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ABSTRACT

Equivariance encodes known symmetries into neural networks, often enhancing
generalization. However, equivariant networks cannot break symmetries: the
output of an equivariant network must, by definition, have at least the same self-
symmetries as its input. This poses an important problem, both (1) for prediction
tasks on domains where self-symmetries are common, and (2) for generative mod-
els, which must break symmetries in order to reconstruct from highly symmetric
latent spaces. This fundamental limitation can in fact be addressed by consider-
ing equivariant conditional distributions, instead of equivariant functions. We
therefore present novel theoretical results that establish necessary and sufficient
conditions for representing such distributions. Concretely, this representation pro-
vides a practical framework for breaking symmetries in any equivariant network via
randomized canonicalization. Our method, SymPE (Symmetry-breaking Positional
Encodings), admits a simple interpretation in terms of positional encodings. This
approach expands the representational power of equivariant networks while retain-
ing the inductive bias of symmetry, which we justify through generalization bounds.
Experimental results demonstrate that SymPE significantly improves performance
of group-equivariant and graph neural networks across diffusion models for graphs,
graph autoencoders, and lattice spin system modeling.

1 INTRODUCTION

Learning tasks with known symmetries, such as rotations and permutations, abound in applications
(Veeling et al., 2018; Celledoni et al., 2021; Bogatskiy et al., 2022; Velicković, 2023). Equivariant
learning, which builds these symmetries directly into neural networks, has been shown to provide
a powerful inductive bias for deep learning (Bronstein et al., 2021). However, even in domains
that seemingly have clear symmetries, there are functions that equivariant networks simply cannot
represent. For example, consider the problem of predicting one molecular three-dimensional graph
from another, such as predicting a dichlorobenzene molecule from a benzene molecule (pictured
at the top of Fig. 1). Such tasks are relevant in generative modeling of atomic systems (Satorras
et al., 2021; Xie et al., 2021) and molecular editing (Liu et al., 2024). Since we are working in 3D
space, rotation equivariance is a natural choice—intuitively, rotating the benzene molecule should
only affect the rotation of the predicted dichlorobenzene, not the structure of the molecule itself.

While this approach seems reasonable, a strange problem arises. When the input to an equivariant
model is self-symmetric, it must remain self-symmetric in the output (as pointed out by e.g. Smidt
et al. (2021)). Since benzene has sixfold rotational symmetry, an equivariant model is unable to
output dichlorobenzene, which is not rotationally symmetric.

In fact, self-symmetry arises in a variety of applications, often with more complex groups—e.g.
non-trivial graph automorphisms, Hamiltonians of physical systems with symmetries, or rotationally
symmetric point-clouds (Fig. 1). Moreover, generative models and autoencoders, which reconstruct
from a latent space, are particularly noteworthy. By virtue of being embedded in a simple, low-
dimensional space, the latent representation often has greater self-symmetry than the input itself, i.e.
certain transformations of the input will not affect its latent representation. An equivariant decoder
must then map the more symmetric latent space to the less symmetric data space, which is just as
impossible as predicting dichlorobenzene from benzene. To avoid this problem, we could simply
discard symmetry structure entirely, but this loses the generalization benefits of equivariance on
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asymmetric inputs. How can we retain the inductive bias of symmetry, while resolving the difficulty
posed by self-symmetric inputs?
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Figure 1: Example applications requiring
symmetry breaking. Top: A rotation-
equivariant network for molecules cannot
transform benzene into dichlorobenzene due
to benzene’s sixfold symmetry. Middle: A
permutation-equivariant graph decoder can-
not break latent space symmetries (see Ap-
pendix H). Bottom: A rotation-equivariant
network for point clouds cannot transform a
table into a chair, as the table’s legs are rota-
tionally indistinguishable, unlike the chair’s.

We will focus on equivariant distributions, i.e. func-
tions from the input space to distributions over the
output space, rather than the more standard setting of
equivariant functions from input to output space. This
provides greater flexibility in the types of systems we
can model, because as we will see later, a distribution
can be equivariant without individual samples from
that distribution transforming equivariantly. Instead
of mapping an input to a single output through an
equivariant function directly, we map the input to an
equivariant distribution, and sample it. This distinc-
tion will allow us to resolve the symmetry breaking
problem elegantly.

Contributions Extending the results of Bloem-
Reddy & Teh (2020) on probabilistic symmetries,
we derive a method which can provably represent any
equivariant conditional distribution (Section 3). For
this, we rely on an external source of randomness,
coming from a canonicalization function which has
been appropriately randomized. Our theory suggests
a simple modification to existing equivariant models,
akin to concatenating a positional encoding, which
allows them to break symmetries (Section 4). In Section 5, we show more generally that equivariant
noise injection can break symmetries, and provide theoretical justification for its generalization
benefits in Section 6. Using our framework, we also show in Section 7 and Corollary A.3 that several
recently proposed approaches to symmetry breaking (Kaba & Ravanbakhsh, 2023; Xie & Smidt,
2024) can be modified to represent any equivariant conditional distribution. Finally, we validate our
approach experimentally in tasks on graphs, atomic systems, and spin Hamiltonians (Section 8).

2 BACKGROUND

Preliminaries Let X and Y be measurable input and output spaces, respectively. We assume G
is a group which acts on both X and Y , with the action of g ∈ G on x ∈ X denoted by gx ∈ X .1
Equivariance describes functions f satisfying f(gx) = gf(x), capturing the requirement that the
output should transform predictably under transformations of the input. Given a subgroup H ⊆ G,
we denote a left coset of H in G as gH ≡ {gh : h ∈ H} for g ∈ G. We denote right cosets similarly
as Hg. The orbit of x ∈ X with respect to G is [x] ≡ {gx : g ∈ G}. The stabilizer of x is denoted
by Gx ≡ {g ∈ G : gx = x} and is the subset of G that leave x unchanged. Any x with non-trivial
Gx is termed self-symmetric. We consider probability distributions over X , Y , and G, with P(D)
denoting the space of all probability distributions over D. Also, denote by X and Y the input and
output random variables, respectively. For random variables X1 and X2, we write X1 =a.s. X2 if
the equality holds with probability 1.Denote the distribution of X by P (X), and the conditional
distribution of Y given X by P (Y |X). The action of G on Y naturally gives rise to an action on
distributions, defined by g · P (Y ) ≡ P (gY ) as shown in Figure 2. Essentially, the action of g on
P (Y ) is the distribution of the random variable Y after transformation by g.

Following Bloem-Reddy & Teh (2020), the definition of equivariance can be extended to conditional
distributions P (Y |X) simply by viewing P (Y |X) as a function from X to P(Y ), and applying the
standard definition of equivariance to the action of G on P(Y ). In essence, transforming the value of
the input random variable x ∈ X by g just shifts the distribution of Y by g:

P (Y |X = gx) = g · P (Y |X = x) = P (gY |X = x). (1)

1G should be locally compact, second countable Hausdorff, with proper actions on X and Y (Chiu &
Bloem-Reddy, 2023).
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g = 60⋮

g = 60⋮

g = 60⋮

Figure 2: Example of how a group acts on
distributions. Top: An element g ∈ SO(2),
the group of two-dimensional rotations, can
act on a unit vector in R2 by standard rotation.
Middle: This induces an action of g on a
distribution (blue) over unit vectors (orange).
Under this action, g rotates the entire distribu-
tion. Bottom: When g = 60◦ acts on a distri-
bution which is already 60◦ self-symmetric,
the distribution remains unchanged—even
though a vector sampled from the distribu-
tion has no 60◦ self-symmetry.

Curie’s Principle As discussed previously, the out-
put of equivariant functions must be at least as self-
symmetric as the input. This is known as Curie’s
Principle in physics (Curie, 1894). It can be stated
formally in terms of stabilizers as Gx ⊆ Gf(x) for
any x ∈ X if f is an equivariant function. The proof
is quite simple: if g ∈ Gx, then x = gx implies
f(x) = f(gx) = gf(x).

If we consider a probabilistic system, Curie’s Prin-
ciple holds at the level of distributions instead. That
is, if P (Y |X) is equivariant, then for a given x,
the distribution P (Y |X = x) inherits the same self-
symmetries as x: Gx ⊆ GP(Y |X=x). A key insight is
that this does not need to hold for individual samples
from P (Y |X = x), as shown in Figure 3. This is
known by physicists as spontaneous symmetry break-
ing (Beekman et al., 2019). In this work, we posit
that symmetry breaking is best understood as coming
from the probabilistic nature of the world.

While equivariant distributions provide an elegant
way of addressing symmetry breaking, equivariant
modeling is usually done with deterministic networks.
We will now see how to bridge the two.

From equivariant functions to distributions Bloem-Reddy & Teh (2020) link together the two
concepts by expressing equivariant distributions in terms of equivariant functions. They show
that under certain conditions,2 P (Y |X = x) is equivariant if and only if there exists a function
f : X × (0, 1)→ Y equivariant in x (i.e. f(gx, ϵ) = gf(x, ϵ)) such that:

Y
a.s.
= f(X, ϵ) (2)

with ϵ ∼ Unif(0, 1) a random variable independent of X . However, one necessary condition is that
G acts on X freely: each x ∈ X must not have any self-symmetries (i.e. the stabilizer Gx is trivial).
Therefore, this result unfortunately does not apply to the kinds of inputs for which we would like to
break symmetries. In the following, we show how to address this limitation.

3 REPRESENTATION OF EQUIVARIANT DISTRIBUTIONS

Our aim is now to write equivariant distributions in terms of equivariant functions, while handling
possibly self-symmetric inputs. The main idea is to introduce a mapping called the inversion kernel
(Kallenberg, 2011). Intuitively, the inversion kernel maps an input x to a uniform distribution over a
subset of group elements describing the input’s self-symmetry. Sampling from the inversion kernel
will then let us break the self-symmetry of the input, and ultimately represent equivariant distributions
in terms of equivariant functions.

