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Abstract

Recent work demonstrated the existence of Boolean functions for which Shapley1

values provide misleading information about the relative importance of features in2

rule-based explanations. Such misleading information was broadly categorized into3

a number of possible issues. Each of those issues relates with features being relevant4

or irrelevant for a prediction, and all are significant regarding the inadequacy of5

Shapley values for rule-based explainability. This earlier work devised a brute-force6

approach to identify Boolean functions, defined on small numbers of features, and7

also associated instances, which displayed such inadequacy-revealing issues, and so8

served as evidence to the inadequacy of Shapley values for rule-based explainability.9

However, an outstanding question is how frequently such inadequacy-revealing10

issues can occur for Boolean functions with arbitrary large numbers of features.11

It is plain that a brute-force approach would be unlikely to provide insights on12

how to tackle this question. This paper answers the above question by proving13

that, for any number of features, there exist Boolean functions that exhibit one or14

more inadequacy-revealing issues, thereby contributing decisive arguments against15

the use of Shapley values as the theoretical underpinning of feature-attribution16

methods in explainability.17

1 Introduction18

Feature attribution is one of the most widely used approaches in machine learning (ML) explainability,19

begin implemented with a variety of different methods [64, 56, 57]. Moreover, the use of Shapley20

values [60] for feature attribution ranks among the most popular solutions [64, 65, 48, 17, 47],21

offering a widely accepted theoretical justification on how to assign importance to features in machine22

learning (ML) model predictions. Despite the success of using Shapley values for explainability,23

it is also the case that their exact computation is in general intractable [8, 21, 22], with tractability24

results for some families of boolean circuits [8]. As a result, a detailed assessment of the rigor of25

feature attribution methods based on Shapley values, when compared with exactly computed Shapley26

values has not been investigated. Furthermore, the definition Shapley values (as well as its use in27

explainability) is purely axiomatic, i.e. there exists no formal proof that Shapley values capture any28

specific properties related with explainability (even if defining such properties might prove elusive).29

Feature selection represents a different alternative to feature attribution. The goal of feature selection30

is to select a set of features as representing the reason for a prediction, i.e. if the selected features take31

their assigned values, then the prediction cannot be changed. There are rigorous and non-rigorous32

approaches for selecting the features that explain a prediction. This paper considers rigorous (or33

model-precise) approaches for selecting such features. Furthermore, it should be plain that feature34

selection must aim for irredundancy, since otherwise it would suffice to report all features as the35

explanation. Given the universe of possible irreducible sets of feature selections that explain a36

prediction, the features that do not occur in any such set are deemed irrelevant for a prediction;37

otherwise features that occur in one or more feature selections are deemed relevant.38

Since both feature attribution and feature selection measure contributions of features to explanations,39

one would expect that the two approaches were related. However, this is not the case. Recent40

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.



work [35] observed that feature attribution based on Shapley values could produce misleading41

information about features, in that irrelevant features (for feature selection) could be deemed more42

important (in terms of feature attribution) than relevant features (also for feature selection). Clearly,43

misleading information about the relative importance of features can easily induce human decision44

makers in error, by suggesting the wrong features as those to analyze in greater detail. Furthermore,45

situations where human decision makers can be misled are inadmissible in high-risk or safety-critical46

uses of ML. Furthermore, a number of possible misleading issues of Shapley values for explainability47

were identified [35], and empirically demonstrated to occur for some boolean functions. The existence48

in practice of those misleading issues with Shapley values for explainability is evidently problematic49

for their use as the theoretical underpinning of feature attribution methods.50

However, earlier work [35] used a brute-force method to identify boolean functions, defined on a51

very small number of variables, where the misleading issues could be observed. A limitation of52

this earlier work [35] is that it offered no insights on how general the issues with Shapley values53

for explainability are. For example, it could be the case that the identified misleading issues might54

only occur for functions defined on a very small number of variables, or in a negligible number of55

functions, among the universe of functions defined on a given number of variables. If that were to be56

the case, then the issues with Shapley values for explainability might not be that problematic.57

This paper proves that the identified misleading issues with Shapley values for explainability are58

much more general that what was reported in earlier work [35]. Concretely, the paper proves that,59

for any number of features larger than a small k (either 2 or 3), one can easily construct functions60

which exhibit the identified misleading issues. The main implication of our results is clear: the use61

of Shapley values for explainability can, for an arbitrary large number of boolean (classification)62

functions, produce misleading information about the relative importance of features.63

