CT3: Boosting Downstream Performance through Test-time Training on
AI PCs with Remote Multi-Domain Knowledge Bases

Anonymous ACL submission

Abstract

Learning at test time is an effective strategy
for improving the performance of large lan-
guage models (LLMs), although at the expense
of increased computational costs during infer-
ence. In this paper, we introduce Collaborative
Test-Time Training (CT3), a novel system de-
signed to enhance the downstream accuracy
of LLMs on client devices such as Al PCs
through Test-Time Training (TTT) leveraging
a remote multi-domain knowledge base. CT3
efficiently distributes the TTT process using a
server-client architecture, allowing clients to
fine-tune their models using relevant samples
from the server. It also proposes a local state
management mechanism and a simple but ef-
fective sample size reduction strategy to opti-
mize test-time training without compromising
accuracy. Our experiments demonstrate signif-
icant accuracy improvements across multiple
domains and various LLMs with up to 44% in-
crease in average downstream performance and
a speedup ranging from 1.5x to 2.5x compared
with vanilla TTT. The code to reproduce CT3’s
results will be released open-source.

1 Introduction

There is an increasing interest in techniques for
enhancing model performance by using additional
computational resources at test time rather than
scaling model parameters during training (Snell
et al., 2025). Test-time training (TTT) is one
such approach that leverages test-time compute
resources to fine-tune the model during inference.
This paradigm improves the robustness and accu-
racy of large pre-trained models, addressing the key
challenge of covariate shift, wheretest and training
data distributions differ, potentially causing subop-
timal performance. TTT enhances language mod-
eling performance by accessing a reference dataset
(Hardt and Sun, 2024; Hiibotter et al., 2024), from
which a subset of data points is retrieved and used
for temporary model fine-tuning.

~
o
S
X

—e— SpeedUp Base
CT3

-
= CT3 + LSM
W CT3 + SSR 3x
CT3 + LSM + SSR

Qo

p=}

ZXE

8

"
1x
0x

Llama-3-8B-Inst Llama-3.1-8B-Inst Mistral-7B-Inst-v0.3 Qwen2.5-3B-Inst

o
@

o
o

Downstream Task Performance (%)
w w
o w

IS
o

N
o

Figure 1: Performance overview of CT3 on downstream
tasks across various LLMs. “Downstream Task Perfor-
mance” indicates the average score on six downstream
tasks with multiple domains evaluated in §4.

When the size of the TTT reference dataset
reaches several petabytes, using these techniques
on resource-constrained devices at the Edge be-
comes challenging due to their limited resources
and the need for real-time fine-tuning, which de-
mands significant computational power and storage
capacity. Our work is motivated by these chal-
lenges and a new segment of client computing de-
vices, namely Atrtificial Intelligence Personal Com-
puters (Al PCs), which are equipped with Al ac-
celerators such as Neural Processing Units (NPUs)
and exhibit outstanding power efficiency. These Al
PCs efficiently run sophisticated language models
locally, such as LLAMA-3-8B-INSTRUCT (Dubey
et al., 2024). The increasing demand for Al PCs
motivates the development of solutions to improve
model performance on these devices.

This paper addresses these challenges by propos-
ing Collaborative TTT (CT3), a solution that en-
ables client devices to benefit from TTT without
storing large reference datasets locally. Specifi-
cally, our approach leverages an efficient client-
server solution to allow the limited device to ben-
efit from the knowledge stored on a remote server
while minimizing the communication rounds. To

Math

7 *=
p — 1
Coding

S R Tey

~

Clients Ve ___C

1
|
1
Multi-Domain | Retrieval Retrieved 1
Knowledge samples :
Base |
7
A\ ! I
N [1
T Samplel Size C El_e-"| !
: AIPC O, 1
Local State Reduction I_-'-ll : 1
Mgmt. ! Test-time

Cached ! 1 |

Query Ada 1 Training /\

A pter 1 1
Embedding v : 8 |
Embedding Model Language Model (Local) !> Response :

1
] 1

—— e e e e e e e e e

Figure 2: Overview of Collaborative TTT (CT3). The performance of models at client devices improves by utilizing
Test-Time Training with a remote multi-domain knowledge base.

enhance the setup’s sophistication, we explore us-
ing a multi-domain knowledge base and investi-
gate the tolerance of TTT algorithms to complex
data mixes. CT3 allows users to run custom mod-
els in their resource-constrained devices with TTT,
overcoming limitations such as training data avail-
ability while benefiting from downstream task per-
formance improvements. CT3 introduces Local
State Management (LSM) and Sample Size Re-
duction (SSR) strategies to optimize the test-time
fine-tuning process on client devices. LSM lever-
ages historical query embeddings and their associ-
ated fine-tuned adapters to potentially bypass the
need for repeated fine-tuning, thus significantly re-
ducing computational overhead and latency. SSR
strategies complement LSM by filtering out irrele-
vant samples, ensuring that only the most relevant
samples are used, thereby reducing the number
of training samples and accelerating the process
without compromising accuracy. Figure 1 provides
a performance overview of CT3. The following
sections discuss these contributions:

1. CT3, a system for improving the downstream
reasoning capabilities of LLMs running in
client devices (Figure 2).

2. An investigation into using multi-domain
knowledge bases with clear supervisory sig-
nals in the context of test-time training for
downstream tasks.

3. Local State Management (LSM) and Sam-
ple Size Reduction (SSR) strategies to opti-
mize the test-time fine-tuning process, reduc-
ing computational overhead and improving
system responsiveness.

The rest of the paper is organized as follows. We
discuss related work in §2. Then, §3 describes the
CT3 system, while §4 presents results on various
downstream tasks. Our final thoughts are in §5.

2 Related Work

Test-time compute techniques have been proposed
as an alternative to increasing the number of model
parameters for improving language model perfor-
mance (Snell et al., 2025). Notable test-time strate-
gies include Chain-of-Thought (CoT) prompting
(Wei et al., 2022) and few-shot learning (Brown
et al., 2020). CoT prompting guides the model
through intermediate steps to break down com-
plex tasks, enhancing its ability to handle intricate
queries. Few-shot learning helps the model adapt to
new tasks with just a few examples. Other test-time
compute methods include verifying the model’s re-
sults, e.g., by code execution (Brown et al., 2025).
The renewed focus on test-time compute has even
motivated the development of improved neural ar-
chitectures, e.g., Titans (Behrouz et al., 2024).

Among the many recent test-time compute
approaches proposed, Test-Time Training (T1T)
(Hardt and Sun, 2024; Hiibotter et al., 2024;
Akyiirek et al., 2024) has been crucial in improv-
ing the performance of solutions, e.g., Omni-ARC
(IronbarArc24, 2024) in the ARC-AGI challenge
(ARC-AGI, 2025; Chollet, 2019).

