci = ηiλ

∏T
j=i+1(1 − ηjλ). To connect with our

continuous-time framing, we interpret ci over T steps as a continuous function, reparameterizing as
c(t̂) via t̂ = i/T , enabling direct comparison with the TREC Lre(t̂).

0.00 0.25 0.50 0.75 1.00

Fraction of training tokens, t̂

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

co
effi

ci
en

t
va

lu
es

Cyclic EMA coefficients

η (τ)

4.05e-03 (0.421)

8.09e-03 (0.210)

1.62e-02 (0.105)

3.24e-02 (0.053)

0.00 0.25 0.50 0.75 1.00

Fraction of training tokens, t̂

0.0

0.2

0.4

0.6

0.8

1.0

P
re

di
ct

ed
T

R
E

C
(s

ca
le

d)

Cyclic predicted TRECs

η (τ)

4.05e-03 (0.421)

8.09e-03 (0.210)

1.62e-02 (0.105)

3.24e-02 (0.053)

0.00 0.25 0.50 0.75 1.00

Fraction of training tokens, t̂

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

T
R

E
C

Cyclic normalized TRECs

η (τ)

4.05e-03 (0.421)

8.09e-03 (0.210)

1.62e-02 (0.105)

3.24e-02 (0.053)

Figure 5: Predicting TRECs (610M, 80 TPP, Cyclic LR). Left: Normalized EMA coefficients c(t̂)
in our model. Middle: Predicted TRECs L̂re(t̂) from Eq. (3). Right: True TRECs Lre(t̂). Predictions
match TREC dips, with early damping and late alignment with (inverted) EMA.

Fig. 5 (left) shows c(t̂) for a cyclic LR schedule (schedule shown in Fig. 19). When c(t̂) drops to
zero (i.e., LR is zero), TRECs (right) return to baseline (1.0); when c(t̂) is higher, TRECs dip lower.
Yet c(t̂) influence fades earlier in training, suggesting it alone does not fully explain TREC shape.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Predicting TREC shape. EMA coefficients c(t̂) quantify each update’s contribution to the fi-
nal weights, but an update’s effectiveness can fade if the batch-specific loss surface shifts after the
gradient was computed, i.e., due to minimizer drift. Motivated by a simplified quadratic analysis
(Appendix J), we model drift on a training-fraction clock that is scale-invariant under µP yet LR-
schedule-dependent, similar to the use of normalized compute in Qiu et al. (2025).

Hypothesis 3: TREC shape can be predicted using the AdamW EMA coefficients combined
with an adjustment for training fraction.

Let Lre(t̂) denote the TREC and c(t̂) the EMA coefficients of the final weights θT , both indexed by
training fraction t̂ ∈ [0, 1]. We model the normalized TREC shape as:

L̂re(t̂) = 1− c(t̂)p · t̂m, (3)

where p and m are exponents to be fit. Exponent p controls the strength of the EMA contribution,
while m (the training-fraction exponent) determines when the predicted L̂re(t̂) begins to reflect c(t̂).
For example, with m = 1, fluctuations in c(t̂) appear immediately; with a larger m, L̂re(t̂) remains
near 1 for most of training and only incorporates c(t̂) near the end.

Fig. 5 illustrates this formulation: EMA fluctuations (left) are dampened early in training in both
predicted (middle, using fits of Eq. (3)) and true TRECs (right). We focus on predicting shape, not
absolute values, and use Eq. (3) as a normalized functional form. We find tuning p has minor impact
on shape prediction compared to m, so we fix p = 0.5 across experiments and focus on fitting m.

Predicting the training-fraction exponent. For a given set of TRECs, we determine the optimal
m by fitting it to maximize shape agreement between the predicted and true TRECs. We use the
Pearson correlation rp as a scale- and shift-invariant measure of this agreement, finding it aligns
well with visual assessments (Appendix F.1). Empirically, we find that optimal exponent m∗ closely
follows a power-law relationship with tokens-per-parameter (TPP) and the AdamW timescale τ ,
which we express as:

m∗ = C · (TPP)µ1 · (τ)µ2 (4)
Fitting this power law at a small scale enables us to predict m∗ systematically across model/dataset
sizes and hyperparameter settings, completing the components needed for TREC prediction.

10−2 10−1 100

τ

2

5

10

20

50

O
pt

im
al

T
ra

in
-f

ra
c.

ex
p

on
en

t,
m
∗

Power law preds & observed 111M data

TPP
20

80

200

320

1280

m∗ = 1.4 · TPP0.164 · τ−0.450

10−2 10−1 100

τ

2

5

10

20

50

O
pt

im
al

T
ra

in
-f

ra
c.

ex
p

on
en

t,
m
∗

Power law preds & observed 610M data

TPP
20

80

200

320

m∗ = 1.4 · TPP0.164 · τ−0.450

10−2 10−1 100

τ

2

5

10

20

50

O
pt

im
al

T
ra

in
-f

ra
c.

ex
p

on
en

t,
m
∗

Power law preds & observed 1.7B data

TPP
20

80

160

m∗ = 1.4 · TPP0.164 · τ−0.450

Figure 6: Fitted power law for m∗ aligns with observed optima. Left: 111M fit; middle: 610M
eval; right: 1.7B eval. Accuracy of 111M fit holds across scale, degrading slightly for larger models.

Results. We follow the setup of Sec. 3, using a Linear decay-to-zero LR schedule unless noted.
We evaluate prediction accuracy across scales and datasets using: (i) R2 for predicted vs. true m∗

values, and (ii) Pearson rp for predicted vs. true TREC shape. We fit the power law Eq. (4) using
m∗ values from small-scale 111M models, trained across varied TPPs and timescales (Fig. 6, left).

Fits at 111M generalize to larger scales (Fig. 6, appendix Fig. 21). As shown in appendix Table 5,
while fit R2 declines from 99% at 111M to 77% at 3.3B, TREC prediction accuracy remains
high across scales (rp ∼ 98%), confirming robust predictive performance even when m∗ fits are
imperfect. Ablation results (appendix Table 6, fitting at 111M, evaluating at 610M scale) show that
both TPP and especially τ are important for accurate m∗ prediction and TREC shape matching.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

The observed dependence of m∗ on τ and TPP, and also LR schedule (Appendix G.4), matches the
minimizer drift account in Appendix J. In the quadratic view, drift accumulates with the schedule-
weighted curvature

∫ 1

t̂
η(s)h(s) ds; shorter EMA timescales shorten memory and increase drift

(larger m), higher TPP increases the extent of curvature evolution and hence drift (larger m), and
different LR schedules directly change the cumulative integral, yielding schedule-specific m.

“CPT” Training
Position

“CPT”
Fraction

5TPP after PT

5TPP from scratch

234 TPP 0.98–1

0–1

0.00 0.25 0.50 0.75 1.00

Fraction of “CPT” training tokens, t̂

0.0

0.2

0.4

0.6

0.8

1.0

P
re

di
ct

ed
T

R
E

C

“CPT” predicted TRECs

After PT

From scratch

0.00 0.25 0.50 0.75 1.00

Fraction of “CPT” training tokens, t̂

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

T
R

E
C

“CPT” actual normalized TRECs

After PT

From scratch

Figure 7: Impact of training fraction on TRECs (3.9B). Left: Two 3.9B models trained with
identical dataset, LR, weight decay, and batch size, differing only in init (scratch vs. checkpoint
after 234 TPP) and thus t̂. Middle: Predicted TRECs using our framework. Right: True TRECs
closely match predictions, showing training fraction determines shape under controlled conditions.

Fig. 7 illustrates the importance of the training fraction term in Eq. (3): two 3.9B models trained
with identical dataset (900B tokens), LR, weight decay, and batch size have the same c(t̂). However,
differences in initialization (from scratch vs. pre-trained checkpoint) mean training evolves over a
different t̂m. TREC predictions that differ solely on the basis of t̂m closely match actual TRECs.

Key takeaway 3: TREC shape can be accurately predicted from EMA coefficients and a training-
fraction adjustment, enabling proactive curriculum design.

5 APPLICATIONS

5.1 APPLICATION TO SPARSE MIXTURE-OF-EXPERTS (MOE)

We now apply TREC analysis to sparse MoE architectures, where only a subset of parameters acti-
vate per input (Lepikhin et al., 2020; Fedus et al., 2022). We replace each FFN block in our 111M
model with a sparse MoE layer, varying the number of experts E from 1 (dense) to 32. Tokens are
routed to experts via hash routing (Roller et al., 2021), ensuring balanced usage. All models train
with identical total tokens and datasets. Yet each expert receives only 1/E of tokens, reducing an
expert’s effective tokens-per-parameter. Timescale τ , however, is E-invariant: both batch size B and
total tokens D scale identically with 1/E; since τ = B/(ηλD), these reductions cancel.2

Fig. 8 shows larger E produces greater and earlier TREC drops, indicating stronger memorization:
MoE layers behave as if trained at their effective TPP. Indeed, empirically-optimal m∗ values for
these curves align well with predictions from our dense-data power-law model (Eq. (4)), when the
power law uses the effective TPP (R2 ≈ 83%, Fig. 8-right). These results complement prior obser-
vations by Jelassi et al. (2024), who found that increasing experts boosts memorization more than
reasoning; our analysis suggests lower effective TPP may partly drive this effect.

5.2 APPLICATION TO EVALUATING LLM RECIPES

While prior LLM recipes place their high-quality data at the end of training, our TREC plots suggest
this strategy is suboptimal. Still, given this common practice, we ask whether the onset of the HQ
phase—and its reported success or failure—is consistent with the predicted TREC.

2Timescale invariance may explain why correcting LR for the effectively 1/E-smaller per-expert batches is
unnecessary (Wei et al., 2024, Appendix C.1); MoEs might simply have won the parameterization lottery.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0.00 0.25 0.50 0.75 1.00

Fraction of training tokens, t̂

2.80

2.85

2.90

2.95

3.00

3.05

T
R

E
C

Larger E → remembers train more

Num. experts
1

2

4

8

16

32

0.00 0.25 0.50 0.75 1.00

Fraction of training tokens, t̂

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

T
R

E
C

Larger E → earlier TREC drop

Num. experts
1

2

4

8

16

32

10−2 10−1 100

τ

1

2

5

10

20

O
pt

im
al

T
ra

in
-f

ra
c.

ex
p

on
en

t,
m
∗

Power law preds & observed MoE data

TPP (E)

20 (1)

10 (2)

5 (4)

2.5 (8)

1.25 (16)

0.625 (32)

m∗ = 1.4 · TPP0.164 · τ−0.450

Figure 8: Sparse MoE TRECs reflect reduced effective TPP. Left: Absolute TRECs for 111M
models with increasing expert count E (more sparsity) and increasing TREC drop. Middle: Nor-
malized curves show larger E shifts the valley earlier. Right: m∗ predictions from Eq. (4) match
true optima, confirming MoEs with more experts behave as if trained at reduced TPP.

Llama 3 (Dubey et al., 2024) evaluated annealing on GSM8k and MATH training sets and reported
strong gains for Llama 3 8B but none for their flagship 405B model. TRECs explain this outcome:
the 405B model annealed its LR from 8e−7 to 0 over the final 40M tokens. Since the batch size is
16M, this phase spans only ∼3 optimizer steps. With such a short window and vanishing LR, EMA
coefficients are essentially zero—the model retains little from this final data.

0.00 0.25 0.50 0.75 1.00

Fraction of training tokens, t̂

0.0

0.2

0.4

0.6

0.8

1.0

P
re

di
ct

ed
T

R
E

C

Feng et al: Best* P2% aligns w. TREC

P2%
50

40*

30

20

10

P2%
50

40*

30

20

10

0.00 0.25 0.50 0.75 1.00

Fraction of training tokens, t̂

0.0

0.2

0.4

0.6

0.8

1.0

P
re

di
ct

ed
T

R
E

C

OLMo2: Mid-train phase aligns w. TREC

Mid-training stageMid-training stage

Figure 9: Prior work agrees with predicted TRECs. Left: The
optimal onset point for the HQ data phase in Feng et al. (2024)
aligns with the TREC bottom. Right: Placement of HQ data in
OLMo et al. (2024) aligns with the much-narrower TREC valley.

Half* End None

CPT placement location

1.784

1.786

1.788

1.790

1.792

1.794

O
p

en
W

eb
M

at
h

va
lid

at
io

n
lo

ss

Re-eval-based place* best for all η

η
0.0015

0.0045

0.015

Pre-training only

Figure 10: 3.9B CPT results.
Placing data halfway (at TREC
bottom) is most effective across
all η settings.

Fig. 9 shows two other examples. Feng et al. (2024) tested different onset points for their HQ
blend, finding best results when it was used for the final 40%—a region aligning with the predicted
TREC valley (left). In contrast, OLMo-2 13B (OLMo et al., 2024) uses its HQ blend for only the
final 5.7% of training, which again aligns with the (narrower) predicted TREC dip (right). TREC
analysis enables finding these optimal placement locations without costly trial-and-error testing.

5.3 CONTINUAL PRE-TRAINING OF A 3.9B LLM USING TREC INSIGHTS

We now test whether TREC-guided data placement improves outcomes in a continual pre-training
(CPT) setting. Prior placement experiments in Sec. 2 inserted high-quality data partway through
base-model training. In contrast, CPT typically refers to additional training performed after the base
model is trained. To isolate this setting, we define CPT strictly as continued training after learning
rate decay to zero—excluding works such as Parmar et al. (2024), where the CPT LR continues from
a 10% decay value, thus arguably reflecting a mid-training strategy (Appendix H.3). This definition
matches intuition: CPT can be performed multiple times, mid-training is only performed once.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Under this stricter definition, we take a 3.9B-parameter model trained to 234 TPP (900B tokens) with
learning-rate decay-to-zero, and continue training for an additional 18B tokens (∼5 TPP; illustrated
earlier in Fig. 7, left). During this CPT phase, we continue training on the same data blend, but
insert a 1.3B-token segment of HQ data up-weighting math, targeting improved performance on
OpenWebMath validation (Paster et al., 2023). We compare placing this HQ data halfway through
CPT, where TRECs are low, versus at the very end (as is standard), where TRECs return to baseline.
Full model, dataset, and experimental details are in Appendix I.

We test three CPT learning rates, as the optimal value is unknown. While effects are necessarily
small (HQ data represents only 0.14% of total PT+CPT steps), the trend is consistent: TREC-guided
placement remains effective during CPT. Placing HQ data at the TREC minimum outperforms end
placement across all LRs (Fig. 10). However, when LR is too high (0.015), even correctly placed
data fails to match the performance of the original base model (dashed red line on plot).3

6 RELATED WORK

Here we highlight the most relevant prior directions, with Appendix B providing full details.

Data curriculums, influence, and attribution. Curriculum learning explores strategies for effec-
tively ordering training data (Bengio et al., 2009). Recent LLM curriculums often emphasize high-
quality or domain-specific data in later training phases (OLMo et al., 2024; Dubey et al., 2024).
While effective, crafting these approaches typically relies on heuristics or expensive experiments.

Meanwhile, quantifying influence of training points aids interpretability, auditing, and compensa-
tion (Koh & Liang, 2017; Grosse et al., 2023). Recent scalable methods, such as data value embed-
dings (Wang et al., 2024), recognize the importance of ordering but typically focus on retrospective
attribution rather than guiding training. Memorization research examines how models retain training
data, motivated by copyright or privacy concerns (Carlini et al., 2022; Schwarzschild et al., 2024).

Re-evaluation. While not their primary focus, recent studies have analyzed loss on previously
seen data in order to probe retention dynamics. Pagliardini et al. (2024) examined memory of
specific training batches as a function of optimizer type and LR schedule, while Bergsma et al.
(2025b) first linked retrospective losses to AdamW’s EMA dynamics. Our method leverages these
insights, formalizing and predicting TRECs as a tool to guide data placement.

Scaling collapse. Qiu et al. (2025) show that when training loss is normalized appropriately (and
training progress is normalized similarly to t̂), training loss curves collapse onto a universal trajec-
tory across model scales. Deformations due to LR schedules are explained by a noisy-quadratic anal-
ysis. Our theoretical analysis (Appendix J) and empirical results are complementary: we study ret-
rospective re-evaluation rather than initial training loss, account for both TPP and EMA timescale,
and translate re-eval structure into actionable curriculums.

