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Abstract

Hyperbolic neural networks have achieved considerable success in extracting representation
from hierarchical or tree-like data. However, they are known to suffer from numerical
instability, which makes it difficult to build hyperbolic neural networks with deep hyperbolic
layers, no matter whether the Poincaré or Lorentz coordinate system is used. In this note,
we study the crucial operation of concatenating hyperbolic representations. We propose the
Lorentz direct concatenation and illustrate that it is much more stable than concatenating
in the tangent space. We provide some insights and show superiority of performing direct
concatenation in real tasks.

Keywords: hyperbolic neural networks, concatenation, numerical stability

1. Introduction

Recent development of geometric deep learning has witnessed a boost of neural network
models specifically designed for data lying in non-Euclidean domains. For data that show
a hierarchical or tree-like structure, hyperbolic neural networks have been effective and
successfully applied to, for instance, product recommendation (Wang et al., 2019), drug
discovery (Wu et al., 2021), and action recognition (Peng et al., 2020).

One possible approach to building hyperbolic neural networks is performing neural op-
erations in the tangent space. The earliest such model was proposed by Ganea et al. (2018),
which got refined recently by Shimizu et al. (2021). If the dataset has a graph structure, it
is also possible to combine hyperbolic operations in the tangent space with message passing
layers in graph convolution (Chami et al., 2019; Liu et al., 2019; Bachmann et al., 2020).
Although tangent spaces are effective ways to approximate the hyperbolic domain, apply-
ing exponential and logarithmic operations usually causes numerical instability, especially
within the Poincaré ball model (Nickel and Kiela, 2018; Chami et al., 2019). Recently, Chen
et al. (2021) proposed to use fully hyperbolic layers, which avoid going back and forth to the
tangent spaces. However, their focus was on linear layers. More complex neural networks
usually include different types of layers which, even combined with fully hyperbolic linear
layers, may suffer from numerical instability. In this note, we propose a concatenation layer
within the Lorentz model and illustrate its numerical stability. Moreover, we analyze the
stability and use it to achieve a hyperbolic generative network competitive for real tasks.

We provide some preliminaries of hyperbolic geometry in Appendix A.
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2. Motivation and Definition of Lorentz Direct Concatenation

In the Poincaré model, Shimizu et al. (2021) proposed Poincaré β-concatenation and β-split,
both of which are numerically unstable in deep networks. As for the Lorentz model, we
remark that one could also define operations in the tangent space similarly to the Poincaré
β-concatenation and β-split. More specifically, if we want to concatenate the input vectors
{xi}Ni=1 where each xi ∈ Lni

K , we could follow a “Lorentz tangent concatenation”: first lift
each xi to the tangent space of the origin o: vi = logKo (xi) =

[ vit
vis

]
∈ Rni+1, and then

perform the Euclidean concatenation to get v :=
(
0,v⊤

1s , . . . ,v
⊤
Ns

)⊤
. Finally, we would get

y = expKo (v) as a concatenated vector in the hyperlolic space. Similarly, we could perform
the “Lorentz tangent split” on an input xi ∈ Ln

K with split sub-dimensions
∑N

i=1 ni = n

to get v = logKo (x) =
(
0,v⊤

1s ∈ Rn1 , . . . ,v⊤
Ns

∈ RnN
)⊤

, vi =
[

0
vis

]
∈ ToLni

K , and the split

vectors yi = expKo (vi) successively.

