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Abstract
Decision-makers often observe the occurrence
of events through a reporting process. City gov-
ernments, for example, rely on resident reports
to register and then resolve urban infrastructural
problems such as fallen street trees, over-flooding
sewers, or rat infestations. In the absence of ad-
ditional assumptions, events that occur but are
not reported cannot be distinguished from events
that truly did not occur, leading to systematic ne-
glect in addressing problems in neighborhoods
that comparatively under-report events. In this
paper, we leverage a Bayesian model to describe
this setting in the presence of network correla-
tions in the event occurrence process. We present
a sampling routine to estimate the report rates and
the event occurrence incidence, as well as infer
the ground truth of discrete latent states. We apply
the model to flooding reports in New York City,
publicly available via the 311 data portal.

1. Introduction
Training data in real-world classification problems is often
not fully labeled. For example, although interactions in
social media tell whether a user enjoys a particular type of
content, many platforms do not have an explicit way for
expressing “dislike” so that not observing a positive interac-
tion between the user and some content could either mean
that the user dislikes the content or has not seen it. The
data is split into two classes: positively labeled datapoints
and unlabeled datapoints. Points in the latter class could be
unlabeled either because they were not classified at all or
because they were classified as negative. In machine learn-
ing, positive-unlabeled (PU) learning methods attempt to
solve this group of problems (Liu et al., 2003; Shanmugam
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& Pierson, 2021).

Without further assumptions, the proportion of true posi-
tive points — the prevalence — is unidentifiable because a
positive-class, unlabeled datapoint is indistinguishable from
a negative-class datapoint. Hence, many PU learning meth-
ods either require prevalence as an input or make further
assumptions (Bekker & Davis, 2020). For example, a com-
mon assumption is that each true positive point has the same
uniform probability of being labeled positive (Elkan & Noto,
2008). Even this strong assumption, which often does not
hold in real-world settings where the labeling probability is
non-uniform, is alone not sufficient to identify the model.

One such problematic setting of PU learning, which we
study in this paper, occurs in urban crowdsourcing sys-
tems. City governments rely on residents to report issues
they experience, as ubiquitous inspections would be too
costly. Examples of issues that decision-makers mostly get
to know through reports are power outages, pest infesta-
tions, or street floods. These reports, however, are scarce
and heterogeneous: many authors have studied inequity in
311 report rates, often concluding that factors such as race
and home ownership contribute significantly towards report-
ing (Liu & Garg, 2023; Kontokosta et al., 2017; Minkoff,
2016; O’Brien et al., 2017). Without further assumptions
on the prevalence of such issues or on their heterogeneous
report rates, these parameters are unidentifiable.

As it is common to urban phenomena, most of these issues
are spatially correlated: neighboring regions are likely to
suffer from the same problems. We focus on street floods,
events that are correlated across space due to the occurrence
of an exogenous incident like a hurricane. Therefore, our
PU learning setting differs from the case typically studied in
PU learning, where the datapoints are assumed to be drawn
independently. In this paper, we leverage a Bayesian model
to describe the reporting rate and the probability of a flood
event at multiple locations under the assumption that events
are correlated across adjacent areas.

2. Related Work
Some Bayesian models for spatial latent variable settings
have been developed in the context of crowdsourcing. Some
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works use weighted regression models to allocate “impor-
tance” for citizen expertise levels on their seemingly inde-
pendent classifications (Peterson et al., 2020). Specific to
311 data, Liu & Garg (2023) show that time-stamped, du-
plicate reports about the same event can be used to identify
the parameters of the reporting process, also without access
to ground truth information; in contrast we leverage reports
that are not duplicates but rather spatially correlated.

Applied ecologists have looked at the problem of estimating
under-reported ground-truth event indicators in the context
of species distributions (Heikkinen & Hogmander, 1994;
Sicacha-Parada et al., 2021; Della Rocca & Milanesi, 2022).
Humans, upon surveying a spatial area, report whether or
not they noticed an animal of that species in the region.
These reports are often not a ground truth, as the animals
could have been away or hiding. Assuming reports that
are spatially correlated, Santos-Fernandez et al. (2021) fit a
Bayesian model to correct for misreporting errors in coral
detection, where the latent variables are continuous propor-
tions rather than discrete event indicators as the class labels
in the PU setting.

Most relevant to our work is that of Spezia et al. (2018).
They present a model for animal species presence inspired
by statistical mechanics—the Ising Model—and a Bernoulli
reporting process. The current version of our work applies
their model to our setting.

