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ABSTRACT

Language model (LM) pre-training has proven useful for a wide variety of lan-
guage processing tasks, including tasks that require nontrivial planning and rea-
soning capabilities. Can these capabilities be leveraged for more general machine
learning problems? We investigate the effectiveness of LM pretraining to scaffold
learning and generalization in autonomous decision-making. We use a pre-trained
GPT-2 LM to initialize an interactive policy, which we fine-tune via imitation
learning to perform interactive tasks in a simulated household environment featur-
ing partial observability, large action spaces, and long time horizons. To leverage
pre-training, we first encode observations, goals, and history information as tem-
plated English strings, and train the policy to predict the next action. We find that
this form of pre-training enables generalization in policy learning: for test tasks
involving novel goals or environment states, initializing policies with language
models improves task completion rates by nearly 20%. Additional experiments
explore the role of language-based encodings in these results; we find that it is
possible to train a simple adapter layer that maps from observations and action
histories to LM embeddings, and thus that language modeling provides an effec-
tive initializer even for tasks with no language as input or output. Together, these
results suggest that language modeling induces representations that are useful for
modeling not just language, but natural goals and plans; these representations can
aid learning and generalization even outside of language processing.

1 INTRODUCTION

In recent years, language models (LMs) trained on open-domain text corpora have come to play
a central role in machine learning approaches to natural language processing tasks (Devlin et al.,
2018). This includes tasks that are not purely linguistic, and additionally require nontrivial planning
and reasoning capabilities: examples include as vision-language navigation (Majumdar et al., 2020;
Fried et al., 2018; Suglia et al., 2021), instruction following (Zhang & Chai, 2021; Hill et al., 2020),
and visual question answering (Tsimpoukelli et al., 2021). Indeed, some of these tasks are so re-
motely connected to language modeling that it is natural to ask whether the capabilities that result
from LM pre-training might extend to tasks that involve no language at all—and if so, how these ca-
pabilities might be accessed in a model trained only to process and generate natural language strings.
In this paper, we study these questions through the lens of embodied decision-making, investigat-
ing the effectiveness of LM pretraining as a scaffold for learning control policies for interactive
tasks featuring partial observability, large action spaces, complex states, and complex dynamics.
We describe a series of experiments in the VirtualHome environment (Puig et al., 2018; 2020) in
which LMs are used to initialize policies, and show that LM pre-training substantially improves
generalization across common-place tasks in household environments.

In Experiment 1 (Section 6), we encode the inputs to a policy—including observations, goals,
and action histories—as templated English phrases (e.g. representing the goal on(fork, table)
as There is a fork on the table.) as shown in Figure 1. A pretrained LM is then fined-tuned to
produce representations of these phrases that can be used to predict subsequent actions. For i.i.d.
training and evaluation tasks, we find that this approach completes tasks at a rate comparable to
the same transformer-based policy trained from scratch. For generalization to out-of-distribution
tasks, however, LM pretraining confers substantial benefits: it improves task completion rates by

1



Under review as a conference paper at ICLR 2022

Normal Zero-shot Combination
0

10

20

30

40

50

Su
cc

es
s

re
at

e

Transformer from scratch
Pretrained transformer (natural encoding)
Pretrained transformer (random encoding)
Pretrained transformer (learned encoding)

Goal:
IN(pancake, fridge):2; 
ON(juice, table):1  

Partial 
observation

Serialized input

History:
<walk>[pancake]; … ;
<grab>[juice]; …

“Put two pancakes 
inside the fridge ….”

Obj name: “apple”
Obj state: [0, 1, …, 0]
Obj coord: [𝑜!"# , 𝑎!"#]

“I have put a pancake 
inside the fridge, …”

Pre-trained Language M
odel

Output action:
<walk>[juice]

VirtualHome

(a) Overview of the policy initialized from a pre-trained language model (b) Results

Input Embedding layer

𝑓$

𝑓$

𝑓$

Figure 1: (a) Overview of the proposed method. We encode the inputs to the policy — including observations,
goals, and action histories — as templated English phrases. The phrases are sent to an embedding layer and a
pre-trained language model to predict the subsequent action. The embedding layer fϕ can either be a embed-
ding layer of a pre-trained language model (Experiment 1) or be a learned embedding layer (Experiment 2). (b)
Results. We summarize the main results of Experiment 1 (“Transformer from scratch” and “Pretrained trans-
former (natural encoding)”), Experiment 2A (“Pretrained transformer (random encoding)”) and Experiment 2B
(“Pretrained transformer (learned encoding)”).

nearly 20% for tasks involving novel initial environment states and goals (Figure 1 “Transformer
from scratch” and “Pretrained transformer (natural encoding)” ).

Next, we conduct two experiments aimed at clarifying the role of this string-based encoding. We
design Experiment 2A that uses random strings instead of natural language inputs and Experiment
2B that uses non string-based encodings to study different ways of building interfaces between input
encodings and LMs. In Experiment 2A (Section 7), we replace the “natural” string encodings of Ex-
periment 1 with an arbitrary mapping between logical goals and tokens (e.g. serializing on(fork,
table) as brought wise character trees fine order yet). This random encoding substantially (by
roughly 12%) degrades performance on out-of-distribution tasks, indicating that LM encoders are
sensitive to the form of string encodings even when fine-tuned (Figure 1 “Pretrained transformer
(natural encoding)” and “Pretrained transformer (random encoding)”). In Experiment 2B, we inves-
tigate whether string-based encodings are necessary at all. We replace the model’s word embedding
layer with a randomly initialized embedding layer that maps from discretized environment obser-
vations, goal, and history actions to a sequence of LM input vectors, and fine-tune this embedding
layer jointly with the LM itself. This learned encoder performs almost the same as the encoding
of Experiment 1, indicating that effective encodings for non-linguistic tasks can be learned from
scratch (Figure 1 “Pretrained transformer (natural encoding)” and “Pretrained transformer (learned
encoding)”).

These experiments offer two main conclusions. First, they show that language modeling improves
generalization in policy learning: initializing a policy with a neural LM (pre-trained on a next-
word prediction task with a large text corpus) substantially improves out-of-distribution performance
on (non-linguistic) tasks in an interactive environment. Second, they show that language-based
environment encodings are not needed to benefit from LM pretraining: it is instead possible to
learn an interface between observations, actions, and model-internal representations derived from
text corpora. These results point the possible effectiveness of language modeling as a general-
purpose pre-training scheme to promote structured generalization in broader machine learning
applications.

2 RELATED WORK

In recent years, word and sentence representations from pre-trained LMs (Peters et al., 2018; Devlin
et al., 2018; Radford et al., 2018) have become ubiquitious in natural language processing, playing
a key role in state-of-the-art models for tasks ranging from machine translation (Zhu et al., 2020)
to task-oriented dialog (Platanios et al., 2021). Some of the most successful applications of pre-
training lie at the boundary of natural language processing and other domains, as in instruction
following (Hill et al., 2020) and language-guided image retrieval (Lu et al., 2019). Building on this
past work, our experiments in this paper aim to explain whether these successes result entirely from
improved processing of text, or instead from domain-general representational abilities. Below, we
briefly survey existing applications of pretraining that motivate the current study.