Unfortunately, both the Lorentz tangent concatenation and the Lorentz tangent split are
not “regularized”, which means that the norm of the spatial component will increase after
concatenation, and decrease after split. This will make the hidden embeddings numerically
unstable. While this problem could be solved by adding regulations, a bigger issue with the
Lorentz tangent concatenation and split is that if we use them in a deep neural network,
there would be too many exponential and logarithmic maps. Moreover, the tangent space
is chosen at o. If the points to concatenate are not close to o, their hyperbolic relation
may not be captured very well. Therefore, we abandon the use of the tangent space and
propose more direct and numerically stable operations, which we call the “Lorentz direct
concatenation and split” and define as follows: given the input vectors {xi}Ni=1 where each
xi ∈ Lni

K and M =
∑N

i=1 ni, the Lorentz direct concatenation of {xi}Ni=1 is defined to be a
vector y ∈ LM

k given by

y = HCat({xi}Ni=1) =


√√√√ N∑

i=1

x2it + (N − 1)/K,xT
1s , · · · ,x

T
Ns

T

. (1)

Note that each xis is the spatial component of xi. If we consider xi ∈ Lni
K as a point in

Rni+1, the projection of xi onto the Euclidean subspace {0}×Rn, or the closest point there,
is xis . The Lorentz direct concatenation can thus be considered as Euclidean concatenation
of the projected points. Lastly, the Euclidean concatenated point is mapped back to LM

K

by the inverse map of the projection. We remark that this concatenation directly inherits
from the Lorentz model, which is one advantage that the Poincaré model does not have.

We also define the Lorentz Split for completeness, though our main focus is on con-
catenation: Given an input x ∈ Ln

K , the Lorentz Direct Split of x, with sub-dimensions

n1, · · · , nN where
∑N

i=1 ni = n, will be {yi}Ni=1, where each yi ∈ Lni
K is given by first splitting

x in the space dimension as x =
[
xt,y

T
1s , · · · ,y

T
Ns

]T
, and then calculating the corresponding

time dimension as yi =
[√

∥yis∥2−1/K
yis

]
.
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3. Numerical Stability

We use the following simple experiment to show the advantage of our Lorentz Direct Con-
catenation over the Lorentz tangent concatenation. The hyperbolic neural network in this
simple experiment consists of a cascading of L blocks, and the architecture of each block is
as follows: for l = 0, · · · , L− 1,

h
(l)
1 = Hlineard,d(x

(l)), h
(l)
2 = Hlineard,d(x

(l));

h(l) = HCat(h
(l)
1 , h

(l)
2 ); x(l+1) = Hlinear2×d,d(h

(l)).
(2)

In our test, we take d = 64. We sample input and output data from two wrapped normal
distributions (Nagano et al., 2019) with different means (input: origin o, output: E2H(164))
and variances (input: diag(164), output: 3 × diag(164)). Taking the input as x(0), we fit
x(L) to the output data. We record the average gradient norm of the three hyperbolic linear
layers in each block. The results for L = 64 blocks and L = 128 blocks are shown in Figure
1. Clearly, for the first 20 blocks, the Lorentz tangent concatenation leads to significantly
larger gradient norms. This difference in norms is clearer when the network is deeper. The
gradients from the Lorentz direct concatenation are more stable.
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Figure 1: Average gradient norm in training. (a) 64 blocks. (b) 128 blocks.

4. Concatenation and Hyperbolic Distances

In this section, we perform additional analysis of Lorentz Direct Concatenation and Lorentz
tangent concatenation, particularly their effect on hyperbolic distances.

First, we study the hyperbolic distances to the hyperbolic origin for both concatenation
methods. Suppose we have x ∈ Ln

K and y ∈ Lm
K . Let z = HCat(x,y) ∈ Ln+m−1

K and z′ =
HTCat(x,y) ∈ Ln+m−1

K be their hyperbolic direct concatenation and hyperbolic tangent
concatenation, respectively. We compare the difference between dL(z,o) and dL(z

′,o) as
follows. Note that the distance between an arbitrary point x ∈ Ln

K and the origin only
depends on the time component:

dL(x,o) =
1√
−K

cosh−1(K⟨x,o⟩L) =
1√
−K

cosh−1(−Kxt). (3)

Hence, the distance information is completely contained in the time component. After the
concatenation, the time component is

√
x2t + y2t + 1/K. Consequently, for Lorentz Direct
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Figure 2: First row: spatial normal. Second row: wrapped normal. Column 1-3: Difference
between concatenated distances and original distances with n = 3, 6, 64, respec-
tively. Column 4: |dL(xc,yc)− dL(x,y)| − |dL(x′

c,y
′
c)− dL(x,y)|.