7 CONCLUSION

We introduced the training re-evaluation curve, a simple diagnostic that evaluates how well a trained
model retains individual training batches as a function of when they appeared in training. Align-
ing high-quality data with TREC minima improves final validation loss across models and training
regimes (in both PT and CPT), surpassing the default end-of-training placement. Crucially, TRECs
are largely determined by AdamW EMA coefficients and can be predicted in advance, enabling
proactive data placement. We provide a theoretical account in which the training-fraction term t̂m

captures, in phenomenological form, the scale-invariant drift of batch-specific minimizers. In this
view, the fitted m is directly linked to the cumulative influence of schedule and curvature dynamics.
Our insights explain existing curriculum strategies, identify suboptimal ones, and yield improved
performance in large-scale continual pre-training. Taken together, our results position TREC-based
placement as a principled alternative to suboptimal heuristics and costly data-onset ablations.

3We also tested inserting HQ data at the predicted TREC minimum during pre-training (∼97%). This
mid-training strategy matched the best CPT result, suggesting a rationale for why mid-training is arguably sup-
planting CPT in practice: it achieves comparable gains without requiring extra LR tuning or training compute.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Marah Abdin, Jyoti Aneja, Hany Awadalla, Ahmed Awadallah, Ammar Ahmad Awan, Nguyen
Bach, Amit Bahree, Arash Bakhtiari, Jianmin Bao, Harkirat Behl, et al. Phi-3 technical report: A
highly capable language model locally on your phone. arXiv preprint arXiv:2404.14219, 2024.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. GPT-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut, Johan Schalkwyk,
Andrew M Dai, Anja Hauth, Katie Millican, et al. Gemini: a family of highly capable multimodal
models. arXiv preprint arXiv:2312.11805, 2023.

Jordan Ash and Ryan P Adams. On warm-starting neural network training. Advances in Neural
Information Processing Systems, 33:3884–3894, 2020.

Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In
Proceedings of the 26th annual international conference on machine learning, pp. 41–48, 2009.

Shane Bergsma, Nolan Dey, Gurpreet Gosal, Gavia Gray, Daria Soboleva, and Joel Hestness.
Power lines: Scaling laws for weight decay and batch size in LLM pre-training. arXiv preprint
arXiv:2505.13738, 2025a.

Shane Bergsma, Nolan Dey, Gurpreet Gosal, Gavia Gray, Daria Soboleva, and Joel Hestness.
Straight to zero: Why linearly decaying the learning rate to zero works best for LLMs. arXiv
preprint arXiv:2502.15938, 2025b.

Tamay Besiroglu, Ege Erdil, Matthew Barnett, and Josh You. Chinchilla scaling: A replication
attempt. arXiv preprint arXiv:2404.10102, 2024.

Xiao Bi, Deli Chen, Guanting Chen, Shanhuang Chen, Damai Dai, Chengqi Deng, Honghui Ding,
Kai Dong, Qiushi Du, Zhe Fu, et al. DeepSeek LLM: Scaling open-source language models with
longtermism. arXiv preprint arXiv:2401.02954, 2024.

Stella Biderman, Hailey Schoelkopf, Quentin Anthony, Herbie Bradley, Kyle O’Brien, Eric Hal-
lahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff, Aviya
Skowron, Lintang Sutawika, and Oskar van der Wal. Pythia: A suite for analyzing large language
models across training and scaling, 2023.

Cody Blakeney, Mansheej Paul, Brett W Larsen, Sean Owen, and Jonathan Frankle. Does your data
spark joy? performance gains from domain upsampling at the end of training. arXiv preprint
arXiv:2406.03476, 2024.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in Neural Information Processing Systems, 33:1877–1901, 2020.

Nicholas Carlini, Daphne Ippolito, Matthew Jagielski, Katherine Lee, Florian Tramer, and Chiyuan
Zhang. Quantifying memorization across neural language models. In International Conference
on Learning Representations, 2022.

Sang Keun Choe, Hwijeen Ahn, Juhan Bae, Kewen Zhao, Minsoo Kang, Youngseog Chung, Adithya
Pratapa, Willie Neiswanger, Emma Strubell, Teruko Mitamura, et al. What is your data worth
to GPT? LLM-scale data valuation with influence functions. arXiv preprint arXiv:2405.13954,
2024.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Aaron Defazio, Ashok Cutkosky, Harsh Mehta, and Konstantin Mishchenko. When, why and how
much? Adaptive learning rate scheduling by refinement. arXiv preprint arXiv:2310.07831, 2023.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Nolan Dey, Gurpreet Gosal, Hemant Khachane, William Marshall, Ribhu Pathria, Marvin Tom, and
Joel Hestness. Cerebras-GPT: Open compute-optimal language models trained on the Cerebras
wafer-scale cluster. arXiv preprint arXiv:2304.03208, 2023.

Nolan Dey, Bin Claire Zhang, Lorenzo Noci, Mufan Li, Blake Bordelon, Shane Bergsma, Cengiz
Pehlevan, Boris Hanin, and Joel Hestness. Don’t be lazy: CompleteP enables compute-efficient
deep transformers. arXiv preprint arXiv:2505.01618, 2025.

Ricardo Dominguez-Olmedo, Florian E Dorner, and Moritz Hardt. Training on the test task con-
founds evaluation and emergence. arXiv preprint arXiv:2407.07890, 2024.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The Llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of Machine Learning Research, 12(7), 2011.

William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. Journal of Machine Learning Research, 23(120):1–39,
2022.

Vitaly Feldman and Chiyuan Zhang. What neural networks memorize and why: Discovering the
long tail via influence estimation. Advances in Neural Information Processing Systems, 33:2881–
2891, 2020.

Steven Feng, Shrimai Prabhumoye, Kezhi Kong, Dan Su, Mostofa Patwary, Mohammad Shoeybi,
and Bryan Catanzaro. Maximize your data’s potential: Enhancing LLM accuracy with two-phase
pretraining. arXiv preprint arXiv:2412.15285, 2024.

Petko Georgiev, Ving Ian Lei, Ryan Burnell, Libin Bai, Anmol Gulati, Garrett Tanzer, Damien
Vincent, Zhufeng Pan, Shibo Wang, et al. Gemini 1.5: Unlocking multimodal understanding
across millions of tokens of context. arXiv preprint arXiv:2403.05530, 2024.

Jacopo Graldi, Alessandro Breccia, Giulia Lanzillotta, Thomas Hofmann, and Lorenzo Noci. The
importance of being lazy: Scaling limits of continual learning. arXiv preprint arXiv:2506.16884,
2025.

Alex Graves. Generating sequences with recurrent neural networks. arXiv preprint
arXiv:1308.0850, 2013.

Roger Grosse, Juhan Bae, Cem Anil, Nelson Elhage, Alex Tamkin, Amirhossein Tajdini, Benoit
Steiner, Dustin Li, Esin Durmus, Ethan Perez, et al. Studying large language model generalization
with influence functions. arXiv preprint arXiv:2308.03296, 2023.

Vineet Gupta, Tomer Koren, and Yoram Singer. Shampoo: Preconditioned stochastic tensor opti-
mization. In International Conference on Machine Learning, pp. 1842–1850. PMLR, 2018.

Suchin Gururangan, Ana Marasović, Swabha Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey,
and Noah A Smith. Don’t stop pretraining: Adapt language models to domains and tasks. arXiv
preprint arXiv:2004.10964, 2020.

Alexander Hägele, Elie Bakouch, Atli Kosson, Loubna Ben Allal, Leandro Von Werra, and Martin
Jaggi. Scaling laws and compute-optimal training beyond fixed training durations. arXiv preprint
arXiv:2405.18392, 2024.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the MATH dataset. arXiv
preprint arXiv:2103.03874, 2021.

Danny Hernandez, Tom Brown, Tom Conerly, Nova DasSarma, Dawn Drain, Sheer El-Showk, Nel-
son Elhage, Zac Hatfield-Dodds, Tom Henighan, Tristan Hume, et al. Scaling laws and inter-
pretability of learning from repeated data. arXiv preprint arXiv:2205.10487, 2022.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al. An
empirical analysis of compute-optimal large language model training. Advances in Neural Infor-
mation Processing Systems, 35, 2022.

Shengding Hu, Yuge Tu, Xu Han, Chaoqun He, Ganqu Cui, Xiang Long, Zhi Zheng, Yewei Fang,
Yuxiang Huang, Weilin Zhao, et al. MiniCPM: Unveiling the potential of small language models
with scalable training strategies. arXiv preprint arXiv:2404.06395, 2024.

Kai Hua, Steven Wu, Ge Zhang, and Ke Shen. AttentionInfluence: Adopting attention head influence
for weak-to-strong pretraining data selection. arXiv preprint arXiv:2505.07293, 2025.

Adam Ibrahim, Benjamin Thérien, Kshitij Gupta, Mats L Richter, Quentin Anthony, Timothée
Lesort, Eugene Belilovsky, and Irina Rish. Simple and scalable strategies to continually pre-train
large language models. arXiv preprint arXiv:2403.08763, 2024.

Samy Jelassi, Clara Mohri, David Brandfonbrener, Alex Gu, Nikhil Vyas, Nikhil Anand, David
Alvarez-Melis, Yuanzhi Li, Sham M Kakade, and Eran Malach. Mixture of parrots: Experts
improve memorization more than reasoning. arXiv preprint arXiv:2410.19034, 2024.

Dayal Singh Kalra, Tianyu He, and Maissam Barkeshli. Universal sharpness dynamics in neural
network training: Fixed point analysis, edge of stability, and route to chaos. arXiv preprint
arXiv:2311.02076, 2023.

Feiyang Kang, Yifan Sun, Bingbing Wen, Si Chen, Dawn Song, Rafid Mahmood, and Ruoxi Jia.
AutoScale: Automatic prediction of compute-optimal data compositions for training llms. 2024.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcom-
ing catastrophic forgetting in neural networks. Proceedings of the National Academy of Sciences,
114(13):3521–3526, 2017.

Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions. In
International conference on machine learning, pp. 1885–1894. PMLR, 2017.

Atli Kosson, Bettina Messmer, and Martin Jaggi. Analyzing & reducing the need for learning rate
warmup in GPT training. arXiv preprint arXiv:2410.23922, 2024.

Tanishq Kumar, Zachary Ankner, Benjamin F Spector, Blake Bordelon, Niklas Muennighoff, Man-
sheej Paul, Cengiz Pehlevan, Christopher Ré, and Aditi Raghunathan. Scaling laws for precision.
arXiv preprint arXiv:2411.04330, 2024.

Yongchan Kwon, Eric Wu, Kevin Wu, and James Zou. DataInf: Efficiently estimating data influence
in lora-tuned LLMs and diffusion models. arXiv preprint arXiv:2310.00902, 2023.

Yann LeCun, John Denker, and Sara Solla. Optimal brain damage. Advances in Neural Information
Processing Systems, 2, 1989.

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping Huang,
Maxim Krikun, Noam Shazeer, and Zhifeng Chen. Gshard: Scaling giant models with conditional
computation and automatic sharding. arXiv preprint arXiv:2006.16668, 2020.

Jeffrey Li, Alex Fang, Georgios Smyrnis, Maor Ivgi, Matt Jordan, Samir Yitzhak Gadre, Hritik
Bansal, Etash Guha, Sedrick Scott Keh, Kushal Arora, et al. DataComp-LM: In search of the
next generation of training sets for language models. Advances in Neural Information Processing
Systems, 37:14200–14282, 2024a.

Ruihang Li, Yixuan Wei, Miaosen Zhang, Nenghai Yu, Han Hu, and Houwen Peng. Scal-
ingFilter: Assessing data quality through inverse utilization of scaling laws. arXiv preprint
arXiv:2408.08310, 2024b.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Hong Liu, Zhiyuan Li, David Hall, Percy Liang, and Tengyu Ma. Sophia: A scalable stochastic
second-order optimizer for language model pre-training. arXiv preprint arXiv:2305.14342, 2023.

Qian Liu, Xiaosen Zheng, Niklas Muennighoff, Guangtao Zeng, Longxu Dou, Tianyu Pang, Jing
Jiang, and Min Lin. RegMix: Data mixture as regression for language model pre-training. arXiv
preprint arXiv:2407.01492, 2024.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations, 2017.

Clare Lyle, Zeyu Zheng, Evgenii Nikishin, Bernardo Avila Pires, Razvan Pascanu, and Will Dabney.
Understanding plasticity in neural networks. arXiv preprint arXiv:2303.01486, 2023.

Sam McCandlish, Jared Kaplan, Dario Amodei, et al. An empirical model of large-batch training.
arXiv preprint arXiv:1812.06162, 2018.

William Merrill, Shane Arora, Dirk Groeneveld, and Hannaneh Hajishirzi. Critical batch size re-
visited: A simple empirical approach to large-batch language model training. arXiv preprint
arXiv:2505.23971, 2025.

Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya Pathak, Laurent
Sifre, Morgane Rivière, Mihir Sanjay Kale, Juliette Love, et al. Gemma: Open models based
on gemini research and technology. arXiv preprint arXiv:2403.08295, 2024.

Sören Mindermann, Jan M Brauner, Muhammed T Razzak, Mrinank Sharma, Andreas Kirsch, Win-
nie Xu, Benedikt Höltgen, Aidan N Gomez, Adrien Morisot, Sebastian Farquhar, et al. Prioritized
training on points that are learnable, worth learning, and not yet learnt. In International Confer-
ence on Machine Learning, pp. 15630–15649. PMLR, 2022.

John X Morris, Chawin Sitawarin, Chuan Guo, Narine Kokhlikyan, G Edward Suh, Alexander M
Rush, Kamalika Chaudhuri, and Saeed Mahloujifar. How much do language models memorize?
arXiv preprint arXiv:2505.24832, 2025.

Lorenzo Noci, Alexandru Meterez, Thomas Hofmann, and Antonio Orvieto. Super consistency of
neural network landscapes and learning rate transfer. Advances in Neural Information Processing
Systems, 37:102696–102743, 2024.

Team OLMo, Pete Walsh, Luca Soldaini, Dirk Groeneveld, Kyle Lo, Shane Arora, Akshita Bha-
gia, Yuling Gu, Shengyi Huang, Matt Jordan, et al. 2 OLMo 2 Furious. arXiv preprint
arXiv:2501.00656, 2024.

Fırat Öncel, Matthias Bethge, Beyza Ermis, Mirco Ravanelli, Cem Subakan, and Çağatay Yıldız.
Adaptation odyssey in LLMs: Why does additional pretraining sometimes fail to improve? arXiv
preprint arXiv:2410.05581, 2024.

Matteo Pagliardini, Pierre Ablin, and David Grangier. The AdEMAMix optimizer: Better, faster,
older. arXiv preprint arXiv:2409.03137, 2024.

Jupinder Parmar, Sanjev Satheesh, Mostofa Patwary, Mohammad Shoeybi, and Bryan Catanzaro.
Reuse, don’t retrain: A recipe for continued pretraining of language models. arXiv preprint
arXiv:2407.07263, 2024.

Keiran Paster, Marco Dos Santos, Zhangir Azerbayev, and Jimmy Ba. OpenWebMath: An open
dataset of high-quality mathematical web text, 2023.

Tomer Porian, Mitchell Wortsman, Jenia Jitsev, Ludwig Schmidt, and Yair Carmon. Resolving
discrepancies in compute-optimal scaling of language models. arXiv preprint arXiv:2406.19146,
2024.

Ofir Press, Noah Smith, and Mike Lewis. Train short, test long: Attention with linear biases enables
input length extrapolation. In International Conference on Learning Representations, 2022.

Yujia Qin, Jiajie Zhang, Yankai Lin, Zhiyuan Liu, Peng Li, Maosong Sun, and Jie Zhou. Elle:
Efficient lifelong pre-training for emerging data. arXiv preprint arXiv:2203.06311, 2022.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Shikai Qiu, Lechao Xiao, Andrew Gordon Wilson, Jeffrey Pennington, and Atish Agarwala. Scaling
collapse reveals universal dynamics in compute-optimally trained neural networks. arXiv preprint
arXiv:2507.02119, 2025.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners, 2019.

Jack W. Rae, Sebastian Borgeaud, Trevor Cai, Katie Millican, Jordan Hoffmann, Francis Song, John
Aslanides, Sarah Henderson, Roman Ring, Susannah Young, et al. Scaling language models:
Methods, analysis & insights from training Gopher, 2022.

Stephen Roller, Sainbayar Sukhbaatar, Arthur Szlam, and Jason Weston. Hash layers for large sparse
models. Advances in Neural Information Processing Systems, 34:17555–17566, 2021.

Noveen Sachdeva, Benjamin Coleman, Wang-Cheng Kang, Jianmo Ni, Lichan Hong, Ed H Chi,
James Caverlee, Julian McAuley, and Derek Zhiyuan Cheng. How to train data-efficient LLMs.
arXiv preprint arXiv:2402.09668, 2024.

