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Abstract001

Learning at test time is an effective strategy002
for improving the performance of large lan-003
guage models (LLMs), although at the expense004
of increased computational costs during infer-005
ence. In this paper, we introduce Collaborative006
Test-Time Training (CT3), a novel system de-007
signed to enhance the downstream accuracy008
of LLMs on client devices such as AI PCs009
through Test-Time Training (TTT) leveraging010
a remote multi-domain knowledge base. CT3011
efficiently distributes the TTT process using a012
server-client architecture, allowing clients to013
fine-tune their models using relevant samples014
from the server. It also proposes a local state015
management mechanism and a simple but ef-016
fective sample size reduction strategy to opti-017
mize test-time training without compromising018
accuracy. Our experiments demonstrate signif-019
icant accuracy improvements across multiple020
domains and various LLMs with up to 44% in-021
crease in average downstream performance and022
a speedup ranging from 1.5× to 2.5× compared023
with vanilla TTT. The code to reproduce CT3’s024
results will be released open-source.025

1 Introduction026

There is an increasing interest in techniques for027

enhancing model performance by using additional028

computational resources at test time rather than029

scaling model parameters during training (Snell030

et al., 2025). Test-time training (TTT) is one031

such approach that leverages test-time compute032

resources to fine-tune the model during inference.033

This paradigm improves the robustness and accu-034

racy of large pre-trained models, addressing the key035

challenge of covariate shift, wheretest and training036

data distributions differ, potentially causing subop-037

timal performance. TTT enhances language mod-038

eling performance by accessing a reference dataset039

(Hardt and Sun, 2024; Hübotter et al., 2024), from040

which a subset of data points is retrieved and used041

for temporary model fine-tuning.042
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Figure 1: Performance overview of CT3 on downstream
tasks across various LLMs. “Downstream Task Perfor-
mance” indicates the average score on six downstream
tasks with multiple domains evaluated in §4.

When the size of the TTT reference dataset 043

reaches several petabytes, using these techniques 044

on resource-constrained devices at the Edge be- 045

comes challenging due to their limited resources 046

and the need for real-time fine-tuning, which de- 047

mands significant computational power and storage 048

capacity. Our work is motivated by these chal- 049

lenges and a new segment of client computing de- 050

vices, namely Artificial Intelligence Personal Com- 051

puters (AI PCs), which are equipped with AI ac- 052

celerators such as Neural Processing Units (NPUs) 053

and exhibit outstanding power efficiency. These AI 054

PCs efficiently run sophisticated language models 055

locally, such as LLAMA-3-8B-INSTRUCT (Dubey 056

et al., 2024). The increasing demand for AI PCs 057

motivates the development of solutions to improve 058

model performance on these devices. 059

This paper addresses these challenges by propos- 060

ing Collaborative TTT (CT3), a solution that en- 061

ables client devices to benefit from TTT without 062

storing large reference datasets locally. Specifi- 063

cally, our approach leverages an efficient client- 064

server solution to allow the limited device to ben- 065

efit from the knowledge stored on a remote server 066

while minimizing the communication rounds. To 067
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Figure 2: Overview of Collaborative TTT (CT3). The performance of models at client devices improves by utilizing
Test-Time Training with a remote multi-domain knowledge base.

enhance the setup’s sophistication, we explore us-068

ing a multi-domain knowledge base and investi-069

gate the tolerance of TTT algorithms to complex070

data mixes. CT3 allows users to run custom mod-071

els in their resource-constrained devices with TTT,072

overcoming limitations such as training data avail-073

ability while benefiting from downstream task per-074

formance improvements. CT3 introduces Local075

State Management (LSM) and Sample Size Re-076

duction (SSR) strategies to optimize the test-time077

fine-tuning process on client devices. LSM lever-078

ages historical query embeddings and their associ-079

ated fine-tuned adapters to potentially bypass the080

need for repeated fine-tuning, thus significantly re-081

ducing computational overhead and latency. SSR082

strategies complement LSM by filtering out irrele-083

vant samples, ensuring that only the most relevant084

samples are used, thereby reducing the number085

of training samples and accelerating the process086

without compromising accuracy. Figure 1 provides087

a performance overview of CT3. The following088

sections discuss these contributions:089

1. CT3, a system for improving the downstream090

reasoning capabilities of LLMs running in091

client devices (Figure 2).092

2. An investigation into using multi-domain093

knowledge bases with clear supervisory sig-094

nals in the context of test-time training for095

downstream tasks.096

3. Local State Management (LSM) and Sam-097

ple Size Reduction (SSR) strategies to opti-098

mize the test-time fine-tuning process, reduc-099

ing computational overhead and improving100

system responsiveness.101

The rest of the paper is organized as follows. We 102

discuss related work in §2. Then, §3 describes the 103

CT3 system, while §4 presents results on various 104

downstream tasks. Our final thoughts are in §5. 105

2 Related Work 106

Test-time compute techniques have been proposed 107

as an alternative to increasing the number of model 108

parameters for improving language model perfor- 109

mance (Snell et al., 2025). Notable test-time strate- 110

gies include Chain-of-Thought (CoT) prompting 111

(Wei et al., 2022) and few-shot learning (Brown 112

et al., 2020). CoT prompting guides the model 113

through intermediate steps to break down com- 114

plex tasks, enhancing its ability to handle intricate 115

queries. Few-shot learning helps the model adapt to 116

new tasks with just a few examples. Other test-time 117

compute methods include verifying the model’s re- 118

sults, e.g., by code execution (Brown et al., 2025). 119

The renewed focus on test-time compute has even 120

motivated the development of improved neural ar- 121

chitectures, e.g., Titans (Behrouz et al., 2024). 122

Among the many recent test-time compute 123

approaches proposed, Test-Time Training (TTT) 124

(Hardt and Sun, 2024; Hübotter et al., 2024; 125

Akyürek et al., 2024) has been crucial in improv- 126

ing the performance of solutions, e.g., Omni-ARC 127

(IronbarArc24, 2024) in the ARC-AGI challenge 128

(ARC-AGI, 2025; Chollet, 2019). 129

TTT effectively adapts the model by fine-tuning 130

it with selected samples from an available training 131

dataset during inference. Recently, SIFT (Hübot- 132

ter et al., 2024) demonstrated that it could re- 133

trieve informative samples, outperforming tradi- 134

tional Nearest-Neighbor (NN) retrieval (Hardt and 135

Sun, 2024). Their experimental setup uses the 136
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Pile dataset (Gao et al., 2020), which lacks a clear137