Finally, our work relates to a much broader literature on
methods to quantify and compensate for the effects of miss-
ing and imperfect data in inequality-related contexts, in-
cluding healthcare, policing, education, and government
inspections (Coston et al., 2021; Rambachan et al., 2021;
Movva et al., 2023; Franchi et al., 2023; Laufer et al., 2023;
Guerdan et al., 2023; Zink et al., 2023; Cai et al., 2020; Pier-
son, 2020; Obermeyer et al., 2019; Kleinberg et al., 2018;
Zanger-Tishler et al., 2023; Jung et al., 2018; Garg et al.,
2021; Lakkaraju et al., 2017; Arnold et al., 2022). This
broader literature considers many types of missingness be-
sides the PU-missingness we study here, and many types
of identification approaches besides the spatial correlations
leveraged here.

3. Model
Consider a network G whose vertices are indexed by inte-
gers 1 through N and whose adjacency matrix is given by
E. There are two binary random variables describing the
state of each node: Ai ∈ {−1,+1}, which describes the
node’s latent, ground-truth state, and Ti ∈ {0, 1}, which
describes the node’s observed, reporting state. In the flood
setting, Ai = 1 if a flood occurred in that node and −1 if
not, while Ti = 1 if there was at least one 311 report in that
node and 0 if there was none. The key challenge is that we

do not observe ground truth Ai, only reports Ti.

We make three assumptions about the nature of our problem:

(A1) Markovian property of incidents: the conditional
distribution of each ground-truth state Ai given all other
Ak is dependent only on the ground-truth states of node i’s
neighbors (j such that j ∼ i).

Pr(Ai | Ak ∀ k ̸= i) = Pr(Ai | Aj ∀ j ∼ i)

(A2) Conditional independence of reports: the reporting
states of two nodes are independent given the ground-truth
states.

Ti⊥Tj | Ai ∀i ̸= j

(A3) PU property: there are no false positive reports.

Pr (Ti = 1 | Ai = −1) = 0

The occurrence of incidents follows an Ising Model after
Spezia et al. (2018). There are two real-valued parameters,
θ0 and θ1, controlling respectively the event incidence rate
and the event correlation. The probability distribution of the
vector A⃗ ∈ {±1}N is:

Pr(A⃗) =
q(A⃗ | θ0, θ1)
Z(θ0, θ1)

=
exp

(
θ0
∑
iAi + θ1

∑
i,j AiAj · Eij

)
Z(θ0, θ1)

(1)

In Equation (1), the denominator Z(θ0, θ1) is the distribu-
tion’s normalization constant (i.e., the partition function).
This constant is intractable, as it must be evaluated for 2N

values of the ground-truth state vector A⃗:

Z(θ0, θ1) =
∑

A1∈{±1}

· · ·
∑

AN∈{±1}

q(A⃗ | θ0, θ1) (2)

The report states Ti follow, due to (A2) and (A3), a Bernoulli
distribution conditioned on their ground-truth state. The
reporting process is controlled by a parameter ψ ∈ (0, 1).

Ti | Ai ∼ Ber
(
ψ · Ai + 1

2

)
(3)

The parameter vector of our model is then Θ⃗ = (ψ, θ0, θ1).
We impose priors on the parameters that are coherent with
the 311 flood reporting setting. We assume that the spatial
correlation θ1 is slightly positive, but are more liberal with
our treatment of the event occurrence parameter θ0 and
center it at zero. The priors we use are:

ψ ∼ Beta(1.2, 0.8)

θ0 ∼ N (0, 0.2) θ1 ∼ N (0.3, 0.1)
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3.1. Sampling Routine

We use a Gibbs sampling MCMC to conduct posterior infer-
ence: namely, at each iteration, we draw each latent variable
from its conditional distribution given the current values
of all the other variables. All variables are initialized at
random.

