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Abstract

The effective and efficient transfer of knowledge from a foundation model using
Convolutional Neural Networks (CNNs) to a new task is a significant challenge
in computer vision. Initial approaches include side-tuning, a straightforward
method that attaches a lightweight, modular side-network to the original model
and interpolates the two outputs for transference to the new task. They fell to the
wayside when visual prompt tuning (VPT) was introduced due to VPT’s superior
performance, significantly fewer additional parameters, and improved ability to
generalize to multiple datasets. This paper presents the Parasite Network, an
alternative side-network approach using CNNs that leverages a small ‘parasite’
model that extracts knowledge at points along the original larger ‘host’ network
without adapting the original model. We show that parasite networks have a
significant reduction in the number of training parameters and are able to generalize
across multiple datasets as compared to side-tuning. The parasite approach was
experimentally validated against both substitutive and additive transfer learning
methods using various VTAB-1K datasets. We show that the parasite approach
outperforms VPT for CNNs and has superior GPU utilization and competitive
latency.

1 Introduction

Deep learning has seen explosive growth over recent years utilizing foundation models that have
achieved inspiring results across a broad range of tasks. In computer vision, numerous large models
with broad-purpose understandings of images in various domains were developed using Residual
Networks [14] and Vision Transformers [12]. These large models, trained on millions or billions of
images using extensive computational resources, are useful backbones for transfer learning.

With the parameter space of state of the art (SOTA) systems continuing to grow exponentially, chal-
lenges emerge with constrained resource requirements such as storage, latency and GPU utilization.
Therefore, developing techniques that can modularly leverage foundation models for multiple tasks
becomes critical for resource-constrained environments. Popular main transfer learning techniques
can be broken down into two main types: substitutive and additive methods [30]. Substitutive methods
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Figure 1: Host Network (ResNet-50) & Parasite Network (ResNet-50 Inspired) Interaction Architec-
ture: The host network is frozen during training with the parasite network having the only trainable
parameters. At various predefined points, the output from the host network is concatenated as
additional channels to the parasite network which the parasite uses for domain transfer.

are techniques that modify only the parameters of the pretrained network for adaptation to the new
task. While this can be an effective approach, the model’s knowledge about the original task is lost,
which negatively impacts performance in multitask settings. Additive approaches involve freezing
the original model and adding additional parameters for domain transfer. This has the advantage of
adding fewer additional parameters for each new task enabling efficient multitask learning.

Given these challenges, there is a need for efficient transfer learning approaches in resource-
constrained environments. Therefore, we propose parasite networks, a novel side-network approach
for transfer learning that is efficient in terms of parameters, GPU memory usage, and latency. The
parasite approach can maintain these efficiencies as well as obtain strong performance across multiple
VTAB-1K datasets. In this paper, we explore how parasite networks can extract information from
foundation (host) models and their advantages over previous transfer learning methods. We conclude
that the parasite technique is a strong alternative to the transfer learning problem for CNNs.

2 Related Work

Large Foundation Models for CNNs. Many state-of-the art computer vision foundation models
for CNNs rely on Residual Network (ResNet) architectures. ResNets contain skip connections
between convolutional layers and many papers use ResNets as the core backbone architecture for
many CNN-based foundation models [14, 26, 15, 27]. To train these models, many papers focus on
self-supervised learning (SSL) approaches to achieve SOTA results. SSL is mainly broken down
into two types: 1) contrastive learning which learns from positive and negative examples [24, 8]
and 2) non-contrastive learning which uses only positive examples [5, 7]. While these foundation
models provide impressive results, there is a need for transfer learning techniques on these models in
resource-constrained environments.

Transfer Learning. In transfer learning, a pretrained model is taken from one task and
adapted to another domain. Popular transfer learning techniques can be broken down into two main
approaches: substitutive methods and additive methods. Three popular additive techniques are 1) the
linear probe approach (Linear Probe-k), 2) side-tuning, and 3) visual prompt tuning (VPT). Linear
Probe-k involves using all layers except for the classification layer(s) of a pretrained model as a
backbone and then attaching k layers at the end of the network for transfer to the new task [20, 28].
In the side-tuning approach, a small "side" model is trained by combining the core original model’s
and the smaller model’s output representations and classifying from the resultant combination [30].
Finally in VPT, the core model is frozen and additional prompt parameters are added in the input
space for adaptation to the new domain [17].