TTT effectively adapts the model by fine-tuning
it with selected samples from an available training
dataset during inference. Recently, SIFT (Hiibot-
ter et al.,, 2024) demonstrated that it could re-
trieve informative samples, outperforming tradi-
tional Nearest-Neighbor (NN) retrieval (Hardt and
Sun, 2024). Their experimental setup uses the

Pile dataset (Gao et al., 2020), which lacks a clear
question-answer pair structure despite covering a
wide range of topics and fields with plain text data.
This weak supervision signal makes the training
process more challenging, focusing on the model’s
language modeling capabilities (Pile benchmark
(Gao et al., 2020)). In contrast, CT3 prioritizes
downstream task performance. Our knowledge
base comprises structured question-answer pairs
with clear supervisory signals, which helps the
model explicitly learn the relationship between in-
put and output during training.

In the context of distributed architectures, the
work by Hardt and Sun (2024) proposes a client-
server structure to speed up query time across large
datasets. Their approach splits FAISS (Douze et al.,
2024) indexes across multiple servers, allowing
clients to send queries to each server and aggregate
the results. This method primarily focuses on accel-
erating query processing and handling large-scale
data efficiently. In contrast, our CT3 leverages a
server-client architecture to facilitate TTT using a
remote multi-domain knowledge base. While both
approaches utilize distributed architectures, our sys-
tem is designed to enhance model performance on
resource-constrained client devices by retrieving
relevant samples for fine-tuning during inference.
Their architecture (Hardt and Sun, 2024) can be
integrated into our remote server to further opti-
mize sample retrieval, highlighting the potential of
combining between these approaches.

Next, we explore CT3, a system that enhances
model downstream performance on client devices.

3 CT3 System

This section introduces Collaborative Test-Time
Training (CT3), a system designed to distribute
Test-Time Training to allow resource-constrained
clients to enhance their model downstream perfor-
mance using a remote multi-domain knowledge
base. CT3 also incorporates Local State Manage-
ment (LSM) and Sample Size Reduction (SSR)
strategies to speed up the fine-tuning stage without
sacrificing accuracy. The following sections detail
each of CT3’s components and strategies.

3.1 Preliminaries: Test-Time Training (TTT)

Given a pre-trained model and a query z, a TTT
solution utilizes a similarity metric ¢ to retrieve k
samples from a reference dataset D. These sam-
ples are then used to fine-tune the model weights
at test time, resulting in improved model perfor-
mance for the current query. Next, we discuss how

CT3 leverages the TTT paradigm in a distributed
setting to improve model performance in resource-
constrained client devices.

3.2 Distributed Test-time Training

CT3 operates efficiently in heterogeneous compute
environments (Figure 2), following a server-client
paradigm implemented using FastAPI (Ramirez,
2025). In this section, we discuss the functionality
of CT3 at both the server and client levels.

Server The remote server hosts a comprehen-
sive multi-domain knowledge base D, which en-
compasses training samples across commonsense
reasoning, reading comprehension, coding, and
math reasoning domains. The data is stored
along with their corresponding embeddings, which
are generated using a pre-trained model from
sentence-transformers (Reimers and Gurevych,
2019). The dataset can be represented as D =
{(xi,e:,9i) }&,, where z; denotes the i-th input
sentence, e; represents its embedding, and y; is the
associated label or output.

The server receives client queries as embed-
dings. To ensure consistency, servers and clients
are required to use the same sentence-transformers
to generate embeddings. A private embedding
model and encryption can increase privacy pro-
tection in data-sensitive applications. Upon receiv-
ing a client query embedding e,, following SIFT
(Hiibotter et al., 2024), the server utilizes FAISS
(Douze et al., 2024) to retrieve n relevant samples
Dr = {(x;,ei,y;)}i, from the knowledge base.
The similarity metric ¢ employed by FAISS is the
inner product, i.e., ¢(e;, €;) = e, - €;, calculated
between the embedding of the current query e, and
the embeddings e; of candidate samples from the
dataset D. CT3 might use other search strategies to
yield better performance based on the multi-domain
data characteristics and mix.

To obtain more accurate and relevant samples,
the SIFT algorithm (Hiibotter et al., 2024) is ap-
plied to further refine the results retrieved by FAISS.
SIFT filters the samples retrieved by FAISS, re-
sulting in a smaller set, Ds = {(zi,e;,%:)}r
(k < n), that is returned to the client without the
embedding e; for efficient transmission.

The server can extract and transmit the corre-
sponding samples to clients based on the above
process. The client utilizes these samples to fine-
tune its custom model, thereby increasing the accu-
racy and quality of the output.

Clients On a client device, the workflow is as
follows: a deployed large language model receives
a query x from the user. The client locally gener-
ates an embedding of the query ey, using the same
sentence-transformers model as the server. This
embedding is then transmitted to the remote server.
As discussed above, the server sends back a set
Ds with k relevant samples to the query, excluding
their embeddings. Using Dg, the client temporarily
fine-tunes its custom model via LoRA (Hu et al.,
2022) for efficiency, resulting in improved perfor-
mance during inference. Finally, nothing prevents
a client with resources that satisfy the requirements
of smaller deployments to run the complete CT3
pipeline on a single device.

In-Domain Sample Selection CT3 does not
know the domain of the user’s query in advance.
During development, we explored two approaches
for assisting the system when searching for in-
domain samples:

1. User guidance to determine the domain

2. Automatic domain clustering purely based on
embeddings

Although user guidance (1) is a viable strategy,
our initial objective was to reduce user friction
and minimize user actions to improve the system
performance. In the automatic domain clustering
approach (2), domain specialization occurs during
the online search of relevant samples for test-time
fine-tuning, allowing CT3 to provide samples tai-
lored to the domain-specific query from the user.
Experimentally (§4.3), we have observed that auto-
matic domain clustering is feasible but with several
challenges. For instance, the knowledge base must
have the correct data mix, which presents an addi-
tional challenge to system administrators.

Local State Management (LSM) The fine-
tuning stage at the client is the most expensive
operation in the CT3 pipeline. For this reason,
we propose caching strategies at the sampling and
model state levels. A multi-turn historical Local
State Management (LSM) strategy is described
in Algorithm 1. Based on the availability of re-
sources at the client, CT3 can budget the tracking
of m past query embeddings Q and their associ-
ated groups of already fine-tuned LoRA adapters A.
Each new user query embedding is compared with
historical query embeddings to identify the one that
maximizes a similarity function 7, indicating the
possibility of using the group of associated weight

adapters and skipping the TTT stage to speed up
inference without affecting accuracy. A simple
version of Algorithm 1, is the one-look-back strat-
egy in which m = 1 and CT3 forgets beyond the
immediate previous query.