Organization. The paper is organized as follows. Section 2 introduces the notation and definitions64

used throughout the paper. Section 3 revisits and extends the issues with Shapley values for ex-65

plainability reported in earlier work [35], and illustrates the existence of those issues in a number66

of motivating example boolean functions. Section 4 presents the paper’s main results, proving that67

all the issues with Shapley values for explainability reported in earlier work [35] occur for boolean68

functions with arbitrarily larger number of variables. (Due to lack of space, the detailed proofs are69

all included in Appendix A, and the paper includes only brief insights into those proofs.) Also, the70

proposed constructions offer ample confidence that the number of functions displaying one or more71

of the issues is significant. Section 5 concludes the paper.72

2 Preliminaries73

Boolean functions. Let B = {0, 1}. The results in the paper consider boolean functions, defined on74

m boolean variables, i.e. κ : Bm → B. (The fact that we consider only boolean functions does not75

restrict in the significance of the results.)76

In the rest of the paper, we will use the boolean functions shown in Figure 1, which are represented77

by truth tables. The highlighted rows will serve as concrete examples throughout.78

Classification in ML. A classification problem is defined on a set of features F = {1, . . . ,m}, each79

with domain Di, and a set of classes K = {c1, c2, . . . , cK}. (As noted above, we will assume Di = B80

for 1 ≤ i ≤ m, but domains could be categorical or ordinal. Also, we will assume K = B.) Feature81

space F is defined as the cartesian product of the domains of the features, in order: F = D1×· · ·×Dm,82

which will be Bm throughout the paper. A classification function is a non-constant map from feature83

space into the set of classes, κ : F → K. (Clearly, a classifier would be useless if the classification84

function were constant.) Throughout the paper, we will not distinguish between classifiers and85

boolean functions. An instance is a pair (v, c) representing a point v = (v1, . . . , vm) in feature space,86

and the classifier’s prediction, i.e. κ(v) = c. Moreover, we let x = (x1, . . . , xm) denote an arbitrary87

point in the feature space. Abusing notation, we will also use xa..b to denote xa, . . . , xb, and va..b to88

denote va, . . . , vb. Finally, a classifier M is a tuple (F ,F,K, κ). In addition, an explanation problem89

E is a tuple (M, (v, c)), where M = (F ,F,K, κ) is a classifier.90

Shapley values for explainability. Shapley values were first introduced by L. Shapley [60] in the91

context of game theory. Shapley values have been extensively used for explaining the predictions92

of ML models, e.g. [64, 65, 20, 48, 15, 52, 62, 69], among a vast number of recent examples. The93

complexity of computing Shapley values (as proposed in SHAP [48]) has been studied in recent94
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x1 x2 x3 κI1(x)

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

(a) Function κI1

x1 x2 x3 κI3(x)

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 1

(b) Function κI3

x1 x2 x3 x4 κI4(x)

0 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 1 1 0
0 1 0 0 0
0 1 0 1 0
0 1 1 0 0
0 1 1 1 1
1 0 0 0 0
1 0 0 1 0
1 0 1 0 1
1 0 1 1 0
1 1 0 0 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 1

(c) Function κI4

x1 x2 x3 x4 κI5(x)

0 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 1 1 0
0 1 0 0 0
0 1 0 1 0
0 1 1 0 0
0 1 1 1 1
1 0 0 0 0
1 0 0 1 0
1 0 1 0 0
1 0 1 1 1
1 1 0 0 0
1 1 0 1 1
1 1 1 0 0
1 1 1 1 0

(d) Function κI5

Figure 1: Example functions for issues I1, I3, I4, I5, respectively κI1, κI3, κI4, κI5

years [8, 21, 7, 22]. This section provides a brief overview of Shapley values. Throughout the section,95

we adapt the notation used in recent work [8, 7], which builds on the work of [48].96

Let Υ : 2F → 2F be defined by1,97

Υ(S;v) = {x ∈ F | ∧i∈S xi = vi} (1)

i.e. for a given set S of features, and parameterized by the point v in feature space, Υ(S;v) denotes98

all the points in feature space that have in common with v the values of the features specified by S.99

Also, let ϕ : 2F → R be defined by,100

ϕ(S;M,v) =
1

2|F\S|

∑
x∈Υ(S;v)

κ(x) (2)

For the purposes of this paper, we consider solely a uniform input distribution, and so the dependency101

on the input distribution is not accounted for. A more general formulation is considered in related102

work [8, 7]. However, assuming a uniform distribution suffices for the purposes of this paper. As a103

result, given a set S of features, ϕ(S;M,v) represents the average value of the classifier over the104

points of feature space represented by Υ(S;v).105

Finally, let Sv : F → R be defined by2,106

Sv(i;M,v) =
∑

S⊆(F\{i})

|S|!(|F| − |S| − 1)!

|F|!
(ϕ(S ∪ {i};M,v)− ϕ(S;M,v)) (3)

Given an instance (v, c), the Shapley value assigned to each feature measures the contribution of107

that feature with respect to the prediction. A positive/negative value indicates that the feature can108

contribute to changing the prediction, whereas a value of 0 indicates no contribution.109

Example 1. We consider the example boolean functions of Figure 1. If the functions are represented110

by a truth table, then the Shapley values can be computed in polynomial time on the size of the111

1When defining concepts, we will show the necessary parameterizations. However, in later uses, those
parameterizations will be omitted, for simplicity.