Learning representations of language From nearly the earliest days of the field, natural language
processing researchers have observed that representations of words derived from distributional statis-
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tics in large text corpora serve as useful features for downstream tasks (Deerwester et al., 1990; Du-
mais, 2004). The earliest versions of these representation learning schemes focused on isolated word
forms (Mikolov et al., 2013; Pennington et al., 2014). However, recent years have seen a number of
techniques for training (masked or autoregressive) language models to produce contextualized word
representations (which incorporate information neighboring words in sentences and paragraphs) via
a variety of masked-word prediction objectives (Devlin et al., 2018; Yang et al., 2019).

Applications In addition to producing useful representations, these language models can be fine-
tuned to perform language processing tasks other than language modeling by casting those tasks as
word-prediction problems. Successful uses of representations from pretrained models include syn-
tactic parsing (Kitaev et al., 2018) and language-to-code translation (Wang et al., 2019); successful
adaptations of LM prediction heads include machine translation (Zhu et al., 2020), sentiment clas-
sification (Brown et al., 2020) and style transfer (Keskar et al., 2019). Text-based games (Yao et al.,
2021; Yuan et al., 2018; Ammanabrolu & Riedl, 2018; Côté et al., 2018) inherently involve text as
both the input and the output. Recent works (Yao et al., 2020) in text-based games use GPT-2 to
solve the text-based games and get significant performance improvements. However, it is hard to
describe 3D information using text and most of their experiments are in 2D environments. Included
in these successes are a number of tasks that integrate language and other modalities, including
visual question answering and image captioning (Yang et al., 2020). In models that condition on
both text and image data, several previous approaches have found that image representations can be
injected directly into language models’ embedding layers (Tsimpoukelli et al., 2021) using a similar
mechanism to the one we describe in Experiment 2B. One of our main contributions is to show
that approach works even for tasks in which only non-linguistic information is relevant to model
predictions.

What do LMs encode? The possibility that LMs might encode non-linguistic information useful
for other downstream tasks is suggested by a number of recent “probing” studies aimed at under-
standing their predictions and the structure of their internal representations. Pre-trained LMs can
answer a non-trivial fraction of queries about both factual and common-sense knowledge (Roberts
et al., 2020). Their representations encode information about perceptual relations among concepts,
including visual similarity among object classes (Ilharco et al., 2020) and the structure of color
spaces (Abdou et al., 2021). Finally, they appear to be capable of basic simulation, modeling changes
in entity states and relations described by text (Li et al., 2021).

LM pretraining beyond language Two recent papers consider questions closely related to the
ones investigated here: (Brown et al., 2020) show that the GPT-3 model is capable of performing a
limited set of arithmetic and string manipulation tasks; (Lu et al., 2021) show that pretrained LMs
require very little fine-tuning to match the performance of task-specific models on several image
classification and numerical sequence processing tasks. In this paper, we focus on non-linguis-
tic tasks where the inputs and outputs do not involve language. To the best of our knowledge, the
current study is the first to demonstrate improved generalization in a non-linguistic problem over a
standard neural-network baseline using a pre-trained language model.

3 LANGUAGE MODELING AND POLICY LEARNING

We begin with a brief review of the ingredients of language modeling and policy learning tasks used
in our experiments.

3.1 LANGUAGE MODELING

Our experiments in this paper focus on autoregressive, transformer-based language models
(Vaswani et al., 2017). These models are trained to fit a distribution pθ(y) over a text sequence
y by decomposing it into a sequence of tokens y = {y1, y2, . . . , yn} via the chain rule:

log pθ(y) =

n∑
i=1

log pθ(yi | y1, y2, . . . , yi−1). (1)

Each conditional distribution pθ(yi|y1, y2, . . . , yi−1) is parameterized by a transformer neural net-
work fθ(y1, y2, . . . , yi−1). This network encodes each conditioned token yi into a continuous em-
bedding ei = g(yi) which is then fed into the transformer architecture and encoded into a categorical
distribution over token values of yi. Our experiments utilize a standard language model, GPT-2, that
is trained on Webtext dataset (Radford et al., 2018) using Huggingface library (Wolf et al., 2019).
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3.2 POMDPS AND POLICY LEARNING

Our experiments explore the application of LMs to general sequential decision-making tasks in
partially observed environments. These tasks may be formalized as partially observable Markov
decision processes (POMDPs). A POMDP is defined by a set of states S , a set of observations O,
a set of actions A, and a transition model T (st+1|st, at) that predicts the next state st+1 based on
the current state st and an action at. Importantly, in a POMDP setting, the observation ot only
captures a portion of the underlying state st, and an optimal decision-making strategy (a policy)
must incorporate both the current observation and the previous history of observations and actions.
For experiments in this paper, policies are parametric models πψ(at|g, h, ot) that select actions given
the goals g, history information h, and partial observations ot of the current state st.

All our experiments use imitation learning (Santara et al., 2017; Ng et al., 2000; Peng et al., 2018),
specifically behavior cloning (Pomerleau, 1991; 1989; Torabi et al., 2018), to train πψ . We collect
a dataset of N̂ expert training trajectories D = {d1, · · · , dN̂}, where each individual trajectory
consists of a set of goal, observations, and actions, i.e. di = {o1, a1, · · · , aT , g}, where T is the
length of an expert trajectory. We then train a policy πψ(at|g, ht, ot) which maximizes the likelihood
pψ(a) of the expert actions a = {a1, · · · , aT } taken in a trajectory using supervised learning,

log pψ(a) =

T∑
t=1

log pψ(at | g, ht, ot), (2)

where ht consists of all history in the environment up to timestep t.

3.3 LANGUAGE MODELS AS POLICY INITIALIZERS

Ultimately, both language modeling and POMDP decision-making involve a sequence predictions
(over words or actions) given a sequence of previous observations describing the context for that
prediction; it is thus straightforward to use LM encoders to initialize POMDP policies (Chen et al.,
2021; Janner et al., 2021). Our experiments use pre-trained GPT-2 (Radford et al., 2019) to initialize
an interactive policy πLM, which we fine-tune via imitation learning to perform interactive tasks.
Different from the pure linguistic tasks that predict next words given the input sentence, we instead
utilize the language models as policy by predicting the probability of the next action at, i.e. at =
πLM(g, ht, ot). We note that such a formulation is broadly applicable to a variety of interactive tasks.

4 VIRTUALHOME FOR INTERACTIVE BEHAVIOR IMITATION

We consider embodied environments with 3D realistic scenes as the platform to test policies ini-
tialized from the pre-trained language model, as their goals and actions can be naturally repre-
sented as language, such as “put two plates on the kitchen table” and “grab apple”. We further
consider VirtualHome (Puig et al., 2018; 2020) for our experiments as we can easily get its sym-
bolic representations that can be further serialized as English sentences. We note that the proposed
approach is broadly applicable to other embodied environments with 3D realistic scenes, such as
ALFRED (Shridhar et al., 2020) and iGibson (Shen et al., 2020).

VirtualHome is a 3D interactive environment to simulate household activities. Agents are repre-
sented as humanoid avatars. To investigate the contribution of language model pre-training on in-
teractive behavior, we create VirtualHome-Imitation Learning, an improved version of VirtualHome
with more challenging tasks and more diverse scenes and objects. Formally, the goal of an agent
is to finish some household activities which is defined by a set of goal predicates. The agent takes
an action at based on the partial observation ot, goal g, and history ht at each step. Next, we will
describe the goals, observations, and actions provided in VirtualHome-Imitation Learning.