Algorithm 1 Multi-Turn Historical Local State
Management (LSM)

Input: Current query embedding e,:, set Q of m histor-
ical query embeddings, i.e., Q@ = {ez1,...,egm}, set A
of m historical TTT fine-tuned adapter groups, i.e., A =
{ag1,...,aym }, reuse threshold 7, budget B for the number
of adapter groups kept in the client device, similarity metric
7, and an eviction mechanism « to determine the historical
query to be evicted.

Output: Current adapter group state S;.

1: ey= = argminy(e,i, e,t)
e.i€

2: if y(ex*,e,t) > 7 then

3: // Retrieve corresponding adapter group
4: St < Qg+

5: else

6: Sy +— TTT(ewt, So)

7: if|Q| > B then

8: /I Evict one historical query using x
9: exr = K(Q)

10: Q = Q \ €xr

11: A=A\ apr

12: endif

13: // Add new query and adapter to LSM
14: Qu €t

152 A U St

16: end if

17: // Inference using S;

Sample Size Reduction (SSR) We also explore
simple but effective sample size reduction strate-
gies to reduce further the samples selected by SIFT.
The strategies follow this pattern: CT3 obtains
statistics from the multiset of acquisition values,
V ([V| = k), associated with the k samples se-
lected by SIFT. In particular, CT3 explores using
the minimum of the mean and the median on V as
the cut-off point for discarding selected samples.
Based on these statistics, CT3 selects a subset, V’,
such that |V'| < |V].

4 Experiments

We implement a prototype of the CT3 system as
a testbed, demonstrating the potential benefits in a
larger deployment. Next, we discuss the resources
utilized in our experimentation, followed by results
demonstrating the benefits of enabling test-time
training in client devices.

4.1 Setup

Knowledge base To rigorously evaluate the
CT3 prototype, we utilize a comprehensive multi-
domain knowledge database. This knowledge base

Dataset Domain # Samples
CoQA (Reddy et al., 2019) Reading 7,199
MetaMath (Yu et al., 2023) Math 395,000
Orca-Math (Mitra et al., 2024) Math 200,035
Math 50K (Zhigiang et al., 2023) Math 50,000

The Stack Python (Kocetkov et al., 2022) Coding 600,000
MBPP (Austin et al., 2021) Coding 374
Total / 1,252,608

Table 1: Knowledge base composition. These datasets
cover various domains, including reading comprehen-
sion, math, and coding. The Stack Python dataset con-
sists of a random sample of 600,000 entries from the
original Stack dataset (Python). All these datasets are
training sets and do not contain any of the test samples
we evaluated.

is constructed by integrating data from several di-
verse datasets (Table 1). Specifically, we incorpo-
rate the CoQA (Reddy et al., 2019) training set,
a large-scale dataset designed for developing con-
versational question-answering systems, which is
expected to enhance the model’s reading compre-
hension capabilities.

For mathematical problem solving, we include
three substantial datasets: MetaMath (Yu et al.,
2023), a dataset comprising 395,000 samples de-
signed to improve mathematical reasoning by boot-
strapping questions from multiple perspectives;
Orca-Math (Mitra et al., 2024), which includes
200,035 high-quality synthetic math problems cre-
ated using a multi-agent setup, and Math 50K
(Zhiqgiang et al., 2023), which consists of 50,000
samples drawn from various mathematics-related
datasets.

In the coding domain, we integrate The Stack
Python, a dataset we constructed by randomly sam-
pling 600,000 entries from the Python subset of
The Stack (Kocetkov et al., 2022), which covers a
wide range of programming languages and serves
as a pre-training dataset for code-generating Al
systems. Additionally, we include the Mostly Ba-
sic Python Problems (MBPP) (Austin et al., 2021)
training dataset, which consists of 374 crowd-
sourced Python programming problems aimed at
entry-level programmers.

This amalgamation of datasets ensures a robust
and diverse foundation for evaluating the CT3 sys-
tem’s performance across multiple domains, includ-
ing Reading Comprehension, Math, and Coding.

Evaluation We employ a combination of evalua-
tion tools for our experiments to rigorously assess
CT3 prototype’s performance across various do-
mains. Specifically, we utilize the Im-eval-harness
(Gao et al., 2023) for evaluating CoQA (Reddy
et al., 2019) and GSMS8K (Cobbe et al., 2021). For
GSMBSK, to better align with real-world TTT sce-
narios, we use zero-shot instead of the commonly
used few-shot approach. For more mathematical
reasoning evaluations, we also apply the evaluation
scripts of LLM-Adapters (Zhigiang et al., 2023)
on MathQA (Amini et al., 2019) and MAWPS
(Koncel-Kedziorski et al., 2016) datasets. For cod-
ing, we evaluate MBPP (Austin et al., 2021) and
HumanEval (Chen et al., 2021) utilizing bigcode-
evaluation-harness (Ben Allal et al., 2022). For
experimental efficiency, we randomly sampled a
subset of 200 samples from GSM8K and MathQA
for evaluation, respectively.

Models We test our method on various LLMs,
including LLAMA-3-8B-INSTRUCT, LLAMA-3.1-
8B-INSTRUCT (Dubey et al., 2024), MISTRAL-7B-
INSTRUCT-VO0.3 (Jiang et al., 2023) and QWEN2.5-
3B-INSTRUCT (Yang et al., 2024). For the retrieval
stage in CT3, we utilize ALL-MPNET-BASE-V2
(Reimers and Gurevych, 2019) as a surrogate em-
bedding model.

Hyperparameters and Implementation We em-
ploy two epochs for test-time training with a learn-
ing rate of 5e-5. We adjust the learning rate for
coding tasks to either le-5 or 3e-5. The batch size
is set to 1 across all tasks. We apply LoRA fine-
tuning at test time, with a LoRA rank of 128 and a
LoRA alpha of 16. The target modules for LoORA
include the Query, Key, and Value and the Up and
Down projection layers. Note that greedy decoding
is applied to generate the responses for all tasks.
The number of samples for test-time training is se-
lected from the hyperparameter space [4, 8, 16, 32,
64] based on the best results. For LSM, the reuse
threshold 7 and k£ in LSM is 0.5 and 8, respec-
tively. The similarity metric is the inner product,
and the eviction mechanism is the Least Frequently
Used (LFU) cache. Regarding the retrieval stage,
we follow the pipeline of SIFT (Hiibotter et al.,
2024). More explorations can be found in §4.4 and
Appendix C.