2We distinguish SHAP(·; ·, ·) from Sv(·; ·, ·). Whereas SHAP(·; ·, ·) represents the value computed by the
tool SHAP [48], Sv(·; ·, ·) represents the Shapley value in the context of (feature attribution based) explainability,
as studied in a number of works [64, 65, 48, 8, 21, 22]. Thus, SHAP(·; ·, ·) is a heuristic approximation of
Sv(·; ·, ·).
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truth table, since the number of subsets considered in (3) is also polynomial on the size of the truth112

table [35]. (Observe that for each subset used in (3), we can use the truth table for computing the113

average values in (2).) For example, for κI1 and for the point in feature space (0, 0, 1), one can114

compute the following Shapley values: Sv(1) = −0.417, Sv(2) = −0.042, and Sv(3) = 0.083.115

Logic-based explanations. There has been recent work on developing formal definitions of expla-116

nations. One type of explanations are abductive explanations [37] (AXp), which corresponds to117

a PI-explanations [61] in the case of boolean classifiers. AXp’s represent prime implicants of the118

discrete-valued classifier function (which computes the predicted class). AXp’s can also be viewed as119

an instantiation of logic-based abduction [24, 59, 13, 23]. Throughout this paper we will opt to use120

the acronym AXp to refer to abductive explanations.121

Let us consider a given classifier, computing a classification function κ on feature space F, a point122

v ∈ F, with prediction c = κ(v), and let X denote a subset of the set of features F , X ⊆ F . X is a123

weak AXp for the instance (v, c) if,124

WAXp(X ;M,v) := ∀(x ∈ F).
[∧

i∈X (xi = vi)
]
→(κ(x) = c) (4)

where c = κ(v). Thus, given an instance (v, c), a (weak) AXp is a subset of features which, if fixed125

to the values dictated by v, then the prediction is guaranteed to be c, independently of the values126

assigned to the other features.127

Moreover, X ⊆ F is an AXp if, besides being a weak AXp, it is also subset-minimal, i.e.128

AXp(X ;M,v) := WAXp(X ;M,v) ∧ ∀(X ′ ⊊ X ).¬WAXp(X ′;M,v) (5)

Observe that an AXp can be viewed as a possible irreducible answer to a “Why?” question, i.e.129

why is the classifier’s prediction c? It should be plain in this work, but also in earlier work, that the130

representation of AXp’s using subsets of features aims at simplicity. The sufficient condition for the131

prediction is evidently the conjunction of literals associated with the features contained in the AXp.132

Example 2. Similar to the computation of Shapley values, given a truth table representation of a133

function, and for a given instance, there is a polynomial-time algorithm for computing the AXp’s [35].134

For example, for function κI4 (see Figure 1c), and for the instance ((0, 0, 1, 1), 0), it can be observed135

that, if features 3 and 4 are allowed to take other values, the prediction remains at 0. Hence, {1, 2}136

is an WAXp, which is easy to conclude that it is also an AXp. When interpreted as a rule, the AXp137

would yield the rule:138

IF ¬x1 ∧ ¬x2 THEN κ(x) = 0

In a similar way, if features 1 and 3 are allowed to take other values, the prediction remains at 0.139

Hence, {2, 4} is another WAXp (which can easily be shown to be an AXp). Furthermore, considering140

all other possible subsets of fixed features, allows us to conclude that there are no more AXp’s.141

Similarly to the case of AXp’s, one can define (weak) contrastive explanations (CXp’s) [53, 36].142

Y ⊆ F is a weak CXp for the instance (v, c) if,143

WCXp(Y;M,v) := ∃(x ∈ F).
[∧

i ̸∈Y(xi = vi)
]
∧ (κ(x) ̸= c) (6)

(As before, for simplicity we keep the parameterization of WCXp on κ, v and c implicit.) Thus, given144

an instance (v, c), a (weak) CXp is a subset of features which, if allowed to take any value from their145

domain, then there is an assignment to the features that changes the prediction to a class other than c,146

this while the features not in the explanation are kept to their values.147

Furthermore, a set Y ⊆ F is a CXp if, besides being a weak CXp, it is also subset-minimal, i.e.148

CXp(Y;M,v) := WCXp(Y;M,v) ∧ ∀(Y ′ ⊊ Y).¬WCXp(Y ′;M,v) (7)