Sampling Ai: We sample each of the Ai in a random order
(re-sorted at every iteration). As proven by Besag (1974),
the conditional distributions have the form:

Pr(Ai = a | A⃗k ∀ k ̸= i) =
1

1 + exp(2 · a · τi)
(4)

The exponent τi aggregates the states only of node i’s neigh-
bors, in accordance with (A1):

τi = θ0 + θ1
∑
j∼i

Aj (5)

The conditional distribution of Ai given all the other vari-
ables is dependent only on Θ⃗, Ti, and Aj for all j ∼ i. If
the corresponding Ti = 1, the assumption (A3) forces that
Ai = 1. If Ti = 0, then we sample Ai with:

Pr(Ai | Ti, Θ⃗, Aj∀ j ∼ i) ∝

{
1−ψ

1+exp(−2·τi) Ai = 1
1

1+exp(2·τi) Ai = −1

(6)

Sampling ψ: The conditional distribution of ψ given all
other variables depends only on the number of incidents
which occurred but not reported n0 and the number of oc-
curred events that was reported n1. We sample ψ from a
Beta posterior distribution, updating our prior parameters:

ψ ∼ Beta (1.2 + n1, 0.8 + n0) (7)

Sampling θ0 and θ1: The conditional distribution of θ0 and
θ1 given all other variables depends only on A⃗. We cannot
directly compute it due to the presence of the partition func-
tion Z (Murray et al., 2006). We use the Single-Variable
Exchange Algorithm (SVEA) to circumvent this difficulty
(Møller et al., 2006).

The SVEA is a Metropolis-Hasting type sampling algorithm
that introduces an auxiliary variable w⃗ to cancel two terms
with the partition function when computing the acceptance
ratio. To do so, w⃗ must be sampled from the same distribu-
tion family as A⃗. We generate auxiliary variables from the
distribution in eq. 1 using the Swendsen-Wang algorithm
(Swendsen & Wang, 1987; Wolff, 1989) when possible.
This is an efficient method to sample from an Ising Model
with positive spatial correlation θ1 (Park et al., 2017; Cooper
et al., 2000). We sample w⃗ using Gibbs sampling if at the
current step θ1 ≤ 0.

4. Results
We present our current results in two sections. First, we
evaluate our modeling approach and fitting procedure on
synthetic data, showing that we can indeed recover ground
truth parameters. Second, we apply the model to real data
from resident reports of street floods in New York City
during the passage of Hurricane Ida.

4.1. Model Calibration on Synthetic Data

We generate synthetic data from the model with parameters
sampled from our prior distributions for n = 25 experi-
ments. In each experiment, we run two independent chains.
The convergence diagnostics for one such experiment along
with hyper-parameters is shown in Figure 3.

Across these experiments, we calculate the proportion of
times that the true parameter value falls within a given confi-
dence interval of the inferred posterior distribution, for each
of 5, 10, . . . 95% confidence intervals. As Figure 1 shows,
we verify that the model is calibrated: at any given confi-
dence level the corresponding confidence interval contain
the true parameters at the expected rate.

Figure 1. Calibration of the model. A point (x, y) is marked if
in y% of the experiments (n = 25) the true parameter value was
contained in the x% percentile of the inferred posterior distribution.
Perfect calibration is given by the identity line, which our model
approximates very well.

We verify that we can recover the true parameters in the
majority of the experiments, as shown in Figure 4.

4.2. Performance on 311 Data

We use data on 311 reports during the first week of Septem-
ber 2021 (NYC Open Data, 2023), following the passage of
Hurricane Ida in New York City. The reports are mapped
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(a) Reports per census tract i.e. Ti. The reports are scarce (about
20% of tracts have a positive report) and show signal of positive
spatial correlation.

(b) Flood probability per census tract i.e. Pr(Ai = 1). Tracts
where the reports happened will by construction have probability
of flood equal to 1.

Figure 2. Map of census tracts in New York City with their (a) observed report status and (b) inferred probability of flooding by our model
between September 1st and 8th, 2021. Adjacent tracts to those with positive reports seem to have high probability of flooding, as the
model pools together information from neighboring areas. Census tracts in grey were ignored.

per census tract (our unit of analysis) in Figure 2. We note
that this section is a work in progress – as we discuss, the
graph structure substantially affects model inference, in a
manner that requires further work.

The spatial structure is given by the adjacency of census
tracts in New York City. Two tracts are neighbors if they
share a boundary. We remove nodes with degree greater
than 10 to account for outlier census tracts—mostly parks
with no population, which span a significant area of the city
and border many tracts. We found that the graph structure
resulting from this process requires further considerations
when choosing priors to adequately explore the entire pa-
rameter space. As shown in Figure 5, the average mean of
nodes with incidents is more sensitive to spatial correlation
parameter θ1 in the real graph than it is on a regular grid
graph with comparable number of nodes. In other words,
for the same (positive) value of the spatial correlation θ1,
real-world graphs tend to be more homogeneous (all nodes
are either 1 or −1) than synthetic graphs for every value of
the prevalence θ0.