4.2 Main Results

Table 2 presents the performance of various large
language models on multiple evaluation tasks, com-

CoQA CoQA GSMSK® MathQA* MAWPS MBPP HumanEval Evaluation
Method Avg. Impr.
EM F1 EM (0-shot) Acc. Acc. Pass@1 Pass@1 Speedup
LLAMA-3-8B-INSTRUCT 61.78 7840 40.00 30.00 4370 5160 5488 5148 / /
+CT3 7038 8225 60.50 3600 86.13 5240 57.93 63.66 +24% 1.00x
+CT3 +SSR 70.68 8246 5500 2850 8571 5240 5732 61.72+420% 1.76x
+CT3 +LSM 70.17 8224 5950 4150 89.08 51.60 59.15 64.75+26% 1.60x
+CT3 +LSM + SSR 7020 82.17 5600 33.00 8445 51.80 56.10 61.96 +20% 2.24x
LLAMA-3.1-8B-INSTRUCT ~ 63.63 78.82 23.00 1550 2521 5220 59.76 4545 / /
+CT3 7112 8348 7000 2150 89.50 53.60 6220 64.48 +42% 1.00x
+CT3 +SSR 7052 8249 67.00 28.00 90.76 52.00 61.59 64.62 +42% 1.51x
+CT3 +LSM 7223 8395 70.00 28.00 90.76 5220 6159 6553+44% 146x
+CT3 +LSM + SSR 7102 8278 61.00 2250 87.82 5140 6098 62.50 +38% 1.85x
MISTRAL-7B-INSTRUCT-V0.3 65.55 80.04 17.00 28.00 68.07 37.60 33.54 47.11 / /
+CT3 7132 83.08 2450 3250 8697 38.80 3720 53.48+14% 1.00x
+CT3 +SSR 7085 82.65 1450 29.00 7899 38.00 3476 49.82 +6% 1.71x
+CT3 +LSM 7058 82.62 1350 2950 83.61 37.80 3841 50.86 +8% 1.61x
+CT3 +LSM + SSR 69.80 82.14 10.50 34.00 78.15 38.60 3598 49.88 +6% 2.35x
QWEN2.5-3B-INSTRUCT 5470 7122 61.50 2000 87.82 4120 2622 5181 / /
+CT3 6727 8053 6150 28.00 8824 4680 29.88 5746 +11% 1.00x
+CT3 + SSR 6622 7977 6350 3350 70.17 4580 2744 5520 +7% 123x
+CT3 +LSM 6743 80.59 6350 3250 88.66 4440 2683 57.70+11% 1.65x
+CT3 +LSM + SSR 67.15 80.56 65.00 31.00 6134 4340 2927 5396 +4% 148x

Table 2: Performance comparison of different versions of CT3. “SSR” stands for Sample Size Reduction, which
approximately halves the TTT training samples for each query. “Evaluation Speedup” shows the speedup factor
achieved by our proposed strategies. “EM” represents Exact Match. “Impr.” indicates the improvement in the
average score. Note that * for GSM8K and MathQA indicates a subset of 200 randomly sampled test samples.

age performance from 51.48 to 63.66, representing
07 a 24% improvement. When combined with LSM,
°¢ CT3 achieves an average score of 64.75, a 26%
improvement, and with both LSM and SSR, it
05 achieves a 20% improvement with a 2.24 x evalua-
<2 tion speedup compared to CT3. Similarly, LLAMA-
ot 3.1-8B-INSTRUCT shows a remarkable 42% im-
provement with CT3 and achieves higher perfor-
mance with LSM, achieving up to 1.46x speedup.

CoQA 0.23%

BURCERN 25.87% | 37.27%

71.53% 62.32%

0.00% 0.08% 0.01% 0.04% 08

MetaMath- 3.48% 3.87% 2.98%

Orca-Math- 5.82% 4.06% 3.48%

Math 50K- 1.00%

0.53% | 2.33% | 0.33% | 2.32%

1.70%

Knowledge Base

The Stack Python- 7.19%

0.06% 0.25% 0.00% NN R R

24.71% | 2.85%

MBPP Humaneval

MBPP- 0.00% 0.00% 0.02% 0.00%

MathQA MAWPS
Evaluation Tasks

CoQA GSM8K

Figure 3: Domain distribution of training data sam-
ples across evaluation tasks (counted all test samples).
The red border indicates the domain corresponding to
the current task (in-domain). We expect higher values
within the red border, meaning that the test-time training
samples from the knowledge base are more aligned with
the domain of the current task.

paring the baseline models without CT3, with CT3,
and CT3 incorporating the LSM and SSR strate-
gies. The results demonstrate that CT3 signifi-
cantly enhances the performance across all down-
stream tasks and models. For example, regarding
LLAMA-3-8B-INSTRUCT, CT3 improves the aver-

The results indicate that CT3 significantly im-
proves model performance across various tasks and
domains. The LSM and SSR strategies effectively
maintain high performance while substantially re-
ducing the TTT computational overhead, making
CT3 more feasible for resource-constrained de-
vices.

4.3 In-Domain Sample Retrieval

To evaluate the effectiveness of CT3 in retriev-
ing relevant in-domain samples from multi-domain
data, we conducted experiments to analyze the do-
main distribution of the retrieved training samples
across various evaluation tasks. Figure 3 illustrates

the distribution of TTT data samples retrieved for
each evaluation task, categorized by their respec-
tive domains.

The heatmap reveals that most retrieved samples
align well with the domain of the current task, as
indicated by higher values within the red-bordered
cells. For instance, 82.50% of the samples retrieved
for the CoQA task are from the CoQA dataset,
demonstrating strong in-domain alignment. This
is particularly noteworthy given that the CoQA
dataset constitutes only a small fraction of the
knowledge base (7,199 out of 1,252,608 samples).
Despite the overwhelming presence of unrelated
data, CT3’s retrieval mechanism can precisely iden-
tify and select relevant CoQA samples for the
CoQA task. Similarly, for GSM8K, 54.93% of
the samples are from MetaMath, and for MathQA,
71.53% are from Orca-Math, indicating that CT3
successfully identifies and selects relevant mathe-
matical datasets for these tasks.

These alignments are crucial for the success
of test-time training, as it ensures that the model
is fine-tuned with high-quality, relevant samples,
thereby significantly enhancing performance across
various tasks. The effectiveness of CT3 in achiev-
ing such precise retrieval is attributed to the robust
embedding models (Reimers and Gurevych, 2019)
and retrieval algorithms employed. These tools
enable CT3 to navigate a vast and diverse knowl-
edge base, accurately matching queries to the most
relevant samples. Overall, the results highlight
the importance of retrieving high-quality, relevant
samples for test-time training, allowing CT3 to
enhance model performance significantly by lever-
aging domain-specific data effectively.

