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Abstract
The emergence of various notions of “consis-
tency” in diffusion models has garnered consider-
able attention and helped achieve improved sam-
ple quality, likelihood estimation, and acceler-
ated sampling. Although similar concepts have
been proposed in the literature, the precise rela-
tionships among them remain unclear. In this
study, we establish theoretical connections be-
tween three recent “consistency” notions designed
to enhance diffusion models for distinct objec-
tives. Our insights offer the potential for a more
comprehensive and encompassing framework for
consistency-type models.

1. Introduction
Score-based generative models (Song & Ermon, 2019; Song
et al., 2020b;a; Boffi & Vanden-Eijnden, 2022), commonly
referred to as diffusion models (Sohl-Dickstein et al., 2015;
Ho et al., 2020), have significantly advanced photorealistic
image generation (Saharia et al., 2022; Rombach et al., 2022;
Kim et al., 2022) and found applications in diverse domains
such as media editing and restoration (Meng et al., 2021;
Kawar et al., 2022; Saito et al., 2022; Murata et al., 2023).

Underlying score-based generative model is a (stochastic)
differential equation that describes the process of transform-
ing data to noise and vice-versa, which is approximated us-
ing a neural (score) network learned from data. Because of
the mathematical structure afforded by the underlying differ-
ential equation, this neural network needs to satisfy certain
consistency properties. Various such notions of consistency
have been recently introduced and shown to enhance sample
quality (Daras et al., 2023), accelerate sampling speed (Song
et al., 2023), and improve likelihood estimation (Lai et al.,
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2022). We introduce the term consistency-type model to
encompass and unify these various concepts. It refers to a
(diffusion) model that is explicitly designed to align with
the underlying trajectory defined by an ordinary differential
equation (ODE), stochastic differential equation (SDE), or
partial differential equation (PDE). In this study, we aim
to provide a theoretical investigation into the relationships
between these three consistency-type models. Under certain
mild assumptions, we will rigorously establish the equiva-
lence of these independently developed concepts.

2. Background
Song et al. (2020b) introduced a stochastic differential equa-
tion (SDE) framework that unifies the concepts of denoising
score matching (Song & Ermon, 2019) and diffusion mod-
els (Sohl-Dickstein et al., 2015; Ho et al., 2020) in continu-
ous time. Especially1, the process {x(t)}t∈[0,T ] of adding
Gaussian noise

x(t) ∼ qt where qt(x) = qdata(x) ∗ N (x;0, σ2(t)I)

is driven by the following forward SDE

dx(t) = g(t)dwt. (1)

Here, we define q0 = qdata, g(t) :=
√

dσ2(t)
dt , ∗ as the

convolution operator, and wt as the standard Wiener process.
Eq. (1) inherently corresponds to a reverse time SDE from
T to 0 under moderate conditions (Anderson, 1982)

dx(t) = −g2(t)∇x log qt(x(t))dt+ g(t)dw̄t, (2)

where w̄t is a standard Wiener process in reverse time, and
qt(x) denotes the ground truth marginal density of x(t)
following Eq. (1).

The stochastic process in Eq. (2) automatically associates
with a deterministic process, known as the probability flow
(PF) ODE. This PF ODE governs the evolution of samples
without any diffusion term and guarantees that the trajecto-
ries of the samples maintain identical marginal probability

1Within this study, our primary emphasis is placed on the vari-
ance exploding (VE) SDE (Song et al., 2020b). VE SDE entails
a process devoid of drift in the forward SDE formulation. Our
discussion can be extended to a broader range of forward SDEs.
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densities as the forward SDE (Eq. (1)). The PF ODE is
expressed as follows:

dx

dt
(t) = −1

2
g2(t)∇x log qt(x(t)). (3)

Since ∇x log qt(x(t)) is typically unattainable in Eqs. (2)
and (3), the denoising score matching (DSM) loss (Vincent,
2011; Song et al., 2020b) is commonly employed to ap-
proximate ∇x log qt(x) by using a time-conditional neural
network sθ = sθ(x, t) over the time interval [t0, T ], where
t0 ≥ 0 is chosen to be sufficiently small in practice.