With our model we estimate the true parameters. The con-
vergence diagnostics and the full posteriors for these results
are shown in Figure 6. The mean and standard deviations
estimated for the three parameters are shown in Table 1.

Our inferred parameter estimates are plausible for our appli-

mean standard deviation
ψ 0.43 0.04
θ0 -0.01 0.01
θ1 0.26 0.02

Table 1. Estimated means and standard deviations for the parame-
ters (pooling inferred posteriors from all chains).

cation. The spatial correlation θ1 is high, which agrees with
our assumption that flooding is correlated between adjacent
areas. The event prevalence parameter θ0 is around zero,
meaning that census tract is as likely to get flood as it is not
to (ignoring correlations). The reporting rate ψ is estimated
to be around 0.4, which incurs scarcity in the observed re-
porting numbers. However, given the results in Figure 5
about the effect of the graph structure, it is unclear whether
these results are a consequence of the priors and graph struc-
ture – in future work, we will validate and improve these
inferences.

Finally, we estimate the probability that a given census tract
is flooded, that is Pr(Ai = 1). The probability is computed
as the proportion of post burn-in samples in which Ai = 1
for node i. This map is also shown in Figure 2.
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5. Future Work
This work shows the promise of using spatial correlation of
incidents (such as flooding events and rats) to diagnose (1)
under-reporting of events in municipal resident crowdsourc-
ing systems; and (2) in turn, learn incident ground truth in
the presence of such under-reporting. However, substantial
work remains to be done to realize this promise.

Most immediately, our current results require further vali-
dation for robustness and we hypothesize that choosing the
correct graph structure will improve model fit. The impact
of θ1 joint with the census graph structure in the average
proportion of positive class nodes suggests that a more pol-
ished, grid-like graph structure could capture fluctuations in
the true parameters more precisely. In particular, to attain a
fraction of more than 0.2 nodes with ground truth Ai = 0
(resp. Ai = 1) in a regime where the spatial correlation pa-
rameter θ1 is around 0.25, the propensity parameter θ0 will
likely be inferred close to zero—the result we obtained. As
we move forward with this work, we are working on repli-
cating our experiments using geohashes and other grid-like
graph structures.

Second, we are working to model the heterogeneity in re-
porting rates through a vector ψ⃗ which varies across nodes
as opposed to a constant. For each node we observe a vector
X⃗i ∈ RK of K demographic features (predominant race,
income, education level, home-ownership status). Then, at
every step of our MCMC, we estimate a vector β⃗ ∈ RK
with a Bayesian logistic regression of the form:

ψi = logit−1

(
α+

K∑
m=1

βmXmi

)
.
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A. Model Convergence Diagnostics
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Figure 3. Trace plots and Inferred Posteriors for a synthetic data setting where ψ = 0.81, θ0 = −0.12, and θ1 = 0.28. Two independent
chains were sampled for 15000 iterations with a thinning fraction of 0.5, and r̂ convergence statistics are given in the figure. The red
region in the trace plots delineates the burn-in period (5000 iterations), during which samples were discarded and the hyperparameters
were tuned. The means of the estimated posteriors for ψ, theta0, and θ1 were respectively 0.80, −0.12, and 0.28—exactly the true
parameters—with standard deviations 0.04, 0.02, and 0.01.
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Figure 4. We recover the true parameters in the majority of the n = 25 synthetic data experiments. The y-axis shows the inferred means
of the posteriors for ψ, θ0, θ1, and (the mean of) A⃗, while the x-axis shows the true value of those variables. Each experiment is then
mapped to one point (posteriors aggregated across both chains), and the error bars represent 95% confidence intervals. The proximity of
most points to the identity line show the model is recovering true parameters at the same rate through the parameter space.
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Figure 5. Average fraction of nodes with positive Ai for a given set of parameters θ0 and θ1 on (a) a grid graph with N = 2500 nodes,
(b) the census graph with high-degree nodes removed (N = 2274 nodes). The distribution of A⃗ is highly sensitive to the values of θ1 on
the real world regime: as θ1 increases, the vector A⃗ approaches a constant vector at either −1 or +1 depending on the signal of θ0 (except
when θ0 = 0). Averages were computed across 500 trials.
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Figure 6. Trace plots and Inferred Posteriors for ψ, θ0, and θ1 in the real 311 data. Six independent chains were sampled for 25000
iterations with a thinning fraction of 0.5. The red region in the trace plots delineates the burn-in period (10000 iterations), during which
samples were discarded and the hyperparameters were tuned.