question-answer pair structure despite covering a138

wide range of topics and fields with plain text data.139

This weak supervision signal makes the training140

process more challenging, focusing on the model’s141

language modeling capabilities (Pile benchmark142

(Gao et al., 2020)). In contrast, CT3 prioritizes143

downstream task performance. Our knowledge144

base comprises structured question-answer pairs145

with clear supervisory signals, which helps the146

model explicitly learn the relationship between in-147

put and output during training.148

In the context of distributed architectures, the149

work by Hardt and Sun (2024) proposes a client-150

server structure to speed up query time across large151

datasets. Their approach splits FAISS (Douze et al.,152

2024) indexes across multiple servers, allowing153

clients to send queries to each server and aggregate154

the results. This method primarily focuses on accel-155

erating query processing and handling large-scale156

data efficiently. In contrast, our CT3 leverages a157

server-client architecture to facilitate TTT using a158

remote multi-domain knowledge base. While both159

approaches utilize distributed architectures, our sys-160

tem is designed to enhance model performance on161

resource-constrained client devices by retrieving162

relevant samples for fine-tuning during inference.163

Their architecture (Hardt and Sun, 2024) can be164

integrated into our remote server to further opti-165

mize sample retrieval, highlighting the potential of166

combining between these approaches.167

Next, we explore CT3, a system that enhances168

model downstream performance on client devices.169

3 CT3 System170

This section introduces Collaborative Test-Time171

Training (CT3), a system designed to distribute172

Test-Time Training to allow resource-constrained173

clients to enhance their model downstream perfor-174

mance using a remote multi-domain knowledge175

base. CT3 also incorporates Local State Manage-176

ment (LSM) and Sample Size Reduction (SSR)177

strategies to speed up the fine-tuning stage without178

sacrificing accuracy. The following sections detail179

each of CT3’s components and strategies.180

3.1 Preliminaries: Test-Time Training (TTT)181

Given a pre-trained model and a query x, a TTT182

solution utilizes a similarity metric ϕ to retrieve k183

samples from a reference dataset D. These sam-184

ples are then used to fine-tune the model weights185

at test time, resulting in improved model perfor-186

mance for the current query. Next, we discuss how187

CT3 leverages the TTT paradigm in a distributed 188

setting to improve model performance in resource- 189

constrained client devices. 190

3.2 Distributed Test-time Training 191

CT3 operates efficiently in heterogeneous compute 192

environments (Figure 2), following a server-client 193

paradigm implemented using FastAPI (Ramírez, 194

2025). In this section, we discuss the functionality 195

of CT3 at both the server and client levels. 196

Server The remote server hosts a comprehen- 197

sive multi-domain knowledge base D, which en- 198

compasses training samples across commonsense 199

reasoning, reading comprehension, coding, and 200

math reasoning domains. The data is stored 201

along with their corresponding embeddings, which 202

are generated using a pre-trained model from 203

sentence-transformers (Reimers and Gurevych, 204

2019). The dataset can be represented as D = 205

{(xi, ei, yi)}di=1, where xi denotes the i-th input 206

sentence, ei represents its embedding, and yi is the 207

associated label or output. 208

The server receives client queries as embed- 209

dings. To ensure consistency, servers and clients 210

are required to use the same sentence-transformers 211

to generate embeddings. A private embedding 212

model and encryption can increase privacy pro- 213

tection in data-sensitive applications. Upon receiv- 214

ing a client query embedding ex, following SIFT 215

(Hübotter et al., 2024), the server utilizes FAISS 216

(Douze et al., 2024) to retrieve n relevant samples 217

DF = {(xi, ei, yi)}ni=1 from the knowledge base. 218

The similarity metric ϕ employed by FAISS is the 219

inner product, i.e., ϕ(ex, ei) = ex · ei, calculated 220

between the embedding of the current query ex and 221

the embeddings ei of candidate samples from the 222

dataset D. CT3 might use other search strategies to 223

yield better performance based on the multi-domain 224

data characteristics and mix. 225

To obtain more accurate and relevant samples, 226

the SIFT algorithm (Hübotter et al., 2024) is ap- 227

plied to further refine the results retrieved by FAISS. 228

SIFT filters the samples retrieved by FAISS, re- 229

sulting in a smaller set, DS = {(xi, ei, yi)}ki=1 230

(k ≪ n), that is returned to the client without the 231

embedding ei for efficient transmission. 232

The server can extract and transmit the corre- 233

sponding samples to clients based on the above 234

process. The client utilizes these samples to fine- 235

tune its custom model, thereby increasing the accu- 236

racy and quality of the output. 237
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Clients On a client device, the workflow is as238