A CXp can be viewed as a possible irreducible answer to a “Why Not?” question, i.e. why isn’t the149

classifier’s prediction a class other than c?150

Example 3. For the example function κI4 (see Figure 1c), and instance ((0, 0, 1, 1), 0), if we fix151

features 1, 3 and 4, respectively to 0, 1 1, then by allowing feature 2 to change value, we see that the152

prediction changes, e.g. by considering the point (0, 1, 1, 1) with prediction 1. Thus, {2} is a CXp.153

In a similar way, by fixing the features 2 and 3, respectively to 0 and 1, then by allowing features 1154

and 4 to change value, we conclude that the prediction changes. Hence, {1, 4} is also a CXp.155

The sets of AXp’s and CXp’s are defined as follows:156

A(E) = {X ⊆ F |AXp(X ;M,v)}
C(E) = {Y ⊆ F |CXp(Y;M,v)} (8)
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(The parameterization on M and v is unnecessary, since the explanation problem E already accounts157

for those.) Moreover, let FA(E) = ∪X∈A(E)X and FC(E) = ∪Y∈C(E)Y . FA(E) aggregates the158

features occurring in any abductive explanation, whereas FC(E) aggregates the features occurring in159

any contrastive explanation. In addition, minimal hitting set duality between AXp’s and CXp’s [36]160

yields the following result3.161

Proposition 1. FA(E) = FC(E).162

Feature (ir)relevancy in explainability. Given the definitions above, we have the following charac-163

terization of features [33, 34, 32]:164

1. A feature i ∈ F is necessary if ∀(X ∈ A(E)).i ∈ X .165

2. A feature i ∈ F is relevant if ∃(X ∈ A(E)).i ∈ X .166

3. A feature is irrelevant if it is not relevant, i.e. ∀(X ∈ A(E)).i ̸∈ X .167

By Proposition 1, the definitions of necessary and relevant feature could instead use C(E). Throughout168

the paper, we will use the predicate Irrelevant(i) which holds true if feature i is irrelevant, and169

predicate Relevant(i) which holds true if feature i is relevant. Furthermore, it should be noted that170

feature irrelevancy is a fairly demanding condition in that, a feature i is irrelevant if it is not included171

in any subset-minimal set of features that is sufficient for the prediction.172

Example 4. For the example function κI4 (see Figure 1c), and from Example 2, and instance173

((0, 0, 1, 1), 0), it becomes clear that feature 3 is irrelevant. Similarly, it is easy to conclude that174

features 1, 2 and 4 are relevant.175

How irrelevant are irrelevant features? The fact that a feature is declared irrelevant for an explana-176

tion problem E = (M, (v, c)) is significant. Given the minimal hitting set duality between abductive177

and contrastive explanations, then an irrelevant features does not occur neither in any abductive178

explanation, nor in any contrastive explanation. Furthermore, from the definition of AXp, each179

abductive explanation for E can be represented as a logic rule. Let R denote the set of all irreducible180

logic rules which can be used to predict c, given the literals dictated by v. Then, an irrelevant feature181

does not occur in any of those rules. Example 4 illustrates the irrelevancy of feature 3, in that feature182

3 would not occur in any irreducible rule for κI4 when predicting 0 using literals consistent with183

(0, 0, 1, 1).184

To further strengthen the above discussion, let us consider a (feature selection based) explanation185

X ⊆ F such that WAXp(X ) holds (i.e. (4) is true, and so X is sufficient for the prediction). Moreover,186

let i ∈ F be an irrelevant feature, such that i ∈ X . Then, by definition of irrelevant feature, there must187

exist some Z ⊆ (X \{i}), such that WAXp(Z) also holds (i.e. Z is also sufficient for the prediction).188

It is simple to understand why such set Z must exist. By definition of irrelevant feature, and because189

i ∈ X , then X is not an AXp. However, there must exist an AXp W ⊊ X which, by definition of190

irrelevant feature, must not include i. Furthermore, and invoking Occam’s razor4, there is no reason191

to select X over Z , and this remark applies to any set of features containing some irrelevant feature.192

Related work. Shapley values for explainability is one of the hallmarks of feature attribution methods193

in XAI [64, 65, 20, 48, 15, 47, 52, 17, 26, 16, 25, 62, 40, 58, 69, 5, 12, 30, 4, 67]. Motivated by194

the success of Shapley values for explainability, there exists a burgeoning body of work on using195

Shapley values for explainability (e.g. [39, 74, 71, 38, 54, 10, 6, 76, 44, 3, 63, 75, 49, 68, 45, 46,196

77, 28, 29, 31, 1]). Recent work studied the complexity of exactly computing Shapley values in the197

context of explainability [8, 21, 22]. Finally, there have been proposals for the exact computation of198