By substituting ∇x log qt(x) with the learned sθ in the re-
verse time SDE described in Eq. (2), and in the PF ODE
given by Eq. (3), we obtain parametric counterparts of the
reverse time SDE for a stochastic process and the PF PDE
for a deterministic process, respectively. Consequently, we
have the choice to generate samples by numerically solv-
ing either the parametric SDE or the parametric PF PDE
in reverse, starting from an initial sample drawn from a
predefined prior.

3. Consistency-type models
In this section, we provide an overview of recent litera-
ture that incorporates notions of “consistency” in diffusion
models. Specifically, we review three notable models: Con-
sistent Diffusion Model (CDM) (Daras et al., 2023), Consis-
tency Model (CM) (Song et al., 2023), and Fokker-Planck
(FP) Diffusion (Lai et al., 2022). Table 1 compares the dis-
tinguishing characteristics of these consistency-type models.

3.1. CDM (Daras et al., 2023)

Daras et al. (2023) introduced the concept of a “consis-
tent denoiser” for the SDE (2). By leveraging Tweedie’s
formula (Efron, 2011), a connection can be established
between the score function ∇x log qt(x) and a denoiser
h : RD × [t0, T ] → RD conditioned on time

∇x log qt(x) =
h(x, t)− x

σ2(t)
.

Consequently, Eq. (2) can be rearranged as follows:

dx(t) = −g2(t)
(h(x, t)− x

σ2(t)

)
dt+ g(t)dw̄t. (4)

This reparameterization gives rise to the concept of a consis-
tent denoiser h (Daras et al., 2023). A denoiser is considered
consistent if, on average, it produces estimates of the nearly
clean data that align with those obtained by solving Eq. (4)
in reverse, regardless of the initial data used. A concise
summary of its formal definition is presented below. Fur-
thermore, Fig. 1(a) showcases its corresponding illustration.

Definition 3.1 (Consistent SDE-denoiser (Daras et al.,
2023)). A function h : RD × [t0, T ] → RD is called
a consistent SDE-denoiser if and only if h(x, t) =
EpSDE

[t0,t],h

[
x(t0)|Xt = x

]
for all x ∈ RD and t ∈ [t0, T ].

Here, EpSDE
[t0,t],h

denotes the conditional expectation of x(t0)

with respect to the distribution of pSDE
[t0,t],h

along the stochas-
tic trajectory described by the SDE presented in Eq. (4).
This trajectory starts with an initial value of x at an arbi-
trary time t and terminates at a generated sample x(t0) by
running the SDE in Eq. (4) backwards in time.

The aim of Daras et al. (2023) is to train a diffusion model
to serve as a consistent SDE-denoiser. However, applying
this condition to practical settings is challenging due to the
time-consuming process outlined in Definition 3.1, which in-
volves multiple SDE solving by running from t to t0 in order
to accurately evaluate the average. In contrast, Daras et al.
(2023) observed that a consistent SDE-denoiser h can be
interpreted as a reverse martingale under the same process
described in Eq. (2). Fig. 1(b) illustrates this property.
Proposition 3.2 (Daras et al. (2023)). h is a consistent
SDE-denoiser if and only if the following properties hold:

(i) (Reverse martingale) For all t > t′ and x, we have
h(x, t) = EpSDE

[t′,t],h

[
h(x(t′), t′)|Xt = x

]
.

(ii) (Identity at t0) For all x ∈ RD, h(x, t0) = x.

Here, EpSDE
[t′,t],h

represents the conditional expectation of

x(t′) given the distribution of pSDE
[t′,t],h along the trajectory

described by the SDE in Eq. (4), starting with an initial
value x at time t and terminates at time t′.

Based on this proposition, Daras et al. (2023) proposed to
train a denoiser hθ by using the denoising score matching
(DSM) loss, along with a regularizer which is defined as

1

2

(
hθ(x, t)− EpSDE

[t′,t],hθ

[
hθ(x(t

′), t′)|Xt = x
])2

, (5)

and its purpose is to enforce the reverse martingale property.
Their approach demonstrates notable improvement in terms
of sample quality.