follows: a deployed large language model receives239

a query x from the user. The client locally gener-240

ates an embedding of the query ex, using the same241

sentence-transformers model as the server. This242

embedding is then transmitted to the remote server.243

As discussed above, the server sends back a set244

DS with k relevant samples to the query, excluding245

their embeddings. Using DS , the client temporarily246

fine-tunes its custom model via LoRA (Hu et al.,247

2022) for efficiency, resulting in improved perfor-248

mance during inference. Finally, nothing prevents249

a client with resources that satisfy the requirements250

of smaller deployments to run the complete CT3251

pipeline on a single device.252

In-Domain Sample Selection CT3 does not253

know the domain of the user’s query in advance.254

During development, we explored two approaches255

for assisting the system when searching for in-256

domain samples:257

1. User guidance to determine the domain258

2. Automatic domain clustering purely based on259

embeddings260

Although user guidance (1) is a viable strategy,261

our initial objective was to reduce user friction262

and minimize user actions to improve the system263

performance. In the automatic domain clustering264

approach (2), domain specialization occurs during265

the online search of relevant samples for test-time266

fine-tuning, allowing CT3 to provide samples tai-267

lored to the domain-specific query from the user.268

Experimentally (§4.3), we have observed that auto-269

matic domain clustering is feasible but with several270

challenges. For instance, the knowledge base must271

have the correct data mix, which presents an addi-272

tional challenge to system administrators.273

Local State Management (LSM) The fine-274

tuning stage at the client is the most expensive275

operation in the CT3 pipeline. For this reason,276

we propose caching strategies at the sampling and277

model state levels. A multi-turn historical Local278

State Management (LSM) strategy is described279

in Algorithm 1. Based on the availability of re-280

sources at the client, CT3 can budget the tracking281

of m past query embeddings Q and their associ-282

ated groups of already fine-tuned LoRA adapters A.283

Each new user query embedding is compared with284

historical query embeddings to identify the one that285

maximizes a similarity function γ, indicating the286

possibility of using the group of associated weight287

adapters and skipping the TTT stage to speed up 288

inference without affecting accuracy. A simple 289

version of Algorithm 1, is the one-look-back strat- 290

egy in which m = 1 and CT3 forgets beyond the 291

immediate previous query. 292

Algorithm 1 Multi-Turn Historical Local State
Management (LSM)
Input: Current query embedding ext , set Q of m histor-
ical query embeddings, i.e., Q = {ex1 , ..., exm}, set A
of m historical TTT fine-tuned adapter groups, i.e., A =
{ax1 , ..., axm}, reuse threshold τ , budget B for the number
of adapter groups kept in the client device, similarity metric
γ, and an eviction mechanism κ to determine the historical
query to be evicted.
Output: Current adapter group state St.
1: ex∗ = argmin

e
xi∈Q

γ(exi , ext)

2: if γ(ex∗ , ext) > τ then
3: // Retrieve corresponding adapter group
4: St ← ax∗

5: else
6: St ← TTT(ext , S0)
7: if |Q| ≥ B then
8: // Evict one historical query using κ
9: exr = κ(Q)

10: Q = Q \ exr

11: A = A \ axr

12: end if
13: // Add new query and adapter to LSM
14: Q∪ ext

15: A ∪ St

16: end if
17: // Inference using St

Sample Size Reduction (SSR) We also explore 293

simple but effective sample size reduction strate- 294

gies to reduce further the samples selected by SIFT. 295

The strategies follow this pattern: CT3 obtains 296

statistics from the multiset of acquisition values, 297

V (|V| = k), associated with the k samples se- 298

lected by SIFT. In particular, CT3 explores using 299

the minimum of the mean and the median on V as 300

the cut-off point for discarding selected samples. 301

Based on these statistics, CT3 selects a subset, V ′, 302

such that |V ′| < |V|. 303

4 Experiments 304

We implement a prototype of the CT3 system as 305

a testbed, demonstrating the potential benefits in a 306

larger deployment. Next, we discuss the resources 307

utilized in our experimentation, followed by results 308

demonstrating the benefits of enabling test-time 309

training in client devices. 310

4.1 Setup 311

Knowledge base To rigorously evaluate the 312

CT3 prototype, we utilize a comprehensive multi- 313

domain knowledge database. This knowledge base 314
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Dataset Domain # Samples

CoQA (Reddy et al., 2019) Reading 7,199
MetaMath (Yu et al., 2023) Math 395,000
Orca-Math (Mitra et al., 2024) Math 200,035
Math 50K (Zhiqiang et al., 2023) Math 50,000
The Stack Python (Kocetkov et al., 2022) Coding 600,000
MBPP (Austin et al., 2021) Coding 374
Total / 1,252,608

Table 1: Knowledge base composition. These datasets
cover various domains, including reading comprehen-
sion, math, and coding. The Stack Python dataset con-
sists of a random sample of 600,000 entries from the
original Stack dataset (Python). All these datasets are
training sets and do not contain any of the test samples
we evaluated.