To formally define the inversion kernel, we first use the concept of canonicalization (Kaba et al., 2023).
Canonicalization allows for transforming any input into a canonical “pose,” or orbit representative.

Definition 3.1 (Canonicalization function). A function τ : X → G is a canonicalization function if
γ(x) ≡ τ(x)−1x is invariant for all x ∈ X . The function γ : X → X is the orbit representative map
associated with the canonicalization function, and γ(x) is the orbit representative.

Invariance of the orbit representative map ensures that each transformed version of x gets assigned to
a single representative of the orbit of x. The canonicalization function can alternatively be seen as
providing a group element which maps the orbit representative to a given input, i.e. x = τ(x)γ(x).
In the absence of self-symmetries, the canonicalization function is uniquely defined (and equivariant),

2G is compact, P (X) = g ·P (X), and there is a measurable canonicalization map (as defined in Section 3).
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Figure 3: When the input x is rotated by 30◦, as shown from the top to the bottom row, the equivariant
conditional distribution P (Y |X = x) (middle column) also rotates by 30◦. The distribution thus has
the same self-symmetry as x, which is sixfold rotational symmetry. However, individual samples
from P (Y |X = x) are free to break this self-symmetry, as shown in the rightmost column.

given γ. But consider the case where x has a self-symmetry. For g ∈ Gx, we have gx = x and
therefore x = g−1x, and so for any canonicalization τ(x) taking x to γ(x), it holds that

(gτ(x))
−1
x = τ(x)

−1
g−1x = τ(x)−1x = γ(x).

The entire coset Gxτ(x) comprises the possible ways to get to x from γ(x). The inversion kernel is a
map from x to a uniform distribution over these transformations that canonicalize x in the same way.
Definition 3.2 (Inversion kernel). Let τ : X → G be a canonicalization function. The corresponding
inversion kernel, mapping x to P(G), is the conditional distribution P (g̃|X = x) = Unif(Gxτ(x)).
Example 3.3. For example, consider G = SO(2), and let x be the benzene ring at upper left of
Fig. 3. If we set τ(x) = 30◦ (such that the orbit representative γ(x) is at the lower left), then Gx =
{0◦, 60◦, . . . , 300◦}, and the inversion kernel at x is uniform over Gxτ(x) = {30◦, 90◦, . . . , 330◦}.

While each choice of canonicalization map τ gives rise to an inversion kernel, we often refer to
“the” inversion kernel for simplicity, assuming tacitly some τ has been chosen (and is universally
measurable (Kallenberg, 2017)). Using this, we can generalize Bloem-Reddy & Teh (2020) to
represent any equivariant distribution.
Theorem 3.4. P (Y |X) is equivariant if and only if

Y
a.s.
= f(X, g̃, ϵ) (3)

for a function f : X ×G× (0, 1)→ Y jointly equivariant in its first two inputs (i.e. f(hx, hg, ϵ) =
hf(x, g, ϵ)), noise ϵ ∼ Unif(0, 1), and g̃|X distributed according to some inversion kernel.

The proof follows in Appendix A, where we also prove a related representation in terms of relaxed
equivariant functions (Kaba & Ravanbakhsh, 2023). Intuitively, our result decomposes the ran-
domness in Y |X into that derived from symmetry breaking, g̃, and independent noise ϵ. Here, g̃
selects among various transformations g ∈ G which canonicalize X , and since any group element
has a trivial stabilizer, this allows Y to break self-symmetry; in essence, we bootstrap the symmetry
breaking of existing canonicalization techniques to that of P (Y |X). Note that in this work, we are
primarily concerned with the randomness deriving from symmetry breaking and not learning generic
equivariant distributions, and so we will focus primarily on g̃, omitting ϵ from experiments.

4 METHOD: SYMMETRY-BREAKING POSITIONAL ENCODING (SYMPE)

Following Theorem 3.4 and as shown in Fig. 4, we propose to represent equivariant conditionals using
an equivariant neural network f , and pass in (x, g̃) as input (and ϵ, if so desired). Two implementation
questions remain: (1) how to sample g̃, and (2) how to pass g̃ as input to an equivariant network
f . We first introduce a general approach to sample from inversion kernels using canonicalization.
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Figure 4: Illustration of our symmetry-breaking method. Here, a die indicates randomness, which
is used in the canonicalization method (shown in the dotted box) to sample g̃. (Optionally, a
random variable ϵ can also be input to the equivariant network f , to capture randomness unrelated to
symmetry-breaking; we do not include this variable in our experiments.) Ultimately, the input x and
the sampled group element g̃, are input to an equivariant network f as f(x, g̃).

Then, we show how to encode the group element g̃ as input to the neural network. We finally provide
an interpretation of our method as a positional encoding (Vaswani et al., 2017; Bello et al., 2019;
You et al., 2019; Srinivasan & Ribeiro, 2020; Lim et al., 2023a). As we will see, an advantage
of our method is that all the components can be learned end-to-end, and do not require much
hand-engineering beyond specifying which equivariant neural network to use.

Inversion kernels with canonicalization Our method requires sampling g̃ ∼ Unif(Gxτ(x)) for
some choice of canonicalization function τ . This can be implemented in a simple way by taking τ as
a canonicalization network. The form of the distribution Unif(Gxτ(x)) seems to suggest that we
need to detect the stabilizer of x along with using a canonicalization function, but this is in fact not
necessary. Following Kaba et al. (2023), an inversion kernel can be implemented by optimization of
an energy function E : X → R such that that Gxτ(x) = argming∈GE(g−1x), where the argmin
is a set. Sampling is done simply by selecting a random element of the argmin set. As we show in
Appendix C, it is often possible to parameterize E such that the optimization is fast and poses no
significant overhead. For example, sorting breaks permutation symmetries, and can be viewed as an
optimization of an energy function (Blondel et al., 2020). Implementations of these canonicalization
functions exist for images, sets, graphs and point clouds (Mondal et al., 2023; Kim et al., 2023).

As explained in Appendix C and justified in Section 5, our method also works even when g̃ is sampled
from an equivariant distribution with support larger than that of the inversion kernel. This arises
when working with graph inputs, for example, since canonicalizing combinatorial graphs is likely not
possible in polynomial time (Babai & Luks, 1983). On the other hand, when using an invariant loss,
samples of g̃ can be replaced with a deterministic canonicalization τ(x) with no impact on the loss.

Encoding of the group element Once a group element is sampled, we need to specify a way to feed
it into an equivariant neural network. Our method is based on the observation that if the group G acts
freely on a vector v, then the mapping g 7→ gv is injective. The group element is therefore uniquely
specified by the way it transforms v. We can furthermore make v learnable. We show in Appendix D
that vector spaces with that property can be defined conveniently for group representations of finite
groups and Lie groups, which comprise most groups of interest in applications. The encoded group
element is then given as input to the equivariant neural network by concatenation with x. Linking
back to Theorem 3.4, our model is defined as f(x, g̃) = f0(x ⊕ g̃v), where f0 is any equivariant
neural network. The equivariance of (x, g) 7→ x⊕ (gv) is clear, so f is indeed a jointly equivariant
function. As shown in Appendix D, any jointly equivariant function f can be expressed in this way,
which makes our method fully expressive.

Interpretation as positional encodings We term our method Symmetry-breaking Positional En-
coding (SymPE), since it can be naturally interpreted as a type of positional encoding, similar to the
ones used in transformers Vaswani et al. (2017) and GNNs You et al. (2019). Absolute positional
encodings disambiguate between identical tokens or nodes by assigning each a unique identifier.
In graphs e.g., nodes which are part of the same orbit of the automorphism group (and that are
thus indistinguishable for an equivariant model) are assigned different “positions” by the positional
encoding. The positional encoding therefore breaks symmetries in the input. We generalize this view
to other data types and groups. Specifically, the sampled group element g̃ represents the position
(for translation groups), pose (for rotation groups) or ordering (for permutation groups) of the input
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Algorithm 1 SymPE: Symmetry-Breaking Positional Encodings

1: Inputs: input x ∈ X
2: Learnable parameters: learned vector v ∈ V , equivariant neural network parameters θ,

canonicalization parameters ϕ
3: Sample g̃ ∼ hϕ (x) ▷ Sample group element for canonicalization
4: ṽ ← g̃v ▷ Apply group element to learned vector
5: Return fθ(x⊕ ṽ) ▷ Forward pass with positional encoding

relative to a canonical one. We apply this group element to a learned vector v that is concatenated to
each component of the input (token, pixel, node, etc.). By virtue of the group acting freely on v, it
fully specifies the “position” of the input. The learned vector therefore plays the same role as the
sinusoidal encoding in sequence models, with the group element g̃ shifting these encodings to specify
which token is the first one.

Equivariance and symmetry-breaking of positional encodings The standard, absolute positional
encodings used in Transformers (Vaswani et al., 2017) are not equivariant. In other words, the position
nominally assigned to tokens in the sequence by the positional encoding does not shift if the sequence
shifts, which precludes translation equivariance. Similarly, the pixelwise positional encodings used in
Vision Transformers do not allow translation equivariance (in contrast to CNNs). Relative positional
encodings are equivariant to shifts (Shaw et al., 2018), but cannot break symmetries because they
rely only on invariant relative distances between tokens. The Laplacian positional encodings used in
GNNs (Belkin & Niyogi, 2003; Dwivedi et al., 2023), are also not equivariant to permutations, but
can be made so at the cost of losing the ability to break automorphism symmetries (Lim et al., 2023c;
Morris et al., 2024). The same is true for positional encodings based on random walks (Dwivedi
et al., 2022; Ma et al., 2023), which preserve automorphisms. By contrast, in our method the absolute
position g̃ is sampled from the inversion kernel, which is an equivariant distribution. As a result, the
model preserves the inductive bias of equivariance, while retaining the ability to differentiate between
different symmetric configurations and therefore break symmetries.