Goal Space. For each task, we define the goal as a set of predicates and multiplicities. For example,
inside(apple, fridge):2; inside(pancake, fridge):1; means “put two apples and one pan-
cake inside the fridge”. In each task, the initial environment (including initial object locations), the
goal predicates, and their orders and multiplicities are randomly sampled (see Appendix Section D).
At training time, these environment configurations and goals reflect common-sense environment lay-
outs (e.g. moving food from the refrigerator to the table). To further test the zero-shot generalization
ability of different models, several test splits (discussed more in Section 5.1) feature other, less nat-
ural goals e.g. putting milk inside the dishwasher. In total, there are 59 different types of predicates.
Each predicate can appear in a goal with a multiplicity between 0 and 3 (see Appendix D).
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Figure 2: VirtualHome is a 3D interactive environment simulating household activities. It provides a symbolic
graph representation of the partial observation. The action space changes over time based on the observation.

Observation Space. VirtualHome provides both graph-based and visual observations as shown in
Figure 2; our experiments focused on graph-based observations. These represent each agent state as
a scene graph, with nodes representing objects and edges describing their spatial relationships. The
scene graph only contains object nodes appearing in the current partial observation.

Action Space. Agents can navigate in the environment and interact with objects. To interact with
an object, the agent must predict an action name and the index of the interested object, e.g. open
(5) to opening the object with index (5). The agent can only interact with objects that are in the
current observation or execute the navigation actions, such as walk(bathroom). For some actions,
such as open, the agent must be close to the object. There are also strict preconditions for actions,
e.g. the agent must grab an object before it can put the object on a target position. As a result of
these constraints, the subset of actions available to the agent changes at every timestep.

Different from text-based games (Narasimhan et al., 2015; Yao et al., 2020) that involve text as both
the input and the output, VirtualHome is a 3D realistic environment, involving structured, graph-
based observations and discrete, factorial actions. Moreover, our Experiment 2B (Section 7), shows
that it is possible to learn how to interface between these observations / actions and an LM without
any explicit string-based representation, a result that has no analog in any past work on text-based
games. The tasks in VirtualHome are also challenging as they have lots of physical constraints and
strict preconditions between actions. For example, the agent must grab the apple first before putting
it on the kitchen table and must be close to the kitchen table. Text adventure environments in this
sense are much easier as they have less physical constraints and less strict preconditions among ac-
tions compared with 3D environments. The objects’ 3D information is also important for decision
making in VirtualHome while text adventure environments do not have such 3D information. To
train the models, we collect a set of expert trajectories in VirtualHome using regression planning
(Korf, 1987). See Appendix Section C for more details.

5 EXPERIMENT SETUP
5.1 EVALUATION METRICS
We generate test sets that evaluate policies’ ability to generalize in four ways: (1) generalization
to familiar goals in novel (but in-distribution) environments; (2) generalization to novel goals; (3)
generalization to abnormal initial environment states (defined by abnormal initial object locations);
and (4) simultaneous generalization to both novel goals and abnormal initial states. We thus build
four test subsets to evaluate a model from the four aspects. (See Appendix D for more details.)

Normal. In the “Normal” testing subset, the types of predicates and their counts are randomly
sampled based on the same distribution as the training data. There are 2 ∼ 10 predicates in each task.
The objects are initially placed in the environment according to common-sense layouts; (e.g. plates
appear inside the kitchen cabinets rather than the bathtub). Note that even though goal predicates
are drawn from the same distribution as the training data, the initial environments in the test set are
different from the training set.

Abnormal Initialization. The objects are placed in random positions in the initial environment
without common-sense constraints (e.g. apples may appear inside the dishwasher). There are 2 ∼ 10
goal predicates in each task.

Zero-shot Combination. The components of all goal predicates are never seen together during
training (e.g. both plates and fridge appear in training goals, in(plate, fridge) appears only in
the test set. There are 2 ∼ 8 goal predicates in each task.

Abnormal Initialization + Zero-shot Combination. Objects are initialized as in Abnormal Initial-
ization above, and goals drawn from the same distribution as Zero-shot Combination above. There
are 2 ∼ 8 goal predicates in each task.
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Figure 3: Pre-trained language models for interactive imitation learning. The objects in the current ob-
servation, the goal predicates, and history actions are first serialized as templated English phrases. We extract
the tokens and their features from the phrases and send them to the pre-trained language model. The output of
pre-trained language model are summarized into a context feature vector by average pooling which is then used
for verb and object prediction.

For each test subset, we evaluate the success rate of different methods. A given episode is scored as
successful if the policy completes its entire goal within 70 actions, where 70 is the max steps of the
collected trajectories. For each model variant described below, we report the results of 10 training
runs using 10 different random seeds. On each test subset, we use 5 different random seeds and test
100 tasks under each seed. Thus there are 5000 examples used for evaluating each model.

5.2 MODELS

To study the benefits of pre-training on the production of embodied interactive behaviors, we com-
pare LM-based fine-tuning to a variety of baselines (see Appendix Section E for more details):
LM (ft) is the main model: a pre-trained GPT-2 transformer language model fine-tuned for a policy
learning task (conditioned on goals, observations, and histories) as described in Section 3.3.
LM (scratch) uses the same model architecture and inputs, but is randomly initialized.
LM (ft) and LM (scratch) w/o Hist are ablations that do not condition on history information.
MLP-N and MLP-1 take the goal, history actions, and the current observation as input and send
them to the multilayer perceptron neural network (MLP) to predict actions. “MLP-1” has three
more average-pooling layers than “MLP-N” that average the features of tokens in the goal, history
actions, and the current observation, respectively, before sending them to the MLP layer.
LSTM uses a long short-term memory network (Hochreiter & Schmidhuber, 1997) to encode the
history information. The hidden representation from the last time step together with the goal, and
the current observation are used to predict the next action.

6 EXPERIMENT 1: LANGUAGE-BASED STATE AND ACTION ENCODINGS

Our first experiment aims to answer whether LMs can be used to initialize policies if state and action
information is presented to them in a format that looks, to the greatest extent possible, like a standard
language modeling problem. To do so, we encode the inputs to the policy—including observations,
goals, and action histories—as templated English phrases (described in more detail below). The
model architecture is shown in Figure 3. These phrases are passed directly to the LM (using its
pre-trained word embeddings) and used to obtain contextualized token representations. These token
representations are averaged, and used as input to action and object classifiers.

6.1 INPUT ENCODING

Inspired by the performance of recent large-language models, we choose to convert the observa-
tions, goal predicates, and history information, into text to take advantage of the pre-trained lan-
guage model. To do this, we serialize the goal predicates, history actions, and observations as text
and send them to the language model to learn the policy.

Goal. Each goal, consistsing of a sequence of predicates and multiplicities (e.g. “INSIDE(apple,
fridge):2”) is translated into a command in the format put two apples inside the fridge.
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Figure 4: Comparisons of the proposed method and baselines on different testing subsets. “MLP-N”,
“MLP-1”, and “LSTM” are baselines without using transformer (Vaswani et al., 2017). “LM (scratch) w/o
Hist” and “LM (ft) w/o Hist” are based on the transformer architecture but do not use history in the input for
decision making. “LM (scratch)” and “LM (ft) (Ours)” are based transformer and uses history in the input.
The “scratch” means the transformer is trained from scratch on our data while “ft” means the transformer is
pre-trained on language tasks and then fine-tuned on our data. Each experiment is performed 25 times with
different random seeds. The averaged results are reported.