is constructed by integrating data from several di-315

verse datasets (Table 1). Specifically, we incorpo-316

rate the CoQA (Reddy et al., 2019) training set,317

a large-scale dataset designed for developing con-318

versational question-answering systems, which is319

expected to enhance the model’s reading compre-320

hension capabilities.321

For mathematical problem solving, we include322

three substantial datasets: MetaMath (Yu et al.,323

2023), a dataset comprising 395,000 samples de-324

signed to improve mathematical reasoning by boot-325

strapping questions from multiple perspectives;326

Orca-Math (Mitra et al., 2024), which includes327

200,035 high-quality synthetic math problems cre-328

ated using a multi-agent setup, and Math 50K329

(Zhiqiang et al., 2023), which consists of 50,000330

samples drawn from various mathematics-related331

datasets.332

In the coding domain, we integrate The Stack333

Python, a dataset we constructed by randomly sam-334

pling 600,000 entries from the Python subset of335

The Stack (Kocetkov et al., 2022), which covers a336

wide range of programming languages and serves337

as a pre-training dataset for code-generating AI338

systems. Additionally, we include the Mostly Ba-339

sic Python Problems (MBPP) (Austin et al., 2021)340

training dataset, which consists of 374 crowd-341

sourced Python programming problems aimed at342

entry-level programmers.343

This amalgamation of datasets ensures a robust344

and diverse foundation for evaluating the CT3 sys-345

tem’s performance across multiple domains, includ-346

ing Reading Comprehension, Math, and Coding.347

Evaluation We employ a combination of evalua- 348

tion tools for our experiments to rigorously assess 349

CT3 prototype’s performance across various do- 350

mains. Specifically, we utilize the lm-eval-harness 351

(Gao et al., 2023) for evaluating CoQA (Reddy 352

et al., 2019) and GSM8K (Cobbe et al., 2021). For 353

GSM8K, to better align with real-world TTT sce- 354

narios, we use zero-shot instead of the commonly 355

used few-shot approach. For more mathematical 356

reasoning evaluations, we also apply the evaluation 357

scripts of LLM-Adapters (Zhiqiang et al., 2023) 358

on MathQA (Amini et al., 2019) and MAWPS 359

(Koncel-Kedziorski et al., 2016) datasets. For cod- 360

ing, we evaluate MBPP (Austin et al., 2021) and 361

HumanEval (Chen et al., 2021) utilizing bigcode- 362

evaluation-harness (Ben Allal et al., 2022). For 363

experimental efficiency, we randomly sampled a 364

subset of 200 samples from GSM8K and MathQA 365

for evaluation, respectively. 366

Models We test our method on various LLMs, 367

including LLAMA-3-8B-INSTRUCT, LLAMA-3.1- 368

8B-INSTRUCT (Dubey et al., 2024), MISTRAL-7B- 369

INSTRUCT-V0.3 (Jiang et al., 2023) and QWEN2.5- 370

3B-INSTRUCT (Yang et al., 2024). For the retrieval 371

stage in CT3, we utilize ALL-MPNET-BASE-V2 372

(Reimers and Gurevych, 2019) as a surrogate em- 373

bedding model. 374

Hyperparameters and Implementation We em- 375

ploy two epochs for test-time training with a learn- 376

ing rate of 5e-5. We adjust the learning rate for 377

coding tasks to either 1e-5 or 3e-5. The batch size 378

is set to 1 across all tasks. We apply LoRA fine- 379

tuning at test time, with a LoRA rank of 128 and a 380

LoRA alpha of 16. The target modules for LoRA 381

include the Query, Key, and Value and the Up and 382

Down projection layers. Note that greedy decoding 383

is applied to generate the responses for all tasks. 384

The number of samples for test-time training is se- 385

lected from the hyperparameter space [4, 8, 16, 32, 386

64] based on the best results. For LSM, the reuse 387

threshold τ and k in LSM is 0.5 and 8, respec- 388

tively. The similarity metric is the inner product, 389

and the eviction mechanism is the Least Frequently 390

Used (LFU) cache. Regarding the retrieval stage, 391

we follow the pipeline of SIFT (Hübotter et al., 392

2024). More explorations can be found in §4.4 and 393

Appendix C. 394

4.2 Main Results 395

Table 2 presents the performance of various large 396

language models on multiple evaluation tasks, com- 397
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Method
CoQA CoQA GSM8K* MathQA* MAWPS MBPP HumanEval

Avg. Impr.
Evaluation

EM F1 EM (0-shot) Acc. Acc. Pass@1 Pass@1 Speedup

LLAMA-3-8B-INSTRUCT 61.78 78.40 40.00 30.00 43.70 51.60 54.88 51.48 / /
+ CT3 70.38 82.25 60.50 36.00 86.13 52.40 57.93 63.66 +24% 1.00×
+ CT3 + SSR 70.68 82.46 55.00 28.50 85.71 52.40 57.32 61.72 +20% 1.76×
+ CT3 + LSM 70.17 82.24 59.50 41.50 89.08 51.60 59.15 64.75 +26% 1.60×
+ CT3 + LSM + SSR 70.20 82.17 56.00 33.00 84.45 51.80 56.10 61.96 +20% 2.24×

LLAMA-3.1-8B-INSTRUCT 63.63 78.82 23.00 15.50 25.21 52.20 59.76 45.45 / /
+ CT3 71.12 83.48 70.00 21.50 89.50 53.60 62.20 64.48 +42% 1.00×
+ CT3 + SSR 70.52 82.49 67.00 28.00 90.76 52.00 61.59 64.62 +42% 1.51×
+ CT3 + LSM 72.23 83.95 70.00 28.00 90.76 52.20 61.59 65.53 +44% 1.46×
+ CT3 + LSM + SSR 71.02 82.78 61.00 22.50 87.82 51.40 60.98 62.50 +38% 1.85×

MISTRAL-7B-INSTRUCT-V0.3 65.55 80.04 17.00 28.00 68.07 37.60 33.54 47.11 / /
+ CT3 71.32 83.08 24.50 32.50 86.97 38.80 37.20 53.48 +14% 1.00×
+ CT3 + SSR 70.85 82.65 14.50 29.00 78.99 38.00 34.76 49.82 +6% 1.71×
+ CT3 + LSM 70.58 82.62 13.50 29.50 83.61 37.80 38.41 50.86 +8% 1.61×
+ CT3 + LSM + SSR 69.80 82.14 10.50 34.00 78.15 38.60 35.98 49.88 +6% 2.35×

QWEN2.5-3B-INSTRUCT 54.70 71.22 61.50 20.00 87.82 41.20 26.22 51.81 / /
+ CT3 67.27 80.53 61.50 28.00 88.24 46.80 29.88 57.46 +11% 1.00×
+ CT3 + SSR 66.22 79.77 63.50 33.50 70.17 45.80 27.44 55.20 +7% 1.23×
+ CT3 + LSM 67.43 80.59 63.50 32.50 88.66 44.40 26.83 57.70 +11% 1.65×
+ CT3 + LSM + SSR 67.15 80.56 65.00 31.00 61.34 43.40 29.27 53.96 +4% 1.48×

Table 2: Performance comparison of different versions of CT3. “SSR” stands for Sample Size Reduction, which
approximately halves the TTT training samples for each query. “Evaluation Speedup” shows the speedup factor
achieved by our proposed strategies. “EM” represents Exact Match. “Impr.” indicates the improvement in the
average score. Note that * for GSM8K and MathQA indicates a subset of 200 randomly sampled test samples.
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Figure 3: Domain distribution of training data sam-
ples across evaluation tasks (counted all test samples).
The red border indicates the domain corresponding to
the current task (in-domain). We expect higher values
within the red border, meaning that the test-time training
samples from the knowledge base are more aligned with
the domain of the current task.