Concatenation, the distance is

dL(z,o) =
1√
−K

cosh−1

(
−K

√
x2t + y2t + 1/K

)
. (4)

For Lorentz tangent concatenation, since both the logarithmic and exponential maps reserve
the distances, one has

dL(z
′,o) =

√
dL(x,o)2 + dL(y,o)2

=

√
1

−K
(
cosh−2(−Kxt) + cosh−2(−Kyt)

)
.

(5)

Although the hyperbolic distance dL(z, o) is not the squared sum of dL(x,o) and
dL(y,o), dL(z,o) is larger than each of dL(x,o) and dL(y,o). On the other hand, after
concatenation, d2L(z

′,o) = d2L(x,o)+d
2
L(y,o). This relation agrees with the Euclidean con-

catenation. However, norm-preservation is not why concatenation works in the Euclidean
domain. Therefore, we don’t consider this as an advantage of the Lorentz tangent concate-
nation. The Lorentz Direct Concatenation is more efficient and stable, and no information
is lost during concatenation. Therefore, it is still preferred as a neural layer.

More importantly, we study how concatenation changes the relative distances, which
is closely related to stability. Specifically, we perform the following experiments. Given
x,y, c ∈ Ln

K , let xc = HCat(x, c) and yc = HCat(y, c) be the direct-concatenated version of
(x, c) and (y, c), respectively. Similarly we denote x′

c = HTCat(x, c) and y′
c = HTCat(y, c)

for Lorentz tangent concatenations. Since the same vector c is attached to x and y, we
naturally hope dL(xc,yc) and dL(x

′
c,y

′
c) do not deviate much from dL(x,y).

We describe our experiments as follows. Take K = −1. We randomly sample three
points independently from Ln

K as x, y and c respectively. We have two scenarios for
sampling the points: (1) “spatial normal”: the points are sampled so that their spatial
components follow the standard normal distribution; (2) “wrapped normal”: the points
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are sampled from the wrapped normal distribution with unit variance. In each scenario,
for n ∈ {3, 16, 64}, we do the experiments for 10,000 times. We report the distances
|dL(xc,yc)− dL(x,y)| and |dL(x′

c,y
′
c)− dL(x,y)| as well as their differences in Figure 2.

Our experiments clearly show that, especially for large dimensions, the distance be-
tween dL(xc,yc) and dL(x,y) is smaller than the distance between dL(x

′
c,y

′
c) and dL(x,y).

In particular, in many cases, |dL(xc,yc)− dL(x,y)| is around zero. On the other hand,
|dL(x′

c,y
′
c)− dL(x,y)| tend to be large when n = 16, 64, especially when samples follow the

wrapped normal distribution. From this result, the Lorentz Direct Concatenation should
be preferred to the Lorentz tangent concatenation. In particular, the significant expansion
of distance when concatenating with the same vector, in the case n = 64, may be one cause
of numerical instability.

5. Applications of Lorentz Direct Concatenation

In this section, we show that Lorentz direct concatenation can be used in deep and complex
neural network architecture with numerical stability. We consider the task of molecular
generation using the MOSES dataset (Polykovskiy et al., 2020). Our model contains a
tree decoder and a graph decoder are used in the hyperbolic space (the detailed network
structure is presented in Appendix B). In both decoders the hyperbolic features need to
be concatenated and we consider the following methods for concatenation: β-concatenation
(Shimizu et al., 2021), the Lorentz tangent concatenation and the Lorentz direct concate-
nation.

The results of molecular generation are presented in Table 1. While Lorentz direct
concatenation saturates the important metrics of validity, uniqueness and novelty, the other
two concatenation methods both suffer from numerical instability, even if a fully hyperbolic
approach is adopted in all the methods.

Table 1: Performance in Validity, Unique(ness), Novelty, SNN. Reported (mean ± std) over
three independent samples. ”NaN” indicates NaN reported during training.