5 SYMMETRY BREAKING WITH NOISE INJECTION

Adding noise to inputs is a commonly used heuristic for symmetry breaking (Satorras et al., 2021;
Sato et al., 2021; Abboud et al., 2021; Eliasof et al., 2023; Zhao et al., 2024). This approach involves
using a functional model similar to that of Theorem 3.4, but with an arbitrary equivariant noise
variable Z replacing g̃. It is natural to ask whether this simple heuristic can also represent any
equivariant distribution. We show that under some conditions, noise injection can indeed be used to
break symmetries, while still representing any equivariant conditional distribution.

Proposition 5.1 (Noise injection). Let X,Y, Z be random variables in X ,Y,Z respectively, each
space acted on by G. The following are equivalent: (1) G acts on Z freely (up to a set of probability
zero) and P (Z|X) is equivariant; (2) P (Y |X) is equivariant iff there exists f : X ×Z× (0, 1)→ Y
jointly equivariant in X and Z such that Y a.s.

= f(X,Z, ϵ) for noise ϵ ∼ Unif(0, 1).

The proof follows in Appendix A.4. This result implies that one may sample g̃ from a general
equivariant distribution onG instead of the inversion kernel specifically, and still obtain an equivariant
conditional distribution.3 This applies, for example, to the recently proposed symmetry breaking sets
(SBS) of Xie & Smidt (2024) (see Section 7). Moreover, for many groups of interest, such as Sn and
O(n), simply sampling Z from an isotropic Gaussian satisfies the requirements of Proposition 5.1.
However, this method potentially introduces more noise than is necessary into the learning process.
More precisely, as we show in Appendix E, the inversion kernel is an equivariant distribution of
minimal entropy, which we conjecture facilitates learning (since the model need not learn to map
more random inputs to the same output than necessary). Our ablation studies, comparing the inversion
kernel to a generic distribution, align with this intuition (Section 8).

3In fact, the optimization of energy mentioned above is akin to sampling from a density p(g|x) ∝
exp(−E(g−1x)/T ). When T > 0 we sample from a general equivariant distribution on G. As we lower T , the
entropy diminishes and we recover an exact inversion kernel argming∈G E(g−1x) when T → 0.

6
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6 GENERALIZATION BENEFITS OF SYMMETRY BREAKING

Equivariance is understood to impart generalization benefits by meaningfully restricting the space of
possible hypotheses. In this section, we explore similar intuition for symmetry-breaking.

Elesedy & Zaidi (2021) formalized this intuition for ordinary equivariance. They showed that if P (X)
is G-invariant, then the space L2(X ,Y,P (X)) of square-integrable functions f , with inner product
⟨f1, f2⟩P(X) =

∫
⟨f1(x), f2(x)⟩YP (dx), decomposes into the orthogonal sum of equivariant and

“anti-equivariant” parts, f̄ and f⊥ = f − f̄ . Assuming Y = f∗(X)+ ϵ for an equivariant function f∗
and mean-zero noise ϵ, it follows that for L2 risk R(f) = E[∥f(X)− Y ∥2], there is a non-negative
generalization gap ∆(f, f̄) = R(f) − R(f̄) = ∥f⊥∥2P(X) when using a non-equivariant model f .
This provides some theoretical justification for the use of equivariant models: it implies that for any
non-equivariant model f , there exists an equivariant model of strictly lower risk. In Theorem 6.1
(proved in Appendix A.5), we obtain a similar result for our probabilistic setting, simply assuming
P (Y |X) is equivariant and that one is injecting equivariant noise.
Theorem 6.1. Suppose P (X) isG-invariant, and P (Y |X) is equivariant with E[Y 2] <∞. Consider
a stochastic model Ŷ = f(X,Z) with E[Ŷ 2] <∞, where Z ∈ Z is such that P (Z|X) is equivariant,
and where G acts on Z freely (up to a set of zero probability). Then f decomposes into jointly
equivariant f̄ and its orthogonal complement f⊥ = f − f̄ , and there is a generalization gap

∆(f, f̄) = R(f)−R(f̄) = ∥f⊥∥2P(X,Z), (4)

where R(f) = E[∥f(X,Z)− Y ∥2].
Remark 6.2. The condition that P (Z|X) is equivariant is satisfied when P (Z) is simply a G-
invariant distribution independent of X , which is often the case. The result above says that even in
this pure noise injection setting, the expected loss of a model f(X,Z) can be decreased by projecting
f to an equivariant function, thereby producing a conditionally equivariant distribution. The result
also applies to SymPE, by letting Z = (g̃, ϵ) as in Theorem 3.4, where g acts as gZ = (gg̃, ϵ).

We emphasize also that the risk used in the theorem measures error in each individual prediction of Y
from X . This may not be the metric of interest, if, for example, one only cares about predictions up to
a group transformation, or wants to learn the entire distribution for a generative task. In Appendix B,
we prove a similar result when instead computing the loss between distributions, i.e. between a
ground truth equivariant conditional density and an arbitrary model density.

7 RELATED WORK

The problem of self-symmetric inputs yielding self-symmetric outputs in equivariant learning has
been observed in several domains. In the context of graph representation learning, Srinivasan &
Ribeiro (2020) showed that isomorphic structures in graphs must be assigned the same representations
by equivariant functions. It has been noted that this is problematic in several applications, including
generative modeling on graphs (Liu et al., 2019; Satorras et al., 2021; Yan et al., 2023; Zhao
et al., 2024) and link prediction (Lim et al., 2023b). Similar issues arise for discriminative and
generation tasks on sets. Zhang et al. (2022) noted that equivariant functions are limited in both
processing multisets (sets with self-symmetries) and decoding from an invariant latent space to a set,
introducing a notion of multiset equivariance of which relaxed equivariance (Kaba et al., 2023; Kaba
& Ravanbakhsh, 2023) is a generalization as a solution. Vignac & Frossard (2022) also introduced a
generalization of equivariance to address the problem of set generation, which our results subsume.

Other studies have focused on symmetry breaking in the context of machine learning for modeling
physical systems. Smidt et al. (2021) first formulated the preservation of symmetry in equivariant
neural networks as an analogue to Curie’s Principle, and proposed using gradients of equivariant
neural networks to identify cases for which symmetry breaking is necessary. Kaba & Ravanbakhsh
(2022) identified that for prediction tasks on crystal structures, symmetry breaking can be necessary,
and proposed a method based on non-equivariant positional encodings. For inputs defined on discrete
grids, Wang et al. (2024) proposed a flexible method for implementing and interpreting symmetry
breaking based on relaxed group convolutions, at the cost of only approximating equivariance.

On the theoretical side, our work builds on that of Chiu & Bloem-Reddy (2023), who appear to have
been first in applying the inversion kernel in machine learning. Sampling from a general equivariant
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conditional distribution on G was also explored by Dym et al. (2024), in the context of constructing
continuous and efficient frames (Puny et al., 2022). Symmetry breaking more specifically was studied
by Kaba & Ravanbakhsh (2023), who defined the notion of relaxed equivariance, and furthermore
showed that relaxed equivariant layers can be constructed as solutions to systems of equations.

Perhaps most closely related to our work is Xie & Smidt (2024). Inspired by the idea that symmetry
breaking arises from missing information, Xie & Smidt (2024) defined an equivariant symmetry
breaking set (SBS) B(x) (for each input x) as a Gx-dependent equivariant set B(x) on which Gx

acts freely. Elements b ∈ B(x) can then be input to an equivariant function f(x, b), breaking
the symmetry of x much like our g̃. Our work allows one to analyze SBS through a probabilistic
lens: Proposition 5.1 implies that uniformly sampling from an SBS can represent any equivariant
distribution, if one also adds ϵ ∼ Unif(0, 1) to the input as f(x, b, ϵ). However, using an SBS requires
detecting Gx and its normalizer, while our framework naturally suggests implementation via existing
canonicalization methods. Additionally, Xie & Smidt (2024) are largely concerned with identifying
when an “ideal” B(x), i.e. of minimal size |B(x)| = |Gx|, exists (which they argue should facilitate
learning). Indeed, their chosen restriction that B(x) depend only on Gx means such an ideal SBS
may not exist. In contrast, by allowing supp(g̃) = Gxτ(x) to depend on x itself and not only Gx, we
effectively always obtain an “ideal” set because |Gxτ(x)| = |Gx|.

8 EXPERIMENTS Table 1: Cross-entropy loss and reconstruction
error in graph autoencoding.

Method BCE % Error # Param.
No SB 28.5 9.7 88,017
Noise 21.9 6.4 88,017
Uniform 17.7 5.0 88,890
Laplacian 18.7 5.3 88,017
SymPE (ours) 10.8 2.8 88,890

We evaluate SymPE empirically on three tasks:
autoencoding graphs with EGNN (Section 8.1),
graph generation with the DiGress diffusion pro-
cess (Section 8.2), and predicting ground states
of Ising models with G-CNNs (Section 8.3). In
all cases, we find that SymPE outperforms base-
lines, both without symmetry-breaking and with
other methods for symmetry-breaking.

8.1 GRAPH AUTOENCODER

Autoencoders with symmetric latent spaces pose a problem for equivariant models. One example
explored in Satorras et al. (2021) is autoencoding graphs using a node-wise latent space Z = Rn×f ,
where n is the number of nodes and f is the feature dimension. From an Sn-equivariant embedding
in Z , the graph is decoded equivariantly; the presence of an edge between nodes with latents zi
and zj is a function of ∥zi − zj∥. If A is the adjacency matrix of the graph, its self-symmetries are
GA = {g ∈ Sn : gAgT = A}. However, there may not even exist an embedding z ∈ Z such that
GA = Gz (see Appendix H for details), which by Curie’s Principle results in an “overly symmetric”
embedding with GA ⊊ Gz (Satorras et al., 2021, Figure 3) when any equivariant encoder is used.