paring the baseline models without CT3, with CT3,398

and CT3 incorporating the LSM and SSR strate-399

gies. The results demonstrate that CT3 signifi-400

cantly enhances the performance across all down-401

stream tasks and models. For example, regarding402

LLAMA-3-8B-INSTRUCT, CT3 improves the aver-403

age performance from 51.48 to 63.66, representing 404

a 24% improvement. When combined with LSM, 405

CT3 achieves an average score of 64.75, a 26% 406

improvement, and with both LSM and SSR, it 407

achieves a 20% improvement with a 2.24× evalua- 408

tion speedup compared to CT3. Similarly, LLAMA- 409

3.1-8B-INSTRUCT shows a remarkable 42% im- 410

provement with CT3 and achieves higher perfor- 411

mance with LSM, achieving up to 1.46× speedup. 412

The results indicate that CT3 significantly im- 413

proves model performance across various tasks and 414

domains. The LSM and SSR strategies effectively 415

maintain high performance while substantially re- 416

ducing the TTT computational overhead, making 417

CT3 more feasible for resource-constrained de- 418

vices. 419

4.3 In-Domain Sample Retrieval 420

To evaluate the effectiveness of CT3 in retriev- 421

ing relevant in-domain samples from multi-domain 422

data, we conducted experiments to analyze the do- 423

main distribution of the retrieved training samples 424

across various evaluation tasks. Figure 3 illustrates 425
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the distribution of TTT data samples retrieved for426

each evaluation task, categorized by their respec-427

tive domains.428

The heatmap reveals that most retrieved samples429

align well with the domain of the current task, as430

indicated by higher values within the red-bordered431

cells. For instance, 82.50% of the samples retrieved432

for the CoQA task are from the CoQA dataset,433

demonstrating strong in-domain alignment. This434

is particularly noteworthy given that the CoQA435

dataset constitutes only a small fraction of the436

knowledge base (7,199 out of 1,252,608 samples).437

Despite the overwhelming presence of unrelated438

data, CT3’s retrieval mechanism can precisely iden-439

tify and select relevant CoQA samples for the440

CoQA task. Similarly, for GSM8K, 54.93% of441

the samples are from MetaMath, and for MathQA,442

71.53% are from Orca-Math, indicating that CT3443

successfully identifies and selects relevant mathe-444

matical datasets for these tasks.445

These alignments are crucial for the success446

of test-time training, as it ensures that the model447

is fine-tuned with high-quality, relevant samples,448

thereby significantly enhancing performance across449

various tasks. The effectiveness of CT3 in achiev-450

ing such precise retrieval is attributed to the robust451

embedding models (Reimers and Gurevych, 2019)452

and retrieval algorithms employed. These tools453

enable CT3 to navigate a vast and diverse knowl-454

edge base, accurately matching queries to the most455

relevant samples. Overall, the results highlight456

the importance of retrieving high-quality, relevant457

samples for test-time training, allowing CT3 to458

enhance model performance significantly by lever-459

aging domain-specific data effectively.460

Additionally, we performed a t-SNE visualiza-461

tion of the embeddings for some samples in the462

database, as shown in Figure 4. The visualiza-463

tion demonstrates a clear clustering of samples by464

domain that CT3 can exploit to retrieve domain-465

specific samples. For example, the coding datasets466

(The Stack Python and MBPP) exhibit clear clus-467

tering, validating the embedding model’s capability468

to differentiate between domains. This clustering469

effect underscores the robustness of the embed-470

ding model and the retrieval algorithm, enabling471

CT3 to achieve high precision in sample retrieval.472

The t-SNE visualization highlights the importance473

of high-quality embeddings in facilitating accu-474

rate and efficient sample retrieval, making test-time475

training more practical and impactful.476

CoQA (Reading)
MetaMath (Math)
Orca-Math (Math)
Math 50K (Math)
The Stack Python (Coding)
MBPP (Coding)

Figure 4: t-SNE visualization of the embeddings for
some samples in the knowledge base. Each dataset
contains 1000 randomly selected samples, except for
MBPP (all).

Faiss Indexes Peak CPU Avg.
Memory Usage Score

/ / 51.48
FlatIP 11568 MB 63.66
IVFPQ 7936 MB 63.47

Table 3: Comparison of different Faiss indexes regard-
ing Peak CPU Memory Usage and Avg. Score for
LLAMA-3-8B-INSTRUCT. The Avg. Score represents
the average performance across six downstream tasks,
while the peak CPU memory usage was measured using
16 test samples from the GSM8K dataset.

4.4 Memory-Efficient Indexing Alternatives 477

for CT3 Setup 478

In the CT3 prototype, we use flat inner product 479

(FlatIP) indexes for retrieval in FAISS. A more 480

memory-efficient indexing can be used if the user 481

desires to run the complete CT3 system in an AI 482

PC. As described in Table 3, using inverted file 483

product quantization (IVFPQ) indexes reduces the 484

peak CPU memory by 31% without significantly 485

impacting the average score. 486

4.5 Exploring Smaller Knowledge Bases 487

We created a subset of the original knowledge base 488

to demonstrate the effectiveness of a large knowl- 489

edge base and the efficiency and feasibility of de- 490

ploying smaller knowledge bases on local devices. 491

This smaller knowledge base includes only the 492

CoQA, Math 50K, and MBPP datasets, reducing 493

the size from 1,252,608 samples to 57,573 samples. 494

Table 4 presents the performance of CT3 using 495

both the full and reduced knowledge bases. 496

The results show that while the smaller knowl- 497
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Model Knowledge CoQA CoQA GSM8K* MathQA* MAWPS MBPP HumanEval Avg.Size EM F1 EM (0-shot) Acc. Acc. Pass@1 Pass@1