3.2. CM (Song et al., 2023)

Song et al. (2023) directed their attention to PF ODE in
Eq. (3) (a deterministic process). They introduced the no-
tion of a “consistency function” which promotes the model’s
prediction of nearly clean data that aligns with the trajectory
of the PF ODE. In order to establish a better connection with
CDM (which will be discussed in Sec. 4.1), we propose a
modification to their terminology, replacing “consistency
function” with “consistent ODE-denoiser”. Below, we pro-
vide the formal definition.
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Table 1. Comparison of existing consistency-type models.
Models Purpose Trajectory Object of Eq. Approach
CDM (Daras et al., 2023) Sample quality Backward SDE Samples DSM + Martingale regularizer
CM (Song et al., 2023) Sampling speed PF ODE Samples Specific NN structure + New training scheme
FP-Diffusion (Lai et al., 2022) Likelihood Score FPE (a PDE) Scores DSM + Score FPE-regularizer

(a) Illustration of Def. 3.1. A consis-
tent SDE-denoiser indicates that the SDE-
denoiser prediction h(x, t) (endpoint of
the magenta arrow) aligns with the average
of SDE predictions EpSDE

[t0,t],h

[
x(t0)|Xt =

x
]

(blue dot).

(b) Illustration of Prop. 3.2. The SDE-
denoiser prediction h(x, t) (endpoint of
the magenta arrow) aligns with the aver-
age prediction of intermediate points ob-
tained by first applying an SDE solver and
subsequently applying the SDE-denoiser
EpSDE

[t′,t],h

[
h(x(t′), t′)|Xt = x

]
(blue

dot).

(c) Illustration of Alg. 2 in (Song et al.,
2023). The objective of CM is to align the
prediction of the direct denoiser (endpoint
of the magenta arrow) with the prediction
obtained by first applying a one-step ODE
solver and subsequently applying the de-
noiser.

Figure 1. Illustration of a consistent SDE/ODE-denoiser. The dashed curves depict predictions from denoisers. In (a) and (b), the three
erratic curves in light hues represent the SDE trajectories; the blue curve in (a) indicates the deterministic trajectory of the average. In (c),
the green curve corresponds to the PF ODE trajectory, and ϕ represents the parameters of a pre-trained score model.

Definition 3.3 (Consistent ODE-denoiser (Song et al.,
2023)). Given a solution trajectory {x(t)}t∈[t0,T ] of the
PF ODE in Eq. (3). Given a time-dependent vector field f .
f is called a consistent ODE-denoiser if it satisfies

f(x(t), t) = x(t0) for all t ∈ [t0, T ]. (6)

A straightforward corollary of the definition is that a consis-
tent ODE-denoiser f must fulfill the condition:

f(x(t), t) = f(x(t′), t′) for all t, t′ ∈ [t0, T ]. (7)

The goal of (Song et al., 2023) is to train a network fθ

to satisfy both Eqs. (6) and (7). Eq. (6) is guaranteed
by employing a specific network design, while Eq. (7) is
learned through the minimization of a “distance” measured
by d(·, ·):

d(fθ(x(t), t),fθ(x(t
′), t′)). (8)

Thanks to the specific design of the network, the learned
consistent ODE-denoiser is capable of performing one-step
sampling. We visually depict the distillation training of
Song et al. (2023) (Algorithm 2) in Fig. 1(c).

3.3. FP-Diffusion (Lai et al., 2022)

Lai et al. (2022) established an equivalent system of PDEs
known as the “score Fokker-Planck equation” (score FPE)

for the ground truth score (see Eq. (9)), which is built
upon the classic FPE introduced by Fokker (1914); Planck
(1917). The score FPE describes the temporal evolution of
the ground truth score once the forward SDE is given. We
present their findings in the following proposition.
Proposition 3.4 (Lai et al. (2022)). The ground truth score
s = s(x, t) := ∇x log qt(x) satisfies the score FPE

∂ts =
1

2
g2(t)∇x

(
divx(s) + ∥s∥22

)
. (9)

Lai et al. (2022) noted that DSM pre-trained score-based dif-
fusion models often do not conform to the underlying score
FPE (which is satisfied by the ground truth score). To ad-
dress this issue, they proposed a regularization approach by
minimizing the residuals of the score FPE, referred to as the
score FPE-regularizer, into the DSM loss (as described in
Eq. (19) of Lai et al. (2022)). The authors provided both the-
oretical and numerical evidence that their proposed model,
known as FP-Diffusion, can enhance likelihood estimation.