Shapley values in the case of circuit-based classifiers [8]. Although there exist some differences in199

the proposals for the use of Shapley values for explainability, the basic formulation is the same and200

can be expressed as in Section 2.201

A number of authors have reported pitfalls with the use of SHAP and Shapley values as a measure of202

feature importance [73, 42, 66, 52, 27, 72, 55, 2, 70, 41, 14]. However, these earlier works do not203

identify fundamental flaws with the use of Shapley values in explainability. Attempts at addressing204

those pitfalls include proposals to integrate Shapley values with abductive explanations, as reported205

in recent work [43].206

Formal explainability is a fairly recent topic of research. Recent accounts include [51, 9, 50, 19].207

3All proofs are included in Appendix A.
4Here, we adopt a fairly standard definition of Occam’s razor [11]: given two explanations of the data, all

other things being equal, the simpler explanation is preferable.
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Recent work [35] argued for the inadequacy of Shapley values for explainability, by demonstrating208

experimentally that the information provided by Shapley values can be misleading for a human209

decision-maker. The approach proposed in [35] is based on exhaustive function enumeration, and so210

does not scale beyond a few features. However, this paper uses the truth-table algorithms outlined211

in [35], in all the examples, both for computing Shapley values, for computing explanations, and for212

deciding feature relevancy.213

3 Relating Shapley Values with Feature Relevancy214

Recent work [35] showed the existence of boolean functions (with up to four variables) that revealed a215

number of issues with Shapley values for explainability. All those issues are related with taking feature216

relevancy into consideration. (In [35], these functions were searched by exhaustive enumeration of217

all the boolean functions up to a threshold on the number of variables.)218

Issues with Shapley values for explainability. In this paper, we consider the following main issues219

of Shapley values for explainability:220

I1. For a boolean classifier, with an instance (v, c), and feature i such that,221

Irrelevant(i) ∧ (Sv(i) ̸= 0)

Thus, an I1 issue is such that the feature is irrelevant, but its Shapley value is non-zero.222

I2. For a boolean classifier, with an instance (v, c) and features i1 and i2 such that,223

Irrelevant(i1) ∧ Relevant(i2) ∧ (|Sv(i1)| > |Sv(i2)|)
Thus, an I2 issue is such that there is at least one irrelevant feature exhibiting a Shapley value224

larger (in absolute value) than the Shapley of a relevant feature.225

I3. For a boolean classifier, with instance (v, c), and feature i such that,226

Relevant(i) ∧ (Sv(i) = 0)

Thus, an I3 issue is such that the feature is relevant, but its Shapley value is zero.227

I4. For a boolean classifier, with instance (v, c), and features i1 and i2 such that,228

[Irrelevant(i1) ∧ (Sv(i1) ̸= 0)] ∧ [Relevant(i2) ∧ (Sv(i2) = 0)]

Thus, an I4 issue is such that there is at least one irrelevant feature with a non-zero Shapley229

value and a relevant feature with a Shapley value of 0.230

I5. For a boolean classifier, with instance (v, c) and feature i such that,231

[Irrelevant(i) ∧ ∀1≤j≤m,j ̸=i (|Sv(j)| < |Sv(i)|)]
Thus, an I5 issue is such that there is one irrelevant feature exhibiting the highest Shapley value232

(in absolute value). (I5 can be viewed as a special case of the other issues, and so it is not233

analyzed separately in earlier work [35].)234

The issues above are all related with Shapley values for explainability giving misleading information235

to a human decision maker, by assigning some importance to irrelevant features, by not assigning236

enough importance to relevant features, by assigning more importance to irrelevant features than to237

relevant features and, finally, by assigning the most importance to irrelevant features.238

In the rest of the paper we consider mostly I1, I3, I4 and I5, given that I5 implies I2.239

Proposition 2. If a classifier and instance exhibits issue I5, then they also exhibit issue I2.240

Examples. This section studies the example functions of Figure 1, which were derived from the241

main results of this paper (see Section 4). These example functions will then be used to motivate the242

rationale for how those results are proved. In all cases, the reported Shapley values are computed243

using the truth-table algorithm outlined in earlier work [35]. Similarly, the relevancy/irrelevancy244

claims of features use the truth-table algorithms outlined in earlier work [35].245

Example 5. Figure 1a illustrates a boolean function that exhibits issue I1. By inspection, we can246

conclude that the function shown corresponds to κI1(x1, x2, x3) = (x1 ∧ x2 ∧ ¬x3) ∨ (x1 ∧ x3).247

Moreover, for the instance ((0, 0, 1), 0), Table 1 confirms that an issue I1 is identified.248

Example 6. Figure 1b illustrates a boolean function that exhibits issue I3. By inspection, we can249

conclude that the function shown corresponds to κI3(x1, x2, x3) = (x1∧¬x3)∨(x2∧x3). Moreover,250

for the instance ((1, 1, 1), 1), Table 1 confirms that an issue I3 is identified.251
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Table 1: Examples of issues of Shapley values for functions in Figure 1