We consider reconstructing Erdős-Rényi random graphs with edge probability 0.25, using the data
from Satorras et al. (2021) and their standard message-passing architecture as the encoder. To break
symmetries using our method, we truncate Laplacian positional encodings4 to the fourth largest
singular values, P ∈ Rn×4, and then apply a learnable dimensionality reduction w ∈ R4 to obtain
the vector y = Pw ∈ Rn. g̃ is obtained by sorting y, letting the sorting algorithm break ties, and the
symmetry breaking input ṽ = g̃v is obtained by correspondingly sorting a learned vector v ∈ Rn.
As baselines, we consider no symmetry breaking (“No SB”), randomly initialized node features
(“Noise”), randomly sampling g̃ from Sn (“Uniform”), and passing in P directly (“Laplacian”).
Breaking symmetries via our method achieves the lowest error (Table 1).

8.2 GRAPH GENERATION WITH DIFFUSION MODELS

We evaluate our framework on graph generation. Small graphs, which are of interest for molecular
generation, are especially likely to have non-trivial automorphism groups (Godsil & Royle, 2001).
We apply SymPE, our symmetry-breaking positional encoding, to discrete diffusion-based graph
generation. We follow the setup and experimental protocol of a state-of-the-art method, DiGress

4We discuss some subtleties of these encodings, which are not precisely equivariant, in Appendix H.
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(Vignac et al., 2023), in which a discrete diffusion process is applied on a graph’s node features and
adjacency matrix. A graph transformer then predicts back the denoised graph. Symmetry breaking is
potentially crucial in this setting: since the denoising network is equivariant, if the diffusion process
ever introduces a symmetry in the graph, it is impossible to denoise back to the original graph due to
Curie’s Principle. Vignac et al. (2023) note that a heuristic that adds spectral features to node features
improves performance. These can indeed break symmetries, but in a less principled way than our
method (see Appendix H), and at a computational cost scaling cubically in the number of vertices.

We evaluate combining our method with DiGress on the QM9 (Wu et al., 2017) and MOSES
(Polykovskiy et al., 2020) datasets. For QM9, we consider the more challenging version in which
hydrogen atoms appear explicitly in the graphs. We use sorting-based Sn canonicalization with a
GIN architecture (Xu et al., 2019) to sample g̃, following Kim et al. (2023). The symmetry-breaking
positional encoding g̃vn is concatenated to node features, and g̃veg̃−1 to the adjacency matrix, with
learned vn ∈ Rn×d and ve ∈ Rn×n×d (with n set to the maximum graph size and d = 8). Further
details on the experimental procedure are given in Appendix G.

Table 2: Evaluation metrics for molecular generation on QM9 with explicit hydrogens.

Method Valid↑ Unique↑ Atomic stability↑ Mol. stability↑ NLL

Dataset 97.8 100 98.5 87.0 -

ConGress (a variant of DiGress) 86.7±1.8 98.4±0.1 97.2±0.2 69.5±1.6 -
DiGress (with Laplacian) 95.4±1.1 97.6±0.4 98.1±0.3 79.8±5.6 129.7
DiGress + SymPE (ours) 96.1 97.5 98.6 82.5 30.3

DiGress + noise 90.7 97.6 97.8 73.1 126.5
DiGress + SymPE (nodes only) 96.2 97.4 98.4 83.9 128.8

Results for QM9 are shown in Table 2 and results for MOSES in Table 4 (Appendix G). Our method
leads to a large improvement in negative log-likelihood (NLL) compared to the original DiGress.
Note that the NLL captures the ability of the model to learn the right distribution, but not necessarily
chemical validity of the generated samples, which explains that the improvement in the other metrics
is not as significant. For the other metrics, the baseline values are also close to the dataset values,
making them more difficult to improve. We perform ablation studies with alternative methods to break
symmetry. First, we consider breaking symmetry by concatenating noise sampled from a standard
normal distribution (“DiGress + noise”). This does not lead to a similar increase in performance,
which we hypothesize is because the model learns to ignore the uninformative noise. We also consider
only using SymPE on the node features, and not on the adjacency matrix (“DiGress + SymPE (nodes
only)”). This also does not have a significant effect on the likelihood, showing that breaking symmetry
directly on the adjacency matrix is crucial.

8.3 PREDICTING GROUND-STATES OF ISING MODELS

Spin systems are prototypical examples of physical systems that exhibit spontaneous symmetry
breaking. Here, we consider unsupervised training of neural networks to obtain ground-states
(states of minimal energy) of the Ising model given Hamiltonian parameters. The Ising model is an
idealization of a magnetic system of spins, with the Hamiltonian describing its energy. Identifying low-
energy configurations of spin systems is an important problem in statistical physics (Hu et al., 2017;
Carrasquilla & Melko, 2017) and has applications to the graph max-cut problem (Fu & Anderson,
1986), yet brute force optimization scales exponentially in system size. Monte-Carlo simulation is
possible, but does not benefit from the generalization of neural networks across Hamiltonians.

Formally, given a set of lattice sites Λ, a spin configuration σ ∈ {−1, 1}Λ specifies a binary value
for each site. The Hamiltonian H : {−1, 1}Λ → R assigns an energy to each configuration σ. In
our experiments, we consider the anisotropic Ising model under an external field h on a square
periodic lattice Λ, given by HJ,h(σ) = −

∑
i,j J

x
ijσiσj −

∑
i,j J

y
ijσiσj −

∑
i hiσi. Here, Jx

ij ̸= 0
only if i and j are horizontal neighbors in Λ, and similarly for Jy . The task has symmetry under the
automorphism group of the square grid, G = p4m (see Appendix F for details on the group action).
That is, for any g ∈ G, we have HgJ,gh(g · σ) = HJ,h(σ), so the energy is unchanged if both the
Hamiltonian parameters and the spin configuration are transformed in the same way. The Hamiltonian
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Figure 5: Phase diagrams predicted by the different methods. For each configuration predicted by the
neural network on a test set Hamiltonian, we compute the values of the three order parameters: the
ferromagnetic phase (red), the antiferromagnetic phase (green), and the stripes phase (blue). Brighter
colors are associated with larger values of the order parameter, and black to the disordered phase.

parameters themselves have a self-symmetry to reflection and translations, which corresponds to
the stabilizer group GJ,h = pmm ⊂ G. Ground-states are configurations of minimum energy, or
non-zero probability, of the distribution P (σ|J, h) ∝ exp(−HJ,h(σ)/T ) in the T → 0 limit. While
P (σ|J, h) is equivariant to G, ground states may break the pmm self-symmetries of (J, h).

We train a p4m-equivariant G-CNN combined with SymPE to take Hamiltonian parameters as input,
and return a spin configuration as output. Training is done by directly using the Hamiltonian as the
loss function and minimizing energy. We build a training and test set by sampling diverse Hamiltonian
parameters J and h from a given distribution. To evaluates the ability to generalize to transformed
data, we additionally build an out-of-distribution (OOD) test set for which Hamiltonian parameters
are randomly rotated by 90◦. See Appendix F for details on the experimental setup.

We compare our method to a vanilla G-CNN, a non-equivariant MLP trained with data augmentation
sampled from p4m, adding noise ϵ ∼ N (0, 1) to the input of the G-CNN to break symmetry, and
the relaxed group convolutions proposed by Wang et al. (2024). We use the average energy as an
evaluation metric. The proposed method achieves significantly lower energy than baselines on the
OOD test set, and is only slightly worse than the relaxed convolutions method on the in-distribution
test set. (Table 3, Appendix F). A more in-depth understanding of the baselines’s shortcomings can be
obtained from the predicted phase diagrams (Fig. 5). Spin systems show phase transitions depending
on Hamiltonian parameters, similar to molecular systems (see Appendix F). For the considered
Ising models, there are three possible phases: ferromagnetism, antiferromagnetism, and stripes order.
The order parameters gives a quantitative description of the predicted phases given Hamiltonian
parameters. We see that the G-CNN is not able to predict antiferromagnetic and stripes phases, which
break symmetries. The MLP also does not recover the correct phase diagram.

9 CONCLUSION

By considering symmetry-breaking from a probabilistic perspective, we derive a representation of any
equivariant distribution in terms of a deterministic equivariant function of the input, and a symmetry-
breaking sample from the inversion kernel. Motivated by this theoretical result, we introduce a
flexible method for breaking symmetries in existing equivariant architectures, by concatenating a
random symmetry-breaking positional encoding (SymPE). We show that our method is a special
case (of lowest entropy) within the general class of equivariant noise-injection methods, which we
prove are able to represent equivariant distributions and enjoy guaranteed generalization benefits. We
observe in experiments that SymPE outperforms baselines, both with and without symmetry-breaking,
on graph autoencoding, graph generation, and Ising model ground-state prediction.

One limitation of SymPE is that it requires access to a canonicalization method, which may be
less readily available for uncommon groups, as well as a way to randomize its outputs. Future
work remains to sample g̃ in practice for general (including infinite) groups, such as: (1) testing
our proposal of using energy-based modeling in a generic setting, (2) sampling from low-entropy
equivariant distributions when the inversion kernel may be hard to sample from exactly, and (3)
further exploring the tradeoff between structured symmetry breaking and generic noise injection.
It also remains to address partial symmetry breaking (when the output breaks some, but not all,
symmetries of the input), as treated for example by Xie & Smidt (2024).
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A PROOFS

Our results hold for any G acting properly on X , which includes compact groups and actions on
Riemannian manifolds by isometries. For more details, including the relationship of proper actions to
needed measurability conditions, we refer the reader to Chiu & Bloem-Reddy (2023).

Theorem 3.4 is a consequence of the following result, which says one can represent any equivariant
conditional distribution by randomly canonicalizing some function.
Theorem A.1 (Randomized canonicalization). P (Y |X) is equivariant if and only if

Y
a.s.
= g̃ϕ(γ(X), ϵ)

a.s.
= g̃ϕ(g̃−1X, ϵ) (5)

for some function ϕ : X × (0, 1) → Y , independent noise ϵ ∼ Unif(0, 1), and g̃|X distributed
according to the inversion kernel for some orbit representative map γ.