4. Relation of consistency-type models
4.1. CDM and CM

In this section, we establish a connection between CDM and
CM. Specifically, we demonstrate that the notion of a con-
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sistent SDE-denoiser can be transformed into a consistent
ODE-denoiser when the underlying trajectory is governed
by a PF ODE.

To rigorously formulate the theorem, we incorporate a pa-
rameter λ ≥ 0 that establishes a connection between Eqs. (2)
and (3) as Karras et al. (2022)

dx(t) = −(
1 + λ

2
)g2(t)s(x, t)dt+ λg(t)w̄t. (10)

Furthermore, we introduce Epλ−SDE
[t′,t],h

analogous to Proposi-

tion 3.1, to denote the conditional expectation of x(t′) based
on the distribution of pλ−SDE

[t′,t],h along the stochastic trajectory
described by the λ-parametrized SDE presented in Eq. (10)
starting from x(t) and terminating at time t′. It is observed
that when λ = 1, Eq. (10) coincides with Eq. (2) and p1−SDE

[t′,t],h

is equivalent to pSDE
[t0,t],h

. On the other hand, when λ = 0,
Eq. (10) becomes the PF ODE in Eq. (3). We now present
the relationship of CDM and CM as the following theorem.

Theorem 4.1 (Relationship of CDM and CM). If λ = 0,
then a consistent SDE-denoiser is equivalent to a consistent
ODE-denoiser.

Proof. Consider a denoiser h and λ = 0. This is equivalent
to the formulation presented in Definition 3.1, but replacing
the trajectory governed by the SDE in Eq. (4) with a PF
ODE described by Eq.(3). Then for all t ∈ [t0, T ], we have
h(x(t), t) = Ep0−SDE

[t0,t],h

[
x(t0)|Xt = x(t)

]
= x(t0), owing

to the deterministic nature of the ODE. Alternatively, we can
arrive at the same conclusion by leveraging Proposition 3.2.
The reverse martingale property implies that h(x(t), t) =
Ep0−SDE

[t′,t],h

[
h(x(t′), t′)|Xt = x(t)

]
= h(x(t′), t′) holds for

all t′ < t, which is a consequence of the ODE trajectory
being deterministic. In particular, if we set t′ = t0 and
consider condition (ii) of Proposition 3.2, we also obtain
h(x(t), t) = h(x(t0), t0) = x(t0) for all t ∈ [t0, T ].

Both perspectives presented in the proof, namely Defini-
tion 3.1 and Proposition 3.2, ultimately yield the same con-
clusion: the theoretical correlation between Definition 3.1
and Definition 3.3. Indeed, Figs. 1(b) and (c) illustrate
an analogy between a consistent SDE-denoiser and ODE-
denoiser. Furthermore, it is worth noting that when we
incorporate the CDM’s regularizer in Eq. (5) along the PF
ODE, it simplifies to 1

2

(
hθ(x, t)− hθ(x(t

′), t′)
)2

, which
coincides with Eq. (8) when the measurement d is taken as
a 1

2 -weighted MSE.

4.2. FP-Diffusion and CDM

According to Daras et al. (2023), a consistent SDE-denoiser
h is sufficient to guarantee the fulfillment of the score FPE
by its corresponding induced score s(x, t) := h(x,t)−x

σ2(t) . In

this section, we establish the necessity of this condition,
thereby demonstrating the equivalence between these two
concepts.

Theorem 4.2 (Equivalence of consistent SDE-denoiser and
satisfaction of score FPE). Let h : RD × [t0, T ] → : RD be
a smooth denoiser so that h(x, t0) = x, for all x. Then h is
a consistent SDE-denoiser if and only if s satisfies Eq. (9).

Proof. The proof is built upon the approach presented in
(Daras et al., 2023). It is important to note that once the
forward SDE (Eq. (1)) is defined, it naturally corresponds to
a reverse SDE (Eq. (2)). By employing the multidimensional
Itô’s Lemma (Daras et al., 2023, Lemma A.2) to Eq. (2), we
obtain

dh =
[∂h
∂t

− 1

2
g2(t)∆xh− g2(t)Jh · s

]
dt+ g(t)Jhdw̄t.