Case Instance Relevant Irrelevant Sv’s Justification

I1 ((0, 0, 1), 0) 1 2, 3
Sv(1) = −0.417
Sv(2) = −0.042
Sv(3) = 0.083

Irrelevant(3) ∧ Sv(3) ̸= 0

I3 ((1, 1, 1), 1) 1, 2, 3 – Sv(1) = 0.125
Sv(2) = 0.375
Sv(3) = 0.000

Relevant(3) ∧ Sv(3) = 0

I4 ((0, 0, 1, 1), 0) 1, 2, 4 3
Sv(1) = −0.125
Sv(2) = −0.333
Sv(3) = 0.083
Sv(4) = 0.000

Irrelevant(3) ∧ Sv(3) ̸= 0∧
Relevant(4) ∧ Sv(4) = 0

I5 ((1, 1, 1, 1), 0) 1, 2, 3 4
Sv(1) = −0.12
Sv(2) = −0.12
Sv(3) = −0.12
Sv(4) = 0.17

Irrelevant(4)∧
∀(j ∈ {1, 2, 3}).|Sv(j)| < Sv(4)|

Example 7. Figure 1c illustrates a boolean function that exhibits issue I4. By inspection, we can252

conclude that the function shown corresponds to κI4(x1, x2, x3, x4) = (x1 ∧ x2 ∧ ¬x3) ∨ (x1 ∧253

x3 ∧ ¬x4) ∨ (x2 ∧ x3 ∧ x4). Moreover, for the instance ((0, 0, 1, 1), 0), Table 1 confirms that an254

issue I4 is identified.255

Example 8. Figure 1d illustrates a boolean function that exhibits issue I5. By inspection, we can256

conclude that the function shown corresponds to κI5(x1, x2, x3, x4) = ((x1 ∧ x2 ∧ ¬x3) ∨ (x1 ∧257

x3 ∧¬x2)∨ (x2 ∧ x3 ∧¬x1))∧ x4. Moreover, for the instance ((1, 1, 1, 1), 0), Table 1 confirms that258

an issue I5 is identified.259

It should be underscored that Shapley values for explainability are not expected to give misleading260

information. Indeed, it is widely accepted that Shapley values measure the actual influence of a261

feature [64, 65, 48, 8, 21]. Concretely, [64] reads: “...if a feature has no influence on the prediction it262

is assigned a contribution of 0.” But [64] also reads “According to the 2nd axiom, if two features263

values have an identical influence on the prediction they are assigned contributions of equal size. The264

3rd axiom says that if a feature has no influence on the prediction it is assigned a contribution of 0.”265

(In this last quote, the axioms refer to the axiomatic characterization of Shapley values.) Furthermore,266

one might be tempted to look at the value of the prediction and relate that with the computed Shapley267

value. For example, in the last row of Table 1, the prediction is 0, and the irrelevant feature 4 has a268

positive Shapley value. As a result, one might be tempted to believe that the irrelevant feature 4 would269

contribute to changing the value of the prediction. This is of course incorrect, since an irrelevant270

feature does not occur in any CXp’s (besides not occurring in any AXp’s) and so it is never necessary271

to changing the prediction. The key point here is that irrelevant features are never necessary, neither272

to keep nor to change the prediction.273

4 Refuting Shapley Values for Explainability274

The purpose of this section is to prove that for arbitrary large numbers of variables, there exist boolean275

functions and instances for which the Shapley values exhibit the issues reported in recent work [35],276

and detailed in Section 3. (Instead of detailed proofs, this section describes the key ideas of each277

proof. The detailed proofs are included in Appendix A.)278

Throughout this section, let m be the number of variables of the boolean functions we start from, and279

let n denote the number of variables of the functions we will be constructing. In this case, we set280

F = {1, . . . , n}. Furthermore, for the sake of simplicity, we opt to introduce the new features as the281

last features (e.g., feature n). This choice does not affect the proof’s argument in any way.282

Proposition 3. For any n ≥ 3, there exist boolean functions defined on n variables, and at least one283

instance, which exhibit an issue I1, i.e. there exists an irrelevant feature i ∈ F , such that Sv(i) ̸= 0.284

Proof idea. The proof proposes to construct boolean functions, with an arbitrary number of variables285

(no smaller than 3), and the picking of an instance, such that a specific feature is irrelevant for the286

prediction, but its Shapley value is non-zero. To illustrate the construction, the example function287

from Figure 1a is used (see also Example 5).288
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The construction works as follows. We pick two non-constant functions κ1(x1, . . . , xm) and289

κ2(x1, . . . , xm), defined on m features, and such that: i) κ1 ⊨κ2 (which signifies that ∀(x ∈290