Additionally, we performed a t-SNE visualiza-
tion of the embeddings for some samples in the
database, as shown in Figure 4. The visualiza-
tion demonstrates a clear clustering of samples by
domain that CT3 can exploit to retrieve domain-
specific samples. For example, the coding datasets
(The Stack Python and MBPP) exhibit clear clus-
tering, validating the embedding model’s capability
to differentiate between domains. This clustering
effect underscores the robustness of the embed-
ding model and the retrieval algorithm, enabling
CT3 to achieve high precision in sample retrieval.
The t-SNE visualization highlights the importance
of high-quality embeddings in facilitating accu-
rate and efficient sample retrieval, making test-time
training more practical and impactful.

CoQA (Reading)
MetaMath (Math)
Orca-Math (Math)
Math 50K (Math)

» The Stack Python (Coding)
MBPP (Coding)

Figure 4: t-SNE visualization of the embeddings for
some samples in the knowledge base. Each dataset
contains 1000 randomly selected samples, except for
MBPP (all).

. Peak CPU Avg.
Faiss Indexes Memory Usage Score
/ / 51.48
FlatIP 11568 MB 63.66
IVFPQ 7936 MB 63.47

Table 3: Comparison of different Faiss indexes regard-
ing Peak CPU Memory Usage and Avg. Score for
LLAMA-3-8B-INSTRUCT. The Avg. Score represents
the average performance across six downstream tasks,
while the peak CPU memory usage was measured using
16 test samples from the GSMS8K dataset.

4.4 Memory-Efficient Indexing Alternatives
for CT3 Setup

In the CT3 prototype, we use flat inner product
(FlatIP) indexes for retrieval in FAISS. A more
memory-efficient indexing can be used if the user
desires to run the complete CT3 system in an Al
PC. As described in Table 3, using inverted file
product quantization (IVFPQ) indexes reduces the
peak CPU memory by 31% without significantly
impacting the average score.

4.5 Exploring Smaller Knowledge Bases
We created a subset of the original knowledge base
to demonstrate the effectiveness of a large knowl-
edge base and the efficiency and feasibility of de-
ploying smaller knowledge bases on local devices.
This smaller knowledge base includes only the
CoQA, Math 50K, and MBPP datasets, reducing
the size from 1,252,608 samples to 57,573 samples.
Table 4 presents the performance of CT3 using
both the full and reduced knowledge bases.

The results show that while the smaller knowl-

Knowledge CoQA CoQA GSMSK® MathQA® MAWPS MBPP HumanEval

Model Size.. EM Fl1 EM (0-shot) Acc. Acc. Pass@l Pass@l AV8
/ 6178 7840 40.00 3000 4370 5160 5488 51.48

LLAMA-3-8B-INSTRUCT S7.57K 7190 8299 59.00 3450 7563 5180 5793 61.96
125M 7218 8330 63.50 3200 8697 5240 5976 64.30

/ 63.63 7882 23.00 1550 2521 5220 5976 4545

LLAMA-3.1-8B-INSTRUCT S7.57K 7257 8335 62.50 2200 8403 5260 6280 62.83
125M 7195 8382 70.00 2800 88.66 53.00 6280 6546

Table 4: Performance comparison of CT3 using a knowledge base (1.25M samples, Table 1) versus a reduced
knowledge base (57.57K samples). The reduced knowledge base includes only CoQA, Math 50K, and MBPP
datasets. * for GSMSK and MathQA indicates a subset of 200 randomly sampled test samples.

edge base (57.57K) improves performance over
the baseline models without CT3, the larger knowl-
edge base (1.25M) consistently yields better results.
For instance, with LLAMA-3-8B-INSTRUCT, the
average performance increases from 51.48 (base-
line) to 61.96 with the smaller knowledge base and
to 64.30 with the larger knowledge base. This in-
dicates that a larger and more diverse knowledge
base provides more relevant samples for test-time
training, leading to superior performance.

These findings highlight the trade-off between
knowledge base size and performance. While a
smaller knowledge base is more efficient and feasi-
ble for local deployment, a larger knowledge base
offers significant performance gains.

4.6 Performance with Domain-Specific
Databases

To further investigate the impact of retrieving sam-
ples exclusively from the correct domain, we per-
formed experiments where the query samples were
extracted only from the corresponding domain-
specific dataset. Table 5 presents the perfor-
mance comparison of CT3 using a mixed-domain
database versus an in-domain database for CT3.
The results indicate that the in-domain scenario per-
forms comparably or slightly better than the multi-
domain scenario, suggesting that while domain-
specific retrieval can enhance performance, the
multi-domain setup proposed in this paper is feasi-
ble and effective. In real-world applications, incor-
porating a domain classifier or user-guided domain
selection could further optimize the retrieval pro-
cess, ensuring that the most relevant samples are
used for test-time training, thus maximizing model
performance.

5 Conclusion

Test-time Training (TTT) is an effective method
for improving model performance at the expense
of more computation at inference time. We present

Task & Metric BaselineDomain CT3 CT3 + SSR

Mix 71.90 69.85

CoQAEM 6178 poading 7163 70.05
Mix 82.99 81.97

CoQAF1 7840 poading 8280 82.19
GSMSK" EM 4000 Mix 59.00 54.50
(0-shot) ‘ Math 61.00 61.00
. Mix 3450 33.00
MathQA " Acc.30.00 Math 3200 30.00
Mix 75.63 68.07

MAWPS Acc. 4370 \rih 78.99 8151
Mix 51.80 52.80

MBPP Pass@151.60 ding 5200 5280
HumanEval 5488 Mix 5793 57.32
Pass@1 ‘ Coding 56.71 56.71
Mix 61.96 59.64

Avg. SLA48 Domain62.16 62.04

Table 5: Performance comparison of CT3 using

LLAMA-3-8B-INSTRUCT with baseline (w/o CT3),
CT3 using a mixed-domain database, and CT3 with
an in-domain database across various tasks and metrics.
This experiment uses the smaller knowledge base (§4.5)
for efficiency. * for GSM8K and MathQA indicates a
subset of 200 randomly sampled test samples.

CT3, a system that enables the application of TTT
in client devices that might have resource con-
straints. The results of the CT3 prototype using
supervisory signals from a knowledge base are a
call to action to investigate further improvements to
learning at test-time methods. Future work should
explore more challenging scenarios and datasets to
better understand the potential and limitations of
collaborative test-time training. The current ver-
sion of CT3 works on text queries. With increased
sophistication, future versions of CT3 must handle
more complex tasks and multimodal queries.