LLAMA-3-8B-INSTRUCT
/ 61.78 78.40 40.00 30.00 43.70 51.60 54.88 51.48

57.57K 71.90 82.99 59.00 34.50 75.63 51.80 57.93 61.96
1.25M 72.18 83.30 63.50 32.00 86.97 52.40 59.76 64.30

LLAMA-3.1-8B-INSTRUCT
/ 63.63 78.82 23.00 15.50 25.21 52.20 59.76 45.45

57.57K 72.57 83.35 62.50 22.00 84.03 52.60 62.80 62.83
1.25M 71.95 83.82 70.00 28.00 88.66 53.00 62.80 65.46

Table 4: Performance comparison of CT3 using a knowledge base (1.25M samples, Table 1) versus a reduced
knowledge base (57.57K samples). The reduced knowledge base includes only CoQA, Math 50K, and MBPP
datasets. * for GSM8K and MathQA indicates a subset of 200 randomly sampled test samples.

edge base (57.57K) improves performance over498

the baseline models without CT3, the larger knowl-499

edge base (1.25M) consistently yields better results.500

For instance, with LLAMA-3-8B-INSTRUCT, the501

average performance increases from 51.48 (base-502

line) to 61.96 with the smaller knowledge base and503

to 64.30 with the larger knowledge base. This in-504

dicates that a larger and more diverse knowledge505

base provides more relevant samples for test-time506

training, leading to superior performance.507

These findings highlight the trade-off between508

knowledge base size and performance. While a509

smaller knowledge base is more efficient and feasi-510

ble for local deployment, a larger knowledge base511

offers significant performance gains.512

4.6 Performance with Domain-Specific513

Databases514

To further investigate the impact of retrieving sam-515

ples exclusively from the correct domain, we per-516

formed experiments where the query samples were517

extracted only from the corresponding domain-518

specific dataset. Table 5 presents the perfor-519

mance comparison of CT3 using a mixed-domain520

database versus an in-domain database for CT3.521

The results indicate that the in-domain scenario per-522

forms comparably or slightly better than the multi-523

domain scenario, suggesting that while domain-524

specific retrieval can enhance performance, the525

multi-domain setup proposed in this paper is feasi-526

ble and effective. In real-world applications, incor-527

porating a domain classifier or user-guided domain528

selection could further optimize the retrieval pro-529

cess, ensuring that the most relevant samples are530

used for test-time training, thus maximizing model531

performance.532

5 Conclusion533

Test-time Training (TTT) is an effective method534

for improving model performance at the expense535

of more computation at inference time. We present536

Task & Metric BaselineDomain CT3 CT3 + SSR

CoQA EM 61.78 Mix 71.90 69.85
Reading 71.63 70.05

CoQA F1 78.40 Mix 82.99 81.97
Reading 82.80 82.19

GSM8K* EM 40.00 Mix 59.00 54.50
(0-shot) Math 61.00 61.00

MathQA* Acc. 30.00 Mix 34.50 33.00
Math 32.00 30.00

MAWPS Acc. 43.70 Mix 75.63 68.07
Math 78.99 81.51

MBPP Pass@151.60 Mix 51.80 52.80
Coding 52.00 52.80

HumanEval 54.88 Mix 57.93 57.32
Pass@1 Coding 56.71 56.71

Avg. 51.48 Mix 61.96 59.64
In-Domain62.16 62.04

Table 5: Performance comparison of CT3 using
LLAMA-3-8B-INSTRUCT with baseline (w/o CT3),
CT3 using a mixed-domain database, and CT3 with
an in-domain database across various tasks and metrics.
This experiment uses the smaller knowledge base (§4.5)
for efficiency. * for GSM8K and MathQA indicates a
subset of 200 randomly sampled test samples.

CT3, a system that enables the application of TTT 537

in client devices that might have resource con- 538

straints. The results of the CT3 prototype using 539

supervisory signals from a knowledge base are a 540

call to action to investigate further improvements to 541

learning at test-time methods. Future work should 542

explore more challenging scenarios and datasets to 543

better understand the potential and limitations of 544

collaborative test-time training. The current ver- 545

sion of CT3 works on text queries. With increased 546

sophistication, future versions of CT3 must handle 547

more complex tasks and multimodal queries. 548
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Limitations549

Although our CT3 prototype produces compelling550

results and demonstrates how to alleviate the knowl-551

edge base storage burden at client devices, it also552

presents limitations. For instance, more research553

is needed to design methods to determine the right554

data mix at the knowledge base. In real-world appli-555

cations, the effectiveness of CT3 is likely more pro-556

nounced with a more extensive and diverse knowl-557

edge base. A larger knowledge base would provide558

a broader range of samples, potentially improv-559

ing the relevance and quality of the data retrieved560

for TTT, thereby enhancing the model’s perfor-561

mance even further. Our experimental results have562

demonstrated the feasibility and potential benefits563

of CT3. In the current version of CT3’s prototype,564

the server can recover the content of the user’s565

prompt. A real-world solution should incorporate566

privacy mechanisms to protect the user. In addition567

to encrypting the query for its transmission, e.g.,568

utilizing Secure Sockets Layer (SSL), many open569

research challenges exist to increase the privacy570

and handling of the user’s content on the server.571

Ethical Considerations572

Test-time training (TTT) techniques promise im-573

provements in model performance, making them574

more accurate at the cost of more computation.575

However, they alone do not solve existing chal-576

lenges in large foundation models and their smaller577

counterparts. Our research explores systems and578

techniques to enable running TTT in client devices579

with resource constraints. However, applying our580

system and techniques to real-world applications581

must include additional safeguards to prevent hallu-582

cinations or intentional misinformation that could583

affect the well-being of users of the system. The584

research community must continue investigating so-585

lutions to address these and other open challenges586

in popular language models.587
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Dataset Domain Link
CoQA Training set Reading comprehension link
MetaMath Math link
Orca-Math Math link
Math 50K Math link
The Stack Python Coding link
MBPP training set Coding link

Table 6: The details of the datasets in the knowledge
base.