(11)
Here

(
∆xF (x, t)

)
i
:=

∑D
j=1 ∂

2
xj
Fi(x, t) denotes the x-

Laplacian of a vector field F := (Fi)
D
i=1 : RD × [t0, T ] →

RD with a fixed time t. Moreover, JF denotes the Jacobian
of F with respect to x (with a fixed time t). We know from
Proposition 3.2 of Daras et al. (2023) that h is a consistent
SDE-denoiser if and only if h is a reverse martingale. In-
deed, it is equivalent to driftlessness of Eq. (11) by applying
Proposition A.3. Namely, the following equation is valid

∂th =
1

2
g2(t)∆xh+ g2(t)Jh · s.

Finally, Lemma A.4, establishing a connection between the
score FPE and a PDE that a denoiser h must satisfy, implies
the equivalence of fulfilling the score FPE by s.

Despite the theoretical equivalence of a consistent SDE-
denoiser and the fulfillment of its score FPE, the empirical
experiments conducted by Daras et al. (2023) and Lai et al.
(2022) used different approaches and achieved different
outcomes. Daras et al. (2023) enforced consistency through
regularization to promote the martingale property, whereas
Lai et al. (2022) applied a regularizer to ensure satisfaction
of the score FPE. These different methods result in distinct
loss landscapes and optimization dynamics. We defer the
empirical investigation of consistency-type models to future
research.

5. Conclusion
In this research, we provide a theoretical bridge between
different consistency-type models. The results of this study
have the potential to inspire the development of a compre-
hensive framework that ensures consistency and facilitates
the simultaneous achievement of several desired benefits,
such as accurate likelihood estimation, efficient sampling
speed, and high sample quality.
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A. Auxiliary lemmas and propositions
In this section, we present essential lemmas for proving Theorem 4.2.

Let us begin by revisiting the definition of a local martingale (Karatzas et al., 1991), which presents a localized version of
the martingale property. A stochastic process {X(t)}t∈[t0,T ] is considered a local martingale if there exists a sequence of
stopping times {τk}∞k=1 (which are random variables) satisfying the following conditions: (i) τk is almost surely increasing,
(ii) τk diverges to ∞ almost surely, and (iii) the stopped process X(min{t, τk}) is a martingale.

It is well-known that a diffusion process without drift (e.g., Eq. (12)) is a local martingale in general. However, it is important
to note that without additional conditions, it does not necessarily qualify as a true martingale. Here, we demonstrate a
sufficient condition to imply the true martingale property of a local martingale. For the proof of this proposition, we refer to
the provided source (Karatzas et al., 1991).

Lemma A.1. Suppose that E
[ ∫ T

t0
∥G(X(τ), τ)∥22 dτ

]
< ∞. Then the Itô integral defined as

X(t) = X(t0) +

∫ t

t0

G(X(τ), τ)dwτ (12)

is a martingale.

Next, we present a classic result that establishes the constancy of any continuous local martingale with bounded variation.
The proof of this lemma can be found in the reference (Karatzas et al., 1991; Schilling, 2021).
Lemma A.2. Any continuous local martingale of bounded variation is constant.

Now, we can establish a characterization of the martingale property for solutions of SDEs, which asserts the non-trivial
equivalence between a martingale and a “driftless” Itô process.
Proposition A.3. Assume that a (Itô’s) stochastic process {X(t)}t∈[t0,T ] is the strong solution of the following reverse time
SDE on [t0, T ]

dX(t) = F (X(t), t)dt+G(X(t), t)dw̄t. (13)

Here F ,G : RD × [t0, T ] → RD are vector fields satisfying some smoothness conditions 2, and assumed to be Lipschitz
and sub-linear. Namely, there is a constant C > 0 such that

(i) (Lipschitzness) For all x, y ∈ RD and t ∈ [t0, T ]

∥F (x, t)− F (y, t)∥2 + ∥G(x, t)−G(y, t)∥2 ≤ C ∥x− y∥2 .

(ii) (Sub-linearity) For all x ∈ RD and t ∈ [t0, T ]

∥F (x, t)∥+ ∥G(x, t)∥ ≤ C(1 + ∥x∥2).

Then X(t) is a reverse martingale if and only if Eq. (13) is driftless, i.e., F ≡ 0.