Limitations

Although our CT3 prototype produces compelling
results and demonstrates how to alleviate the knowl-
edge base storage burden at client devices, it also
presents limitations. For instance, more research
is needed to design methods to determine the right
data mix at the knowledge base. In real-world appli-
cations, the effectiveness of CT3 is likely more pro-
nounced with a more extensive and diverse knowl-
edge base. A larger knowledge base would provide
a broader range of samples, potentially improv-
ing the relevance and quality of the data retrieved
for TTT, thereby enhancing the model’s perfor-
mance even further. Our experimental results have
demonstrated the feasibility and potential benefits
of CT3. In the current version of CT3’s prototype,
the server can recover the content of the user’s
prompt. A real-world solution should incorporate
privacy mechanisms to protect the user. In addition
to encrypting the query for its transmission, e.g.,
utilizing Secure Sockets Layer (SSL), many open
research challenges exist to increase the privacy
and handling of the user’s content on the server.

Ethical Considerations

Test-time training (TTT) techniques promise im-
provements in model performance, making them
more accurate at the cost of more computation.
However, they alone do not solve existing chal-
lenges in large foundation models and their smaller
counterparts. Our research explores systems and
techniques to enable running TTT in client devices
with resource constraints. However, applying our
system and techniques to real-world applications
must include additional safeguards to prevent hallu-
cinations or intentional misinformation that could
affect the well-being of users of the system. The
research community must continue investigating so-
lutions to address these and other open challenges
in popular language models.

References

Ekin Akyiirek, Mehul Damani, Linlu Qiu, Han Guo,
Yoon Kim, and Jacob Andreas. 2024. The surprising
effectiveness of test-time training for abstract reason-
ing. arXiv preprint arXiv:2411.07279.

Aida Amini, Saadia Gabriel, Shanchuan Lin, Rik
Koncel-Kedziorski, Yejin Choi, and Hannaneh Ha-
jishirzi. 2019. MathQA: Towards interpretable math
word problem solving with operation-based for-
malisms. In Proceedings of the 2019 Conference

of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
2357-2367, Minneapolis, Minnesota. Association for
Computational Linguistics.

ARC-AGI. 2025. ARC Prize — arcprize.org. https:
//arcprize.org. [Accessed 13-03-2025].

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten
Bosma, Henryk Michalewski, David Dohan, Ellen
Jiang, Carrie Cai, Michael Terry, Quoc Le, and 1
others. 2021. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732.

Ali Behrouz, Peilin Zhong, and Vahab Mirrokni. 2024.
Titans: Learning to memorize at test time. arXiv
preprint arXiv:2501.00663.

Loubna Ben Allal, Niklas Muennighoff, Lo-
gesh Kumar Umapathi, Ben Lipkin, and
Leandro von Werra. 2022. A framework
for the evaluation of code generation mod-
els. https://github.com/bigcode-project/
bigcode-evaluation-harness.

Bradley Brown, Jordan Juravsky, Ryan Saul Ehrlich,
Ronald Clark, Quoc V Le, Christopher Re, and Aza-
lia Mirhoseini. 2025. Large language monkeys: Scal-
ing inference compute with repeated sampling.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, and 12 others. 2020. Language models are
few-shot learners. In Advances in Neural Information
Processing Systems, volume 33, pages 1877-1901.
Curran Associates, Inc.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Ponde de Oliveira Pinto, Jared Kaplan,
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg
Brockman, Alex Ray, Raul Puri, Gretchen Krueger,
Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela
Mishkin, Brooke Chan, Scott Gray, and 39 others.
2021. Evaluating large language models trained on
code. Preprint, arXiv:2107.03374.

Francois Chollet. 2019. On the measure of intelligence.
CoRR, abs/1911.01547.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems. arXiv preprint arXiv:2110.14168.

Matthijs Douze, Alexandr Guzhva, Chengqi Deng, Jeff
Johnson, Gergely Szilvasy, Pierre-Emmanuel Mazaré,
Maria Lomeli, Lucas Hosseini, and Hervé Jégou.
2024. The faiss library.

https://doi.org/10.18653/v1/N19-1245
https://doi.org/10.18653/v1/N19-1245
https://doi.org/10.18653/v1/N19-1245
https://doi.org/10.18653/v1/N19-1245
https://doi.org/10.18653/v1/N19-1245
https://arcprize.org
https://arcprize.org
https://arcprize.org
https://github.com/bigcode-project/bigcode-evaluation-harness
https://github.com/bigcode-project/bigcode-evaluation-harness
https://github.com/bigcode-project/bigcode-evaluation-harness
https://openreview.net/forum?id=0xUEBQV54B
https://openreview.net/forum?id=0xUEBQV54B
https://openreview.net/forum?id=0xUEBQV54B
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/1911.01547
https://arxiv.org/abs/2401.08281

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, and 1 others. 2024. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783.

Leo Gao, Stella Biderman, Sid Black, Laurence Gold-
ing, Travis Hoppe, Charles Foster, Jason Phang,
Horace He, Anish Thite, Noa Nabeshima, Shawn
Presser, and Connor Leahy. 2020. The Pile: An
800gb dataset of diverse text for language modeling.
arXiv preprint arXiv:2101.00027.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Bider-
man, Sid Black, Anthony DiPofi, Charles Foster,
Laurence Golding, Jeffrey Hsu, Alain Le Noac’h,
Haonan Li, Kyle McDonell, Niklas Muennighoff,
Chris Ociepa, Jason Phang, Laria Reynolds, Hailey
Schoelkopf, Aviya Skowron, Lintang Sutawika, and
5 others. 2023. A framework for few-shot language
model evaluation.

Moritz Hardt and Yu Sun. 2024. Test-time training on
nearest neighbors for large language models. In In-
ternational Conference on Learning Representations.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2022. LoRA: Low-rank adaptation of
large language models. In International Conference
on Learning Representations.

Jonas Hiibotter, Sascha Bongni, Ido Hakimi, and An-
dreas Krause. 2024. Efficiently learning at test-
time: Active fine-tuning of llms. arXiv preprint
arXiv:2410.08020.

IronbarArc24. 2024. arc24 — ironbar.github.io. https:
//ironbar.github.io/arc24/. [Accessed 13-03-
2025].

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, and 1 others. 2023.
Mistral 7b. arXiv preprint arXiv:2310.06825.

Denis Kocetkov, Raymond Li, Loubna Ben Allal, Jia
Li, Chenghao Mou, Carlos Mufioz Ferrandis, Yacine
Jernite, Margaret Mitchell, Sean Hughes, Thomas
Wolf, Dzmitry Bahdanau, Leandro von Werra, and
Harm de Vries. 2022. The stack: 3 tb of permissively
licensed source code. Preprint.