The proof (Appendix A.1) follows closely that of Bloem-Reddy and Teh, which bootstraps deter-
ministic symmetry from a canonicalizer to that of Y |X . We analogously bootstrap the distributional
symmetry of g̃|X to that of a model g̃ϕ(g̃−1X, ϵ) for Y , where ϕ is an arbitrary function.
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In addition to Theorem 3.4, the above allows us to derive a representation in terms of relaxed
equivariant functions as defined by Kaba & Ravanbakhsh (2023).

Definition A.2. A function f : X → Y is relaxed equivariant if for any x ∈ X and g ∈ G, we have
hf(x) = f(gx) for some h ∈ gGx.

On x with trivial stabilizer, a relaxed equivariant function behaves like a usual equivariant function.
On points with non-trivial self-symmetry, relaxed equivariance only enforces symmetry of f “up to
elements in the stabilizer,” so the output need not have any self-symmetry.

Corollary A.3 (Relaxed equivariance). P (Y |X) is equivariant if and only if

Y
a.s.
= gXf(X, ϵ) (6)

for some f : X × (0, 1) → Y relaxed equivariant in its first input, with gX ∼ Unif(GX), and
ϵ ∼ Unif(0, 1) independent of X and gX .

The proof is in Appendix A.3.

A.1 PROOF OF THEOREM A.1

Proof. Y |X is equivariant if and only if (Chiu & Bloem-Reddy, 2023, Theorem 3)

(g̃, X) ⊥ g̃−1Y | γ(X) (7)

where g̃|X is distributed according to the inversion kernel associated to γ. By conditional noise
outsourcing (Kallenberg, 2021, Proposition 8.20) this is equivalent to there existing a measurable
function ϕ : X × (0, 1)→ Y such that

g̃−1Y
a.s.
= ϕ(γ(X), ϵ) (8)

where ϵ ∼ Unif(0, 1) is independent of (g̃, X). Rearranging and noting g̃γ(X)
a.s.
= X gives the

result.

A.2 PROOF OF THEOREM 3.4

Proof. The forward implication is clear, letting f(x, g, ϵ) = gϕ(g−1x, ϵ) with ϕ given in the previous
theorem. On the other hand consider a function f : X × G × (0, 1) such that hf(x, g, ϵ) =

f(hx, hg, ϵ), and suppose Y a.s.
= f(X, g̃, ϵ). Write g̃x for a random variable sampled from the

inversion kernel conditioned on X = x, independently from ϵ ∼ Unif(0, 1). For any x ∈ X and
h ∈ G we have

P (hY ∈ B|hX = x) = P
(
hY ∈ B|X = h−1x

)
= P

(
hf(h−1x, g̃h−1x, ϵ) ∈ B

)
. (9)

By the equivariance of the inversion kernel, g̃h−1x
d
= h−1g̃x. Applying first this fact and then the

equivariance of f we obtain

P (hY ∈ B|hX = x) = P
(
hf(h−1x, h−1g̃x, ϵ) ∈ B

)
= P (f(x, g̃x, ϵ) ∈ B) = P (Y ∈ B|X = x).

(10)

Note that for this direction, we only needed the equivariance of the distribution g̃|X , not its restriction
to a specific coset.

A.3 PROOF OF COROLLARY A.3

Proof. Given ϕ from the previous theorem, let f be a relaxed equivariant function such that
f(γ(x), ϵ) = ϕ(γ(x), ϵ) (which we can always do).

Y
a.s.
= g̃ϕ(γ(X), ϵ) = g̃f(γ(X), ϵ) = g̃h−1f(X, ϵ) (11)

for some h ∈ G (depending on the construction of f ) such that hγ(X) = X . But g̃ ∼ Unif(hGγ(X))

and hGγ(X)h−1 = GX , so g̃h−1 ∼ Unif(GX).
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Suppose on the other hand Y a.s.
= gXf(X, ϵ) for a relaxed equivariant f . Write gx for a uniform

random element of Gx independent of ϵ ∼ Unif(0, 1). We then have
P (hY ∈ B|hX = x) = P

(
hY ∈ B|X = h−1x

)
= P

(
hgh−1xf(h

−1x, ϵ) ∈ B
)
. (12)

Since gh−1x
d
= h−1gxh,

P
(
hY ∈ B|X = h−1x

)
= P

(
gxhf(h

−1x, ϵ) ∈ B
)
. (13)

By the relaxed equivariance of f , for some k−1 ∈ h−1Gx, the above is equal to
P
(
gxhk

−1f(x, ϵ) ∈ B
)
. (14)

Noting that hk−1 ∈ Gx, we have gx
d
= gxhk

−1 and thus
P (hY ∈ B|hX = x) = P (Y ∈ B|X = x). (15)

(The invariance of the distribution of gX |X is used here, though what is strictly needed is equality in
distribution of hgh−1xk

−1 and gx.)

A.4 PROOF OF PROPOSITION 5.1

We decompose the forward and reverse implications in the following four statements:

1. If the action of G on Z is free except for a measure zero subset, then equivariance of Y |X
implies that Y a.s.

= f(X,Z, ϵ) for an appropriate f and ϵ. Note that equivariance of Z|X is
not needed here.

2. If the action of G on Z is free except for a measure zero subset and Z|X is equivariant, then
Y

a.s.
= f(X,Z, ϵ) implies equivariance of Y |X .

3. If the action of G on X × Z is not free except for a measure zero subset, then Y a.s.
=

f (X,Z, ϵ) is not equivalent to equivariance of Y |X
4. If Z|X is not equivariant, then Y a.s.

= f (X,Z, ϵ) is not equivalent to equivariance of Y |X

Proof of 1. Let g̃|X be a group element distributed according to the inversion kernel. Reusing
arguments from our main results we show there exists a map t : X × Z × (0, 1)→ G equivariant in
the first two inputs such that g̃ a.s.

= t(X,Z, η) where η ∼ Unif(0, 1) is random noise independent of
X and Z. By Corollary 3.4 Y a.s.

= f0(X, t(X,Z, η), ϵ0) for a jointly equivariant f0. The unit interval
and unit square both being standard probability spaces, there exists a measure preserving bijection
ϵ↔ (η, ϵ0). We thus define f(X,Z, ϵ) = f0(X, t(X,Z, η), ϵ0).

To show the existence of t, one repeats the proof of Theorem A.1 and Corollary 3.4, but applying
Chiu & Bloem-Reddy (2023, Theorem 3) in the special case of an essentially free action. In particular,
since (X,Z) has trivial stabilizer almost surely,

g̃−1Y ⊥ (X,Z) | γ(X,Z), (16)
where γ(X,Z) = (γ(X), Z) (with a slight abuse of notation). The rest of the proof is identical to
that of the forward direction of Corollary 3.4.

Proof of 2. The proof is identical to that of the reverse direction of Corollary 3.4.

Proof of 3. Suppose G does not act on Z essentially freely. Suppose Y |X is equivariant and there
is symmetry breaking with non-zero probability, i.e. P (GX,Z ̸⊆ GY ) > 0. (Such examples are not
hard to construct.) Suppose for the sake of contraction that also Y a.s.

= f (X,Z, ϵ) with some f and ϵ
as usual. Curie’s Principle gives the contradiction: GX,Z ⊆ GY at any realization of ϵ.

Proof of 4. We consider non-equivariant Z|X; concretely, suppose Z is constant z ∈ Z , and that
there exists g ∈ G such that gz ̸= z. Let f : X ×Z × (0, 1)→ Y be the jointly equivariant function
f(x, z, ϵ) = x⊕ z (so Y = X × Z). Then if Y a.s.

= f(X, z, ϵ),
P (gY = y|gX = x) = P

(
gf(X, z, ϵ) = y|X = g−1x

)
= 1{x⊕ gz = y} (17)

̸=1{x⊕ z = y} = P (Y = y|X = x). (18)
That is, Y |X is not equivariant.
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A.5 PROOF OF THEOREM 6.1

The proof of Theorem 6.1 resembles that of Lemma 3.12 in Elesedy (2023). The latter applies the
orthogonal decomposition of Elesedy & Zaidi (2021) in combination with the result of Bloem-Reddy
& Teh (2020). Analogously, we combine the orthogonality arguments with our Proposition 5.1.

Proof. The assumption that G acts essentially freely on Z and the equivariance of Y |X , by part 1
of our proof of Proposition 5.1 (Appendix A.4), means that there exists f : X × Z × (0, 1) → Y
jointly equivariant in its first two coordinates such that Y a.s.

= f∗(X,Z, ϵ) for independent noise
ϵ ∼ Unif(0, 1). Defining for each ϵ the function f∗ϵ : (x, z) 7→ f∗(x, z, ϵ), the finiteness of
E[∥Y ∥2] implies fϵ ∈ L2(X × Z,Y,P (X,Z)) for almost every ϵ. Note next that the invariance
of P (X) and equivariance of P (Z|X) imply the invariance of the joint distribution P (X,Z). We
can therefore apply Lemma 1 of Elesedy & Zaidi (2021) to obtain decomposition f = f̄ + f⊥ into
equivariant and “anti-equivariant” components, orthogonal under the inner product ⟨f1, f2⟩P(X,Z) =∫ ∫
⟨f1(x, z), f2(x, z)⟩YP (dx, dz). The risk of f may then be written as

E[∥f − f∗ϵ ∥2P(X,Z)] = E[∥f̄ − f∗ϵ ∥2P(X,Z)] + ∥f⊥∥2P(X,Z) = R(f̄) + ∥f⊥∥2P(X,Z), (19)

where we obtain the first expression by conditioning on ϵ, and the equality follows from the orthogo-
nality of f⊥ and f∗ϵ . The theorem follows by subtracting R(f̄) from both sides of the equation.