Observation. To encode the agent’s partial observation, all the baselines and the proposed method
use the symbolic graph representation instead of RGB visual representation as our focus is not to
tackle the embodied perception problem. We aim at investigating the effectiveness of LM pretrain-
ing as a scaffold for learning control policies, and we thus utilize a common graph representation
from previous works, e.g. (Puig et al., 2020) and (Liao et al., 2019). The graphs observations in
VirtualHome consists of objects nodes in the current partial observation and the spatial relations
among objects. Each object node has a name, e.g. “oven”, a state description, e.g. “open, clean”,
and 3D world coordinates. Serialization of these scene graphs is the only part of the model that
does not directly pass a string to the LM encoder. Instead, structured representations of each object
are built up by combining name, attribute, and position embeddings; see Appendix A.1 for details.
Solving the long-horizon tasks in VirtualHome is challenging because of the partial observability
and strict preconditions among actions.

History information. Action histories are also converted into templated English sentences (e.g. “I
have put the plate on the kitchen table and the apple inside the fridge”) and passed directly to the
language model.

6.2 OUTPUT DECODING

VirtualHome features a combinatorial action space involving verbs and objects. To accommodate
this large action space, we factorize the action prediction, selecting verbs and objects separately.

Verb prediction. Given a vocabulary of verbs V , we need to select one verb from them based on the
current observation o, goal g, and history h. We take the output of the pre-trained language model
and summarize them into a context feature fc by average pooling as shown in Figure 3. The context
feature is then passed through a fully connected layer and a softmax layer to predict the probability
p(vi|g, h, o) of selecting a verb vi at a single time step, where vi ∈ V .

Object prediction. Because of partial observability, the observed objects change over time. To
enable the agent to only interact with objects in the current observation, we use an attention module
to assign an attention score to each object and select the object with the highest attention score to
interact with. We denote the feature of each object node after the pre-trained language model as
f̂oi . The attention score of each object node is represented as the inner product between its feature
and the context feature: si = fTc f̂

o
i . The attention scores {s1, · · · , sN} are then pass through a

softmax layer to generate the probabilities p(oi|g, h, o) (where i ∈ {1, · · · , N}) of the N objects in
the current observation o.

To maximize the likelihood of expert actions, we train the policy by jointly optimizing the verb and
object predictions using the cross-entropy loss:

L =
∑
vi

yvi log(p(vi|g, h, o)) +
∑
oi

yoi log(p(oi|g, h, o)), (3)

where yvi and yoi are the binary labels of verb vi and object oi, respectively.
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Figure 6: Comparisons of pre-trained language en-
codings and learned encodings. “LM (ft) (Ours)” uses
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6.3 RESULTS

The results of different models on four test subsets are shown in Figure 4. In the Normal setting,
where the test tasks are drawn from the same distribution as training tasks, policies initialized with
a pre-trained language model, “LM (ft)”, match the success rate of policies trained from scratch,
“LM (scratch)”. A similar trend is observed in the Abnormal Initialization setting. However, in
the Zero-shot Combination and Abnormal Init+Zero-shot settings, where the test tasks requires
generalization to novel goals or environment states that are never seen during training, we find that
pre-trained policies, “LM (ft)”, dramatically improve upon random initialization, “LM (scratch)”,
and all other baselines. The fact that “LM (ft)” performs slightly better on “Zero-shot Combina-
tion” and “Abnormal Init+Zero-shot” (2 ∼ 8 predicates) than on “Normal” (2 ∼ 10 predicates) is
attributable to the fact that these sets involve fewer subgoals on average per task. Baselines without
pre-training do not generalize to these new subgoal sets and perform worse on the zero-shot setting.

7 EXPERIMENT 2: NON-LINGUISTIC STATE AND ACTION ENCODINGS

We are interested in different ways of building interfaces between inputs and LMs, including string-
based serialization and learned embedding. Experiment 1 demonstrated that language-based envi-
ronment encodings contributed to effective generalization in LM-pretrained policies. Our two final
experiments explore the sensitivity of this approach to the details of the input encoding.

7.1 EXPERIMENT 2A: NATURAL STRINGS V.S. UNNATURAL STRINGS

First, when using the pre-trained models’ own string encoding mechanism, how important is it that
strings passed as input resemble the training data? To evaluate this question, we replace the “natural
language” tokens (e.g. serializing the goal “ON(fork, table):1” as put one fork on the table) with
random ones (e.g. serializing ON(fork, table) as brought wise character trees fine yet). This is
done by randomly permuting the entire vocabulary, mapping each token to a new index. The model
architecture is the same as “LM (ft)” and the whole model is fine-tuned on our expert data. The
results of permuting the vocabulary used to represent observation, goals, and history is in Figure 5.

In the “Normal” test condition, vocabulary scrambling has little effect: both natural and unnatural
strings after fine-tuning are able to fit the testing tasks that are drawn from the same distribution
as the training tasks. However, using unnatural strings significantly hurts the performance of the
zero-shot setting where the testing tasks are unseen during training: even when not essential for in-
distribution performance, natural string encodings are necessary to harness pretraining for stronger
forms of generalization.

7.2 EXPERIMENT 2B: PRE-TRAINED LANGUAGE ENCODINGS V.S. LEARNED ENCODINGS

Given a non-linguistic task, if an effective string-based encoding cannot be generated arbitrarily,
can such an encoding at least be learned? To answer this question, we retain the discrete, serial
format of the goal, history, and observation representation, but replace the embedding layer from
the pre-trained language model with a new embedding layer trained from scratch. We design four
variants, some of which retain parameters from the original pre-trained LM: rep Goal uses a new
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Figure 7: Predicted trajectory and actions for a given household task. The policy learned by fine-tuning
the pre-trained language model successfully finishes the task described in the goal predicates. We highlight the
key actions in the map, where the agent is finding, grabbing, or placing objects in the target positions.

embedding layer to encode goals while using the pre-trained embedding layer to encode observations
and action histories. rep Hist and rep Obs use new learned embedding layer only for action histories
and observations respectively. Finally rep Goal-Hist-Obs replaces the entire pre-trained language
embedding layer, using a representation of the input to the policy learned entirely from scratch.
Both our proposed model and the variants use serialized inputs. However, the variant models do
not assume string-based inputs. The variant models use the embedding layer trained from scratch to
represent each element in the serialized inputs, while our proposed model uses the language tokens
generated by the tokenizer from the pre-trained language model and embeds them using the embed-
ding layer from the pre-trained language model. See Section A.2 for more details. The results of
these four variants and “ML (ft)” are shown in Figure 6. We find that replacing the embedding layer
from the pre-trained language model has only a negligible impact on the performance compared
with “ML (ft)”. We thus conclude that the effectiveness of pre-training is not limited to string-based
representations, but can be accessed in input representations learned entirely from scratch. To the
best of our knowledge, neither template-string-based representations nor learned embeddings, com-
bined with LM pretraining, has been applied to embodied decision-making problems in this way
before; our main claim is that both approaches work better than learning from scratch in Virtual-
Home given non-visual inputs.