In substitutive approaches, only the original network’s parameters are used for transferring to the
new domain. Three popular substitutive techniques are: 1) fully retraining the model, 2) partially
fine-tuning the model (Partial-k), and 3) bias-tuning. Under the full-retrain technique, the entire
model is adapted to the new task [1, 11]. In Partial-K, the last k layers are tuned while the remaining
layers are frozen [2, 25]. In the last technique, only the bias vectors are adapted [3, 4].

2



Avg. # Trainable Datasets Averages
Parameters Pet Flowers EuroSAT CIFAR100 Dmlab DTD Accuracy STD

Substitutive
Full-Retrain 23.6M 83.09% 74.26% 90.56% 32.88% 41.41% 50.53% 62.12% 0.84
Partial-1 4.6M 86.34% 83.44% 90.52% 44.46% 39.02% 62.91% 67.78% 0.52
Tinytl-bias 129.7K 88.28% 80.38% 92.12% 48.38% 31.42% 60.62% 66.87% 0.41

Additive

Linear Probe-1 4.3M 87.50% 80.88% 91.02% 48.13% 34.96% 58.46% 66.83% 0.44
Linear Probe-2 8.5M 86.41% 80.52% 90.26% 47.42% 35.79% 59.17% 66.6% 0.50
Linear Probe-4 16.9M 84.18% 69.47% 89.66% 38.66% 32.03% 58.05% 62.01% 1.02
Linear Probe-8 33.7M 79.49% 58.92% 82.41% 31.59% 26.23% 52.53% 55.2% 1.23
VPT 117.9K 88.26% 80.93% 90.36% 49.48% 36.29% 63.40% 68.12% 0.17
Side-tune 21.4M 85.41% 23.03% 82.42% 43.84% 24.88% 60.23% 53.3% 7.80
Parasite 2.61% 617K 87.20% 83.28% 95.09% 49.76% 44.34% 64.08% 70.63% 0.61
Parasite 7.44% 1.8M 87.53% 85.04% 95.41% 49.51% 45.99% 63.81% 71.22% 0.49
Zero-ed Host Parasite 617K 6.72% 18.64% 80.17% 8.96% 35.07% 14.13% 27.28% 0.60

Table 1: Parasite networks with sizes 2.61% and 7.44% of a ResNet-50 were chosen for reporting
results. Zero-ed Host Parasite refers to a parasite model that receives no information from the host
and must adapt alone. We provide the average number of trainable parameters, accuracy, standard
deviation over the six datasets to show the relative differences between runs. We took an average for
the number of parameters as the classification heads changes with number of classes.

3 Model Architecture

The overall model architecture is comprised of two parts: 1) a larger host model from the original
network and 2) a smaller parasite model. Figure 1 shows how the parasite extracts information after
various blocks of the host network. For a more comprehensive architecture design and use case, refer
to the supplementary materials.

Host Network The host network corresponds to the large foundation model that contains
information for domain transfer. During training and testing, the host network remains frozen and
acts as input for the parasite network. Activation outputs are stored at various points along the
network with connections at these points to feed information into the parasite model. Having a
host model separate from the parasite allows for systems to still utilize the host model for separate
purposes as well as for the specific domain transfer task that the parasite aims to solve.

Parasite Network The parasite network is a much smaller network than the host network
and is the primary vehicle for domain shift. The smaller network allows for efficient domain shift as
we only need to train a relatively small number of parameters to achieve strong performance. With
the name inspired by a biological parasite, the parasite network extracts information at various points
from the host network and, in the case of a convolutional neural network setting, concatenates the
outputs along the channel dimensions. We experimentally found that concatenating the two outputs
performs better than simply adding them together. The key difference between the side-tuning
approach and the parasite approach is that side-tuning combines information at the end of the
respective networks while the parasite approach extracts information at multiple intermediate points
of the original network. The parasite model parameters are trained on the new domain task while
implicitly deciding which pieces of information from the host is important.