Fabian Schaipp, Alexander Hägele, Adrien Taylor, Umut Simsekli, and Francis Bach. The surpris-
ing agreement between convex optimization theory and learning-rate scheduling for large model
training. arXiv preprint arXiv:2501.18965, 2025.

Avi Schwarzschild, Zhili Feng, Pratyush Maini, Zachary Lipton, and J Zico Kolter. Rethinking
LLM memorization through the lens of adversarial compression. Advances in Neural Information
Processing Systems, 37:56244–56267, 2024.

Christopher J Shallue, Jaehoon Lee, Joseph Antognini, Jascha Sohl-Dickstein, Roy Frostig, and
George E Dahl. Measuring the effects of data parallelism on neural network training. Journal of
Machine Learning Research, 20(112):1–49, 2019.

Noam Shazeer. GLU variants improve transformer. arXiv preprint arXiv:2002.05202, 2020.

Noam Shazeer and Mitchell Stern. Adafactor: Adaptive learning rates with sublinear memory cost.
In International Conference on Machine Learning, pp. 4596–4604. PMLR, 2018.

Yikang Shen, Zhen Guo, Tianle Cai, and Zengyi Qin. JetMoE: Reaching Llama2 performance with
0.1M dollars. arXiv preprint arXiv:2404.07413, 2024.

David So, Wojciech Mańke, Hanxiao Liu, Zihang Dai, Noam Shazeer, and Quoc V Le. Searching
for efficient transformers for language modeling. Advances in neural information processing
systems, 34:6010–6022, 2021.

Daria Soboleva, Faisal Al-Khateeb, Robert Myers, Jacob R Steeves, Joel Hestness, and Nolan Dey.
SlimPajama: A 627B token cleaned and deduplicated version of RedPajama. Web page, 2023.

Jacob Mitchell Springer, Sachin Goyal, Kaiyue Wen, Tanishq Kumar, Xiang Yue, Sadhika Malladi,
Graham Neubig, and Aditi Raghunathan. Overtrained language models are harder to fine-tune.
arXiv preprint arXiv:2503.19206, 2025.

Falcon-LLM Team. Falcon-H1: A family of hybrid-head language models redefining efficiency and
performance, May 2025a. URL https://falcon-lm.github.io/blog/falcon-h1.

Kimi Team. Kimi K2: Open agentic intelligence, 2025b. URL https://github.com/
MoonshotAI/Kimi-K2/blob/main/tech_report.pdf.

Howe Tissue, Venus Wang, and Lu Wang. Scaling law with learning rate annealing. arXiv preprint
arXiv:2408.11029, 2024.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Ar-
mand Joulin, Edouard Grave, and Guillaume Lample. LLaMA: Open and efficient foundation
language models, 2023.

14

https://www.cerebras.net/blog/slimpajama-a-627b-token-cleaned-and-deduplicated-version-of-redpajama
https://falcon-lm.github.io/blog/falcon-h1
https://github.com/MoonshotAI/Kimi-K2/blob/main/tech_report.pdf
https://github.com/MoonshotAI/Kimi-K2/blob/main/tech_report.pdf


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Nikhil Vyas, Alexander Atanasov, Blake Bordelon, Depen Morwani, Sabarish Sainathan, and Cen-
giz Pehlevan. Feature-learning networks are consistent across widths at realistic scales. Advances
in Neural Information Processing Systems, 36:1036–1060, 2023.

Nikhil Vyas, Depen Morwani, Rosie Zhao, Mujin Kwun, Itai Shapira, David Brandfonbrener, Lucas
Janson, and Sham Kakade. SOAP: Improving and stabilizing shampoo using adam. arXiv preprint
arXiv:2409.11321, 2024.

Alan Wake, Bei Chen, CX Lv, Chao Li, Chengen Huang, Chenglin Cai, Chujie Zheng,
Daniel Cooper, Fan Zhou, Feng Hu, et al. Yi-Lightning technical report. arXiv preprint
arXiv:2412.01253, 2024.

Jiachen T Wang, Dawn Song, James Zou, Prateek Mittal, and Ruoxi Jia. Capturing the temporal
dependence of training data influence. arXiv preprint arXiv:2412.09538, 2024.

Xi Wang and Laurence Aitchison. How to set AdamW’s weight decay as you scale model and
dataset size. arXiv preprint arXiv:2405.13698, 2024.

Zengzhi Wang, Fan Zhou, Xuefeng Li, and Pengfei Liu. OctoThinker: Mid-training incentivizes
reinforcement learning scaling. arXiv preprint arXiv:2506.20512, 2025.

Tianwen Wei, Bo Zhu, Liang Zhao, Cheng Cheng, Biye Li, Weiwei Lü, Peng Cheng, Jianhao
Zhang, Xiaoyu Zhang, Liang Zeng, et al. Skywork-MoE: A deep dive into training techniques for
mixture-of-experts language models. arXiv preprint arXiv:2406.06563, 2024.

Mengzhou Xia, Sadhika Malladi, Suchin Gururangan, Sanjeev Arora, and Danqi Chen. LESS:
Selecting influential data for targeted instruction tuning. arXiv preprint arXiv:2402.04333, 2024.

Greg Yang, Edward Hu, Igor Babuschkin, Szymon Sidor, Xiaodong Liu, David Farhi, Nick Ryder,
Jakub Pachocki, Weizhu Chen, and Jianfeng Gao. Tuning large neural networks via zero-shot
hyperparameter transfer. In Advances in Neural Information Processing Systems, 2021.

Jiasheng Ye, Peiju Liu, Tianxiang Sun, Jun Zhan, Yunhua Zhou, and Xipeng Qiu. Data mixing
laws: Optimizing data mixtures by predicting language modeling performance. arXiv preprint
arXiv:2403.16952, 2024.

Yichun Yin, Wenyong Huang, Kaikai Song, Yehui Tang, Xueyu Wu, Wei Guo, Peng Guo, Yaoyuan
Wang, Xiaojun Meng, Yasheng Wang, et al. Pangu Ultra: Pushing the limits of dense large
language models on ascend NPUs. arXiv preprint arXiv:2504.07866, 2025.

Ge Zhang, Scott Qu, Jiaheng Liu, Chenchen Zhang, Chenghua Lin, Chou Leuang Yu, Danny Pan,
Esther Cheng, Jie Liu, Qunshu Lin, et al. MAP-Neo: Highly capable and transparent bilingual
large language model series. arXiv preprint arXiv:2405.19327, 2024a.

Guodong Zhang, Lala Li, Zachary Nado, James Martens, Sushant Sachdeva, George Dahl, Chris
Shallue, and Roger B Grosse. Which algorithmic choices matter at which batch sizes? insights
from a noisy quadratic model. Advances in neural information processing systems, 32, 2019.

Hanlin Zhang, Depen Morwani, Nikhil Vyas, Jingfeng Wu, Difan Zou, Udaya Ghai, Dean Fos-
ter, and Sham Kakade. How does critical batch size scale in pre-training? arXiv preprint
arXiv:2410.21676, 2024b.

Jingwei Zuo, Maksim Velikanov, Dhia Eddine Rhaiem, Ilyas Chahed, Younes Belkada, Guillaume
Kunsch, and Hakim Hacid. Falcon Mamba: The first competitive attention-free 7B language
model. arXiv preprint arXiv:2410.05355, 2024.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A LIMITATIONS AND FUTURE WORK

While TRECs offer a practical and predictive diagnostic for guiding data placement in LLM training,
several limitations and opportunities for future work remain.

Optimizer scope. The TREC itself is not optimizer-specific: TRECs can be computed for any
training run regardless of the optimization algorithm. However, our predictive analysis of TRECs
is tailored to the AdamW optimizer, drawing on its implicit EMA formulation and corresponding
timescale. Update rules for other optimizers using weight decay (such as Sophia (Liu et al., 2023,
Algorithm 3) and MuonClip (Team, 2025b, Algorithm 1)) can be directly converted to an extended
EMA form, exactly as was done with AdamW (Sec. 4). Moreover, the EMA perspective should also
hold when AdamW is applied in a different weight basis, e.g., as in SOAP (Vyas et al., 2024), where
AdamW is applied in Shampoo’s eigenbasis (Gupta et al., 2018).

Extending predictive TREC models to optimizers without an implicit EMA formulation—including
Adagrad (Duchi et al., 2011), Adafactor (Shazeer & Stern, 2018), or SGD variants—remains an
important avenue for future exploration. For optimizers that do not use weight decay, such as
Adam (Kingma & Ba, 2014), we can potentially view them as the limit of weight-decay-enhanced
versions, as weight decay goes to zero. As shown in Appendix F.3, such optimizers may approach a
specific EMA shape, even when the timescale is undefined.

Training setups and model scales. Our experiments focus primarily on compute-optimal and
overtrained regimes, using training runs at or beyond 20 tokens-per-parameter (TPP). While this
aligns with common practices in large-scale LLM development, further work is needed to under-
stand how TREC dynamics behave in undertrained or data-scarce settings. We also primarily study
models in the 100M-4B range; exploring scaling trends for smaller or larger models could refine our
conclusions.

Data types, quality, and curriculums. Our work focuses on the placement of high-quality data
presumed to be limited in quantity, consistent with prior observations that “truly high-quality tokens
are still scarce at this moment” (Wang et al., 2025). We test placing discrete segments of HQ data,
rather than continuously evolving data distributions. Moreover, although our findings generalize
across blends involving code, math, and web text, we do not explicitly analyze how TRECs vary
for distinct data types—such as factual vs. reasoning, or instruction vs. narrative content. A natural
extension would be to combine our placement framework with recent approaches for data selection
and weighting, including AutoScale (Kang et al., 2024) and RegMix (Liu et al., 2024).

Optimizing placement to maximize retention and downstream task performance raises important
questions. For example, increasing memorization may come at the expense of general reasoning
ability (Jelassi et al., 2024), or may confound evaluation by overly tailoring training to benchmark
tasks (Dominguez-Olmedo et al., 2024). At the same time, high-quality domain-specific pre-training
has been shown to be essential for models to benefit from downstream reinforcement learning (Wang
et al., 2025). The TREC framework provides a tool for maximizing the effect of limited training
data—but whether learning from such data is ultimately beneficial remains an open, complex, and
important question in language model research.

Context length, vocabulary, and data diversity. Our study is limited to two vocabulary configu-
rations and context lengths of 2048 and 8192 tokens. The interaction between TREC dynamics and
architectural choices such as tokenizer design or sequence length remains underexplored. Similarly,
we evaluate a modest range of dataset blends, and further validation is needed to assess generality
across diverse languages or modalities.

Evaluating memorization and generalization. TRECs measure how well the final model retains
or forgets data presented at different points in training. However, we do not attempt to quantify exact
memorization as defined in prior work (e.g., substring continuation (Carlini et al., 2022; Georgiev
et al., 2024; Schwarzschild et al., 2024)). Future studies could examine how TREC loss relates
to sequence-level memorization and whether schedules that maximize retention may inadvertently
encourage overfitting. In a similar vein, Biderman et al. (2023) offered advice on where to “place
sequences that are undesirable to memorize.” It is worth studying whether deliberately placing

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

biased or undesirable data away from the TREC minimum may offer a new tool for mitigating
unwanted retention. See also our notes on the “memorization window” in Appendix B.

Predictive scope and validation. Our predictive framework successfully anticipates TREC shape
across optimizer settings and learning rate schedules. However, predictions of optimal placement
for prior work are not verified via end-to-end retraining. Additionally, our CPT experiments suggest
that predictive placement is most reliable within a particular LR schedule, and may fail to generalize
across schedules. Deeper analysis of such cross-schedule inconsistencies remains an open question.

Also, our predictive form focused on the (normalized) shape of the TREC loss (Eq. (3)), rather than
its absolute magnitude. It would be valuable to explore other forms that can predict both shape and
magnitude. It would also be valuable to expand our theoretical model to encompass these extended
forms (Appendix J).

Designing LR schedules that do not forget. Given our predictive form for TREC loss (Eq. (3)), it
is possible to design a learning rate schedule such that the EMA coefficients “cancel out” the effects
of the training fraction term. That is, in theory, we may design a schedule in order to obtain a flat
TREC.

In practice, such a no-forgetting schedule would have to rapidly decrease the LR as a power law in
training steps, in order to offset the increasing power-law of the training fraction term. In prior work,
such rapidly decreasing LR schedules do not perform as well as more-gradual decline (Defazio et al.,
2023; Bergsma et al., 2025b). Based on the discussion in Appendix J, we may understand why: since
gradients lose their effectiveness, some forgetting is actually desirable in LLM pre-training. Indeed,
the optimal EMA timescale has been shown to decrease as a power law in TPP (Bergsma et al.,
2025a), meaning that when training longer, relatively more of the data should be forgotten.

However, there are contexts where avoiding forgetting may be important (e.g., when performing
CPT or SFT). It would also be interesting to investigate and mitigate sources of local optimizer drift,
as a means to reducing the need for forgetting. Can we transition learning to a regime where new
knowledge can be added indefinitely, without fundamentally changing the representation of such
knowledge? Recent work using lazy learning to avoid catastrophic forgetting may provide valuable
insights here for the TREC perspective (Graldi et al., 2025).

Toward practical deployment. Finally, while we offer actionable guidance for curriculum design
(e.g., predicting TRECs in advance, avoiding late placement under step-drop or D2Z LR schedules,
or leveraging homogeneous CPT phases to measure TREC dips), wider adoption will depend on
usability. We will explore mechanisms to make TREC tools more performant and accessible to the
community. For example, for cases where TRECs are constructed through explicit re-evaluation
rather than prediction, compute can be saved by sampling a portion of the training batches to re-
evaluate on, rather than evaluating on every batch (as we do). Determining an acceptable fraction
depends on loss variance, and should be investigated systematically in future work.

B ADDITIONAL RELATED WORK

Optimizing data mixtures and quality. Recent work has explored methods for improving LLM
training via better data selection or mixture strategies. One line of work focuses on identifying what
constitutes high-quality data, including weak-to-strong selection using attention mechanisms (Hua
et al., 2025), filtering based on scaling law deviations (Li et al., 2024b), or assessments from trained
models (Sachdeva et al., 2024; Li et al., 2024a). Another line of work addresses how to mix datasets
drawn from multiple domains. Ye et al. (2024) introduce data mixing laws, showing that validation
loss can be predicted as a function of mixture proportions and proposing nested use of scaling laws
to generalize to larger model/data regimes. Liu et al. (2024) similarly use small-scale training runs
to regress on mixture efficacy and extrapolate to larger models, outperforming heuristic and prior-
optimized mixtures. AutoScale (Kang et al., 2024) takes a more theoretical approach, modeling
how optimal domain weights vary with training scale, and deriving recipes that converge faster and
perform better than baselines. While these efforts offer valuable tools for which data to include and
how to weight it, our work focuses on when to introduce data (possibly very limited in size) during
training.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Data curriculums and annealing phases. Our work shares conceptual motivation with curricu-
lum learning (Bengio et al., 2009; Mindermann et al., 2022), which aims to improve generalization
by presenting examples in the most effective order. In modern LLM training, this principle manifests
as staged or “annealed” data mixtures, where high-quality or domain-specific datasets are introduced
later in training. In Llama-3 (Dubey et al., 2024), the authors explicitly report following OpenAI’s
strategy (Achiam et al., 2023) of annealing on in-domain datasets like GSM8k (Cobbe et al., 2021)
and MATH (Hendrycks et al., 2021).4 Other state-of-the-art models using such practices include
OLMo-2 (OLMo et al., 2024), JetMoE (Shen et al., 2024), Phi-3 (Abdin et al., 2024), Gemini (Anil
et al., 2023), Gemma (Mesnard et al., 2024), MAP-Neo (Zhang et al., 2024a), Falcon-Mamba (Zuo
et al., 2024) and Yi-Lightning (Wake et al., 2024). These strategies are premised on the assumption
that exposing key data late in training improves downstream task performance. Recent work has
also used annealing phases to assess data quality efficiently (Blakeney et al., 2024; Dubey et al.,
2024; OLMo et al., 2024), enabling comparisons without full-scale pre-training. However, placing
the highest-quality data at the very end is a flawed heuristic, and using ablations to determine the
optimal onset for the high-quality phase is expensive. Our TREC diagnostic addresses these issues
by offering a scalable method for identifying optimal data placement locations.