Rik Koncel-Kedziorski, Subhro Roy, Aida Amini, Nate
Kushman, and Hannaneh Hajishirzi. 2016. MAWPS:
A math word problem repository. In Proceedings of
the 2016 Conference of the North American Chapter
of the Association for Computational Linguistics: Hu-
man Language Technologies, pages 1152-1157, San
Diego, California. Association for Computational
Linguistics.

Arindam Mitra, Hamed Khanpour, Corby Rosset, and
Ahmed Awadallah. 2024. Orca-math: Unlocking
the potential of slms in grade school math. Preprint,
arXiv:2402.14830.

10

Sebastidn Ramirez. 2025. FastAPI
fastapi.tiangolo.com. https://fastapi.

tiangolo.com/. [Accessed 13-03-2025].

Siva Reddy, Dangi Chen, and Christopher D. Manning.
2019. CoQA: A conversational question answering
challenge. Transactions of the Association for Com-
putational Linguistics, 7:249-266.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing. Associa-
tion for Computational Linguistics.

Charlie Victor Snell, Jachoon Lee, Kelvin Xu, and Avi-
ral Kumar. 2025. Scaling LLM test-time compute
optimally can be more effective than scaling param-
eters for reasoning. In The Thirteenth International
Conference on Learning Representations.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, brian ichter, Fei Xia, Ed H. Chi, Quoc V Le,
and Denny Zhou. 2022. Chain of thought prompt-
ing elicits reasoning in large language models. In
Advances in Neural Information Processing Systems.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng,
Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan
Li, Dayiheng Liu, Fei Huang, and 1 others.
2024. Qwen?2 technical report. arXiv preprint
arXiv:2407.10671.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu,
Zhengying Liu, Yu Zhang, James T Kwok, Zhen-
guo Li, Adrian Weller, and Weiyang Liu. 2023.
Metamath: Bootstrap your own mathematical ques-
tions for large language models. arXiv preprint
arXiv:2309.12284.

Hu Zhigiang, Lan Yihuai, Wang Lei, Xu Wanyu, Lim
EePeng, Lee Roy Ka-Wei, Bing Lidong, and Poria
Soujanya. 2023. Llm-adapters: An adapter family
for parameter-efficient fine-tuning of large language
models. arXiv preprint arXiv:2304.01933.

https://doi.org/10.5281/zenodo.10256836
https://doi.org/10.5281/zenodo.10256836
https://doi.org/10.5281/zenodo.10256836
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://ironbar.github.io/arc24/
https://ironbar.github.io/arc24/
https://ironbar.github.io/arc24/
https://doi.org/10.18653/v1/N16-1136
https://doi.org/10.18653/v1/N16-1136
https://doi.org/10.18653/v1/N16-1136
https://arxiv.org/abs/2402.14830
https://arxiv.org/abs/2402.14830
https://arxiv.org/abs/2402.14830
https://fastapi.tiangolo.com/
https://fastapi.tiangolo.com/
https://fastapi.tiangolo.com/
https://doi.org/10.1162/tacl_a_00266
https://doi.org/10.1162/tacl_a_00266
https://doi.org/10.1162/tacl_a_00266
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084
https://openreview.net/forum?id=4FWAwZtd2n
https://openreview.net/forum?id=4FWAwZtd2n
https://openreview.net/forum?id=4FWAwZtd2n
https://openreview.net/forum?id=4FWAwZtd2n
https://openreview.net/forum?id=4FWAwZtd2n
https://openreview.net/forum?id=_VjQlMeSB_J
https://openreview.net/forum?id=_VjQlMeSB_J
https://openreview.net/forum?id=_VjQlMeSB_J

Dataset Domain Link
CoQA Training set ~ Reading comprehension link
MetaMath Math link
Orca-Math Math link
Math 50K Math link
The Stack Python Coding link
MBPP training set Coding link

Table 6: The details of the datasets in the knowledge
base.

Task Domain Eval Framework Link
CoQA Reading Comp. Im-eval-harness link
GSMSK Math Im-eval-harness link
MathQA Math Ilm-adapters link
MAWPS Math IIm-adapters link
MBPP Coding bigcode-eval-harness link

HumanEval Coding bigcode-eval-harness link

Table 7: Various evaluation tasks.

A Datasets

The details of the knowledge base datasets and
the evaluation tasks used in the experiments are
presented in Tables 6 and 7. We evaluated several
language models on a diverse set of tasks. We
categorize the tasks into:

* Reading Comprehension Tasks

— CoQA (Conversational Question An-
swering, Reddy et al. (2019))

* Mathematical Reasoning Tasks

— GSMSK (Grade School Math 8K, Cobbe
et al. (2021))

— MathQA (Math Word Problem Question
Answering, Amini et al. (2019))

- MAWPS (MAth Word ProblemsS,
Koncel-Kedziorski et al. (2016))

* Coding Tasks

— MBPP (Mostly Basic Python Problems,
Austin et al. (2021))

— HumanEval (Hand-Written Coding Eval-
uation Set, Chen et al. (2021))

B Additional Results with LSM

Table 8 shows that incorporating CT3 and LSM
consistently enhances performance. These results
underscore the effectiveness of LSM in boosting
both performance and efficiency.

11

C Comparing SIFT and Nearest
Neighbors Performance in the CT3
Setup

SIFT adds an additional step when retrieving rele-
vant samples from the knowledge base, requiring
an initial retrieval utilizing the nearest neighbors
(NN) method. In our exploration to make the CT3
pipeline more efficient, we explore the impact of
removing SIFT and using directly the results from
NN. Table 9 presents a comparative analysis of
CT3 with and without the SIFT step across various
evaluation tasks. The results indicate that while
SIFT provides a slight performance edge in some
cases, the difference is not substantial. For instance,
in the CoQA task, CT3 with SIFT achieves an Ex-
act Match (EM) score of 68.85 and an F1 score of
81.13, compared to 67.43 EM and 80.73 F1 with-
out SIFT. This marginal improvement suggests that
SIFT’s additional filtering step refines the sample
selection process, leading to slightly better perfor-
mance. In conclusion, while SIFT provides a slight
performance boost, NN alone offers a simpler and
more computationally efficient approach for sam-
ple retrieval in the CT3 system.