8 QUALITATIVE RESULTS

In Figure 7, we show one example of “LM (ft)” completing the household orga-
nization task in VirtualHome. Given a goal described by a set of goal predi-
cates,“ON(milk, kitchentable):1; ON(chicken, kitchentable):1; INSIDE(cupcake,
stove):1; CLOSE(stove); TurnON(stove)”. The agent first explores the environment until it
finds the milk. Then the agent grabs the milk, walks to the kitchen table, and puts the milk on the
kitchen table. The agent moves to the next subtask until it finishes all the subtasks. Completing all
the subtasks is challenging because of the partial observability, large action spaces, and long time
horizons. Furthermore, there are strict preconditions between actions, e.g. to put the milk on the
kitchen table, the agent must grab the milk first. The proposed method that serializes observations,
goals, and history information as English strings and takes advantage of the pre-trained language
model is able to finish the task efficiently.

9 CONCLUSION
We have presented a set of experiments studying the effect of pre-training on embodied interactive
behaviors in VirtualHome. To leverage LM pre-training, we described a policy representation in
which observations, goals, and history information were serialized as templated English strings, and
found that language models fine-tuned as policies with these inputs enjoyed substantial benefits in
zero-shot task and environment generalization over randomly initialized baselines. Additional ex-
periments exploring the sensitivity of pre-training to the encoding of the policy-learning task showed
that poorly designed string encodings removed these generalization benefits, but that effective en-
coding layers could be learned from scratch in the absence of a string-based goal and observation
representation. These results suggest that language model pre-training produces representations not
just of language, but of the abstract structure of goals and plans, and that these representations might
be useful in a variety of tasks beyond language processing.
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Appendix

In this appendix, we first provide more implementation details of the proposed model in Section A.
We then show the additional results in Section B, including the analysis of using history information
as input and the analysis of attention weights from language models. In Section C, we give more
details of collecting the expert data. Section D lists the goal predicates in different test subsets. The
implementation details of baselines are shown in Section E.

A MORE IMPLEMENTATION DETAILS OF THE PROPOSED MODEL

In Section A.1, we provide more details of the model architecture used in the main paper Section 6.
We then introduce the training detail in Section A.3.

A.1 MODEL ARCHITECTURE DETAILS

In the main paper Section 6, we introduced the model architecture used for training an interactive
policy. Our model consists of three parts, i.e. inputs, the pre-trained language model, and outputs.
We take the goal g, history ht, and the current partial observation ot as inputs and send them to the
policy network initialized with the pre-trained language model. The output action at consists of a
verb and an object. For brevity, we will omit the time subscript t from now on.

In VirtualHome, the partial observation o of the environment state can be represented as a scene
graph, with nodes representing objects and edges describing their spatial relationships. Each object
node has a name, e.g. “oven”, a state description, e.g. “open, clean”, and world coordinates. In the
main paper Section 6, we briefly describe how to encode the observation. In this part, we provide
more details of encoding the name, state, and position of each object in the current observation.
Figure A1 shows the model architecture we used to encode the observation.

Instead of flattening the graph observation as plain text, we keep the graph entities in observa-
tions. This is because graphs representing agent observations are very large, involve a large number
of distinct relations and LMs are not effective at numerical reasoning, such as 3D position infor-
mation. For example, we have to use many sentences to describe the relations between objects,
e.g.“the apple is on the kitchen table, the apple is close to the banana, the kitchen table is close to
the fridge ...”. The pre-trained GPT2 model from Hugging Face (Wolf et al., 2019) can feed in a
maximum of 1024 inputs. Describing every object and the relations between objects are too long
to be encoded with the LMs. In addition, the numerical features, such as 3D position information,
maybe could be translated into a naturalistic sentence-like format by saying “the apple is in position
(x = 0.02, y = 0.07, z = 0.01) and is 0.5 meters away from the banana ... ”. but cannot be en-
coded efficiently using language models as LMs are not effective at numerical reasoning. We thus
utilize a graph encoder to remain as close as possible to a natural language input without producing
string-based graph representations that are too long to encode with the LM.

Name encoding. For each object node, we serialize its object name as an English phrase so. For
each word woi in the English phrase so, we extract its token toi and features using the tokenizer and
the embedding layer of the pre-trained language model, respectively. Since one object name might
generate several English tokens using the tokenizer from the pre-trained language model, e.g. the
tokens of “kitchencabinet” is [15813, 6607, 66, 6014, 316], we take the averaged features of all the
tokens in the object name and obtain a “name” feature fo,name

i for each object node as shown in
Figure A1.

State encoding. Given the current observation o, some objects have a state description, e.g. “oven:
open, clean”. There are six types of object states in the whole training dataset, including, “clean”,
“closed”, “off”, “on”, “open”, and “none”. Thus for each object node, we use a 6-dim vector to
represent its state. Taking the “oven” as an example, if the oven is open and clean, its state vector
would be [1, 0, 0, 0, 1, 0]. This state vector is then passed through a fully-connected layer to generate
a state feature fo,state

i of object oi.
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Figure A1: Object encoding. In VirtualHome, the partial observation o of the environment state can be repre-
sented as a scene graph, with nodes representing objects and edges describing their spatial relationships. Each
object node in the observation has a name, a state description, and world coordinates. Object name encoding:
for each object node, we serialize its object name as an English phrase. For each word in the English phrase, we
extract its tokens and features using the tokenizer and the embedding layer of the pre-trained language model,
respectively. We take the averaged features of all the English tokens in the object name and obtain a “name”
feature fo,name

i for each object node. Object state encoding: there are six types of object states in the whole
training dataset, including, “clean”, “closed”, “off”, “on”, “open”, and “none”. Thus for each object node, we
use a 6-dim vector to represent its state. This state vector is then passed through a fully-connected layer to
generate a state feature fo,state

i of object oi. Object position encoding: we concatenate the world coordinates
{oi,x, oi,y, oi,z} of each object and their spatial distance to the agent {ax, ay, az} to generate a position vector
[oi,x, oi,y, oi,z, oi,x−ax, oi,y−ay, oi,z−az]. This position vector is then passed through two fully-connected
layers with a ReLU layer in the middle to generate a position feature fo,position

i of object oi. The final feature fo
i

of each object node is obtained by passing the concatenation of its name feature fo,name
i , state feature fo,state

i ,
and position feature fo,position

i through a fully-connected layer.

Position encoding. To encode the position information of each object oi, we take their world co-
ordinates {oi,x, oi,y, oi,z} and their spatial distance to the agent {ax, ay, az} to generate a position
vector [oi,x, oi,y, oi,z, oi,x − ax, oi,y − ay, oi,z − az]. This position vector is then passed through
two fully-connected layers with a ReLU layer in the middle to generate a position feature fo,position

i
of object oi.

The final feature foi of each object node is obtained by passing the concatenation of its name feature
fo,name
i , state feature fo,state

i , and position feature fo,position
i through a fully-connect layer. The obser-

vation at a single step can be written as a set of features {fo1 , · · · , foN}, where N is the number of
objects in the current observation o.