Measuring loss on training data post-hoc. While not the primary focus of these works, previ-
ous studies have considered loss on previously seen training examples in order to understand model
retention dynamics. Graves (2013) observed qualitatively that generative models often adapt dis-
proportionately to recently seen data. More recently, in a comparison of different LR schedules,
Bergsma et al. (2025b) also qualitatively connected training re-evaluation losses to the exponential
moving average (EMA) coefficients of AdamW updates. Pagliardini et al. (2024) propose AdE-
MAMix, an optimizer designed to forget more slowly. They visualize loss trajectories for individual
batches across training and conclude that learning rate decay is the dominant factor controlling for-
getting. In contrast, we measure the final loss on every training batch, constructing a time-indexed
signal—the TREC—that reflects both learning and forgetting. This diagnostic enables a broader
understanding of model dynamics and forms the basis for predicting optimal data placement.

Influence estimation and data attribution. Training data influence has long been studied for in-
terpretability and accountability. Influence function approaches (Koh & Liang, 2017) and retraining-
based approximations (Feldman & Zhang, 2020; Grosse et al., 2023) estimate data value by measur-
ing its effect on final model behavior. Recent scalable methods such as DataInf (Kwon et al., 2023),
LESS (Xia et al., 2024) and LoGRA (Choe et al., 2024) leverage gradient-based approximations
(e.g., via LoRA) to approximate influence at scale. Wang et al. (2024) break from permutation-
invariant assumptions and introduce trajectory-specific data value embeddings that explicitly model
training data order. Their method uncovers distinct training phases in LLMs: a “high-impact
warmup phase,” followed by a “low-impact basin,” and then a “gradual ascending” region. While
insightful, this pattern differs from our findings: both EMA analysis and TREC diagnostics suggest
that early training data has minimal influence on final weights. In this sense, our work serves as
a valuable cross-check for attribution analyses—TRECs offer a simple, forward-only sanity-check
that can validate or challenge more complex influence models.

Memorization and forgetting dynamics. A growing literature studies memorization in LLMs,
often motivated by copyright or privacy risks. Typical methods identify memorized sequences
by testing whether prompting with part of a training example elicits exact or near-exact continu-
ations (Carlini et al., 2022; Georgiev et al., 2024; Schwarzschild et al., 2024). Morris et al. (2025)
propose an information-theoretic definition of memorization based on Kolmogorov complexity, and
show how it varies across dataset size, with conclusions that align with our own TREC results
(Sec. 3).

In a large-scale analysis, Biderman et al. (2023) found that training order had little impact on mem-
orization, with memorized sequences distributed approximately as a Poisson process across train-
ing. This contrasts sharply with our results: TRECs consistently show strong order effects on loss,

4While the placement details are often not reported (i.e., when exactly such data is introduced during pre-
training), Dominguez-Olmedo et al. (2024) specifically identify November 2023 as a turning point, after which
technical reports “start referencing certain pre-training practices that may amount to training on the test task,”
such as using instruction-tuning data or QA templates.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 2: Model architectures used in main experiments

Model dmodel nlayers dffn dhead Experiments

111M 768 10 2048 64 Sec. 3 and Sec. 5.1
266M 768 32 2048 64 Sec. 3
610M 2048 10 5461 64 Secs. 2 and 3
1.7B 2048 32 5461 64 Sec. 3
3.3B 2048 64 5461 64 Sec. 3
3.9B 2048 40 16384 128 Sec. 4 (Fig. 7), Sec. 5.3

indicating meaningful differences in retention and learning across training time. Exact sequence
reproduction may be too coarse a signal to capture the subtler, gradient-based adaptations revealed
by TREC analysis.

Seeking to avoid the known deleterious effects of data repetition (Hernandez et al., 2022), yet eager
to make full use of their high-quality data, Team (2025a) report successful re-use of such data,
so long as one “carefully estimates” and avoids the model’s “memorization window.” Though no
further details are offered, their approach suggests another promising application of TREC analysis:
it could help identify when high-quality data can be safely repeated.

While the prior works aim to avoid memorization, a separate line of work focuses on the opposite
failure mode: catastrophic forgetting. This is a central concern in continual learning (Kirkpatrick
et al., 2017), where models forget previously-learned knowledge when exposed to new data. Closely
related is the issue of loss of plasticity, in which extensive pre-training reduces a model’s capacity to
acquire new information (Ash & Adams, 2020; Lyle et al., 2023; Kumar et al., 2024; Springer et al.,
2025). Our TREC framework helps disentangle these effects. For example, training to a higher TPP
reduces the magnitude of the TREC drop (reflecting reduced plasticity), while mainly preserving the
shape of the curve (indicating which segments are most forgotten).

Continual pre-training (CPT) dynamics. Continual pre-training (CPT), or lifelong learning, in-
volves adapting models to new data distributions beyond the initial training set. Earlier work in
this area emphasized domain adaptation for classification tasks (Gururangan et al., 2020; Qin et al.,
2022), while recent LLM recipes apply CPT to full model continuation. However, such practices
often suffer from performance degradation, even when continuing on the original domain, due to
optimization challenges (Ibrahim et al., 2024; Öncel et al., 2024). CPT strategies commonly repur-
pose pre-training heuristics—such as annealing phases or late-stage data swaps—without principled
guidance. Our work introduces a TREC framework that directly informs when and how to incorpo-
rate new data during CPT.

Scale-stable dynamics under µP and normalized compute. Feature-learning parameterizations
such as µP can transfer hyperparameters across scale and yield early-time consistency of dynam-
ics across widths (Vyas et al., 2023; Kalra et al., 2023), though finite-width deviations grow on
harder tasks and later epochs. Complementing this, Noci et al. (2024) provide evidence of super-
consistency in curvature (e.g., Hessian eigenvalues) along the training trajectory, supporting training
fraction as a natural coordinate (Appendix J.5). Building on these observations, Qiu et al. (2025)
show that when loss is indexed by normalized compute x = t/t∗(p), where t is the current step and
t∗(p) is the compute-optimal step count for model size p, then training-loss curves collapse across
scales, with LR-schedule-dependent deformations explained by a noisy-quadratic analysis; collapse
also holds for fixed multiples of t∗(p). Their experiments, however, are limited to proof-of-concept
models at relatively small scale, whereas we validate TREC dynamics in LLMs up to 3.9B param-
eters. Our setting also differs in target (re-evaluation vs. training loss) and mechanism (AdamW
EMA timescale + drift).

C EXPERIMENTAL DETAILS

Table 2 provides details on the architecture for models used in the main experiments, while Ta-
ble 3 provides, for each model scale and TPP, the dataset sizes used in training, and the number

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 3: Models, tokens-per-parameter (TPP) and corresponding dataset sizes (in tokens), number
of model variants trained (LR schedule type, η, λ, B, or data placement strategy), and purpose of
trained models. In total, 41 models were trained with different data placements, and 578 TRECs
were computed over different optimizer hyperparameters.

Model TPP D Variants trained Purpose

111M 20 2.19B 61 Fitting/evaluating TREC prediction
111M 80 8.76B 50 Fitting/evaluating TREC prediction
111M 200 21.9B 21 Fitting/evaluating TREC prediction
111M 320 35.0B 40 Fitting/evaluating TREC prediction
111M 1280 140.1B 11 Fitting/evaluating TREC prediction
266M 20 5.31B 25 Fitting/evaluating TREC prediction
266M 80 21.2B 19 Fitting/evaluating TREC prediction
266M 320 85.0B 19 Fitting/evaluating TREC prediction
266M 1280 339.8B 3 Fitting/evaluating TREC prediction
610M 20 12.1B 205 Fitting/evaluating TREC prediction
610M 80 48.5B 53 Fitting/evaluating TREC prediction
610M 82 50.0B 30 Mid-training data placement tests (code blend)
610M 200 121.3B 14 Fitting/evaluating TREC prediction
610M 320 194.1B 5 Fitting/evaluating TREC prediction
1.7B 20 34.3B 31 Fitting/evaluating TREC prediction
1.7B 80 137.2B 11 Fitting/evaluating TREC prediction
1.7B 160 274.3B 1 Fitting/evaluating TREC prediction
1.7B 320 548.6B 1 Fitting/evaluating TREC prediction
3.3B 20 66.5B 2 Fitting/evaluating TREC prediction
3.3B 23 76.5B 1 Fitting/evaluating TREC prediction
3.9B 234 909.2B 2 Mid-training data placement tests (math blend)
3.9B 239 923.4B 9 Continual PT data placement tests (math blend)

Table 4: Tuned hyperparameters for µP proxy model

σW,base 8.67e-02
η̃ 1.62e-02

αinput 9.17
αoutput 1.095

of training variations explored at that scale (varying data placement strategy, or LR schedule and
hyperparameters η, λ, B). In total, 578 TRECs were computed for the main experiments.

Further details of the 3.9B model and settings for continual pre-training experiments are in Ap-
pendix I. In the remainder of this section, we discuss the main pre-training settings.

All trained models were GPT2-style LLMs (Radford et al., 2019) with ALiBi (Press et al., 2022)
embeddings and SwiGLU (Shazeer, 2020) non-linearity. We use the AdamW optimizer. Following
standard practice, we do not apply weight decay or bias to LayerNorm layers. AdamW settings are
β1 = 0.9, β2 = 0.95, and ϵ = 1e−8. We report cross-entropy loss. By default we parameterize
with maximal update parameterization, µP (Yang et al., 2021), with hyperparameters set via proxy
tuning, as described below.

For a given TPP, all models have the exact same warmup phase: a linear warmup of the learning rate
from 0 to the maximum value. In all runs (aside from training of the 3.9B model), warmup was 10%
of the total steps. Learning rate warmup is standard practice in LLM training (Brown et al., 2020;
Rae et al., 2022; Biderman et al., 2023; Dubey et al., 2024; Kosson et al., 2024).

All models in the main experiments were trained on a Cerebras CS-3 system. 610M-parameter
20TPP models take roughly 6 hours each to train on a single CS-3.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Proxy model hyperparameter tuning. We now describe how we tuned the µP base hyperparam-
eters (HPs). Our proxy model is a 39M-parameter LLM with a width dproxy of 256, depth of 24
layers, and a head size of 64. Tuning runs were conducted on 800M tokens with a B = 256 se-
quences and a context length of 2048 tokens. Tuning was performed by randomly sampling 350
configurations of base LRs, initialization standard deviations, and embedding/output-logit scaling
factors. Table 4 gives the resulting top-performing values, which we used as our tuned HPs.

It is also worth noting that the LR values shown in Fig. 3, Fig. 10 and the appendix figures are the
base µP LRs before µP-adjustment. Calculation of τ (Sec. 3) and the EMA coefficients (Eq. (2))
requires the adjusted LR (i.e., multiplying by dproxy/dmodel). Also, when LR decay is used, reported
LR values always refer to the peak/max LR of the LR schedule.

C.1 PLACEMENT TESTS: EXPERIMENTAL DETAILS

For the placement tests in Sec. 2, we used the standard training and validation splits of the SlimPa-
jama dataset (Soboleva et al., 2023), but with different weighting of subsets as given in Table 1.
For these experiments, we used a context length of 8192 tokens, batch sizes of 126, base peak LR
of η = 1.62e−2 (the MUP proxy-model-tuned LR), and weight decay of λ = 0.1. We used the
Llama-3 (Dubey et al., 2024) vocabulary size of 128256.

C.2 TREC FITTING AND PREDICTION: EXPERIMENTAL DETAILS

For the experiments and analysis in Sec. 3, Sec. 4 and Sec. 5.1, we use a context length of 2048
tokens and the GPT2 (Radford et al., 2019) vocabulary of size 50257. For these experiments, we
use the default source weightings for the SlimPajama dataset.

D FURTHER DATA PLACEMENT RESULTS

We present additional experimental results supporting our finding that optimal data placement cor-
responds to the lowest point on the TREC. These results cover additional learning rate schedules,
summarize placement effectiveness across blends, and extend validation to alternative metrics.

D.1 WITHIN-SCHEDULE PLACEMENT OUTCOMES

0 2 4

Ordered training tokens ×1010

2.2

2.4

2.6

2.8

3.0

3.2

3.4

L
os

s

Decay-to-zero: training, TREC, CB loss

Train loss

TREC

Val loss vs HQ data pos

0 2 4

Ordered training tokens ×1010

0.0

0.5

1.0

1.5

2.0

L
ea

rn
in

g
ra

te
(a

ft
er
µ

P
ad

ju
st

m
en

t)

×10−3

LR scheds for data curriculum tests

LR decay function
Decay-to-zero

10×
Jump-to-1%

Figure 11: TREC-guided data placement: further details. Left: TRECs predict best data place-
ment in terms of resulting CB validation loss, for a linear decay-to-zero (D2Z) LR schedule. Right:
LR schedules for all tested placements in Sec. 2.

Fig. 11 provides the decay-to-zero (D2Z) data placement results, along with the LR schedules for
D2Z, 10×, and Step drop (after 70% of training); these are the three schedules tested in the Sec. 2
experiments. For D2Z, although the TRECs bend back up to baseline at the end as expected, note
the tenth data placement position still obtains the lowest average TREC loss, and consequently is
the optimal data placement location.

Fig. 12 isolates the results of the placement tests. Here, the y-axis gives the code blend (CB) val-
idation loss. In each case, the aggregate blend, corresponding to a uniform mix of the code and

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

1 2 3 4

Ordered training tokens ×1010

2.26

2.28

2.30

2.32

2.34

2.36

2.38

C
o

de
-b

le
nd

(C
B

)
va

lid
at

io
n

lo
ss

Step decay

By CB data position

All general blend

All aggregate blend

1 2 3 4

Ordered training tokens ×1010

2.20

2.22

2.24

2.26

2.28

2.30

2.32

2.34

C
o

de
-b

le
nd

(C
B

)
va

lid
at

io
n

lo
ss

10× decay

By CB data position

All general blend

All aggregate blend

1 2 3 4

Ordered training tokens ×1010

2.16

2.18

2.20

2.22

2.24

2.26

2.28

C
o

de
-b

le
nd

(C
B

)
va

lid
at

io
n

lo
ss

Decay-to-zero

By CB data position

All general blend

All aggregate blend

Figure 12: Code blend (CB) validation loss across different LR schedules and CB training-
data placements. Same result data as in Fig. 1 (left), Fig. 2, and Fig. 11. Left: Step decay schedule,
Middle: 10× decay, Right: D2Z. All 30 models that are trained with data placement improve over
no placement at all (“All general blend” line), while placing in the optimal TREC-guided position
always improves over the aggregate blend (“All aggregate blend” line, i.e., mixing the code blend
uniformly across all training steps).

1 2 3 4

Ordered training tokens ×1010

2.70

2.72

2.74

2.76

2.78

2.80

2.82

2.84

G
en

er
al

-b
le

nd
(G

B
)

va
lid

at
io

n
lo

ss

Step decay

By CB data position

All general blend

All aggregate blend

1 2 3 4

Ordered training tokens ×1010

2.66

2.68

2.70

2.72

2.74

2.76

2.78

2.80

G
en

er
al

-b
le

nd
(G

B
)

va
lid

at
io

n
lo

ss

10× decay

By CB data position

All general blend

All aggregate blend

1 2 3 4

Ordered training tokens ×1010

2.60

2.62

2.64

2.66

2.68

2.70

2.72

2.74

G
en

er
al

-b
le

nd
(G

B
)

va
lid

at
io

n
lo

ss

Decay-to-zero

By CB data position

All general blend

All aggregate blend

Figure 13: General blend (GB) validation loss across different LR schedules and code-blend
training-data placements. Counterpoint to Fig. 12 (same trained models), except now the y-axis
gives loss on the general blend. Left: Step decay schedule, Middle: 10× decay, Right: D2Z. Placing
code blend (CB) data at the TREC minimum significantly impairs performance on the general blend.

general data, is a strong baseline: it is only bested by placing the code data at the optimal placement
position.

Fig. 13 presents results when all the above trained models are evaluated on the general blend (GB)
validation data, rather than the code blend. This experiment can be interpreted as a form of ablation:
if we replace GB data with non-GB (i.e., CB) data at a given position during training, which position
leads to the greatest degradation in performance on GB validation (i.e., where not to place)? In ef-
fect, we are testing the necessity of GB data at each position by observing the impact of its omission.
The greatest degradation consistently occurs at the position of minimum TREC loss, thus validating
the placement hypothesis (Hypothesis 1) through omission rather than commission of task-relevant
data.

Key takeaway 4: The TREC minimum is also the most important placement position for GB data.

D.2 CROSS-SCHEDULE-TREC PLACEMENT HYPOTHESIS

Hypothesis 4: Across different LR schedules, position-wise TREC loss predicts the effective-
ness of high-quality data placement at corresponding positions.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

This hypothesis extends Hypothesis 1, proposing that TRECs are not only useful within a single
training run but that their absolute values are meaningful and comparable across optimization sched-
ules. For example, in the context of Sec. 2, the question is: does absolute TREC loss predict CB
validation loss across Step, 10×, and decay-to-zero LR schedules?