The proposition can be understood intuitively by taking expectation of Eq. (13) conditioned on its history {X(s)}s≤t

dE[X(t)]

dt
= E[F (X(t), t)].

E[G(X(t), t)dwt] is zero because of the zero mean of the standard Wiener process wt. Therefore, the expectation remains
constant (and consequently, independent of the past) if and only if F is identically equal to zero. Nevertheless, proving this
proposition requires more intricate analysis, and we provide a detailed argument in Appx. B.1.

In the next Lemma, we bridge the score FPE and a PDE that a denoiser h should satisfy. To be consistent with notations in
(Daras et al., 2023), we can derive the score FPE (Eq. (9)) of the ground truth score s as

∂ts =
1

2
g2(t)∆xs+ g2(t)Js · s. (14)

Here
(
∆xF (x, t)

)
i
:=

∑D
j=1 ∂

2
xj
Fi(x, t) denotes the x-Laplacian of a vector field F := (Fi)

D
i=1 : RD × [t0, T ] → RD

with a fixed time t. Moreover, JF denotes the Jacobian in x of F (with a fixed time t).
2Please refer to (Øksendal, 2003, Theorem 5.2.1).
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Lemma A.4. s satisfies the score FPE (or equivalently, Eq. (14)) if and only if h satisfies

∂th =
1

2
g2(t)∆xh+ g2(t)Jh · s. (15)

B. Proofs
B.1. Proof of Proposition. A.3

Proof. We establish the case for forward time SDEs and martingales, as the reverse time case can be derived through a
similar line of reasoning (Klenke, 2013). We first prove the sufficient implication. Suppose that X(t) is a martingale. Then
the Itô process U(t) defined as

U(t) :=

∫ t

t0

F (X(τ), τ)dτ

=X(t)−X(t0)−
∫ t

t0

G(X(τ), τ)dwτ

is a local martingale by the preservation of the local martingale property. It can be observed that U(t) possesses a continuous
path and bounded variation on the interval [t0, T ], as a result of property (i) and the assumed smoothness. By utilizing
Lemma A.2, we conclude that U(t) is constant, specifically zero. Consequently, Eq. (13) is driftless.

Next, we prove the necessity. Suppose that F ≡ 0. Thanks to conditions (i) and (ii) (and some additional technical
conditions), the existence and uniqueness of the solution to Eq. (13) is guaranteed (see in (Øksendal, 2003, Theorem 5.2.1))
and the solution is finite in the L2-sense

E
[ ∫ T

t0

∥X(τ)∥22 dτ
]
< ∞.

We will show that it implies E
[ ∫ T

t0
∥G(X(τ), τ)∥22 dτ

]
< ∞. Consequently, according to Lemma A.1, it guarantees that

X is a martingale. The sub-linearity of G indicates

∥G(x, t)∥22 ≤ C2(1 + ∥x∥2)
2 ≤ 2C2(1 + ∥x∥22).

So

E
[ ∫ T

t0

∥G(X(τ), τ)∥22 dτ
]
≲ (T − t0) + E

[ ∫ T

t0

∥X(τ)∥22 dτ
]
< ∞.

Here we use ≲ to absorb multiplicative constants. Consequently, utilizing Lemma A.1 and relying on the uniqueness of the
strong solution, it follows that X is a martingale.

B.2. Proof of Lemma. A.4

Proof. Suppose that s satisfies Eq. (14). We know that h(x, t) = x+ σ2(t)s(x, t). By taking ∂t and using the chain rule,
we obtain

∂th =
dσ2(t)

dt
s+ σ2(t)∂ts

= g2(t)s+ σ2(t)
(1
2
g2(t)∆xs+ g2(t)Js · s

)
.

(16)

Notice that ∆xs(x, t) = ∆x

(h(x,t)−x
σ2(t)

)
= 1

σ2(t)∆xh(x, t) and that Js = 1
σ2(t) (Jh − I), where I denote the identity

matrix on RD. So Eq. (16) becomes

∂th = g2(t)s+
1

2
g2(t)∆xh+ g2(t)(Jh − I) · s

=
1

2
g2(t)∆xh+ g2(t)Jh · s,

which indicates Eq. (15) is fulfilled by h. The reverse implication follows with a similar computation.