Concatenation method Validity (↑) Unique (↑) Novelty (↑)

β concat (Shimizu et al., 2021) NaN NaN NaN
Lorentz tangent concat NaN NaN NaN
Lorentz direct concat 1.0±0.0 1.0±0.0 0.905±0.006

Future work involves more theoretical analysis on the numerical stability of hyperbolic
models, as well as models that enjoy both expressivity and stability.
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Appendix A. Preliminaries of Hyperbolic Geometry

Hyperbolic geometry is a special kind of Riemannian geometry with a constant negative
curvature (Cannon et al., 1997; Anderson, 2006). There are five models (coordinate systems)
of the hyperbolic space: the Lorentz model, the Poincaré ball model, the Hemisphere model,
the Klein model, and the Poincaré half-space model. The models are isometric and the
relation between their coordinates is surveyed by Dai et al. (2021). We work with the
Lorentz model for its numerical stability.

The Lorentz Model The Lorentz model Ln
K = (L, gK) of an n dimensional hyperbolic

space with constant negative curvature K is an n-dimensional manifold L embedded in
the (n + 1)-dimensional Minkowski space, together with the Riemannian metric tensor
gK = diag([−1,1⊤n ]), where 1n denotes the n-dimensional vector whose entries are all 1’s.

Every point in Ln
K is represented by x =

[
xt
xs

]
, xt > 0,xs ∈ Rn and satisfies ⟨x,x⟩L = 1/K,

where ⟨·, ·⟩L is the Lorentz inner product induced by gK :

⟨x,y⟩L := x⊤gKy = −xtyt + x⊤
s ys, x,y ∈ Ln

K . (6)

Geodesics and Distances Geodesics are shortest paths in a manifold, which generalize
the notion of “straight lines” in Euclidean geometry. In particular, the length of a geodesic
in Ln

K (the “distance”) between x,y ∈ Ln
K is given by

dL(x,y) =
1√
−K

cosh−1(K⟨x,y⟩L). (7)

Tangent Space For each point x ∈ Ln
K , the tangent space at x is TxLn

K := {y ∈ Rn+1 |
⟨y,x⟩L = 0}. It is a first order approximation of the hyperbolic manifold around a point x
and is a subspace of Rn+1. We denote ∥v∥L =

√
⟨v,v⟩L as the norm of v ∈ TxLn

K .

Exponential and Logarithmic Maps The exponential and logarithmic maps are maps
between hyperbolic spaces and their tangent spaces. For x,y ∈ Ln

K and v ∈ TxLn
K , the

exponential map expKx (v) : TxLn
K → Ln

K maps tangent vectors to hyperbolic spaces by
assigning v to the point expKx (v) := γ(1), where γ is the geodesic satisfying γ(0) = x and
γ′(0) = v. Specifically,

expKx (v) = cosh(ϕ)x+ sinh(ϕ)
v

ϕ
, ϕ =

√
−K∥v∥L. (8)

The logarithmic map logKx (y) : Ln
K → TxLn

K is the inverse map that satisfies logKx (expKx (v)) =
v. Specifically,

logKx (y) =
cosh−1(ψ)√

−K
y − ψx

∥y − ψx∥L
, ψ = K⟨x,y⟩L. (9)
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Appendix B. Network Details in Section 5

Our network contains a hyperbolic auto-encoder that learns the hyperbolic embedding of
molecules, and a hyperbolic generative network that learns to sample de novo latent em-
beddings.