If true, one could use predicted TRECs from multiple learning rate schedules (or weight decay/batch
size configurations) to identify the globally best HQ data placement and optimization settings—i.e.,
the position, LR schedule, and other hyperparameters yielding the lowest TREC loss. Consider a
5B HQ token budget alongside 45B baseline tokens. One could scan different schedules, find the
decile with the lowest predicted Lre(t), and insert HQ data there. Similarly, if HQ data arrives late
(e.g., recent web data to “advance the model’s knowledge cut-off” (Dubey et al., 2024)), one might
select the schedule with the lowest TREC loss in the final decile, knowing this will maximize task
performance.

2.54 2.56 2.58 2.60 2.62 2.64 2.66 2.68

Avg. TREC loss in train part

2.15

2.20

2.25

2.30

2.35

2.40

C
B

va
l.

lo
ss

w
he

n
pl

ac
in

g
in

pa
rt

1 23456
7

8

9

10

1 234567
8

9

10

1 2345
6

7

89
10

Absolute TREC losses do not perfectly predict HQ data placement benefit

Decay-to-zero

10× decay

Step decay

Figure 14: Correlation between CB validation loss and TREC loss, by placement position.
CB validation loss from placement in each decile of training, versus the actual absolute TREC loss
measured in that decile. Markers labeled with their deciles (1-10), dashed lines to show linear trends.
While CB validation varies monotonically with TREC loss within one LR schedule, the correlation
does not hold well across schedules.

Fig. 14 illustrates this idea. Each marker plots CB validation loss (y-axis) from placing HQ data in
a training decile against the TREC loss (x-axis) in that decile. Markers are grouped by LR schedule,
with dashed lines showing idealized linear trends.

Within each schedule, TREC loss monotonically predicts validation performance, consistent with
Hypothesis 1. But across schedules, the alignment breaks down. For example, placing HQ data
in the final decile of the 10× schedule yields lower validation loss than many decay-to-zero place-
ments, despite higher TREC loss. Furthermore, large TREC differences sometimes translate to
minor validation gains, and vice versa, indicating TREC loss alone does not capture all relevant
dynamics.

We revisit this in Appendix I, where our 3.9B experiments show a similar disconnect: CPT segments
with the lowest TREC loss (typically under high LR) do not always yield the best validation loss
when HQ data is inserted. Interestingly, while TREC loss on the placed data itself matches TREC
predictions, the gains do not translate to the held-out validation sets.

Key takeaway 5: While TRECs reliably guide HQ placement within a schedule, their absolute
values do not consistently predict optimal placement across schedules. Further work is needed to
guide schedule selection for data placement.

E FURTHER TREC RESULTS

This section provides supporting analysis for the TREC behavior discussed in Sec. 3 of the main
paper. We expand on trends observed across model scale, dataset size, and tokens-per-parameter
(TPP), and include additional plots that quantify absolute loss drops and timescale effects. Our
findings reinforce the role of the AdamW timescale τ in shaping TRECs and offer deeper insight
into how training dynamics evolve across compute regimes.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

E.1 FURTHER SCALING RESULTS

0.00 0.25 0.50 0.75 1.00

Fraction of training tokens, t̂

2.2

2.4

2.6

2.8

3.0

T
R

E
C

Same TPP (=20) → same TREC drop

N
111M

266M

610M

1.7B

3.3B

0.00 0.25 0.50 0.75 1.00

Fraction of training tokens, t̂

2.7

2.8

2.9

3.0

3.1

T
R

E
C

111M: ↑TPP → ↓TREC-drop

TPP
20

80

320

1280

0.00 0.25 0.50 0.75 1.00

Fraction of training tokens, t̂

2.35

2.40

2.45

2.50

2.55

2.60

T
R

E
C

610M: ↑TPP → ↓TREC-drop

TPP
20

80

320

Figure 15: Absolute magnitude of TREC drops decrease with TPP. Plots show absolute unnor-
malized TRECs, same data as in Fig. 4: Left: τ ≈ 0.3; TPP is 20 for all model scales, and absolute
magnitudes of drops are similar. Middle: τ = 0.021, all models 111M, and magnitude of drop
decreases with TPP. Right: τ = 0.105, all models are 610M, and magnitude of drop again decreases
with TPP.

The main paper mainly focused on the shape and position of TREC valleys, as these are most
pertinent for optimal data placement. As part of those findings, we found that τ and TPP both
modulate the shape of the TRECs. We now examine the absolute magnitude of the TREC loss
drops. As shown in Fig. 15, when models are trained at constant TPP (e.g., 20), the overall TREC
trajectories exhibit similar total drops across scales (left). However, when we increase TPP while
holding model scale fixed (middle and right panels), the absolute TREC drop shrinks.

This behavior is notable because it raises the hypothesis that at high TPP, models become more
inertial or rigid—possibly due to saturation or reduced plasticity—absorbing less signal per training
fraction. This aligns with recent findings on overtraining and reduced update effectiveness at high
compute budgets (e.g., Kumar et al. (2024); Springer et al. (2025)). From another perspective,
it could also mean that lower-TPP training focuses more on memorization, and fitting particular
training examples, consistent with other recent findings (Morris et al., 2025; Jelassi et al., 2024), as
discussed in Sec. 3 and Sec. 5.1.

0.00 0.25 0.50 0.75 1.00

Fraction of training tokens, t̂

−0.06

−0.05

−0.04

−0.03

−0.02

−0.01

0.00

D
ro

p
fr

om
m

ax
im

um
T

R
E

C
lo

ss

B=504, λ=0.1, η varies

η (τ)

4.05e-03 (0.421)

8.09e-03 (0.210)

1.62e-02 (0.105)

3.24e-02 (0.053)

6.48e-02 (0.026)

0.00 0.25 0.50 0.75 1.00

Fraction of training tokens, t̂

−0.06

−0.05

−0.04

−0.03

−0.02

−0.01

0.00

D
ro

p
fr

om
m

ax
im

um
T

R
E

C
lo

ss

B=504, η=1.62e-02, λ varies

λ (τ)

0.025 (0.421)

0.05 (0.210)

0.1 (0.105)

0.2 (0.053)

0.4 (0.026)

0.00 0.25 0.50 0.75 1.00

Fraction of training tokens, t̂

−0.06

−0.05

−0.04

−0.03

−0.02

−0.01

0.00

D
ro

p
fr

om
m

ax
im

um
T

R
E

C
lo

ss

η=1.62e-02, λ=0.1, B varies

B (τ)

126 (0.026)

252 (0.053)

504 (0.105)

1008 (0.210)

2016 (0.421)

Figure 16: Total summed TREC drop invariant to τ (610M, 80 TPP). Same data as in Fig. 3, but
showing absolute differences between the per-step and overall-maximum TREC loss. Within and
across sweeps of η (left), λ (middle), or B (right) the total summed TREC drop is fairly consistent.
Thus the more narrow the timescale, the larger the drop.

Fig. 16 shows that even though the shape of the TREC shifts with τ , the total (summed) TREC drop
across training steps is fairly consistent (for a given TPP regime). Together with the above findings,
this suggests that τ governs the width of the valley (how long data influences the model), while TPP
sets its average depth (how strongly the model responds).

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

The upshot is that compute-efficient training regimes—like 20 TPP, where TREC valleys are sharp—
may benefit most from intelligent data placement.5 Note such regimes are often used for frontier-
scale training due to their compute-efficiency. MoEs are also now often used for frontier-scale
efforts, and in MoEs, expert parameters can also see relatively-low effective TPP (Sec. 5.1). TREC-
guided data curriculums are therefore likely to offer benefits to frontier-scale training going forward.

E.2 BATCH SIZE

We now investigate how TRECs behave across a wide range of batch sizes. In particular, we study
regimes well above the critical batch size Bcrit (McCandlish et al., 2018; Shallue et al., 2019; Merrill
et al., 2025)—the point beyond which increasing batch size significantly degrades loss as a function
of total tokens trained.

Following Bergsma et al. (2025a), we estimate Bcrit ≈ 2150 tokens for 610M models trained to 20
TPP (via a fitted power law in training tokens), and we sweep batch sizes from 63 to 8064 (over
two orders of magnitude). In each case, we adjust weight decay to maintain a constant AdamW
timescale of τ = 0.421, allowing us to isolate batch size effects from timescale variation.

0.00 0.25 0.50 0.75 1.00

Fraction of training tokens, t̂

2.5

2.6

2.7

2.8

2.9

T
R

E
C

Similar TREC shape across B

B
63

126

252

504

1008

2016

4032

8064

0.00 0.25 0.50 0.75 1.00

Fraction of training tokens, t̂

−0.07

−0.06

−0.05

−0.04

−0.03

−0.02

−0.01

0.00

D
ro

p
fr

om
m

ax
im

um
T

R
E

C
lo

ss

Very large B forgets more of training

B
63

126

252

504

1008

2016

4032

8064

Figure 17: TRECs and batch size (610M, 20 TPP, τ = 0.421.) Left: Absolute TREC losses
across batch sizes; very large batches achieve worse loss, but patterns are somewhat similar. Right:
Absolute TREC losses, but normalized so they have same maximum value; B = 8064 behaves quite
differently than all other settings.

Fig. 17 presents the resulting TRECs. The left panel shows the absolute loss curves: as batch size
increases, the total TREC drop seems to become somewhat shallower, especially once batch size
exceeds Bcrit. The right panel aligns curves by their maximum values in order to compare shapes
directly. For B ≤ 2016, the curves remain remarkably similar in shape and position. However,
for B = 8064 (well beyond Bcrit), the curve diverges notably, indicating a qualitatively different
training dynamic.

This divergence aligns with theoretical expectations: as B exceeds Bcrit, gradient estimates become
increasingly redundant, reducing the marginal utility of each new example. From a TREC perspec-
tive, gradients from individual samples have less impact on the overall update, which focuses more
on common features than idiosyncrasies of individual batches.

Viewed through the lens of TRECs, these results offer a novel diagnostic perspective on the batch
size scaling frontier. These findings also suggest that models trained far beyond Bcrit may benefit
less from careful data placement, as individual batches contribute less distinct signal to model up-
dates. On the other hand, in situations where we might wish to avoid memorization (Appendix A),
using larger batches could help accomplish this objective.

5Hoffmann et al. (2022) found the optimal model size Nopt and dataset size Dopt to scale roughly equally
as compute increases, with the optimal D/N ratio around 20 TPP. Further studies have found similar re-
sults (Besiroglu et al., 2024; Porian et al., 2024), and 20 TPP has become synonymous with compute-optimal
training (Dey et al., 2023; Zhang et al., 2024b). Starting with Llama (Touvron et al., 2023), released models
are often trained for more than 20 TPP because smaller, overtrained models are more efficient for inference.

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Key takeaway 6: TRECs remain stable across batch sizes up to Bcrit, but diverge significantly
beyond it, highlighting diminishing marginal data influence in large-batch regimes.

E.3 ADAM MOMENTUM β1 AND VELOCITY β2

0.00 0.25 0.50 0.75 1.00

Fraction of training tokens, t̂

2.50

2.55

2.60

2.65

2.70

R
e-

ev
al

ua
ti

on
lo

ss

Similar shape across Adam β1, β2

β1(β2)

0.0 (0.95)

0.5 (0.95)

0.9 (0.95)

0.9 (0.99)

0.95 (0.99)

0.99 (0.9999)

0.999 (0.9999)

0.00 0.25 0.50 0.75 1.00

Fraction of training tokens, t̂

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

re
-e

va
lu

at
io

n
lo

ss

Large β1 → slightly-earlier re-eval drop

β1(β2)

0.0 (0.95)

0.5 (0.95)

0.9 (0.95)

0.9 (0.99)

0.95 (0.99)

0.99 (0.9999)

0.999 (0.9999)

Figure 18: TRECs and Adam β1 and β2 (610M, 20 TPP, τ = 0.210). Left: Absolute TREC
losses for a range of β1 and β2 settings. Both no momentum (β1 = 0.0) and too much momentum
(β1 = 0.999) have highest absolute loss. Right: Normalized TREC losses; despite wide variation in
absolute loss, normalized TREC shape is remarkably similar across all settings, with only very large
momentum beginning to slightly shift the TREC minimum to earlier in training.

To assess whether TREC shape is driven by other timescales in the optimizer, we sweep the
AdamW momentum (β1) and velocity (β2) parameters while holding other hyperparameters fixed
(τ = 0.210, 610M model, 20 TPP). We tried a variety of settings, and report those that completed
training successfully (i.e., without failure due to numerical instabilities).

Fig. 18 shows that, although absolute TREC losses vary with β1 and β2 (especially at extremes
such as β1 = 0 or β1 = 0.999), TREC shape remains remarkably consistent across settings. This
is especially evident in the right panel, where curves are normalized. Only very large momentum
begins to shift the TREC minimum to slightly earlier in training.

These results reinforce the conclusion from the main text: while standard settings of β1 and β2

affect training dynamics and absolute loss, they do not significantly alter TREC shape. The AdamW
timescale (via τ ) appears to be the dominant factor shaping TREC trajectories.

Key takeaway 7: TREC shape is largely invariant to changes in β1 and β2, underscoring the
dominant role of the AdamW timescale in shaping learning dynamics.

F FURTHER PREDICTION RESULTS

In this section, we provide additional details on our predictive framework for TRECs (Sec. 4), in-
cluding the specific evaluation metrics used, derivations underlying key equations, and further anal-
ysis across model scales and LR schedules.

F.1 FURTHER PREDICTION DETAILS

When computing predictions from our analytical framework (Eq. (3)), we discard the initial EMA
coefficient c0, as it corresponds to the influence of the model’s random initialization rather than any
datapoint observed during training. We focus on the remaining coefficients ci for i ≥ 1, which
quantify the contribution of training updates to the final model weights.

Pearson correlation (rp). Since we aim to predict the shape of TRECs Lre(t̂) rather than absolute
scale, we evaluate prediction quality using a scale- and shift-invariant metric: the Pearson correlation
rp between the predicted curve L̂re(t̂) and the true curve Lre(t̂). All plotted curves are similarly
normalized to emphasize shape agreement.

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Empirically, we found that Pearson correlation better aligned with human judgments of prediction
quality than alternatives like ℓ2 loss, R2, or MSE. It is computed as follows:

rp =

∑
t(Lre(t)− µLre

)(L̂re(t)− µL̂re
)√∑

t(Lre(t)− µLre
)2 ·
√∑

t(L̂re(t)− µL̂re
)2
, (5)

where µLre and µL̂re
are the means of the true and predicted TREC values, respectively.

This measure ranges from −1 (perfect inverse correlation) to +1 (perfect match), with 0 indicating
no correlation.

Illustrative example. The middle panel of Fig. 5 illustrates the full prediction process for a Cyclic
LR schedule. (For reference, Fig. 19, bottom left, shows the full LR trajectory.) We compute EMA
coefficients c(t̂) from the LR and weight decay schedule (Fig. 5, left), apply Eq. (3) with a fitted
exponent m to obtain L̂re(t̂) (Fig. 5, middle), and compare it to the actual TREC (Fig. 5, right).
The predicted curve tracks the shape of the true TREC, particularly in later training stages where the
EMA contribution becomes more pronounced.

F.2 SCHEDULE HISTORY AND TRECS: Cyclic VS. WSD

In this section, we study the question: does the full LR schedule history matter, or is late-stage
alignment of EMA and t̂ sufficient to determine TREC shape?

Motivation. Our predictive framework assumes that TREC shape is primarily determined by the
EMA coefficients and the training fraction (Eq. (3)). However, real-world schedules can differ
substantially in their early phases while converging later. To test the extent to which schedule
history leaves residual effects on TRECs, we directly compare Cyclic and WSD schedules under
controlled conditions.

Experimental setup. We train 610M-parameter models to 80 TPP on SlimPajama using identical
peak LR, batch size, weight decay, and dataset. The only difference is the LR schedule:

• The WSD schedule warms up, then maintains a long flat LR phase, before decaying to zero.

• The Cyclic schedule oscillates but aligns with WSD in the final 20% of training.

Because the batch size and dataset are fixed, the training fraction t̂ at each step matches across
schedules.

Results. Fig. 19 shows LR schedules (left), EMA coefficients (middle), and true TRECs (right)
for both schedules (top: WSD, bottom: Cyclic). In the final 20% of training—where LR schedules
align—the EMA coefficients converge exactly. Correspondingly, after a brief transient period, the
TRECs also align, despite the differences in earlier schedule history.

In summary:

• When EMA and t̂ align, TRECs align—even across different LR histories.

• Prior LR fluctuations leave negligible residual effect on TREC shape once EMA and t̂ match.