A.2 MODEL DETAILS IN EXPERIMENT 2B

In the main paper Section 7.2, we introduced four model variants that replace the embedding layer
from the pre-trained language model with a new embedding layer trained from scratch. In this sec-
tion, we provide more details of the proposed model and the four variants. We show the model
architectures of the proposed model, “rep Goal”, “rep Hist”, “rep Obs”, and “rep Goal-Hist-Obs” in
Figure A2, Figure A3, Figure A4, Figure A5, and Figure A6, respectively.

To train the variant models in Experiment 2B, we assign an index ID to each “element” in the dataset.
The “element” could be: 1) the object names in the observation, e.g. “fridge”, “kitchentable”, and
other objects if the agent is in the kitchen; 2) the object names in the goal predicates, e.g. “plate”,
“kitchentable”, and “fridge” in the goal predicate “ON(plate, kitchentable); INSIDE(plate, fridge)”;
or 3) the actions, e.g. “walk” and “bathroom” in the action “[walk] < bathroom >”. We thus ob-

15



Under review as a conference paper at ICLR 2022

apple kitchen

Pre-trained Language Model

fridge…put fridge… I have … fridge

Object decoder: appleVerb decoder: grab

Pre-trained embedding layer Pre-trained embedding layer Pre-trained embedding layer 

Pooling

Context feature 𝑓!

𝑓!" … 𝑓#"𝑓!
$ … 𝑓%

$ 𝑓!& … 𝑓'&

two

INSIDE(pancake, fridge):2; … ;
ON(apple, table):1

Goal predicates

apple put cabinet

History actions

character

kitchen
apple

fridge

inside

inside
cabinet

Partial observation

"𝑓!" … "𝑓#"… …

<walk> [kitchen], <walk> [pancake], … ,
<put> [pancake]<inside>[fridge]

Serialization Serialization Serialization

Tokens from the Pre-trained TokenizerTokens from the Pre-trained Tokenizer Tokens from the Pre-trained Tokenizer

Figure A2: Model architecture of the propose model in the main paper Section 6.

tain a set of “elements” from the whole dataset, such as [“fridge”, “kitchentable”, “plate”, “walk”,
“bathroom”, . . . , “none”]. We then assign an index ID (starting from 0) to each of them, such as {
“fridge”: 0, “kitchentable”: 1, “plate”: 2, “walk”: 3, “bathroom”: 4, . . . , “none”: MAX ID }. Then
we use a one-hot vector to represent each “element” based on their index ID. For example, “fridge”
could be represented as a vector of [1, 0, 0, 0, ...].

To train the variant models in Experiment 2B, taking the “rep Goal” in Figure A3 as an example,
we first use this one-hot vector to represent all the “elements” in the goal predicates. The one-hot
vector is then sent to a learned embedding layer that is trained from scratch to generate a new fea-
ture representation for each “element” in the goal predicates [f

g(learned)
1 , f

g(learned)
2 , . . . , f

g(learned)
K ].

To encode the partial observation and history actions, we keep the same encoding as the proposed
model in Figure A2, where we first use the tokenizer from the pre-trained language model to gener-
ate the language token for each “word” in the partial observation and history actions and then send
the tokens to the embedding layers from the pre-trained language model to generate a feature repre-
sentation for each “word”, i.e. [fo(pretrained)

1 , f
o(pretrained)
2 , . . . , f

o(pretrained)
N ] for the partial observation

and [f
h(pretrained)
1 , f

h(pretrained)
2 , . . . , f

h(pretrained)
L ] for the history actions. The output features of goal

predicates, partial observation, and history actions are then concatenated and sent to the pre-trained
language model for training.

Similarly, in the variant model “rep Hist”, the history actions use the learned embeddings while
the goal predicates and partial observation use the pre-trained embeddings. In “rep Obs” and “rep
Goal-Hist-Obs”, we use learned embeddings as described above to encode the “name” information
of each object in the current observation. We use the same object state encoding and object position
encoding described in Section A.1 to encode the “state” and “position” information of each object.

Note that the representations of “elements” and “words” are different. For example, “kitchentable”
is a single “element” and has an index ID of “1” in the models with learned embeddings, but its
English token extracted from the pre-trained GPT2 is “[15813, 2395, 429, 540]”. Another example
is “plate” having an index ID of “2” in the models with learned embeddings but its English token
extracted from the pre-trained GPT2 is “[6816]”.

A.3 TRAINING DETAILS

Our proposed approach and baselines are trained on Tesla 32GB GPUs. We train every single model
on 1 Tesla 32GB GPU. Each experiment was trained on 10 different seeds and tested on 5 different
seeds. All experiments used the Adam optimizer with the learning rate 1e−4. We utilize a standard
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Figure A3: Model architecture of “rep Goal” used in the main paper Section 7.2.
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Figure A4: Model architecture of “rep Hist” used in the main paper Section 7.2.
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Figure A5: Model architecture of “rep Obs” used in the main paper Section 7.2.
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Figure A6: Model architecture of “rep Goal-Hist-Obs” used in the main paper Section 7.2.

pre-trained language model, GPT-2 that is trained on Webtext dataset (Radford et al., 2018), in our
experiments by using Huggingface library (Wolf et al., 2019) .

B ADDITIONAL RESULTS

In the main paper Section 6, we show that the policy with pre-trained language model outperforms
other baselines by a large margin on the zero-shot setting. In this appendix Section B.1, we further
discuss the effectiveness of using history information. In Section B.2, we show the attention weights
from the attention layers in the language model after fine-tuned on our data.

B.1 SERIALIZE HISTORY INFORMATION AS SENTENCES

Given the partial observability of the tasks, the models require history information to know what
subtasks have been finished. To take advantage of the pre-trained language model, we serialize
history actions as sentences and send them into the language model for action prediction. As shown
in the main paper Figure 4, such an operation brings an improvement on all four test subsets, i.e. “LM
(ft)” outperforms “LM (ft) w/o Hist” for models with pre-training and “LM (scratch)” outperforms
“LM (scratch) w/o Hist” for models without pre-training.

In the Zero-shot Combination and Abnormal Init+Zero-shot settings, we find that the improve-
ment brought by the history sentences is more obvious for models with pre-training, i.e. the differ-
ence between “LM (ft)” and “LM (ft) w/o Hist” is much larger than the difference between “LM
(scratch)” and “LM (scratch) w/o Hist”.

In addition, we find that “LM (ft)” is slightly better than “LSTM” on the Normal setting, but
“LM (ft)” outperforms “LSTM” by more than 40% on the Zero-shot Combination setting. Even
“LSTM” takes extra history information from the hidden representation of previous steps, its per-
formance drops dramatically on the zero-shot setting with unseen tasks.

Together, serializing history information as sentences is helpful for embodied interactive behaviors.
Such an operation enables us to utilize the pre-trained language model and outperforms the LSTM
model significantly. The advantage of using pre-training is more obvious on the Zero-shot Combi-
nation setting.