Task Domain Eval Framework Link

CoQA Reading Comp. lm-eval-harness link

GSM8K Math lm-eval-harness link

MathQA Math llm-adapters link

MAWPS Math llm-adapters link

MBPP Coding bigcode-eval-harness link

HumanEval Coding bigcode-eval-harness link

Table 7: Various evaluation tasks.

A Datasets748

The details of the knowledge base datasets and749

the evaluation tasks used in the experiments are750

presented in Tables 6 and 7. We evaluated several751

language models on a diverse set of tasks. We752

categorize the tasks into:753

• Reading Comprehension Tasks754

– CoQA (Conversational Question An-755

swering, Reddy et al. (2019))756

• Mathematical Reasoning Tasks757

– GSM8K (Grade School Math 8K, Cobbe758

et al. (2021))759

– MathQA (Math Word Problem Question760

Answering, Amini et al. (2019))761

– MAWPS (MAth Word ProblemS,762

Koncel-Kedziorski et al. (2016))763

• Coding Tasks764

– MBPP (Mostly Basic Python Problems,765

Austin et al. (2021))766

– HumanEval (Hand-Written Coding Eval-767

uation Set, Chen et al. (2021))768

B Additional Results with LSM769

Table 8 shows that incorporating CT3 and LSM770

consistently enhances performance. These results771

underscore the effectiveness of LSM in boosting772

both performance and efficiency.773

C Comparing SIFT and Nearest 774

Neighbors Performance in the CT3 775

Setup 776

SIFT adds an additional step when retrieving rele- 777

vant samples from the knowledge base, requiring 778

an initial retrieval utilizing the nearest neighbors 779

(NN) method. In our exploration to make the CT3 780

pipeline more efficient, we explore the impact of 781

removing SIFT and using directly the results from 782

NN. Table 9 presents a comparative analysis of 783

CT3 with and without the SIFT step across various 784

evaluation tasks. The results indicate that while 785

SIFT provides a slight performance edge in some 786

cases, the difference is not substantial. For instance, 787

in the CoQA task, CT3 with SIFT achieves an Ex- 788

act Match (EM) score of 68.85 and an F1 score of 789

81.13, compared to 67.43 EM and 80.73 F1 with- 790

out SIFT. This marginal improvement suggests that 791

SIFT’s additional filtering step refines the sample 792

selection process, leading to slightly better perfor- 793

mance. In conclusion, while SIFT provides a slight 794

performance boost, NN alone offers a simpler and 795

more computationally efficient approach for sam- 796

ple retrieval in the CT3 system. 797

D Case Studies 798

Tables 10, 11, and 12 compare different methods 799

to solve various problems, highlighting the effec- 800

tiveness of CT3 in providing clear, concise and ac- 801

curate solutions to user queries on client devices. 802
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Method Budget B
Reuse

Avg. Score Impr.
Evaluation

Threshold τ Speedup

LLAMA-3-8B-INSTRUCT / / 51.48 / /
+ CT3 / / 63.66 +24% 1.00×

+ CT3 + LSM

2 0.5 63.99 +24% 1.21×
4 0.5 64.17 +25% 1.36×
8 0.5 64.75 +26% 1.60×
2 0.4 64.13 +25% 1.59×
4 0.4 63.26 +23% 1.98×
8 0.4 63.68 +24% 2.24×

LLAMA-3.1-8B-INSTRUCT / / 45.45 / /
+ CT3 / / 64.48 +42% 1.00×

+ CT3 + LSM

2 0.5 65.29 +44% 1.16×
4 0.5 64.71 +42% 1.29×
8 0.5 65.53 +44% 1.46×
2 0.4 63.85 +41% 1.46×
4 0.4 64.10 +41% 1.72×
8 0.4 63.12 +39% 1.89×

MISTRAL-7B-INSTRUCT-V0.3 / / 47.11 / /
+ CT3 / / 53.48 +14% 1.00×

+ CT3 + LSM

2 0.5 51.67 +10% 1.20×
4 0.5 51.52 +9% 1.42×
8 0.5 50.86 +8% 1.61×
2 0.4 51.92 +10% 1.60×
4 0.4 51.05 +8% 2.08×
8 0.4 50.66 +8% 2.28×

QWEN2.5-3B-INSTRUCT / / 51.81 / /
+ CT3 / / 57.46 +11% 1.00×

+ CT3 + LSM

2 0.5 57.16 +10% 1.21×
4 0.5 57.76 +11% 1.39×
8 0.5 57.70 +11% 1.65×
2 0.4 56.85 +10% 1.57×
4 0.4 55.98 +8% 2.08×
8 0.4 55.80 +8% 2.32×

Table 8: Performance comparison of LSM with varying budgets and reuse thresholds.

Method
CoQA CoQA GSM8K* MathQA* MAWPS MBPP HumanEval

Avg. Impr.
EM F1 EM (0-shot) Acc. Acc. Pass@1 Pass@1

QWEN2.5-3B-INSTRUCT 54.70 71.22 61.50 20.00 87.82 41.20 26.22 51.81 /
+ CT3 w/ SIFT 68.85 81.13 66.00 34.00 86.13 46.20 27.44 58.54 +13%
+ CT3 w/o SIFT 67.43 80.73 68.50 30.00 86.13 46.00 28.66 58.21 +12%

Table 9: Performance comparison of CT3 w/ SIFT and CT3 w/o SIFT (QWEN2.5-3B-INSTRUCT). The ablation
studies use the smaller knowledge base (§4.5) for efficiency.
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Prompt Question: Charlie wants to sell beeswax candles. For every pound of
beeswax, he can make 10 tapered candles. One pound of beeswax and the
wicks cost $10.00 in supplies. If he sells each candle for $2.00 each, what is
his net profit if he makes and sells 20 candles? Answer:

Reference Solution 1 pound of beeswax and the wick make 10 candles and he wants to make 20
candles so he needs 20/10 = «20/10=2»2 pounds of beeswax
1 pound of beeswax costs $10.00 and he needs 2 pounds so his supplies will
cost 10*2 = $«10*2=20.00»20.00
He wants to sell each candle for $2.00 each and he’s selling 20 candles so
that’s 2*20 = $«2*20=40.00»40.00
If he makes $40.00 selling candles and his supplies cost $20.00 then his net
profit is 40-20 = $«40-20=20.00»20.00
#### 20

w/o CT3 He spends $10.00 / candle * 20 candles = $200.00 on beeswax and wicks.
He earns 2 * $2.00 = $4.00 per candle.
So he earns 20 candles * $4.00 = $80.00 total from sales.
That means his net profit is $80.00 - $200.00 = -$120.00
Therefore, the answer is -120. ✗

CT3 He uses 2 pounds of beeswax because 20 / 10 = 2
The supplies cost $20 because 2 x 10 = 20
He earns $40 from selling the candles because 20 x 2 = 40
His net profit is $20 because 40 - 20 = 20
Therefore, the answer is 20. ✓

Table 10: A case comparing different methods for solving a profit calculation problem with QWEN2.5-3B-
INSTRUCT. The table illustrates the effectiveness of CT3 in accurately solving the problem, as opposed to the
incorrect solution provided by the baseline.
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Prompt Question: Meredith is a freelance blogger who writes about health topics
and submits to clients each day as her permanent job. A blog article takes
an average of 4 hours to research and write about. Last week, she wrote 5
articles on Monday and 2/5 times more articles on Tuesday than on Monday.
On Wednesday, she wrote twice the number of articles she wrote on Tuesday.
Calculate the total number of hours she spent writing articles in the three
days. Answer:

Reference Solution If she wrote five articles on Monday, then on Tuesday she wrote 2/5* 5 = 2
more articles. The total number of articles she wrote on Tuesday is 5+2 =
«5+2=7»7
On Wednesday, the number of articles was twice the number she wrote on
Tuesday, so it was 2*7 = «2*7=14»14 articles. Over the three days, she
wrote 5+7 +14 = «5+7+14=26»26 articles. If each article takes her 4 hours
to research and write about, she spent 4*26 = «4*26=104»104 hours on all
the articles.
#### 104

w/o CT3 To determine the total number of hours Meredith spent writing articles over
the three days, we need to follow these steps:
1. **Calculate the number of articles written on Tuesday:**
- On Monday, Meredith wrote 5 articles.
- On Tuesday, she wrote \\( \\frac25 \\) times more articles than on Mon-
day.
- First, find \\( \\frac25 \\) of the articles written on Monday:
\\[\\frac25 \\times 5 = 2\\]
- Therefore, the total number of articles written on Tuesday is:
\\[5 + 2 = 7\\]
2. **Calculate the number of articles written on Wednesday:**
- On Wednesday, she wrote twice the number of articles she wrote on Tues-
day.
- The number of articles written on Tuesday is 7.
- Therefore, the number of articles written on Wednesday is:
\\[2 \\times 7 = 14\\]
3. **Calculate the total number of articles written over the three days:**
- Articles on Monday: 5
- Articles on Tuesday: 7
- Articles ✗

CT3 To find out how many articles Meredith wrote on Tuesday, we need to
calculate 2 / 5 times more than Monday’s articles. Since she wrote 5 articles
on Monday, 2 / 5 * 5 = 2 more articles than Monday. This means she wrote
5 + 2 = 7 articles on Tuesday.
On Wednesday, she wrote twice the number of articles she wrote on Tuesday,
which is 2 * 7 = 14 articles.
In total, she wrote 5 + 7 + 14 = 26 articles over the three days.
Since it takes her 4 hours to research and write about one article, she spent 4
* 26 = 104 hours writing articles in the three days.
Therefore, the answer is 104 hours. ✓

Table 11: A case comparing different methods for solving a time calculation problem with QWEN2.5-3B-INSTRUCT.
The table demonstrates that the baseline (w/o CT3) unnecessarily complicates the problem, while CT3 effectively
maximizes the model’s potential for the current query. CT3 utilizes CT3 to provide a clear, concise, and accurate
solution to the user’s query at the client device.
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Prompt Question: A wooden bridge can carry no more than 5000 pounds. A delivery
truck filled with identical boxes, each weighing 15 pounds, will pass over
the bridge. The combined weight of the driver and the empty truck is 3755
pounds. What is the maximum number of boxes which can be loaded onto
the truck while not exceeding the bridge’s weight limit? Answer:

Reference Solution The boxes can weigh up to 5000 pounds - 3755 pounds = «5000-
3755=1245»1245 pounds in total. There can be 1245 / 15 = «1245/15=83»83
boxes loaded onto the truck without exceeding the bridge’s weight limit.
#### 83

w/o CT3 First find the total weight capacity of the truck by adding the weight limit of
the bridge to the weight of the driver and empty truck: 5000 pounds + 3755
pounds = 8755 pounds. Then divide that number by the weight of each box
to find the maximum number of boxes: 8755 pounds / 15 pounds / box =
583.666... boxes. Since we can’t have a fraction of a box, we call this 583
boxes. Therefore, the answer is 583. ✗

CT3 First, we need to find out how much weight the boxes can add to the truck
without exceeding the bridge’s weight limit. We do this by subtracting the
weight of the driver and the empty truck from the bridge’s weight limit:
5000 - 3755 = 1245 pounds.
Next, we divide the remaining weight capacity by the weight of a single box
to find out how many boxes can be added: 1245 / 15 = 83 boxes.
The answer is 83. ✓

Table 12: A case for comparing different methods of solving a weight calculation problem using QWEN2.5-3B-
INSTRUCT. It demonstrates the model’s misunderstanding of the problem when CT3 is not used, specifically by
incorrectly adding the bridge’s weight limit to the truck’s weight.
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