B GENERALIZATION BENEFITS OF EQUIVARIANT CONDITIONAL
DISTRIBUTIONS

Here, we are interested in describing the generalization benefits of using equivariant conditional
distributions, when the ground truth distribution Y |X is equivariant. The general outline, which we
will fill in below, follows the work of Elesedy & Zaidi (2021) and its straightforward generalization in
Elesedy (2023). We similarly assume that X has a G-invariant distribution, that Y |X is equivariant,
and the group is compact.5 Then, considering a Hilbert space of conditional distributions (or rather,
their unnormalized counterparts), one can show that the equivariant ones form a subspace. The
generalization benefits of assuming equivariance can then be expressed in terms of the projection
operator onto that subspace.

In order to follow the program above, we will treat conditional distributions as equivariant functions
f : X → P(Y). Furthermore, in order to work in a Hilbert space, we restrict ourselves to distributions
with a square integrable density with respect to some measure dy on Y . We assume the measure
is invariant under G—the canonical example being Y a finite-dimensional Euclidean space with
Lebesgue measure and G acting orthogonally. Then, we define P(Y) ⊂ L2(Y) by

P(Y) =
{
ψ : Y → R s.t. ψ(·) ≥ 0,

∫
y∈Y

ψ(y) dy = 1,

∫
y∈Y

ψ(y)2 dy <∞
}

(20)

We will treat densities p(y|x) as members of the Hilbert space H = L2(X , L2(Y),P), where the
data distribution P on X is G-invariant. The inner product between functions f1, f2 ∈ H is

⟨f1, f2⟩ =
∫
X
⟨f1(x), f2(x)⟩ P(dx) =

∫
X

∫
Y
f1(y|x)f2(y|x) dy P(dx),

where for simplicity we use the notation f(y|x) = (f(x))(y) for even those f ∈ H which are not
probability densities.

G acts on functions ψ ∈ L2(Y)—and thus on P(Y)—by

(g · ψ)(y) = ψ(g−1y).

By the assumption of the G-invariance of dy, the inner product on L2(Y) is invariant: ⟨ψ1, ψ2⟩ =
⟨gψ1, gψ2⟩. Standard arguments from Elesedy (2023, Lemma 3.1) then show that the Reynolds

5Our previous results held in the more general case of proper group actions.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

operator R : H → H given by6

(Rf)(x) =
∫
G

g−1f(gx) λ(dg) (21)

(Rf)(y|x) =
∫
G

f(gy|gx) λ(dg) (22)

is in fact the orthogonal projection onto the subspace of equivariant functions—i.e. those f ∈ H such
that f(g−1y|x) = f(y|gx). For the Reynolds operator to be useful to us, it remains to check that it
sends normalized conditional densities p(y|x) to normalized conditional densities (which will then
be equivariant). But this is clear:∫

Y
(Rp)(y|x) dy =

∫
Y

∫
G

p(gy|gx) λ(dg) dy =

∫
G

∫
Y
p(gy|gx) dy λ(dg) = 1, (23)

where at the end we used the invariance of dy, and the fact that p(y|x) and λ are normalized.

We then consider risk under the L2(Y) loss. The generalization gap between two conditionals
p1, p2 ∈ H

∆(p1, p2) = R(p1)−R(p2) (24)

where R is the risk as measured against the ground truth conditional p∗,

R(p) =

∫
X
||p(x)− p∗(x)||2L2(Y ) P(dx) =

∫
X

∫
Y
(p(y|x)− p∗(y|x))2 dy P(dx). (25)

We can rewrite that risk as

R(p) = ||p− p∗||2H = ||p||2H − 2⟨p, p∗⟩H + ||p∗||2H. (26)

(We subsequently drop the subscripts for conciseness.) The generalization gap between an arbitrary
p ∈ H and its equivariant projection p̄ = Rp is then given in terms of the orthogonal component
p⊥ = p− p̄:

∆(p, p̄) = ||p− p∗||2 − ||p̄− p∗||2 (27)

= ||p̄+ p⊥ − p∗||2 − ||p̄− p∗||2 (28)

= ||p̄− p∗||2 + ||p⊥||2 − ||p̄− p∗||2 = ||p⊥||2 (29)

where one gets to the the last line by using the orthogonality of p⊥ and p̄, p∗ ∈ HG.

C IMPLEMENTATION OF INVERSION KERNELS

We now provide more details on the implementation of inversion kernels. As noted in the main
text, a general method is provided by the following optimization approach of Kaba et al. (2023).
Given an energy function E : X → R, there exists a canonicalization τ such that the set
argming∈GE(g−1x) = Gxτ(x), so long as the energy function is “non-degenerate”. By that,
we mean that there is a unique minimizer γ(x) = argminx′∈GxE(x′) for any orbit Gx. For differ-
ent groups, we describe how an energy function E can be parameterized such that the optimization
is efficient. We also give more details on the non-degeneracy requirement, which is non-trivial to
satisfy for some groups, but does not pose issues in practice.

Discrete translation and rotation groups with equivariant neural networks As shown by Kaba
et al. (2023), the energy function E can in general be alternatively represented with an equivariant
function. This can be formalized with the following proposition.
Proposition C.1. Suppose s : G × X → R is a jointly equivariant function such that s(g, hx) =
s(h−1g, x) ∀g, h ∈ G, x ∈ X . Then, there is a function E : X → R, such that s(g, x) = E(g−1x).

Proof. To prove this, we show that s(g, x) only depends on g−1x. Consider any two pairs (g, x)
and (g′, x′) such that g−1x = g′−1x′. Then, it must be that there is an h ∈ G such that g′ = hg
and x′ = hx. If we then consider s(g′, x′) = s(hg, hx), using the equivariance condition we obtain
s(g′, x′) = s(g, x).

6We use λ to denote the (normalized) Haar measure on G.
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By currying, we can also see the equivariant function s as outputting a real number for each group
element, e.g. s : X → RG. For finite groups, like discrete roto-translations groups, the function s can
be conveniently implemented using equivariant neural network architectures like CNNs (LeCun et al.,
1995) and G-CNNs (Cohen & Welling, 2016). By averaging the output feature map over channels
(but not over fibers), we can obtain a real number for each group element and take the argmax to
sample from the inversion kernel. With this parametrization, the non-degeneracy requirement is
heuristically expected to be satisfied. This is because for it not to be satisfied, the weights of the
neural network would have to “accidentally” result in identical outputs for different group elements.

Symmetric group with sorting The above parametrization in terms of an equivariant function
s : X → RG is impractical for the symmetric group Sn, since its size grows combinatorially with
input size n (here, we assume X consists of sets of n objects). For this group, there is however a
simple and efficient way to canonicalize using sorting. This can also be seen as an optimization
procedure as follows.

We first define the energy as E(g−1x) = f(g−1x) · ρT , where f : X → Rn is an Sn-equivariant
function that scores each element of the set and ρ = [n, n− 1, . . . , 1]

T . From equivariance, we have
E(g−1x) = g−1f(x) · ρT . Then, as shown by e.g. Blondel et al. (2020), argming∈GE(g−1x) =

argming∈G g
−1f(x) · ρT = argsort f(x). We can therefore simply take f to be any Sn-equivariant

neural network, and sort the outputs corresponding to each element of an input set or nodes in a graph.
When the input has self-symmetries, multiple permutations will sort the input, so one is chosen
randomly from that set.

Note that using this method for graphs will not allow us to sample from an inversion kernel in general,
since the non-degeneracy of the corresponding energy function cannot be guaranteed. This problem
is related to the difficulty of canonicalizing graphs (Babai & Luks, 1983; McKay & Piperno, 2014).
However, luckily, the fact that we do not sample from an inversion kernel does not restrict our ability
to represent arbitrary equivariant conditional distributions. Since we still sample g̃ from an equivariant
conditional distribution, Proposition 5.1 ensures that the representational power of the method is
preserved. However, recall the conjecture that sampling from an equivariant conditional distribution
of minimal entropy is best for learning (as noted in the main body, as well as motivating the search
for “ideal” SBSs in Xie & Smidt (2024)). From this perspective, the closer to a true/powerful graph
canonicalization is used, the easier learning may be.

Continuous groups For continuous groups, in principle the energy minimization can be performed
with gradient-based methods. It would, however, be impractical to require optimization until con-
vergence. If this is not the case, or if the energy is degenerate, we do not formally sample from an
inversion kernel. However, we still sample g̃ from an equivariant conditional distribution, which is
compatible with Proposition 5.1. Heuristically, stochastic gradient-descent with a small learning
rate is similar to Langevin sampling of the distribution exp(−E(g−1x)/T ) where T is related to the
stochasticity of the optimization (Welling & Teh, 2011). Moreover, some existing canonicalization
methods are easily adapted to sampling from equivariant conditional distributions. For example, if
one canonicalizes a point cloud by defining a coordinate axis based on the center of mass and two
points of maximal radius, one can randomly sample these points of maximal radius in the case of a
tie (which arises under self-symmetry).

D BREAKING SYMMETRY IN DIFFERENT GROUPS

In this appendix, we show how to learn symmetry breaking biases v ∈ V (such that Gv is trivial) for
different groups. For any group G, the first basic requirement is for the group to act faithfully on V .
We then want to choose V such that we can initialize v ∈ V and obtain Gv with probability 1 (with
the assumption that v is initialized by sampling from an absolutely continuous distribution).

D.1 PERMUTATION GROUPS

For permutation groups such as Sn and p4m (the symmetry group of an image grid), the group admits
a faithful representation that maps to permutation matrices acting on Rn. We can therefore choose
V = Rn.
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In this case, it suffices that all the elements of a symmetry breaking bias v are different. This is
captured by the following proposition.

Proposition D.1. Let G act faithfully by permutation on Rn and v ∈ Rn be such that vi ̸= vj for any
i ̸= j. Then Gv is trivial. In addition, the set of v not satisfying this condition is of measure zero with
respect to the Lebesgue measure.