B.2 ATTENTION WEIGHTS

In the proposed model “LM (ft)”, we utilize the pre-trained GPT-2 (Radford et al., 2019) to model
the input sentences. To better understand how does the policy with a pre-trained language model
make decisions, we extract the attention weight from self-attention layers in GPT-2 (GPT-2 is a
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Goal:
INSIDE (cutleryfork, dishwasher): 3
ON (wineglass, sink): 2
INSIDE (waterglass, dishwasher): 1
CLOSE (dishwasher)
TURNON (dishwasher)

Goal:
INSIDE (pancake, microwave): 1
ON (chicken, kitchentable): 2
ON (milk, kitchentable): 1
CLOSE (microwave)
TURNON (microwave)

Figure A7: Attention weights of a layer named “Head 3 Layer 2”. We show attention weights on two differ-
ent tasks. We find that “Head 3 Layer 2” is able to capture objects in the goal predicates, such as “wineglass”
and “cutleryfork” in the left figure, and “pancake” and “chicken” in the right figure (the figures are cropped for
visualization).
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Goal:
INSIDE (pancake, microwave): 1
ON (chicken, kitchentable): 2
ON (milk, kitchentable): 1
CLOSE (microwave)
TURNON (microwave)

Action:
[grab] <milk>

Goal:
INSIDE (pancake, microwave): 1
ON (chicken, kitchentable): 2
ON (milk, kitchentable): 1
CLOSE (microwave)
TURNON (microwave)

Action:
[grab] <milk>

Figure A8: Attention weights of layers named “Head 1 Layer 2” (left) and “Head 4 Layer 11” (right).
Given the goal predicates, history, and the current observation, “LM (ft)” predicts the next action, i.e. “grab
milk”. We find that “Head 1 Layer 2” is able to capture objects in the goal predicates, such as “milk”, “pancake”,
and “chicken” while “Head 4 Layer 11” focuses on the interacted object in the predicted action, such as “milk”.
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Transformer model (Vaswani et al., 2017)). In Figure A7 and Figure A8, we show the attention
weights from the input (left) to the output (right) of GPT-2. The order of tokens in the input and
ouput is observation, goal, and history.

Figure A7 illustrates the attention weights of a layer named “Head 3 Layer 2”. We show attention
weights on two different tasks. We find that “Head 3 Layer 2” is able to capture objects in the goal
predicates, such as “wineglass” and “cutleryfork” in the left figure, and “pancake” and “chicken” in
the right figure (the figures are cropped for visualization).

Figure A8 illustrates the attention weights of layers named “Head 1 Layer 2” (left) and “Head 4
Layer 11” (right). Given the goal predicates, history, and the current observation, “LM (ft)” predicts
the next action, i.e. “grab milk”. We find that “Head 1 Layer 2” is able to capture objects in the
goal predicates, such as “milk”, “pancake”, and “chicken” while “Head 4 Layer 11” focuses on the
interacted object in the predicted action, such as “milk”.

We find that the attention weights from different self-attention layers are significantly different, some
self-attention layers assign high attention weight to objects in the goal predicates while some layers
focus on the interacted object. There are also some layers that do not have interpretable meanings.
The attention weights just provide us an intuition of how does the internal language model works,
more quantified results are reported in the main paper Figure 4, Figure 5, and Figure 6.

C EXPERT DATA COLLECTION

In this section, we provide more details of expert data collection described in the main paper Sec-
tion 4. To train the models, we first collect a set of expert trajectories using regression planning (RP)
(Korf, 1987). We follow the implementation of the regression planner in (Puig et al., 2020). Given a
task described by goal predicates, the planner generates an action sequence to accomplish this task.
As shown in Figure A9, the agent has a belief about the environment, i.e. an imagined distribution
of object locations. As the agent explores the environment, its belief of the world becomes closer
to the real world. At every step, the agent updates its belief based on the latest observation (see
(Puig et al., 2020)), finds a new plan using the regression planner, and executes the first action of the
plan. If the subtask (described by the goal predicate) has been finished, the agent will select a new
unfinished subtask, otherwise, the agent will keep doing this subtask until finish it.

As in much of past work (Shridhar et al., 2020; Shen et al., 2020; Puig et al., 2020), the planner
used to generate training data has access to privileged information, such as full observation of the
environment and information about the pre-conditions and effects of each action, while the actual
deployed policy do not have such information. The planner allows an agent to robustly perform tasks
in partially observable environments and generate expert trajectories for training and evaluation.

Eventually, we generate 80, 416 trajectories for training and 3, 758 trajectories for validation. Each
trajectory has a goal, an action sequence, and the corresponding observations after executing each
action.

D TEST SUBSETS

We introduced four subsets for interactive evaluation in the main paper Section 5. In Table A1,
we provide a detailed description of each subset, including the count of goal predicate types and
the number of goal predicates in each task. The Normal setting has 37 goal predicates in total
and each task has 2 ∼ 10 goal predicates. The tasks are drawn from the same distribution as the
training tasks. The Abnormal Initialization setting also has 37 goal predicates and each task has
2 ∼ 10 goal predicates. The objects are randomly placed in the initial environment. The Zero-
shot Combination setting has 22 goal predicates in total and each task has 2 ∼ 8 goal predicates.
The tasks are never seen during training. The Abnormal Init+Zero-shot setting also has 22 goal
predicates and each task has 2 ∼ 8 goal predicates. The objects are randomly placed in the initial
environment and the tasks are never seen during training.

In Figure A2 and Figure A3, we list the full goal predicates used in each subset. The goal predicates
of a task are randomly sampled from the corresponding predicates pool.
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Goal: INSIDE(plate, dishwasher): 1; ON(plate, table): 1

Selected an unfinished goal predicate:
INSIDE(plate, dishwasher): 1

Partial observation

Execute the first action

Belief graph

Regression planner

Figure A9: Regression planner. Given a task described by goal predicates, the planner generates an action
sequence to accomplish this task. The agent has a belief about the environment, i.e. an imagined distribution
of object locations. As the agent explores the environment, its belief of the world becomes closer to the real
world. At every step, the agent updates its belief based on the latest observation (see (Puig et al., 2020)), finds
a new plan using the regression planner, and executes the first action of the plan. If the subtask (described by
the goal predicate) has been finished, the agent will select a new unfinished subtask, otherwise, the agent will
keep doing this subtask until finish it.

Table A1: Summary of four test subsets. For each test subset, we show the count of goal predicate types and
the number of goal predicates in each task.

Test Sets Pred. Types #Pred. Per Task Compared with the training set

Normal test 37 2 ∼ 10 Tasks are drawn from the same distribution as training tasks.

Abnormal Initialization 37 2 ∼ 10 The objects are randomly placed in the initial environment.

Zero-shot Combination 22 2 ∼ 8 Tasks are unseen during training.

Abnormal Init+Zero-shot 22 2 ∼ 8 The combination of Abnormal initialization and Zero-shot combination.

E IMPLEMENTATION DETAILS OF BASELINES

We introduced six baselines in the main paper Section 5.2, including “MLP-N”, “MLP-1”, “LSTM”,
“LM (scratch) w/o Hist”, “LM (ft) w/o Hist”, and “LM (scratch)”. “LM (scratch)” uses the same
architecture as the proposed method “LM (ft)” in Figure 3 in the main paper. “LM (scratch) w/o
Hist” and “LM (ft) w/o Hist” also have a similar architecture as “LM (ft)” except that they do not
take the history information as input. Thus in this section, we provide more details of “MLP-N”,
“MLP-1”, and “LSTM”.

MLP-N. The model architecture of “MLP-N” is shown in Figure A10. The input and output are the
same as “LM (ft)” as we introduced in the main paper Section 6 and this appendix Section A.1. The
difference is that instead of sending the concatenated features of the goal, history, and observation
to the pre-trained language model, “MLP-N” sends them to an MLP followed by an average pooling
layer to generate the context feature fc. The MLP consists of two fully-connected layers with a
ReLU layer in the middle. The verb decoder and object decode are the same as “LM (ft)”.