Key takeaway 8: These results reinforce that given similar amounts of pre-training, EMA coeffi-
cients and training fraction are sufficient to determine TREC shape, supporting the generality
of our predictive framework across schedules.

F.3 ADAM AS THE LIMIT OF ADAMW WHEN λ → 0

We now explain why TRECs converge as λ → 0, or equivalently, as the AdamW timescale τ =
1/λ → ∞. In this regime, the effect of weight decay vanishes, and AdamW behavior approaches
that of standard Adam.

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

0.00 0.25 0.50 0.75 1.00

Fraction of training tokens, t̂

0

1

2

3

4

L
ea

rn
in

g
ra

te
(a

ft
er
µ

P
ad

ju
st

m
en

t)

×10−3 WSD LR schedule

η (τ)

4.05e-03 (0.421)

8.09e-03 (0.210)

1.62e-02 (0.105)

3.24e-02 (0.053)

0.00 0.25 0.50 0.75 1.00

Fraction of training tokens, t̂

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

co
effi

ci
en

t
va

lu
es

WSD EMA coefficients

η (τ)

4.05e-03 (0.421)

8.09e-03 (0.210)

1.62e-02 (0.105)

3.24e-02 (0.053)

0.00 0.25 0.50 0.75 1.00

Fraction of training tokens, t̂

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

T
R

E
C

WSD normalized TRECs

η (τ)

4.05e-03 (0.421)

8.09e-03 (0.210)

1.62e-02 (0.105)

3.24e-02 (0.053)

0.00 0.25 0.50 0.75 1.00

Fraction of training tokens, t̂

0

1

2

3

4

L
ea

rn
in

g
ra

te
(a

ft
er
µ

P
ad

ju
st

m
en

t)

×10−3 Cyclic LR schedule

0.00 0.25 0.50 0.75 1.00

Fraction of training tokens, t̂

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

co
effi

ci
en

t
va

lu
es

Cyclic EMA coefficients

0.00 0.25 0.50 0.75 1.00

Fraction of training tokens, t̂

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

T
R

E
C

Cyclic normalized TRECs

Figure 19: Comparison of Cyclic and WSD schedules (610M, 80 TPP). Top row: Using WSD
schedules; bottom row: Using Cyclic schedules. Left: LR schedule. Training shares the same
batch size, weight decay, and dataset, differing only in LR function (cyclic vs. WSD). Middle:
Corresponding EMA coefficients c(t̂). In the final 20% of training, schedules align in LR decay,
resulting in identical EMA coefficients. Right: TRECs. In the final portion of training where EMA
and training fraction align, TRECs also align closely, indicating that EMA coefficients and training
fraction, rather than prior LR schedule history, predominantly determine TREC shape.

Fig. 1 (middle) (in the paper’s introduction, Sec. 1) illustrates this convergence at 20 TPP: the TREC
for λ = 0 (vanilla Adam) closely resembles that for λ = 0.001. Since both TPP and τ are fixed, the
training-fraction term t̂m in Eq. (3) remains unchanged across settings, so convergence must arise
from changes in the EMA coefficients c(t̂).

0.00 0.25 0.50 0.75 1.00

Fraction of training tokens, t̂

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

E
M

A
co

effi
ci

en
ts

Decay-to-zero EMA coefficients

λ
0.001

0.0125

0.025

0.05

0.1

0.2

0.4

0.8

1.0

0.00 0.25 0.50 0.75 1.00

Fraction of training tokens, t̂

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

E
M

A
co

effi
ci

en
ts

10× decay EMA coefficients

λ (τ)

0.001 (42.1)

0.01 (4.21)

0.1 (0.421)

1.0 (0.042)

0.00 0.25 0.50 0.75 1.00

Fraction of training tokens, t̂

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

T
R

E
C

10× decay mirrors Adam as λ→ 0

λ (τ)

0.0 (NaN)

0.001 (42.1)

0.01 (4.21)

0.1 (0.421)

1.0 (0.042)

Figure 20: Effect of weight decay on EMA coefficients and TRECs. Left: Normalized EMA
coefficients for the decay-to-zero LR schedule across decreasing λ values. As λ → 0, the EMA
coefficients flatten toward the shape of the LR schedule (coefficients undefined at λ = 0). Cor-
responding TRECs are shown in Fig. 1, middle. Middle: EMA coefficients for the 10×-decay
schedule. As weight decay decreases, the curve approaches the λ = 0 (Adam) case. Right: TRECs
under the 10×-decay schedule. As λ → 0, TRECs converge to the λ = 0 baseline, confirming that
TREC shape becomes increasingly determined by the LR schedule alone.

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Fig. 20 provides direct evidence. As shown in the left, decreasing λ causes the EMA coefficients
to flatten toward the shape of the LR schedule. We observe this convergence behavior both for the
decay-to-zero schedule (left) and the 10× decay schedule (middle), with corresponding TRECs for
10× shown in the right panel.

In fact the EMA convergence can be derived mathematically.

Derivation: ci → ηiλ as λ → 0. From Sec. 4, the EMA coefficient for the ith update is:

ci =

 T∏
j=i+1

(1− ηjλ)

 ηiλ. (6)

We expand the product in parentheses to first order in λ:

T∏
j=i+1

(1− ηjλ) = (1− ηi+1λ)(1− ηi+2λ) · · · (1− ηTλ)

= (1− ηi+1λ− ηi+2λ+O(λ2)) · · · (1− ηTλ)

= 1− λ

T∑
j=i+1

ηj +O(λ2), (7)

Substituting the first-order approximation (which holds for small λ, i.e., our target regime) back into
the expression for ci, we obtain:

ci ≈

1− λ

T∑
j=i+1

ηj

 ηiλ (8)

= ηiλ− ηiλ
2

 T∑
j=i+1

ηj

 . (9)

As λ → 0, the second-order term vanishes more rapidly, yielding:

lim
λ→0

ci = ηiλ. (10)

That is, in the small-λ limit, the EMA coefficients ci become proportional to the LR schedule ηi.
Since the training-fraction adjustment t̂m in Eq. (3) is fixed, this convergence in EMA coefficients
explains why the shape of AdamW TRECs approach those of vanilla Adam as λ → 0.

G FITTING THE TRAINING-FRACTION EXPONENT m∗

This section provides additional details about our methodology for fitting and evaluating the power-
law relationship for the training-fraction exponent m∗ (Eq. (4)). We describe how we select fitting
data, evaluate prediction quality, validate generalization across model scales, and assess how the fit
transfers across learning rate schedules.

G.1 DATA FILTERING AND FIT CRITERIA

To ensure robust and meaningful fits, we restrict our fitting dataset to regimes exhibiting well-
behaved training and stable TRECs:

• Effective τ range: We include only runs with τ values between 0.001 and 1.0, corresponding to
training runs where learning was stable and meaningful signal is present.

• Excluding unstable hyperparameters: We discard configurations with extremely high or low
learning rates or weight decay values, which frequently result in divergence, loss spikes, or poor
convergence.

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

• Batch size filtering: We remove runs where batch size exceeds the estimated critical batch size
Bcrit, beyond which training enters a distinct large-batch regime (see Appendix E.2).

These filters ensure that the resulting fit captures relationships in the regime of effective optimiza-
tion, avoiding pathological outliers.

G.2 EVALUATION METRIC: R2 IN LOG SPACE

We quantify the accuracy of our predicted m∗ values using the coefficient of determination, R2,
computed in log space.

Let {mi} denote the true optimal training-fraction exponents, i.e., those where the prediction has
the highest Pearson rp agreement with the true TRECs. Let {m̂i} be the values predicted by our
power-law fit. Then:

R2 = 1−
∑

i (logmi − log m̂i)
2∑

i

(
logmi − logm

)2 (11)

This log-space evaluation accounts for multiplicative relationships and downweights the influence
of very large or small outliers.

G.3 FITS AT OTHER MODEL SCALES

Table 5: TREC rp rises with scale:
even as R2 with true m∗ declines.

Eval scale m∗: R2 TREC: rp

111M 98.9% 96.6%
266M 97.2% 97.5%
610M 98.7% 98.4%
1.7B 89.0% 98.7%
3.3B 76.7% 98.6%

Table 6: Both TPP and τ improve estimate of m∗: fit at
111M scale, evaluation (TRECs & m∗ fits) at 610M.

Fit of m∗ = C · (TPP)µ1 · (τ)µ2

m∗: R2 TREC: rp→ uses τ → uses TPP

✗ ✗ -45.9% 84.1%
✗ ✓ 15.1% 90.6%
✓ ✗ 90.9% 97.7%
✓ ✓ 98.7% 98.4%

10−2 10−1 100

τ

2

5

10

20

50

O
pt

im
al

T
ra

in
-f

ra
c.

ex
p

on
en

t,
m
∗

Power law preds & observed 266M data

TPP
20

80

320

m∗ = 1.4 · TPP0.164 · τ−0.450

10−2 10−1 100

τ

2

5

10

20

O
pt

im
al

T
ra

in
-f

ra
c.

ex
p

on
en

t,
m
∗

Power law preds & observed 3.3B data

TPP
20

30

m∗ = 1.4 · TPP0.164 · τ−0.450

Figure 21: Generalization of m∗ power-law fits to larger models. We evaluate the power-law fit
made at 111M scale: Left: Fit applied to 266M model; right: Fit applied to 3.3B model. While fit
accuracy declines slightly at larger scale, TREC predictions remain strong overall.

Fig. 21 extends the evaluation of our m∗ fit to additional model scales not included in the primary
figure (Fig. 6). Fit quality slightly degrades at the 3.3B scale.

However, even though the optimal m∗ values exhibit growing prediction error (Table 5, middle
column R2 results), the predicted TRECs still closely match the true TREC shapes (Table 5, right
column rp results)—which is what we ultimately care about. We attribute this resilience to (1) TREC
predictions being robust to exact training fraction exponents, and (2) reduced noise in the reference
TRECs at larger model scales, which compensates for slightly-worse m∗ prediction.

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Table 6 provides the ablation results mentioned in the main paper, showing how the power law
performs when only a function of τ , only a function of TPP, or when a function of neither—i.e.,
using a constant m tuned over all the fitting data.

G.4 FIT GENERALIZATION ACROSS LEARNING RATE SCHEDULES

All m∗ power-law fits in this paper are derived from training runs using a Linear decay-to-zero LR
schedule. We assess whether these coefficients generalize to other schedules by applying them to
TREC predictions on models trained with a Cosine decay schedule.

• Using the Linear-based fit, we achieve a TREC prediction accuracy of rp = 94.2% on Cosine-
schedule runs.

• Fitting a dedicated power-law using Cosine runs improves the prediction score to rp = 97.8%.

These results indicate that while the predictive framework retains strong performance across related
schedules, a schedule-specific fit yields better accuracy. Accordingly, when evaluating prior work
that uses Cosine pre-training schedules (e.g., Sec. 5.2 and Appendix H), we employ our Cosine-
specific m∗ fit in order to optimize our TREC predictions.

Key takeaway 9: Power-law prediction of m∗ remains robust across model scales and related
schedules, though schedule-specific fits can improve accuracy. Even when m∗ prediction slightly
degrades, the resulting TREC predictions remain highly accurate.

H EVALUATING PRIOR LLM RECIPES: FURTHER DETAILS

This section provides methodological details for how we predicted TRECs for prior LLM training
recipes, including Llama-3 (405B), OLMo-2 (13B), Feng et al. (8B), Pangu-Ultra (135B), and
Nemotron-4 (15B).

H.1 METHODOLOGY FOR PREDICTING TRECS OF PRIOR LLMS

0.00 0.25 0.50 0.75 1.00

Fraction of training tokens, t̂

0.0

0.2

0.4

0.6

0.8

1.0

L
ea

rn
in

g
ra

te

×10−4

Pangu-Ultra: Learning rate schedule

Reasoning phase

Annealing phase

Reasoning phase

Annealing phase

0.00 0.25 0.50 0.75 1.00

Fraction of training tokens, t̂

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

E
M

A
co

effi
ci

en
ts

Pangu-Ultra: EMA coefficients

Reasoning phase

Annealing phase

Reasoning phase

Annealing phase

0.00 0.25 0.50 0.75 1.00

Fraction of training tokens, t̂

0.0

0.2

0.4

0.6

0.8

1.0

P
re

di
ct

ed
T

R
E

C

Pangu-Ultra: HQ phases ≈ predicted TREC

Reasoning phase

Annealing phase

Reasoning phase

Annealing phase

Figure 22: Predicted TRECs for the Pangu-Ultra training recipe. Left: LR schedule used in
training the Pangu-Ultra model (Yin et al., 2025), including distinct “reasoning” and “annealing”
phases. Middle: EMA coefficients computed from the LR schedule, batch size, and weight de-
cay. Right: Predicted TREC. Both the reasoning and annealing phases—where high-quality data is
introduced—align with the predicted TREC valley, indicating the model is well-positioned to retain
this curated data.

To enable TREC prediction for existing models, we reconstructed the learning rate (LR) schedules
from published training recipes. For example, Fig. 22 (left) shows the full LR schedule for Pangu-
Ultra (Yin et al., 2025), including the designated “reasoning” and “annealing” phases. From these
schedules, and given all these recipes used the AdamW optimizer, we computed the corresponding
AdamW EMA coefficients (e.g., Fig. 22, middle).

31



1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

We also extracted dataset size, batch size, sequence length, and weight decay values from the training
documentation. If batch size or sequence length varied over the course of training (as is sometimes
the case), we used the values applied for the majority of training. Early-stage variations typically
occur well before the predicted TREC valley and thus have minimal impact on our prediction. More-
over, in continual-time interpretation, such variations do not materially affect the TREC prediction
once progress is normalized to training fraction t̂.

To determine the appropriate training-fraction exponent m, we applied the power-law fit described
in Eq. (4), using models trained with a Cosine decay schedule (Appendix G.4). This was appro-
priate because the prior work considered here—Llama-3, Feng et al., OLMo-2, Pangu-Ultra, and
Nemotron-4—all used Cosine LR schedules during most of pre-training. However, special mid-
training phases that hold the LR constant or rapidly decay it to zero (as in Fig. 22) means that it
is not exactly a Cosine schedule that is ultimately used over all of pre-training. Yet, while TREC
prediction accuracy can benefit from a schedule-matched m⋆, recall that our earlier analysis has
shown:

• m⋆ is relatively robust to schedule type,

• TREC prediction remains accurate even when m⋆ is slightly off, and

• our goal here is to assess general placement trends, rather than fit precise minima.

H.2 PANGU-ULTRA RESULTS

Fig. 22 (right) illustrates the predicted TREC for the Pangu-Ultra training recipe (Yin et al., 2025),
based on its published learning rate schedule and training phases.

The Pangu-Ultra recipe includes two late-stage phases specifically intended to improve model rea-
soning and instruction-following capabilities. As described in the paper:

“In the second reasoning phase, we increase the proportion of high-quality and
diverse mathematical and coding data—raising it to over 60% of the corpus to
enhance the reasoning capabilities of Pangu Ultra. [...] Moreover, LLM-generated
synthetic data is widely incorporated to enrich the corpus.
The third annealing phase is designed to help the model consolidate and effec-
tively apply the knowledge and reasoning skills acquired in the previous stages.
Therefore, we place greater emphasis on instruction data, [...] [including] care-
fully refined ... short and long chain-of-thought responses.”

As shown in Fig. 22 (right), both the reasoning and annealing phases occur during the TREC valley
predicted by our framework. In some sense, this alignment between real-world data placement
and our predicted optimal locations supports the validity of our framework. However, note the
TRECs rise quickly during the reasoning phase, suggesting that shifting this HQ phase slightly
earlier may have been beneficial. That is, a small timing adjustment could have helped avoid placing
expensively-curated data in the region where the model has already begun to stabilize, minimizing
the risk of diminished impact.

H.3 ANALYSIS OF NEMOTRON-CPT (PARMAR ET AL., 2024) STRATEGY

A particularly informative paper to interpret through our framework is the recent work by Parmar
et al. (2024). While their study includes a number of thoughtful ablations, it lacks a unifying theory
of data placement. As such, their findings can benefit from reinterpretation in light of our insights
into TRECs and training curriculums.

The starting point of their study is the Nemotron-4 15B base model, pre-trained on 8T tokens
(533 TPP). Aiming to enhance this model without restarting training from scratch, they explore
a continual pre-training (CPT) strategy—adding 300B further tokens, including 2.8B high-quality
QA tokens mixed into a “high-quality” blend. The HQ blend is placed at the end of the CPT phase.
Their main research questions concern: (1) the optimal onset point for introducing the HQ blend
during CPT, and (2) the learning rate schedule to apply during CPT.