4 Experiments

Datasets and Implementation Details. To show the effectiveness of the parasite network approach,
we characterize its performance against both the standard substitutive approaches and additive
approaches described in Section 2. Focusing on domain transfer for CNN foundation models, the
parasite method was compared against other methods for CNNs. Scores were taken and replicated
from Jia et al. [17] official github repository with their paper reporting umbrella task averages for
ResNet-50s. The pretrained model was torchvision’s ResNet-50 trained on ImageNet-1K [21, 10].
To set up experiments, we follow the methodology of Jia et al. [17] and their VPT method for CNNs.
We use six image classification task datasets from the VTAB-1K datasets with approximately 1000
training examples each: 1) Oxford-IIIT Pet (Pet) [23], 2) 102-Flowers (Flowers) [22], 3) EuroSAT
[16], 4) CIFAR-100 (CIFAR100) [19], 5) Dmlab [29], and 6) Describable Textures Dataset (DTD)
[9]. Images were reshaped to 224x224 pixels and normalized before passed into the model.

For efficient comparison, we followed the training details as Jia et al. [17]. We used AdamW with
a cosine-decay scheduler and 10 warm-up epochs. We followed the learning rate scaling rule as
described in Krizhevsky [18] and Goyal et al. [13] and set the true learning rate (µtrue) equal to

3



Figure 2: VPT, Parasite, and Full-Retrain peak GPU memory utilization and average latency were
compared for both train (left) and test (right). Parasite sizes are the percent size of a ResNet-50.

a function of the base learning rate (µbase) and the batch size (B): µtrue = µbase ∗ B
256 . We train

for 100 epochs and report the average over three runs. We trained 18 parasites of various sizes and
reported results for parasites around 2.61% (617K parameters) and 7.44% (1.8M parameters) the size
of a ResNet-50. To create the parasite, the architecture of a ResNet-50 was maintained but the number
of parameters were reduced by taking a ratio of the number of in- and out-channels. Additional
in-channels were added to the convolutional layers that take in the outputs of both the parasite and
the intermediate layers of the host. Instead of random initialization, the weights of the parasite were
initialized to a small portion of the original host network as it led to marginal improvements in the
final scores. We perform the same grid-search as Jia et al. [17] by varying the batch size, base learning
rate (base_lr), and weight decay to determine the best configuration for each parasite size and dataset
combination. Configurations can be found in supplementary materials.

Results. Table 2 shows that the parasite model outperforms all other baselines on average. The relative
performance between the parasite and the linear probes show that multiple points of information
from the frozen backbone can lead to improved performance. The parasite method outperforms all
additive methods except VPT and has a much smaller average standard deviation over the datasets
than side-tuning, giving greater confidence in our results. The parasite performs as well as VPT on
three out of six datasets and outperforms on the remaining three datasets.
To see how the parasite adapts without any real host, we train a parasite of size 2.61% of a ResNet-50
that accepts only zeros from the host (zeroed host). As shown in Table 1, this model greatly under-
performs suggesting that the host is needed for successful domain transfer. A disadvantage of the
parasite approach is that a weak, too out of domain host model can’t extract quality information for
domain shift leading to poor performance. However, a strong host can lead to strong transfer of tasks.

5 GPU Memory Utilization and Latency

To show resource efficiency of the parasite approach, we look at the peak GPU utilization and average
latency for both train and testing environments. We compared the parasite approach to full-retraining,
and VPT with 1 (106K), 10 (131K), 50 (268K), and 100 (492K) prompt tokens (p). We chose parasites
of 0.77% (183K), 2.61% (617K), 7.44% (1.8M), and 94.46% (22.3M) the size of a ResNet-50. We
used the same experimental setup and datasets as Section 4 and used a Nvidia V100-32GB GPU
and a batch size of 64. The peak utilization and average latency are reported in Figure 2 and more
detailed numbers are in the supplementary materials.

The parasite outperforms the other two methods for GPU utilization. The parasite has competitive
latency for test and outperforms for training. However, the parasite scales much better than VPT for
test latency when considering the range of the number of training parameters in Figure 2.

6 Conclusion

We introduced the parasite network, a side-network approach that leverages all block levels with
multiple extraction points along the host network. This allows for a significantly reduced number of
training parameters as compared to side-tuning. The parasite network performs at least as well as
VPT across various VTAB-1K datasets and has improved GPU utilization and competitive latency.
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Supplementary Material

A Grid-Search Configurations

Base LR {0.001, 0.0001, 0.0005, 0.005, 0.05, 0.1, 0.25, 0.5, 1., 2.5, 5., 10., 25., 50.}
Weight Decay {0.0, 0.0001, 0.001, 0.01}
Batch Size {1024, 384, 256, 128, 64, 32}

Table 2: Following Jia et al. [17], we chose the best configuration for each dataset and parasite size
combination for our experiments.