MLP-1. The model architecture of “MLP-1” is shown in Figure A11. The input and output are
the same as “LM (ft)” as we introduced in the main paper Section 6 and this appendix Section A.1.
“MLP-1” obtains an averaged feature fg of the task goal by averaging the features of all the tokens in
the goal sentences {fg1 , · · · , f

g
K}. Similarly, “MLP-1” obtains an averaged feature of the history fh

and an averaged feature of the observation fo by averaging the features of all the tokens in the history
sentences {fh1 , · · · , fhL} and all the observed objects {fo1 , · · · , foN}, respectively. The averaged goal
feature fg , the averaged history feature fh, and the averaged observation feature fo are concatenated
and sent to an MLP to generate the context feature fc. The MLP consists of two fully-connected

22



Under review as a conference paper at ICLR 2022

Table A2: Goal predicates in the Normal and Ab-
normal Initialization settings.

ON(cutleryfork, kitchentable):0 ∼ 3
ON(plate, kitchentable):0 ∼ 3
ON(waterglass, kitchentable):0 ∼ 3
ON(wineglass, kitchentable):0 ∼ 3
INSIDE(cutleryfork, dishwasher):0 ∼ 3
INSIDE(plate, dishwasher):0 ∼ 3
INSIDE(waterglass, dishwasher):0 ∼ 3
INSIDE(wineglass, dishwasher):0 ∼ 3
INSIDE(cutleryfork, sink):0 ∼ 3
INSIDE(plate, sink):0 ∼ 3
INSIDE(waterglass, sink):0 ∼ 3
INSIDE(wineglass, sink):0 ∼ 3
INSIDE(milk, fridge):0 ∼ 3
INSIDE(chicken, fridge):0 ∼ 3
INSIDE(cupcake, fridge):0 ∼ 3
INSIDE(pancake, fridge):0 ∼ 3
INSIDE(poundcake, fridge):0 ∼ 3
ON(milk, kitchentable):0 ∼ 3
ON(chicken, kitchentable):0 ∼ 3
ON(cupcake, kitchentable):0 ∼ 3
ON(pancake, kitchentable):0 ∼ 3
ON(poundcake, kitchentable):0 ∼ 3
INSIDE(chicken, microwave):0 ∼ 3
INSIDE(cupcake, microwave):0 ∼ 3
INSIDE(pancake, microwave):0 ∼ 3
INSIDE(poundcake, microwave):0 ∼ 3
INSIDE(chicken, stove):0 ∼ 3
INSIDE(cupcake, stove):0 ∼ 3
INSIDE(pancake, stove):0 ∼ 3
INSIDE(poundcake, stove):0 ∼ 3
CLOSE(stove):0 ∼ 1
CLOSE(dishwasher):0 ∼ 1
CLOSE(microwave):0 ∼ 1
CLOSE(fridge):0 ∼ 1
TurnON(stove):0 ∼ 1
TurnON(dishwasher):0 ∼ 1
TurnON(microwave):0 ∼ 1

Table A3: Goal predicates in the Zero-shot Com-
bination and Abnormal Initialization+Zero-shot
Combination settings.

INSIDE(milk, dishwasher):0 ∼ 3
INSIDE(chicken, dishwasher):0 ∼ 3
INSIDE(cupcake, dishwasher):0 ∼ 3
INSIDE(pancake, dishwasher):0 ∼ 3
ON(milk, sink):0 ∼ 3
ON(chicken, sink):0 ∼ 3
ON(cupcake, sink):0 ∼ 3
ON(pancake, sink):0 ∼ 3
INSIDE(cutleryfork, fridge):0 ∼ 3
INSIDE(plate, fridge):0 ∼ 3
INSIDE(waterglass, fridge):0 ∼ 3
INSIDE(wineglass, fridge):0 ∼ 3
INSIDE(cutleryfork, microwave):0 ∼ 3
INSIDE(plate, microwave):0 ∼ 3
INSIDE(waterglass, microwave):0 ∼ 3
INSIDE(wineglass, microwave):0 ∼ 3
INSIDE(milk, microwave):0 ∼ 3
INSIDE(cutleryfork, stove):0 ∼ 3
INSIDE(plate, stove):0 ∼ 3
INSIDE(waterglass, stove):0 ∼ 3
INSIDE(wineglass, stove):0 ∼ 3
INSIDE(milk, stove):0 ∼ 3

layers with a ReLU layer in the middle. The verb decoder takes the context feature fc as input and
outputs a verb prediction. Different from “LM (ft)”, the object decoder takes the object features
right after the “Embedding layer fθ” box as input to predicate the interacted object.

LSTM. The model architecture of “LSTM” is shown in Figure A12. The input and output are the
same as “LM (ft)” as we introduced in the main paper Section 6 and this appendix Section A.1.
“LSTM” has a similar architecture as “MLP-N” in Figure A10. The difference is in the ways to
compute the context feature fc. The feature f̂c after the pooling layer is first concatenated with the
hidden feature ht−1 from the last step and then sent to LSTM (Hochreiter & Schmidhuber, 1997).
LSTM outputs the context feature fc and a hidden feature ht that will be used for the next step. The
verb decoder and object decode are the same as “MLP-N”.
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Figure A10: Baseline MLP-N. The input and output are the same as “LM (ft)” as we introduced in the main
paper Section 6 and this appendix Section A.1. The difference is that instead of sending the concatenated
features of the goal, history, and observation to the pre-trained language model, “MLP-N” sends them to an
MLP followed by an average pooling layer to generate the context feature fc. The MLP consists of two fully-
connected layers with a ReLU layer in the middle. The verb decoder and object decode are the same as “LM
(ft)”.
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Figure A11: Baseline MLP-1. The input and output are the same as “LM (ft)” as we introduced in the main
paper Section 6 and this appendix Section A.1. “MLP-1” obtains an averaged feature fg of the task goal by
averaging the features of all the tokens in the goal sentences {fg

1 , · · · , f
g
K}. Similarly, “MLP-1” obtains an

averaged feature of the history fh and an averaged feature of the observation fo by averaging the features of
all the tokens in the history sentences {fh

1 , · · · , fh
L} and all the observed objects {fo

1 , · · · , fo
N}, respectively.

The averaged goal feature fg , the averaged history feature fh, and the averaged observation feature fo are
concatenated and sent to an MLP to generate the context feature fc. The MLP consists of two fully-connected
layers with a ReLU layer in the middle. The verb decoder takes the context feature fc as input and outputs a verb
prediction. Different from “LM (ft)”, the object decoder takes the object features right after the “Embedding
layer fθ” box as input to predicate the interacted object.
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Figure A12: Baseline LSTM. The input and output are the same as “LM (ft)” as we introduced in the main
paper Section 6 and this appendix Section A.1. “LSTM” has a similar architecture as “MLP-N” in Figure A10.
The difference is in the ways to compute the context feature fc. The feature f̂c after the pooling layer is first
concatenated with the hidden feature ht−1 from the last step and then sent to LSTM (Hochreiter & Schmidhu-
ber, 1997). LSTM outputs the context feature fc and a hidden feature ht that will be used for the next step. The
verb decoder and object decode are the same as “MLP-N”.
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