32



1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Although this work is framed as CPT, we first note that the original model was trained using a 10×
LR decay schedule, which is suboptimal relative to decay-to-zero (D2Z) (Bergsma et al., 2025b).
Indeed, their own results show D2Z is a better schedule: continuing with the same pre-training
data distribution but using D2Z during the 300B token extension improves downstream accuracy
from 48.9% to 51.5%—a 5.3% relative gain over the base model, using less than 4% extra data.
In other words, decaying to zero raises accuracy much more than would be expected by instead
simply extending the 10× schedule over the same number of tokens. While placing HQ data boosts
performance further, the total improvement naturally reflects the combined effects of both D2Z and
HQ data placement. Crucially, if Parmar et al. were to train further on an additional 300B tokens,
they would not benefit again from applying D2Z—that benefit would already have been consumed.
This is precisely why we define methods that place data before the LR has fully decayed to be
mid-training rather than true CPT (Sec. 5.3): true CPT methods can be applied repeatedly (e.g.,
repeatedly re-warming and re-decaying the LR), while mid-training benefits, like those in Parmar
et al. (2024), can only be obtained once.

Second, by placing HQ data at the very end of training, their ablations of LR schedules are intrin-
sically confounded. For example, they find that 100× decay performs marginally better than D2Z
during the “CPT” phase. But as we have shown, D2Z TRECs rise sharply near the end, so late-stage
data is unlikely to be retained. By not decaying fully, they may make better use of the (sub-optimally)
placed data. Similarly, they observe that the WSD schedule (Hu et al., 2024; Hägele et al., 2024)
underperforms compared to Cosine decay, and “hypothesize that in continued pre-training, switch-
ing the decay schedule from the one used during pre-training is harmful.” However, this explanation
is doubtful: different schedules yield different EMA coefficients, and thus different TRECs. Their
effectiveness therefore depends not on matching schedule shapes, but on whether the HQ data is
placed near the TREC minimum.

Third, their experiments are affected by data repetition, which further complicates interpretation.
Repetition is known to degrade pre-training quality (Hernandez et al., 2022), and this likely applies
even to high-quality data (Team, 2025a). While the subsequent work by the same team (Feng et al.,
2024) controlled for repetition more carefully across training scales, the original Nemotron-CPT
study in Parmar et al. (2024) allows repetition to grow significantly as the size of the CPT phase
increases from 100B to 300B to 1T tokens. Specifically, the 2.8B QA tokens represent 10% of the
HQ blend, implying roughly 10.7× repetition if used for the full the 300B-token phase and 35.7×
in the 1T-token case. Their results confirm the downside of this: training with HQ data for the full
CPT phase yields 53.6% accuracy at 100B tokens, but only 52.8% at 300B—i.e., longer training
hurts when it induces excessive repetition.

For all these reasons, it is unlikely that some of the paper’s specific conclusions will generalize. For
instance, their recommendation that “the switch [to the high-quality] data distribution should occur
at ηmax/5 in the learning rate schedule” is not robust across LR schedules or training regimes. More
generally, our framework offers a principled alternative for determining optimal data placement that
accounts for optimizer dynamics.

I FURTHER DETAILS ON 3.9B CPT EXPERIMENTS

I.1 EXPERIMENTAL DETAILS

Table 2 and Table 3 provide high-level architectural and dataset details for the 3.9B model experi-
ments. This model generally follows the experimental setup of Appendix C, with a few noteworthy
exceptions detailed here. The 3.9B model is a GPT2-style LLM (Radford et al., 2019) using AL-
iBi (Press et al., 2022) position embeddings and a squared-ReLU (So et al., 2021) activation func-
tion. As shown in Table 2, it employs an unusually wide FFN dimension (8×dmodel), which we
found to be effective in early experiments.

Both pre-training and CPT phases use the AdamW optimizer with β1 = 0.9, β2 = 0.95, and
ϵ = 10−16. The pre-training warmup spans 375M tokens (not 10% of total tokens), followed by
linear decay to zero learning rate—also used in the CPT phase. Training is parameterized via the
CompleteP variant of µP (Dey et al., 2025), with hyperparameters tuned using a depth-32 proxy
model. The model uses a context length of 8192 tokens and a batch size of 672 sequences. Weight
decay is set to λ = 7.9×10−4 based on a projection for optimal τ following Bergsma et al. (2025a).

33



1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

Table 7: SlimPJ and other sources used in training the 3.9B model. General Blend (GB) is used in
pre-training and continual pre-training phases, while Math Blend (MB), serving as high-quality data
via up-weighting of OpenWebMath, is evaluated after placing it at particular locations during CPT.

Subset General Blend (GB) Math Blend (MB)

GitHub 3.83% 3.07%
Books 3.62% 2.89%
ArXiv 4.21% 3.37%

Wikipedia 3.16% 2.53%
StackExchange 2.67% 2.14%
Fineweb-Edu 64.75% 51.80%
Cosmopedia 4.66% 3.73%

OpenWebMath 1.88% 28.18%↑

UltraTextBooks-2.0 0.42% 2.29%↑

StarCoder 10.79% 0.0%

We also apply the layerwise weight decay correction from Dey et al. (2025, Table 1). The peak
learning rate during pre-training is η = 0.15 (selected via proxy tuning), and we compare three
different CPT learning rates (10%, 3%, and 1% of the peak PT learning rate); the specific results for
each are noted in the corresponding figures.

The data blends used in these experiments are listed in Table 7. The general blend (GB) is used ex-
clusively during pre-training and as background data in CPT. The math blend (MB), which heavily
up-weights OpenWebMath, serves as our designated high-quality (HQ) data and is inserted at dif-
ferent positions during CPT to assess TREC-guided placement strategies, as noted in Sec. 5.3. The
MB phase is 234 steps, which comprise the final 234 steps of the 3303-step CPT phase when placing
at the End, while placement at Half starts at step 1980. Placement results were given previously in
Fig. 10.

I.2 EFFECT OF LEARNING RATE ON TREC LOSS DURING CPT

0.80 0.85 0.90 0.95 1.00

Fraction of training tokens, t̂

η controls emphasis of PT vs. CPT

η
0.0015

0.0045

0.015 CPT phase

0.00 0.25 0.50 0.75 1.00

Fraction of CPT training tokens, t̂

1.74

1.75

1.76

1.77

1.78

A
bs

ol
ut

e
T

R
E

C

Larger LRs → lower TREC loss

η
0.0015

0.0045

0.015

Figure 23: 3.9B CPT: higher η in CPT leads to lower TREC loss. Left: Predicted TRECs for
combined PT+CPT (zoomed into final 20%). Right: Actual TRECs in CPT phase: η = 0.015 has
largest drop.

Fig. 23 (left) shows the predicted TRECs for the 3.9B model (PT+CPT), zoomed-in to show the
final portion of pre-training and including the CPT phase (shown in blue shading). The depth of the
TREC valley varies with the CPT learning rate: as η increases, the minimum TREC loss becomes
deeper. For both SFT and CPT contexts, we hypothesize that TREC predictions can help suggest the
optimal post-training learning rate (or at least, the optimal range over which LR should be swept).
We are exploring this further in ongoing work.

The observed TRECs from the actual training runs (Fig. 23, right) match the predicted trajectories
(in blue shaded area) closely.

34



1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

Interestingly, although η = 0.015 produces the deepest TREC valley, it results in the worst validation
performance (Fig. 10). This illustrates a key failure mode for Hypothesis 4: while TREC-guided
placement is robust within a given training schedule, it does not reliably generalize across learning
rate schedules.

1.75 1.76 1.77 1.78

TREC loss on general blend

1.800

1.805

1.810

1.815

1.820

1.825

1.830

1.835

T
R

E
C

lo
ss

on
pl

ac
ed

da
ta

Loss on placed data ∝ TREC loss

η
0.0015

0.0045

0.015

1.75 1.76 1.77 1.78

TREC loss on general blend

1.786

1.787

1.788

1.789

1.790

1.791

V
al

id
at

io
n

lo
ss

on
m

at
h

bl
en

d

Val loss ∝ TREC loss in two regimes

η
0.0015

0.0045

0.015

Figure 24: 3.9B CPT: Predictive power of TRECs across LR schedules. Left: TREC loss on
positions in general blend (training without placement) correlates very well with TREC loss on the
inserted/training math blend (i.e., when this math blend data is inserted at those positions, i.e., Half
and End placement). Right: TREC loss on positions in general blend correlates with validation loss
on math blend data (i.e., when separate training math blend data is inserted at those positions)—
when η <= 0.0045; large η seems to induce another TREC loss regime, with different correlation
with validation performance.

We investigate this issue further in Fig. 24, where we now also assess the TREC losses on the placed
data segments—i.e., the HQ data that was positioned at specific CPT points (either halfway through
CPT or at the end). Fig. 24 (left) shows that the TREC loss on the general blend (in the same
segment) correlates nearly perfectly with the loss on the placed math blend, regardless of the LR or
where the data was inserted. This confirms that TREC behavior generalizes from homogeneous to
heterogeneous data schedules: the curve retains its predictive structure even when the inserted data
differs in content.

Given this strong correlation, the critical question becomes whether performance on the training HQ
data (math blend) generalizes to the validation HQ data. This is assessed in Fig. 24, right. Here, we
observe two distinct regimes. For CPT runs using lower peak learning rates (η ≤ 0.0045), there is
a strong linear relationship between TREC loss and validation loss on the math blend. However, at
η = 0.015, validation performance deviates from this trend entirely.

We speculate that high learning rates may push the model into a different region of the optimization
landscape—possibly one that emphasizes memorization or shallower features—disrupting the cor-
respondence between training and validation loss. This phenomenon is intriguing and merits further
study in future work.

J THEORETICAL ANALYSIS OF TRECS

J.1 MOTIVATION AND KEY CONCEPTS

Sec. 4 showed that TREC shapes are predicted well by the AdamW EMA coefficients, but only after
adjusting for training fraction. Why is this adjustment needed?

Our key hypothesis is that the effectiveness of a gradient update depends on where in parameter
space the update is implicitly applied. An update that was useful when computed may be less
effective later in training if the local minimum for its batch has shifted. We argue that the pace of
this minimizer drift is largely scale-invariant and governed by the training fraction.

More formally, each training batch Bt, as an empirical sample, defines a corresponding loss surface
ℓ(Bt, θ) over model parameters θ. This surface is fixed by the batch itself (the data, the model
architecture, and the parameter space do not change), but our position on the surface, θi, changes

35



1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

θ

ℓ(Bi, θ)

ℓ(B1, θ)

ℓ(B2, θ)

ℓ(Bt, θ)

(a) Setup: Each training batch defines a distinct em-
pirical loss surface over model parameters θ. We fo-
cus on batch t = 100 (blue curve).

θ

ℓ(Bt, θ)

θ1θ2

θt
θT−1
θT

Batch Bt, t=100
Params θi, i varies

(b) Fixed loss surface, changing θi: loss on batch Bt

changes as parameters are updated (via gradients on
other batches).

θ

ℓ(Bt, θ)

θt

∇θℓ(Bt, θt)
θ∗(Bt, θt)

Batch Bt, t=100
Params θt, t=100

(c) Training on Bt: at step t of training, following the
gradient ∇θℓ(Bt, θ)

∣∣
θ=θt

moves θ toward a batch-
specific and θt-specific local minimum.

θ

ℓ(Bt, θ)

θT

∇θℓ(Bt, θt)θ∗(Bt, θT )

Batch Bt, t=100
Params θT , T=1000

(d) Re-evaluation: applying the earlier gradient to the
final model parameters θT now hurts batch-specific
loss.

Figure 25: Illustration of how parameters and gradients affect batch-specific loss: (a) batch Bt

defines its own unique loss surface ℓ(Bt, θ), with two local minima. (b) Each step of training defines
a new set of parameters θi, which determines the batch-specific loss. Now, the effectiveness of a
gradient update to parameters θ depends on θ’s current position: (c) during training, an update in
the gradient direction (red arrow) is effective—it moves θt toward the local minimum θ∗(Bt, θt);
(d) after training, when we re-evaluate Bt, incorporating that same gradient update is ineffective—it
now moves us away from the (new) local optimum, θ∗(Bt, θT ). Updates from batches seen later in
training, when t is closer to T , are more likely to improve loss on batch Bt.

over training. Fig. 25 illustrates: at t = 100, a gradient on Bt moves θ toward that batch’s minimum.
At T = 1000, reapplying the same update from a different position can increase loss, because the
optimal direction has changed.

This perspective follows naturally from the EMA view of AdamW (and SGD): the final parameters
θT are a weighted sum of earlier updates, effectively “applying” each update to the final model
state, even if the update was computed long before. Batches nearer the end of training tend to have
gradients more aligned with θT , and hence the gradients on these batches retain more of their original
usefulness. That is, when applied at step T , these gradients are more effective in terms of lowering
loss on their original batches, which manifests as lower loss upon re-evaluation (using parameters
θT ).

In the remainder of this section, we formalize this idea using a simple quadratic model that allows
us to isolate the factors—EMA weighting and minimizer drift—that govern TREC loss. We proceed
in three steps:

1. Begin with SGD, showing how it accumulates local minimizers via EMA-like dynamics.

2. Derive TREC loss as a function of EMA weights and minimizer drift.

3. Extend to AdamW, where the EMA is over preconditioned gradient updates.

We then explain why the training-fraction exponent in our predictive form should be scale-invariant,
and conclude by discussing how this viewpoint aligns with the empirical evidence presented else-
where in the paper.

36



1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

J.2 SETUP AND PRELIMINARIES

To gain insight into TREC loss, we adopt a simplified analytical model similar in spirit to the work
of Zhang et al. (2019), who derived closed-form convergence and loss expressions for various opti-
mizers under different batch sizes. As in their setup, we assume the optimizer dynamics are invariant
to rotation and translation, allowing us to model loss as locally quadratic and separable across di-
mensions.

Specifically, we assume that each training batch Bt defines an empirical loss surface L(Bt,θ) over
model parameters θ. We approximate this surface as locally quadratic at the current point in train-
ing.6 Let θ∗(Bt) denote the local minimum. In D dimensions, the loss at step t, given model
parameters θt, is:

L(Bt,θt) =
1

2
(θt − θ∗(Bt))

⊤ ·Ht · (θt − θ∗(Bt)) =

D∑
d=1

ℓ(d)(Bt, θ
(d)
t ), (12)

where Ht = diag(h
(1)
t , . . . , h

(D)
t ) is a diagonal positive semi-definite Hessian (reflecting the batch-

specific loss curvature), and

ℓ(d)(Bt, θ
(d)
t ) =

1

2
· h(d)

t ·
(
θ
(d)
t − θ∗,(d)(Bt)

)2
(13)

is the per-dimension contribution to the loss.

The key idea: “optimal” parameters can change. To streamline the analysis, we now focus
on a single dimension and drop the superscript notation. Unlike Zhang et al. (2019), we explicitly
consider that the locally-optimal parameter θ∗ for a batch Bt may depend on the model state
at a given training step, i.e., what’s optimal depends on where we are on the loss surface. We
therefore denote this local optimum as θ∗(Bt, θs): the local minimizer for batch Bt as computed
at step s; think of Bt as defining the loss surface, while θs defines our current position on it—and
the local minimizer depends on our position. This is illustrated in Fig. 25, where the loss surface is
fixed, but the local minimizer is different at step s = 100 (Fig. 25c) and step s = 1000 (Fig. 25d), as
our position on the loss surface changes. Furthermore, for simplicity, we assume the batch-specific
curvature ht remains fixed across steps.

At each step of training, the loss is evaluated at the current model parameters θt (our current position
on the loss surface), so the standard training loss curve is:

ℓ(Bt, θt) =
1

2
· ht · (θt − θ∗(Bt, θt))

2
. (14)

However, for TREC, we compute loss using the final model parameters θT (our final position on the
loss surface), i.e., using the same empirical loss surface, but positioned near a (potentially) different
local minimizer. Thus the TREC is:

ℓ(Bt, θT ) =
1

2
· ht · (θT − θ∗(Bt, θT ))

2
. (15)

We have endeavored to make this key concept clear because this distinction—between what’s opti-
mal at the time a batch was seen (Eq. (14)) and what’s optimal when re-evaluating it later using the
final model parameters (Eq. (15))—is central to understanding TREC dynamics. We will now ex-
amine how minibatch SGD accumulates these position-specific minimizers and how temporal shifts
between θ∗(Bt, θt) and θ∗(Bt, θT ) affect the TREC loss.

J.3 SGD: TREC LOSS AND EMA COEFFICIENTS

We now derive the TREC loss under vanilla SGD and show how it relates to the EMA coefficients
and shifts in local optima over time.