B Example Use Case of the Parasite Network

In an example to show how the parasite model would be used, let us say we are performing domain
shift from ‘video action recognition’ to ‘movie genre classification.’ Specifically, we have a model
that has been trained on the Kinetics-700 Dataset [6], and we are using this pretrained model to
detect movie genres such as romance or tragedy. If we are in a resource-constrained environment and
want to classify concurrently, we can attach the parasite to the model pretrained on Kinetics. The
pretrained model can detect actions while the parasite model can detect genres. Keeping in mind
the resource constraints, few additional parameters have been added for domain transfer. Also, peak
GPU utilization and average latency remain competitive or better than other methods.

C Architecture Details

For this paper, we followed the ResNet-50 architecture. While the host network is a ResNet-50,
parasite networks are different. Parasite networks have the same structure as a ResNet-50, but the
number of out channels is chosen as a ratio of the original ResNet-50 layer. The input of a block is
the concatenation of the previous block’s output and the host intermediate block’s output. Therefore,
there is a small bulge in the input channels at the beginning of the next block with the number of
in-channels indicated in Figure 3. The ratio for the figure below is for 0.2 which corresponds to
7.44% (1.8M) the size of a ResNet-50.

Figure 3: Host Network (ResNet-50) & Parasite Network (ResNet-50 Inspired) Interaction Architec-
ture: Detailed architecture of how the parasite interacts with the host using the Flowers dataset. For
this case, the host and parasite network both follow ResNet-50 with the parasite significantly smaller
than the host. The number of in-channels at the beginning of each block are indicated with “in-ch”
with a small bulge of parameters for the concatenation of the two intermediate block outputs.
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D Number of Training Parameters Graph

Figure 4: The parasite model requires few additional parameters and is significantly more efficient
than side-tuning. The parasite shown in the graph is 2.61% the size of a ResNet-50.

E More Detailed Peak GPU Memory Utilization and Latency Results

Train Memory (GB) Train Latency (ms/img) Test Memory (GB) Test Latency (ms/img)

Parasite

size = 0.77% 1.0 0.1624 0.7514 0.0717
size = 2.61% 1.4 0.1449 0.7672 0.0757
size = 7.44% 2.0 0.1827 0.8255 0.0812
size = 94.46% 6.1 0.3219 1.2367 0.1379

VPT

p = 1 5.70 0.1911 0.8078 0.0723
p = 10 6.50 0.2378 0.9093 0.0867
p = 50 12.10 0.3677 1.7072 0.1501
p = 100 19.40 0.5833 2.4922 0.2473

Full-Retrain 5.60 0.2403 0.7489 0.0683

Table 3: Comparison of parasite network, VPT, and full-retrain’s GPU peak memory utilization (GBs)
and avg latency (ms/img) for train and test. Results are reported for a batch size of 64. The parasite
size is the percent size of a ResNet-50 and "p" refers to the number of prompt tokens. These results
are used to create the graphs in Figure 2.

F Adjusting Number Trainable Parameters

The main results of the paper explore the parasite model at ratio sizes 2.61% (617K) and 7.44%
(1.8M) of a ResNet-50. In order to choose the best model, we ran 18 configurations of parasites
at various sizes. We looked at how the parasite model performs when decreasing or increasing the
number of trainable parameters or size of the parasite network. Following the same implementation
details and datasets as Section 4, multiple parasite networks were trained across various parameter
space sizes with a ResNet-50 as the host model. The results can be found in Figure 5.
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Figure 5: The number of parameters are shown on a log-scale with non-logged amounts bounded
between 182.6K and 27.2M additional parameters. The orange star and the gray "X" indicates 2.61%
and 7.44% parasite sizes respectively which were reported in the main experiments and in Table 1.

Figure 5 shows that the scores do not rapidly decline (or in some cases improve) even if the number of
parameters are driven to as low as 0.77% (182.6K) the size of a ResNet-50. A parasite network was
chosen to be 2.61% the size of ResNet-50 (617K) for the experiments in this paper as this setup offered
a good performance and efficiency trade-off. Users may require a different performance/efficiency
trade-off point, such as 7.44% based on the storage requirement constraints and acceptable accuracy
performance of the application. We therefore also report these results in the main experiments.
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