Proof. The proof of the first part of the proposition is trivial. For any g ∈ G, (gv)i = vg−1(i). Since
the group action is faithful, for any g ∈ G except the identity, there is an i ∈ [n] such that g−1 (i) ̸= i.
For this i, vg−1(i) ̸= vi, therefore Gv is trivial.

The second part follows the same idea as Proposition 3 of Kaba & Ravanbakhsh (2023). Consider
the hyperplanes in Rn, defined as Hij = {v ∈ Rn | vi = vj}. Any v not satisfying the condition is
an element of S = ∪ni ̸=jHij . A hyperplane Hij defines an (n− 1)-dimensional space in Rn. Any
subspace of Rn of dimension strictly less than n is of measure zero. The countable union of such
subspaces S is also of measure zero.

D.2 SUBGROUPS OF THE GENERAL LINEAR GROUP

We also consider groups that admit faithful representations as subgroups of GL(n), such as O (n) for
point clouds and atomic systems. In this case, we can choose the symmetry breaking bias to be n
linearly independent vectors, so that V = Rn×n.

Proposition D.2. Let G ⊆ GL(n) and V = Rn×n. Assume G acts on V as a product of faithful
actions, e.g. gv 7→

[
gv1, . . . , gvn

]
, where vi is the i-th column vector of v. If the vectors

[
v1, . . . , vn

]
are linearly independent, then Gv is trivial. In addition, the set of v such that this condition is not
satisfied is of measure zero with respect to the Lebesgue measure.

Proof. For the first part, we can identify the action of the group and matrix multiplication gv. For
any g ∈ Gv , it must be that gv = v. Since the columns of v are linearly independent, v is invertible.
We therefore have gvv−1 = vv−1, which implies g = I .

For the second part, the idea is similar to the proof of Proposition D.1 above. If two
columns of v are not linearly independent, it implies that v is element of a subspace Hij ={
v ∈ Rn×n | ∃a ∈ R s.t. vi = avj

}
for some i and j. This is a subspace of measure zero since

it is of dimension n2 − n+ 1. The union of all such subspaces S = ∪ni̸=jHij is also of measure zero
since it is countable.

D.3 REPRESENTATION OF JOINTLY EQUIVARIANT FUNCTIONS

Here we show more formally that the encoding of group elements using vectors allows to represent
any jointly equivariant function.

Proposition D.3. Let f : X × G → Y be any function jointly equivariant in its arguments, i.e.
f(hx, hg) = hf(x, g) ∀ h ∈ G, and let V be a vector space on which G acts. If v ∈ V has trivial
stabilizer, then there exists an equivariant function f0 : X × [v]→ Y such that f(x, g) = f0(x⊕ gv).

Proof. Consider any jointly equivariant f : X ×G→ Y , and suppose v ∈ V has trivial stabilizer.
We may let f0(x⊕ u) = f(x, g) where g is the unique group element such that gv = u.

E THE INVERSION KERNEL INJECTS MINIMAL NOISE

We argue that using g̃|X in place of independent Z ∈ Z introduces the least amount of noise
possible into the functional representation of Proposition 5.1. We will measure “amount of noise” by
conditional entropy, assuming G is finite for ease of exposition. Z is a disjoint union of orbits. Since
entropy is additive, it is minimized if Z is restricted to a single orbit, which (assuming G acts freely)
is isomorphic to G itself. We thus consider Z as a G-valued random variable.
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First notice that if Z is independent of X , then it must be uniform on G to be equivariant. It is
easy to show the uniform distribution maximizes entropy. To see inversion kernels minimize it, let
g ∈ G be such that P (Z = g|X = x) = p. If Z|X is equivariant, then for any h ∈ Gx we have
P (Z = hg|X = x) = p. Thus the support of Z|X = x is at least the size of Gx. Entropy will again
be minimized if Z|X = x indeed has a support of this size. This is exactly the case when Z|X is in
fact distributed like g̃|X , according to an inversion kernel.

F ISING MODEL EXPERIMENTAL DETAILS

F.1 GROUND STATE OF THE ANISOTROPIC ISING MODEL

We present here an analytical derivation of the ground states of the anistropic Ising model. This is
used to obtain the ground-truth values for the average energy in Table 3 and the ground-truth phase
diagram in Fig. 5.

The general form of the Hamiltonian of a spin system with binary interactions is given by

H (σ) = −
∑
i,j

Jijσiσj −
∑
i

hiσi. (30)

The family of anisotropic Ising models we consider is given by

H(σ) = −
∑
⟨i,j⟩x

Jxσiσj −
∑
⟨i,j⟩y

Jyσiσj −
∑
i

hσjn (31)

where
∑

⟨i,j⟩x indicates that the lattice sites i and j are nearest neighbors in the x direction. We
also consider periodic boundary conditions. We can re-express the Hamiltonian using the variables
bxij , b

y
ij = [σi, σj ] ∈ {[1, 1] , [1,−1] , [−1, 1] , [−1,−1]} taking values on the horizontal and vertical

interaction edges instead of the lattice sites. The variable encodes the value of the spins i and j
adjacent to the bond. For convenience, we will write bij as a one-hot vector, with

bα
ij =


[1, 0, 0, 0] if bαij = [1, 1]

[0, 1, 0, 0] if bαij = [1,−1]
[0, 0, 1, 0] if bαij = [−1, 1]
[0, 0, 0, 1] if bαij = [−1,−1]

(32)

In terms of these variables, the Hamiltonian becomes

H(b) = −
∑
i,j

 Jx

−Jx

−Jx

Jx

bx
ij −

∑
i,j

 Jy

−Jy

−Jy

Jy

by
ij −

∑
i,j

1

2

 h
0
0
−h

(
by
ij + bx

ij

)
(33)

For the change of variables to correspond to a valid spin configuration, we additionally need to satisfy
the constraints bij,0 = bij′,0 and bi′j,1 = bij,1 for any i, i′, j, j′. Any configuration of variables
satisfying such constraint will be an element of the feasible set B.

Finding the ground state therefore corresponds to the optimization problem argminb∈BH(b).

Since the form of the Hamiltonian Eq. (33) is a simple sum of non-interacting terms, we first directly
minimize to find the ground-states without considering the constraint. We will then verify that the
minimum lies in the feasible set B.

We first re-write the Hamiltonian in the following way

H(b) = −
∑
i,j

J
x + h/2
−Jx

−Jx

Jx − h/2

bx
ij −

∑
i,j

J
y + h/2
−Jy

−Jy

Jy − h/2

by
ij (34)

We can then minimize each term independently to obtain the solution

bα
ij =


[1, 0, 0, 0] if Jα ≥ −h

4 , h ≥ 0

[0, 1, 0, 0] or [0, 0, 1, 0] if Jα ≤ − 1
4 |h|

[0, 0, 0, 1] if Jα ≥ h
4 , h ≤ 0

(35)
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where α ∈ {x, y}. Without loss of generality we consider h ≥ 0. This leaves us with four
possibilities.

1. Jx ≥ −h
4 , J

y ≥ −h
4 : The ground states is given by bα

ij = [1, 0, 0, 0], which is in B and
corresponds to the ferromagnetic (FM) phase (see Fig. 6a).

2. Jx ≤ −h
4 , J

y ≤ −h
4 : Feasible ground states consists of alternating between bα

ij =
[0, 1, 0, 0] and bα

ij = [0, 0, 1, 0]. This is indeed in B and corresponds to the antiferromagnetic
(AFM) phase (see Fig. 6b).

3. Jx ≥ −h
4 , J

y ≤ −h
4 : Feasible ground states consists of having bx

ij = [1, 0, 0, 0] and
alternating between by

ij = [0, 1, 0, 0] and by
ij = [0, 0, 1, 0]. This is indeed in B and

corresponds to the y stripes phase (Sy) (see Fig. 6c).

4. Jx ≤ −h
4 , J

y ≥ −h
4 : This is the same as above but with stripes in the x direction.

(a) Ferromagnetic phase (b) Antiferromagnetic phase (c) Stripes phase

Figure 6: Illustration of the different ground-states of the anisotropic Ising model

We can see that the different ground-states are associated with specific types of orders. The type
of order of an arbitrary spin configuration σ, which is in a sense its closeness to the respective
ground-states, can be quantified via order parameters (Beekman et al., 2019).

The order parameters are given by

OFM =
1

N

∑
i

σi OAFM =
1

N

∑
i

(−1)i
x+iy

σi OSy =
1

N

∑
i

(−1)i
y

σi (36)

where ix and iy are respectively the x and y positions of a spin σi. The order parameters take the
value 1 if and only if σ is the associated ground-state. In addition, OFM +OAFM +OSy ≤ 1, which
means that the orders are mutually exclusive. This allows us to draw meaningful phase diagrams like
the ones in Fig. 5.

F.2 HAMILTONIAN ENCODING

For the encoding of the Hamiltonian interaction parameters as input to neural networks, a graph
representation would be possible, with interaction parameters Jij encoded as edge attributes and
external field values as node attributes (see Fig. 7a). However, this choice would make it much more
challenging to use the p4m symmetry of the Hamiltonian. We therefore leverage the structure of the
lattice and adopt an image representation (see Fig. 7b). We can then conveniently use G-CNNs and
MLPs as prediction networks.

We choose to set the size of the spin grid to 64× 64, which corresponds to images of size 128× 128.
We also encode the interaction parameters J and the transverse field h across two different channels.
The dimension of the inputs to the models is therefore [batch, 2, 128, 128]

In intermediary activations of the neural network, we always preserve the size of the image. At the
output of the network, we obtain a spin configuration by indexing the image over pixels corresponding
to lattice sites (with black dots on figure Fig. 7b). The energy is then computed over the lattice sites.
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(a) Graph encoding (b) Image encoding

Figure 7: Data structures for the encoding of the Hamiltonian interaction parameters. Jx is represented
in blue, Jy in yellow and the external field in green. The lattice sites of the spins are represented with
black dots. In the image, gray pixels corresponding to the “holes” between edges, are set to 0.