6While LLM training minimizes cross-entropy loss, it is common to perform a local quadratic approxima-
tion, i.e., a second-order Taylor expansion in the parameters, with the constant Hessian replaced by the instan-
taneous Hessian along the training trajectory (LeCun et al., 1989). Thus conclusions drawn from quadratic
models often generalize to large, realistic networks (Zhang et al., 2019).

37



1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

The gradient of the quadratic loss surface at step t is:
∇θℓ(Bt, θt) = ht · (θt − θ∗(Bt, θt)), (16)

and the parameter update under SGD is:
θt+1 = θt − ηt∇θℓ(Bt, θt) = θt − ηtht · (θt − θ∗(Bt, θt)), (17)

where ηt is the learning rate at step t.

This can be rearranged as:
θt+1 = (1− ηtht) · θt + ηtht · θ∗(Bt, θt), (18)

which is equivalent to an exponential moving average (EMA):
yt = (1− αt)yt−1 + αtxt, (19)

where yt = θt, αt = ηtht, and xt = θ∗(Bt, θt) (assuming the LR ηt is chosen so that the sum is
stable, i.e., 0 ≤ αt ≤ 1).

Just as in the AdamW EMA case (Sec. 4), we can unroll the recursion and explicitly compute the
contribution of each step to the final parameter value:

θT =

T∑
i=1

αi

T∏
j=i+1

(1− αj)

 θ∗i (i) =
T∑

i=1

ciθ
∗
i (i), (20)

where ci = αi

∏T
j=i+1(1− αj).

As noted above, we are primarily interested in the TREC loss of batch Bt, evaluated at the final
model parameters θT , on a loss surface with minimizer θ∗(Bt, θT ) (Eq. (15)). Substituting our
EMA expression for θT into Eq. (15):

ℓ(Bt, θT ) =
1

2
· ht ·

([
T∑

i=1

ciθ
∗
i (i)

]
− θ∗(Bt, θT )

)2

. (21)

To isolate the contribution from i = t:

ℓ(Bt, θT ) =
1

2
· ht ·

∑
i ̸=t

ciθ
∗
i (i)

+ ctθ
∗(Bt, θt)− θ∗(Bt, θT )

2

. (22)

In the special case where θ∗(Bt, θt) = θ∗(Bt, θT ) (i.e., the local minimizer has not changed):

ℓ(Bt, θT ) =
1

2
· ht ·

∑
i ̸=t

ciθ
∗
i (i)

+ (ct − 1)θ∗(Bt, θT )

2

. (23)

The loss in Eq. (23) is fully minimized when ct = 1 and all other ci = 0. More generally, the steps
with the highest EMA coefficient will obtain the lowest loss: with a static local minimizer, the EMA
coefficients fully define the TREC trajectory.

However, in practice, the local optimum for batch t may drift over the course of training. We model
this by assuming:

θ∗(Bt, θt) = rt · θ∗(Bt, θT ), (24)
with rt ∈ R a scaling factor (possibly < 0). The TREC loss becomes:

ℓ(Bt, θT ) =
1

2
· ht ·

∑
i ̸=t

ciθ
∗
i (i)

+ (ctrt − 1)θ∗(Bt, θT )

2

. (25)

This expression emphasizes that the TREC loss is minimized when ctrt = 1 (and the sum over i ̸= t
vanishes), i.e., when the model fully incorporates the local minimizer for batch t via a high ct, and
this minimizer is well-aligned with the one at the final step T . This analytical result mirrors our
empirical finding (Sec. 4) that EMA coefficients alone are insufficient to predict TREC loss: early
gradients may have high coefficients ct, but the local minimizers of their corresponding batches can
drift substantially over training (changing rt), leading to poor retention.

38



2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

J.4 ADAMW: TREC LOSS AND PRECONDITIONED UPDATES

We obtain a similar result when analyzing AdamW with the same locally-quadratic loss surface. As
derived in Sec. 4, AdamW parameters at the final step T can be expressed as a convex combination
of weight updates:

θT =

T∑
i=1

cixi, (26)

where each update xi has the form:

xt = − 1

λ
· m̂t√

v̂t + ϵ
, (27)

and each coefficient is defined as:

ci =

 T∏
j=i+1

(1− ηjλ)

 ηiλ. (28)

Substituting this decomposition into the TREC loss expression, we obtain:

ℓ(Bt, θT ) =
1

2
· ht ·

∑
i ̸=t

cixi

+ ctxt − θ∗(Bt, θT )

2

. (29)

TREC loss is minimized when ct is large and the update xt points in the same direction as the
final-step local minimizer θ∗(Bt, θT ). In other words, it is primarily the sign alignment of xt and
θ∗(Bt, θT ) that determines whether the update helps or hurts TREC loss.

In the quadratic model (and optimization invariant to translation), we can assume without loss of
generality that θt = 0 at the time of the update. The gradient becomes:

∇θℓ(Bt, θt) = ht · (θt − θ∗(Bt, θt)) = −htθ
∗(Bt, θt), (30)

and assuming no momentum for simplicity, the update is:

xt =
1

λ
· htθ

∗(Bt, θt)√
vt + ϵ

= κtθ
∗(Bt, θt), (31)

where κt ≥ 0 absorbs the preconditioning, curvature, and scaling terms.

To model drift in the loss surface, we again assume that the local minimizer for batch t changes over
time and satisfies:

θ∗(Bt, θt) = rt · θ∗(Bt, θT ). (32)

Substituting the change in local minimizer (Eq. (32)) into our simplified expression for the update
(Eq. (31)), and using this update in the TREC loss equation (Eq. (29)) yields:

ℓ(Bt, θT ) =
1

2
· ht ·

∑
i ̸=t

cixi

+ (ctκtrt − 1)θ∗(Bt, θT )

2

. (33)

This loss is reduced when the AdamW update contributes a value that matches the current minimizer
direction, where rt controls the update direction (since ct ≥ 0 and kt ≥ 0). As before, loss is max-
imally reduced when ct = 1 and the weight on all other updates vanishes. Loss is also maximally
reduced when the product ctκtrt ≈ 1. In practice, if the local minimizer has shifted substantially—
especially if rt < 0—then the early update may push in the wrong direction, increasing TREC loss
despite having a high EMA coefficient.

This again echoes the central insight: an update’s value is determined not only by its EMA weight
ct, but by its alignment with θT ’s position in the loss landscape.

39



2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

J.5 LOCAL MINIMIZER DRIFT AND THE TRAINING-FRACTION CLOCK

In the preceding analysis, the term rt captures the effect of local minimizer drift—the change in the
batch-specific optimum θ∗(Bt, ·) between when the gradient was computed (at step t) and when it is
effectively applied (in the final model θT ). We now explain why the natural coordinate for this drift
is the training fraction t̂ = t/T .

In the SGD case, the final parameters θT can be written as an EMA with time-varying smoothing
αt = ηtht, where ηt is the learning rate and ht the curvature along the current parameter direction
(Eqs. (18) and (20)). When αt values are larger, more weight is put on recent minimizers (shrinking
the EMA timescale), and parameters evolve faster from step to step. In particular, the pace at which
the final parameters θT move away from earlier parameters θt is directly governed by the sequence
{ηshs}Ts=t. We naturally assume that larger movement in parameters coincides with larger move-
ment in local optimizers, i.e., that the distance between θ∗(Bt, θt) and θ∗(Bt, θT ) is also governed
by this sequence.

In AdamW, the same qualitative picture holds: the learning rate enters directly into the EMA co-
efficients ct (Eq. (28)), while the curvature appears as a scaling factor in the updates (Eq. (31)).
Although preconditioning partly normalizes curvature variation, the product of learning rate and ef-
fective curvature still governs the rate at which parameters update, and hence the rate at which local
minimizers drift.

Recent work by Noci et al. (2024) shows that, under maximal update parameterization (µP), curva-
ture statistics such as the largest Hessian eigenvalues evolve in a nearly scale-independent way, a
phenomenon they term super-consistency. Qiu et al. (2025) build on this observation, hypothesizing,
and providing empirical evidence, that a related curvature proxy depends only on training fraction
(what they term “normalized compute”) and is largely scale-independent under µP. That is, if we
align two models of different sizes by their training fraction t̂ = t/T , their curvature trajectories
h(t̂) are nearly identical.

If both the curvature h(t̂) and the learning rate schedule η(t̂) are scale-independent functions of t̂,
then their product η(t̂)h(t̂)—which governs the pace of parameter drift in the quadratic model—is
also scale-independent. Consequently, the sequence of curvature/learning-rate conditions experi-
enced by a small model at t̂ = 0.3 is essentially the same as that experienced by a large model
at t̂ = 0.3. Based on the prior work in µP and our own empirical results (discussed below, Ap-
pendix J.7), we speculate that in more complex settings, other aspects of training dynamics also
evolve with training fraction. For example, in µP neural networks trained with cross-entropy loss,
the extent of feature learning and the evolution of representations in earlier layers should also evolve
invariant to model size. This yields a training-fraction clock for minimizer drift: relative training
progress, not absolute tokens, is the natural coordinate for rt in re-evaluation dynamics. In this view,
rt should be written as r(t̂).

J.6 FROM CURVATURE TO FUNCTIONAL FORM

Our quadratic-model analysis suggests that the product η(t̂)h(t̂)—learning rate times curvature—
sets the magnitude of parameter updates, and hence the rate at which local minimizers move. A
gradient computed at training fraction t̂ will remain well aligned with the final model parameters θT
only if the subsequent minimizer motion between t̂ and the end of training is small.

Conceptually, we can think of a drift rate at each point in training, proportional to η(t̂)h(t̂), which
measures how fast the optimizer “forgets” earlier minimizers. The cumulative drift that erodes the
utility of a gradient from fraction t̂ is then the integral of this rate over the remaining training,

r(t̂) ∝
∫ 1

t̂

η(s)h(s) ds.

Empirically, we find that r(t̂) is well fit by a power law t̂m, as used in our predictive form for the
TREC (Eq. (3)):

L̂re(t̂) = 1− c(t̂)p t̂m,

where c(t̂) is the AdamW EMA coefficient and m captures the cumulative effect of curvature- and
LR-driven drift along the training-fraction clock.

40



2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

J.7 EMPIRICAL EVIDENCE FOR VARIATION IN m

Interpreting the t̂m term as a cumulative drift means that larger m values (higher drift) correspond
to gradients losing effectiveness more quickly; higher drift affects the TRECs by increasing the span
of “forgotten” data—i.e., the data with baseline higher TREC loss (regardless of c(t̂) coefficient).

From our analysis, m should change under interventions that modify either the curvature/learning-
rate product η(t̂)h(t̂) or the optimizer’s effective memory. Consistent with this prediction, we ob-
serve systematic variation in m across multiple settings presented earlier in the paper:

Lower EMA timescale. Shortening the AdamW EMA timescale τ decreases the optimizer’s ef-
fective memory, and therefore increases the rate-of-change of parameters. This should lead to faster
reductions in gradient effectiveness, with an effect on TRECs independent of the separate, analyti-
cal effect of a smaller τ on the EMA coefficients themselves. Indeed, we observe higher optimal m
values for lower timescales in our experiments (e.g., Fig. 6). Moreover, our m∗ power law fitted at
111M scale predicts well across model sizes: the τ -governed drift is scale-invariant.

Higher tokens-per-parameter (TPP). We also see a small but consistent increase in optimal m
when increasing the TPP ratio (also shown in Fig. 6). Note the normalized LR schedule η(t̂) does
not change with TPP. We therefore hypothesize that the degree of overtraining (as defined by TPP)
slightly affects the pace of change in curvature (as a function of training fraction), which drives the
pace that earlier gradients become ineffective. Yet it remains notable that these changes in m are
solely TPP-dependent and do not depend on the absolute number of training steps (which scales
with model size for a given TPP).

Fewer MoE experts. In sparse Mixture-of-Experts (MoE) models, reducing the number of experts
increases the number of tokens processed by each expert’s parameters, raising the expert’s effective
TPP. The impact on m closely matches the shift observed when directly changing TPP in dense
models, suggesting that MoE layers inherit the same drift scaling in TPP as non-expert dense layers.

CPT vs. from-scratch training. Recall Fig. 7 comparing two 3.9B models trained with identical
configurations—same data, batch size, weight decay, and an identical learning-rate schedule η(t)—
but different starts: one from random initialization and one from a near-optimal checkpoint (i.e., this
variant undergoes continual pre-training, CPT). Although η(t̂) and EMA coefficients c(t̂) were iden-
tical in both runs, the two trajectories occurred at different points in training fraction t̂ and thus likely
under different curvature statistics h(t̂). Beyond curvature variation, changes in the extent of feature
learning and evolving representations in earlier layers may also play a role. In a deep network, early
updates are large compared to weight magnitudes (despite preconditioning) (Kosson et al., 2024),
and thus optimization steps can produce disproportionately large shifts in the parameters, and thus
the optimal batch minimizers. Empirically, the CPT model, starting in a region already well aligned
with the final parameters, exhibited little minimizer drift: its t̂m term remains close to 1, producing
a TREC prediction closely following the EMA coefficients. In contrast, the scratch model traversed
a much larger region of the loss landscape, with substantial drift that reduced alignment to early
updates; its t̂m term rises gradually from 0 to 1, with a corresponding TREC valley only aligning to
the EMA coefficients near the very end of training.

WSD vs. Cyclic LR schedules. In Appendix F.2, we compared the WSD and the Cyclic schedules.
Training runs with the two schedules completely align in step-wise LR, weight decay, and batch
size—in the final 20% of training. In a way, this is a similar test to the CPT vs. from-scratch
comparison above: two similar training runs, but initializing from different start points. In this
case, however, the two models have undergone a similar total amount of training during their initial
phases, and consequently the initial gradients in the final phase have similar alignment with the final
model parameters. Consequently, the final period spans the same range of training fraction, and their
TRECs align very well over this final period. For the same peak LR, the WSD schedule does appear
to drop slightly lower at around, e.g., t̂ = 0.8, which may reflect a more mature model at that stage
(perhaps because this schedule, unlike Cyclic, does not have the periods where LR returns to zero).

41



2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

Different m∗ for different learning rate schedules. While the minor differences between WSD
and Cyclic are unlikely to be consequential in terms of data placement strategy, differences in the
final stages of training have a greater impact.

As we noted in Appendix G.4, optimal m tends to change when the learning rate decay pattern
changes (schedule-specific fits yield the best predictive performance). We also separately observed
that Constant learning rate schedules produce the largest optimal m values. This is consistent with
our drift interpretation: without decay, η(t̂) remains high even late in training, inducing substantial
movement in θT and its associated local minimizer. Earlier gradients are therefore misaligned more
quickly, requiring a larger m to match the observed TRECs.

Across these cases, the observed shifts in m are consistent with changes in the effective η(t̂)h(t̂)
product. Together, these results suggest that a functional form may exist for local minimizer drift that
not only normalizes across scale (as does the training fraction term), but also across LR schedules.
That is, the functional form for this drift could directly incorporate the LR schedule itself.

42


	Introduction
	TRECs predict effective data placement
	TREC shape is governed by the AdamW timescale
	Predicting TRECs: adjusting for training fraction
	Applications
	Application to sparse mixture-of-experts (MoE)
	Application to evaluating LLM recipes
	Continual pre-training of a 3.9B LLM using TREC insights

	Related work
	Conclusion
	Limitations and Future Work
	Additional related work
	Experimental details
	Placement tests: experimental details
	TREC fitting and prediction: experimental details

	Further data placement results
	Within-schedule placement outcomes
	Cross-schedule-TREC placement hypothesis

	Further TREC results
	Further scaling results
	Batch size
	Adam momentum 1 and velocity 2

	Further prediction results
	Further prediction details
	Schedule history and TRECs: Cyclic vs. WSD
	Adam as the limit of AdamW when 0

	Fitting the Training-Fraction Exponent m
	Data Filtering and Fit Criteria
	Evaluation Metric: R2 in Log Space
	Fits at other model scales
	Fit Generalization Across Learning Rate Schedules

	Evaluating prior LLM recipes: further details
	Methodology for predicting TRECs of prior LLMs
	Pangu-Ultra results
	Analysis of Nemotron-CPT parmar2024reuse strategy

	Further details on 3.9B CPT experiments
	Experimental details
	Effect of learning rate on TREC loss during CPT

	Theoretical analysis of TRECs
	Motivation and key concepts
	Setup and preliminaries
	SGD: TREC loss and EMA coefficients
	AdamW: TREC loss and preconditioned updates
	Local minimizer drift and the training-fraction clock
	From curvature to functional form
	Empirical evidence for variation in m