F).κ1(x)→κ2(x)), and ii) κ1 ̸= κ2. Observe that κ1 can be any boolean function defined on m291

variables, as long as κ2 can also be defined. We then construct a new function by adding a new292

feature n = m+ 1, as follows:293

κ(x1, . . . , xm, xn) =

{
κ1(x1, . . . , xm) if xn = 0

κ2(x1, . . . , xm) if xn = 1

For the resulting function κ, we pick an instance (v, 0) such that: i) vn = 1 and ii) κ1(v1..m) =294

κ2(v1..m) = 0. The proof hinges on the fact that feature n is irrelevant, but Sv(n) ̸= 0.295

For the function Figure 1a, we set κ1(x1, x2) = x1 ∧ x2 and κ1(x1, x2) = x1. Thus, as shown296

in Example 5, κI1(x1, x2, x3) = (x1 ∧ x2 ∧ ¬x3) ∨ (x1 ∧ x3), which represents the function297

κ(x1, x2, x3). It is also clear that κ1 ⊨κ2. Moreover, and as Example 5 and Table 1 show, it is the298

case that feature 3 is irrelevant and Sv(3) ̸= 0.299

Proposition 4. For any odd n ≥ 3, there exist boolean functions defined on n variables, and at least300

one instance, which exhibits an I3 issue, i.e. for which there exists a relevant feature i ∈ F , such that301

Sv(i) = 0.302

Proof idea. The proof proposes to construct boolean functions, with an arbitrary number of variables303

(no smaller than 3), and the picking of an instance, such that a specific feature is relevant for304

the prediction, but its Shapley value is zero. To illustrate the construction, the example function305

from Figure 1b is used (see also Example 6).306

The construction works as follows. We pick two non-constant functions κ1(x1, . . . , xm) and307

κ2(xm+1, . . . , x2m), each defined on m features, where κ2 corresponds to κ1, but with a change of308

variables. Observe that κ1 can be any boolean function. We then construct a new function, defined in309

terms of κ1 and κ2, by adding a new feature n = 2m+ 1, as follows:310

κ(x1, . . . , xm, xm+1, . . . , x2m, xn) =

{
κ1(x1, . . . , xm) if xn = 0

κ2(xm+1, . . . , x2m) if xn = 1

For the resulting function κ, we pick an instance (v, 1) such that: i) vn = 1, ii) vi = vm+i for any311

1 ≤ i ≤ m, and iii) κ1(v1..m) = κ2(vm+1..2m) = 1. The proof hinges on the fact that feature n is312

relevant, but Sv(n) = 0.313

For the function Figure 1b, we set κ1(x1) = x1 and κ1(x2) = x2. Thus, as shown in Example 6,314

κI3(x1, x2, x3) = (x1 ∧ ¬x3) ∨ (¬x2 ∧ x3), which represents the function κ(x1, x2, x3). Moreover,315

and as Example 6 and Table 1 show, it is the case that feature 3 is relevant and Sv(3) = 0.316

Proposition 5. For any even n ≥ 4, there exist boolean functions defined on n variables, and at least317

one instance, for which there exists an irrelevant feature i1 ∈ F , such that Sv(i1) ̸= 0, and a relevant318

feature i2 ∈ F \ {i1}, such that Sv(i2) = 0.319

Proof idea. The proof proposes to construct boolean functions, with an arbitrary number of variables320

(no smaller than 4), and the picking of an instance, such that two specific features are such that one is321

relevant but has a Shapley value of 0, and the other one is irrelevant but has a non-zero Shapley values.322

To illustrate the construction, the example function from Figure 1c is used (see also Example 7).323

The construction works as follows. We pick two non-constant functions κ1(x1, . . . , xm) and324

κ2(xm+1, . . . , x2m), each defined on m features, where κ2 corresponds to κ1, but with a change of325

variables. Also, observe that κ1 can be any boolean function. We then construct a new function,326

defined in terms of κ1 and κ2, by adding two new features. We let the new features be n− 1 and n,327

and so n = 2m+ 2. The function is organized as follows:328

κ(x1..m,xm+1..2m, xn−1, xn) =


κ1(x1..m) ∧ κ2(xm+1..2m) if xn−1 = 0

κ1(x1..m) if xn−1 = 1 ∧ xn = 0

κ2(xm+1..2m) if xn−1 = 1 ∧ xn = 1

For this function, we pick an instance (v, 0) such that: i) vn−1 = vn = 1, ii) vi = vm+i for any329

1 ≤ i ≤ m, and iii) κ1(v1..m) = κ2(vm+1..2m) = 0. The proof hinges on the fact that feature n− 1330

is irrelevant, feature n is relevant, and Sv(n− 1) ̸= 0 and Sv(n) = 0.331

For the function Figure 1c, we set κ1(x1) = x1 and κ1(x2) = x2, Thus, as shown in Example 7,332