F.3 GROUP ACTION

We explicit here the action of the group p4m (the symmetry group of the square lattice) on the
Hamiltonian and on spin configurations.

To make the action clearer we unpack lattices indices variable in terms of horizontal and vertical
components as i ≡ (ix, iy). For g ∈ p4m, the action on a spin configuration is given by gσ(ix,iy) =
σ(g−1ix,g−1iy). The action on the indices permutes them.

The action on the Hamiltonian parameters is similarly given by gh(ix,iy) = h(g−1ix,g−1iy) and
gJ(ix,iy),(ix,iy) = J(g−1ix,g−1iy),(g−1jx,g−1jy). In practice, action by the group on the image encod-
ing of the Hamiltonian is simply given by performing the transformation on the image (Fig. 7b).

For any Hamiltonian, acting on both the parameters and the spin configuration preserves the energy:

HgJ,gh (gσ) =−
∑
i,j

J(g−1ix,g−1iy),(g−1jx,g−1jy)σ(g−1ix,g−1iy)σ(g−1jx,g−1jy)

−
∑
i

h(g−1ix,g−1iy)σ(g−1ix,g−1iy).
(37)

which we see equals HJ,h(σ) due to the sum over i and j.

For the anisotropic Ising model we consider, the Hamiltonian parameters themselves are self-
symmetric under the subgroup pmm, which includes translations, reflections and 2-fold rotations
(but not 4-fold). In other words for any g′ ∈ pmm, g′J = J and g′h = h. This is easily seen from
Fig. 7b, the image encoding exhibits a wallpaper pattern with symmetry pmm.

F.4 TRAINING SETUP

Unsupervised training is performed by having the neural network ϕ : J → [0, 1]
Λ output the

probability that each spin is up by applying a softmax on the last layer; symmetry breaking elements
are sampled through a canonicalization given by a G-CNN as in Kaba et al. (2023). When there is a
tie in the canonicalization, an element of the argmax set is chosen randomly. We use the EquiAdapt
library (Mondal et al., 2023) to implement the canonicalization. While training, we then compute the
expectation value of the spin at each site and treat this as the configuration, using the Hamiltonian as
a loss function. At evaluation, we sample a spin value for each site using the probability output from
the neural network.

We define a training set of Hamiltonian parameters as Jx = −1 and sampling Jy ∼ Unif (−3, 3),
h ∼ Unif (0, 2), with parameters constant over the lattice. The training set is of size 1024. For the
validation we also use 1024 samples. We consider two test sets: one in-distribution (ID) test set
of 10, 000 regularly sampled Hamiltonian parameter values in the same range. We also consider
an out-of-distribution (OOD) test set, which is the ID test set, augmented with rotations of the

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Hamiltonians parameters (J, h). For each test set example, with 0.5 probability we act with the
group element corresponding to 90◦ degree rotation. Note that it is not necessary to consider other
augmentations in p4m because they will either be self-symmetries the Hamiltonian parameters (be
elements of the coset of eG(J,h)) or will act in the same way as a 90◦ degree rotation (be elements of
the coset of gG(J,h), with g = 90◦).

F.5 ENERGY RESULTS

We report energy results in Table 3. We see that for the ID test, the relaxed group convolutions method
is slightly better than SymPE. However, for the OOD test set, SymPE becomes significantly better.
This is due to the fact that SymPE retains an equivariance inductive bias compared to the relaxed
convolutions methods which is not equivariant. Note that even for SymPE, the vanilla G-CNN and
the G-CNN+noise, the results for the OOD test set are slightly worst even if the methods model
equivariant conditional distributions. This can be attributed to border effects. For the non-equivariant
MLP and the relaxed group convolutions, the decrease in performance is much more significant.

Table 3: Test set energies of predicted configurations

Method Energy (ID) Energy (OOD) Parameters Forward time (s)

Random configurations 0.0 0.0 - -

MLP + aug. -1.24 -0.76 3.2M 8× 10−3

G-CNN -0.73 -0.71 397K 0.47
G-CNN + noise -1.29 -1.24 399K 0.49
Relaxed group convolution -1.51 -1.30 463K 0.47
G-CNN + SymPE (Ours) -1.47 -1.43 468K 0.52

Ground truth -1.60 -1.60 - -

We also compare the parameter count and forward time (on Nvidia Quadro RTX 8000 GPUs with of
the different models. We see that the computational overhead of SymPE is small compared to the
vanilla G-CNN.

G GRAPH DIFFUSION EXPERIMENTAL DETAILS

Our experimental setup follows exactly that of the original DiGress model, as described in Vignac
et al. (2023), with the same discrete denoising diffusion process and graph transformer architecture.

We used the QM9 dataset of small molecules, incorporating explicit hydrogen atoms, for evaluating
the validity and uniqueness of generated molecular graphs along with the negative log-likelihood of
the test set. For the MOSES dataset we report the negative log-likelihood on the withheld test set,
not on the scaffold test set. The graphs were preprocessed similarly to the standard setup in DiGress,
where node features represent atom types and edge features represent bond types. We incorporated
spectral features into the network to improve expressivity, following the methodology outlined in the
original paper. The positional encodings introduced by SymPE were concatenated to node and edge
features during the diffusion process.

In the Table 4, we report the negative log-likelihood results for MOSES.

Table 4: Negative log-likelihood for molecular generation on MOSES

Method NLL Parameters Training time (h)
DiGress 65.9 16.2M 28.12
DiGress + SymPE (ours) 30.4 16.3M 34.61
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H GRAPH AUTOENCODER EXPERIMENTAL DETAILS

As discussed in the main body, autoencoders with “very symmetric” latent spaces pose a problem for
equivariant models. In the graph auto-encoding setup of Satorras et al. (2021), self-symmetry of a
graph with adjacency matrix A arises in the form of its automorphism group, {g ∈ Sn : gAgT = A}.
For example, the square graph A in Figure 1 has C4 automorphism group. When using a permutation-
equivariant encoder e, e(A) must therefore also have at least C4 symmetry. Even though the goal of
the permutation-equivariant decoder d is to satisfy d(e(A)) = A, which would not seem to explicitly
require symmetry-breaking, there is a subtle problem: the choice of latent space Z . Precisely, Z
does not contain any node-wise featurization with precisely C4-symmetry: if {z1, . . . , z4} ∈ Z have
C4-symmetry, this implies that z1 = · · · = z4.7 More abstractly, there exist graphs A, with stabilizer
(automorphism group) GA, such that there is no Z ∈ Z with GZ = GA; only GA ⊊ GZ . Thus, for
these graphs, any equivariant encoder will produce an “overly self-symmetric” latent embedding.
To reconstruct A, we must therefore break the latent-space symmetry induced by the equivariant
encoder.8

In our experiments, we followed the training hyperparameters of Satorras et al. (2021), but trained
for fewer epochs (20) using their “erdosrenyinodes 0.25 none” dataset and the “AE” archi-
tecture. Moreover, we follow the setup of Satorras et al. (2021) and break symmetries at the input.
Satorras et al. (2021) suggest doing this with random noise as initial node features. However, this
breaks all permutational symmetry, not just the graph’s automorphism group.

In this experiment, we use a heuristic based on Laplacian positional encodings to break symmetries of
the input graph. It is important to note that, due to well-established ambiguities in the singular value
decomposition of the Laplacian, this method is not necessarily perfectly permutation-equivariant. (A
way around this is to use a graph network’s learned embeddings instead of the Laplacian positional
encodings, as in Section 8.2, which we defer to future work.) In particular, ambiguities arise due to
two factors: repeated eigenvalues, and sign ambiguities. Formally, the graph Laplacian is defined as
L = D−A, where A is the adjacency matrix and D the diagonal degree matrix. If the Laplacian has
singular value decomposition L = USV T , where the entries of S are ordered from largest (at top left)
to smallest (at bottom right), then the Laplacian positional encoding of dimension f of node i in the
graph is given by U [i, f ]. As noted throughout the literature on graph positional encodings, however
(see e.g. Lim et al. (2023c)), the decomposition USV T is not well-defined when S contains non-
unique singular values, as there are multiple choices of eigenvector basis for the multidimensional
eigenspace corresponding to a repeated singular value. Thus, when the nodes of the graph are
permuted by a permutation P , the positional encodings of the nodes may not simply permute. In
contrast, when the singular values of L are all unique, the eigenvectors are uniquely defined up to
sign ambiguity. Therefore, the positional encodings still break automorphism symmetries, but are not
distributionally permutation equivariant.9 Empirically, on the graph autoencoding experiment of this
section, we find that only 7% of the graphs in the training data have a repeated eigenvalue in the top
four largest Laplacian eigenvalues. However, among those graphs whose largest four eigenvalues are
unique, their positional encodings are only equivariant to roughly between 2% and 10% of randomly
sampled permutations. It is therefore interesting to note that even this heuristic, which is not perfectly
permutation equivariant, significantly outperforms random noise injection and uniform sampling of
g ∈ Sn, as well as the other noted baselines.

We also include some additional baselines in Table 5, none of which work as well as our proposed
method. In both this table and in the main body, % Error is the same metric as used in Satorras et al.
(2021).

7The possible stabilizers of Z , the latent space of node-wise featurizations, are groups of the form Si1 ×
. . . Sik , where i1 + · · ·+ ik = n.

8Of course, one could also use a different latent space, such as a latent space of matrices. However, this may
defeat the purpose of learning an expressive, dimensionality-reduced latent space.

9If the SVD algorithm settled these ambiguities randomly, then they would be distributionally equivariant,
but we did not enforce this beyond Pytorch’s built-in algorithm.
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Table 5: Cross-entropy loss and reconstruction error

Method BCE % Error Number of parameters
Both Laplacian canonicalization and noise in-
jection

12 3.0 88,885

Break symmetry with Laplacian canonicaliza-
tion, just 1 channel

25.0 6.8 88,239
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