B.1. Details of Hyperbolic Auto-Encoder

Hyperparameters

• Manifold curvature: K = −1.0
• For all hyperbolic linear layers:

– Dropout: 0.0
– Use bias: True

• Optimizer: Riemannian Adam (β1 = 0.0, β2 = 0.999)
• Learning rate: 5e-4
• Learning rate scheduler: StepLR (step = 20000, γ = 0.5)
• Batch size: 32
• Number of epochs: 20

Graph Encoder

• Input: graph node features dimension: 35
• Map features to hyperbolic space: R35 → L35

K

• Hyperbolic GCN layers:

– Input dimension: 35
– Hidden dimension: 256
– Depth: 4
– Output dimension: 256

• Hyperbolic centroid on all vertices
• Output: graph embedding in L256

K

Tree Encoder

• Input: junction tree features dimension 828
• Hyperbolic embedding layer: R828 → L256

K

• Hyperbolic GCN layers:

– Input dimension: 256
– Hidden dimension: 256
– Depth: 4
– Output dimension: 256

• Hyperbolic centroid on all vertices
• Output: tree embedding in L256

K

Tree Decoder

• Input: tree embedding in L256
K

• Message passing RNN:

– Input: node feature of current tree node, inward messages
– Hyperbolic linear layer on inward messages: L256

K → L256
K

– Hyperbolic centroid on inward messages

8
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– Hyperbolic embedding layer on node feature: R828 → L256
K

– Concatenation on node feature and inward message: L256
K → L512

K

– Hyperbolic linear layer: L512
K → L256

K

– Output dimension: 256

• Topological Prediction:

– Input: tree embedding, node feature of current tree node, inward messages
– Hyperbolic linear layer on inward messages: L256

K → L256
K

– Hyperbolic centroid on inward messages
– Hyperbolic embedding layer on tree feature: R828 → L256

K

– Concatenation on node feature, inward message, and tree embedding: L256
K → L768

K

– Hyperbolic linear layer: L768
K → L256

K

– Hyperbolic centroid distance layer: L256
K → R2

– Softmax on output
– Output dimension: 2

• Label Prediction:

– Input: tree embedding, outward messages
– Concatenation on outward message, and tree feature: L256

K → L512
K

– Hyperbolic linear layer: L512
K → L256

K

– Hyperbolic centroid distance layer: L256
K → R828

– Softmax on output
– Output dimension: 828

• Output: junction tree

Graph Decoder

• Input: junction tree, tree message, and graph embedding
• Construction candidate subgraphs
• Hyperbolic graph convolution layers on all subgraphs:

– Input dimension: 256
– Hidden dimension: 256
– Depth: 4
– Output dimension: 256

• Hyperbolic centroid on vertices of all subgraphs
• Concatenation on subgraph embedding and graph embedding: L256

K → L512
K

• Hyperbolic linear layer: L512
K → L256

K

• Hyperbolic centroid distance layer: L256
K → R

• Use subgraph score to construct molecular graph
• Output: molecular graph

B.2. Details of Hyperbolic Generative Adversarial Network

Hyperparameters

• Manifold curvature: K = −1.0
• Gradient penalty coefficient: λ = 10
• For all hyperbolic linear layers:

– Dropout: 0.1
– Use bias: True

9
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• Optimizer: Riemannian Adam (β1 = 0, β2 = 0.9)
• Learning Rate: 1e-4
• Batch size: 64
• Number of epochs: 20
• Gradient penalty λ: 10

Generator
• Input: points sampled from wrapped normal distribution G(o,diag(1128)) in L128

K

• Hyperbolic linear layers for graph embedding:
– Input dimension: 128
– Hidden dimension: 256
– Depth: 3
– Output dimension: 256

• Hyperbolic linear layers for tree embedding:
– Input dimension: 128
– Hidden dimension: 256
– Depth: 3
– Output dimension: 256

• Output: graph embedding and tree embedding in L128
K

Discriminator
• Input: graph embedding and tree embedding in L128

K

• Hyperbolic linear layers for graph embedding:
– Input dimension: 256
– Hidden dimension: 256
– Depth: 2
– Output dimension: 256

• Hyperbolic linear layers for tree embedding:
– Input dimension: 256
– Hidden dimension: 256
– Depth: 2
– Output dimension: 256

• Lorentz Direct concatenation on graph embedding and tree embedding: L256
K → L512

K

• Hyperbolic linear layer: L512
K → L256

K

• Hyperbolic centroid distance layer: L256
K → R

• Output: score in R
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