κI4(x1, x2, x3, x4) = (x1 ∧ x2 ∧ ¬x3) ∨ (x1 ∧ x3 ∧ ¬x4) ∨ (x2 ∧ x3 ∧ x4), which represents the333

function κ(x1, x2, x3, x4). Moreover, and as Example 7 and Table 1 show, it is the case that feature 3334

is irrelevant, feature 4 is relevant, and also Sv(3) ̸= 0 and Sv(4) = 0.335
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Proposition 6. For any n ≥ 4, there exists boolean functions defined on n variables, and at least336

one instance, for which there exists an irrelevant feature i ∈ F = {1, . . . , n}, such that |Sv(i)| =337

max{|Sv(j)| | j ∈ F}.338

Proof idea. The proof proposes to construct boolean functions, with an arbitrary number of variables339

(no smaller than 4), and the picking of an instance, such that one specific feature is irrelevant but it340

has the Shapley value with the largest absolute values. To illustrate the construction, the example341

function from Figure 1d is used (see also Example 8).342

The construction works as follows. We pick one non-constant function κ1(x1, . . . , xm), defined on343

m features, such that: i) κ1 predicts a specific point v1..m as 0, moreover, for any point x1..m such344

that dH(x1..m,v1..m) = 1, κ1(x1..m) = 1, where dH(·) denotes the Hamming distance. ii) and κ1345

predicts all the other points as 0. For example, let κ1(x1, . . . , xm) = 1 iff
∑m

i=1 ¬x1 = 1. We then346

construct a new function, defined in terms of κ1, by adding one new feature. We let the new feature347

be n, and so n = m+ 1. The new function is organized as follows:348

κ(x1, . . . , xm, xn) =

{
0 if xn = 0

κ1(x1, . . . , xm) if xn = 1

For this function, we pick the instance (v, 0) such that: i) vn = 1, ii) v1..m is the only point within349

the Hamming ball and iii) κ1(v1..m) = 0. The proof hinges on the fact that feature n is irrelevant,350

but ∀(1 ≤ j ≤ m).|Sv(j)| < |Sv(n)|.351

For the function Figure 1d, we set κ1(x1, x2, x3) = (x1∧x2∧¬x3)∨(x1∧x3∧¬x2)∨(x2∧x3∧¬x1)352

(i.e. the function takes value 1 when exactly one feature is 0). Thus, as shown in Example 7,353

κI5(x1, x2, x3, x4) = ((x1∧x2∧¬x3)∨ (x1∧x3∧¬x2)∨ (x2∧x3∧¬x1))∧x4, which represents354

the function κ(x1, x2, x3, x4). Moreover, and as Example 8 and Table 1 show, it is the case that355

feature 4 is irrelevant and ∀(1 ≤ j ≤ 3).|Sv(j)| < |Sv(4)|.356

For I2, we can restate the previous result, but such the functions constructed in the proof capture a357

more general family of functions.358

Proposition 7. For any n ≥ 4, there exist boolean functions defined on n variables, and at least one359

instance, for which there exists an irrelevant feature i1 ∈ F , and a relevant feature i2 ∈ F \ {i1},360

such that |Sv(i1)| > |Sv(i2)|.361

As noted above, for Propositions 3 to 5, the choice of the starting function is fairly flexible. In362

contrast, for Proposition 6, we pick one concrete function, which represents a trivial lower bound. As363

a result, and with the exception of I5, we can prove the following (fairly loose) lower bounds on the364

number of functions exhibiting the different issues.365

Proposition 8. For Propositions 3 to 5,and Proposition 7 the following are lower bounds on the366

numbers issues exhibiting the respective issues:367

1. For Proposition 3, a lower bound on the number of functions exhibiting I1 is 22
(n−1) − n− 3.368

2. For Proposition 4, a lower bound on the number of functions exhibiting I3 is 22
(n − 1)/2 − 2.369

3. For Proposition 5, a lower bound on the number of functions exhibiting I4 is 22
(n − 2)/2 − 2.370

4. For Proposition 7, a lower bound on the number of functions exhibiting I2 is 22
n−2−(n−2)−1 − 1.371

5 Conclusions372

This paper gives theoretical arguments to the fact that Shapley values for explainability can produce373

misleading information about the relative importance of features. The paper distinguishes between the374

features that occur in one or more of the irreducible rule-based explanations, i.e. the relevant features,375

from those that do not occur in any irreducible rule-based explanation, i.e. the irrelevant features.376

The paper proves that, for boolean functions with arbitrary number of variables, irrelevant features377

can be deemed more important, given their Shapley value, than relevant features. Our results are also378

significant in practical deployment of explainability solutions. Indeed, misleading information about379

relative feature importance can induce human decision makers in error, by persuading them to look at380

the wrong causes of predictions.381

One direction of research is to develop a better understanding of the distributions of functions382

exhibiting one or more of the issues of Shapley values.383
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