D Case Studies

Tables 10, 11, and 12 compare different methods
to solve various problems, highlighting the effec-
tiveness of CT3 in providing clear, concise and ac-
curate solutions to user queries on client devices.

https://huggingface.co/datasets/EleutherAI/coqa
https://huggingface.co/datasets/meta-math/MetaMathQA
https://huggingface.co/datasets/microsoft/orca-math-word-problems-200k
https://github.com/AGI-Edgerunners/LLM-Adapters/blob/main/ft-training_set/math_50k.json
https://huggingface.co/datasets/bigcode/the-stack
https://huggingface.co/datasets/google-research-datasets/mbpp
https://github.com/EleutherAI/lm-evaluation-harness/tree/v0.4.7
https://huggingface.co/datasets/EleutherAI/coqa
https://github.com/EleutherAI/lm-evaluation-harness/tree/v0.4.7
https://huggingface.co/datasets/openai/gsm8k
https://github.com/AGI-Edgerunners/LLM-Adapters
https://huggingface.co/datasets/allenai/math_qa
https://github.com/AGI-Edgerunners/LLM-Adapters
https://github.com/AGI-Edgerunners/LLM-Adapters/blob/main/dataset/mawps/test.json
https://github.com/bigcode-project/bigcode-evaluation-harness/tree/6116c6a9a5672c69bd624373cfbc8938b7acc249
https://huggingface.co/datasets/google-research-datasets/mbpp
https://github.com/bigcode-project/bigcode-evaluation-harness/tree/6116c6a9a5672c69bd624373cfbc8938b7acc249
https://huggingface.co/datasets/openai/openai_humaneval

Reuse Evaluation

Method Budget B Avg. Score Impr.
Threshold 7 Speedup
LLAMA-3-8B-INSTRUCT / / 51.48 / /
+CT3 o /A 63.66 +24% 1.00x
o2 05 6399 +24% 121x
R 05 6417 +25% 136x
etye Lo CURTTTTT0s T Tens e ok
2 04 64.13 +25% 1.59 %
R 04 6326 +23% 198x
s 04 63.68 +24% 224x
LLAMA-3.1-8B-INSTRUCT / / 45.45 / /
+CT3 o /A 6448 +42% 1.00x
o2 05 6529 +44% 1.16x
R 05 6471 +42% 129x
st e Lsn [B R = e S
2 0.4 63.85 +41% 1.46 %
R 04 6410 +41% 172x
s 04 6312 +39% 1.89x
MISTRAL-7B-INSTRUCT-V0.3 / / 47.11 / /
+CT3 S /A 5348 +14% 1.00x
o2 05 5167 +10% 120x
4 05 5152 49% 142x
et e Lo [B R X T SR E
2 04 51.92 +10% 1.60 %
s 04 5105 +8% 208x
s 04 5066 +8% 2.28x
QWEN2.5-3B-INSTRUCT / / 51.81 / /
+CT3 S /A 5746 +11% 1.00x
2 05 5716 +10% 121x
R 05 5776 +11% 139x
S ORIITTTTes TTT Twae T s
2 0.4 56.85 +10% 1.57 %
s 04 5598 +8% 208x
s 04 5580 +8% 2.32x

Table 8: Performance comparison of LSM with varying budgets and reuse thresholds.

CoQA CoQA GSMSK® MathQA® MAWPS MBPP HumanEval

Method Avg. Impr.
EM F1 EM (0-shot) Acc. Acc. Pass@1 Pass@1
QWEN2.5-3B-INSTRUCT ~ 54.70 71.22 61.50 20.00 87.82 41.20 26.22 51.81 /
+ CT3 w/ SIFT 68.85 81.13 66.00 34.00 86.13 46.20 27.44 58.54 +13%
+ CT3 w/o SIFT 67.43 80.73 68.50 30.00 86.13 46.00 28.66 5821 +12%

Table 9: Performance comparison of CT3 w/ SIFT and CT3 w/o SIFT (QWEN2.5-3B-INSTRUCT). The ablation
studies use the smaller knowledge base (§4.5) for efficiency.

12

Prompt Question: Charlie wants to sell beeswax candles. For every pound of
beeswax, he can make 10 tapered candles. One pound of beeswax and the
wicks cost $10.00 in supplies. If he sells each candle for $2.00 each, what is
his net profit if he makes and sells 20 candles? Answer:

Reference Solution 1 pound of beeswax and the wick make 10 candles and he wants to make 20
candles so he needs 20/10 = «20/10=2»2 pounds of beeswax
1 pound of beeswax costs $10.00 and he needs 2 pounds so his supplies will
cost 10*2 = $«10%2=20.00»20.00
He wants to sell each candle for $2.00 each and he’s selling 20 candles so
that’s 2*20 = $«2*20=40.00»40.00
If he makes $40.00 selling candles and his supplies cost $20.00 then his net
profit is 40-20 = $«40-20=20.00»20.00
i 20

w/o CT3 He spends $10.00 / candle * 20 candles = $200.00 on beeswax and wicks.
He earns 2 * $2.00 = $4.00 per candle.
So he earns 20 candles * $4.00 = $80.00 total from sales.
That means his net profit is $80.00 - $200.00 = -$120.00
Therefore, the answer is -120. X

CT3 He uses 2 pounds of beeswax because 20/ 10 =2
The supplies cost $20 because 2 x 10 = 20
He earns $40 from selling the candles because 20 x 2 = 40
His net profit is $20 because 40 - 20 = 20
Therefore, the answer is 20.

Table 10: A case comparing different methods for solving a profit calculation problem with QWEN2.5-3B-
INSTRUCT. The table illustrates the effectiveness of CT3 in accurately solving the problem, as opposed to the
incorrect solution provided by the baseline.

13

Prompt Question: Meredith is a freelance blogger who writes about health topics
and submits to clients each day as her permanent job. A blog article takes
an average of 4 hours to research and write about. Last week, she wrote 5
articles on Monday and 2/5 times more articles on Tuesday than on Monday.
On Wednesday, she wrote twice the number of articles she wrote on Tuesday.
Calculate the total number of hours she spent writing articles in the three
days. Answer:

Reference Solution If she wrote five articles on Monday, then on Tuesday she wrote 2/5% 5 = 2
more articles. The total number of articles she wrote on Tuesday is 5+2 =
«S5+2=T»7
On Wednesday, the number of articles was twice the number she wrote on
Tuesday, so it was 2*7 = «2*7=14»14 articles. Over the three days, she
wrote 5+7 +14 = «5+7+14=26»26 articles. If each article takes her 4 hours
to research and write about, she spent 4¥26 = «4*26=104»104 hours on all
the articles.
#i##H 104

w/o CT3 To determine the total number of hours Meredith spent writing articles over
the three days, we need to follow these steps:
1. **Calculate the number of articles written on Tuesday:**
- On Monday, Meredith wrote 5 articles.
- On Tuesday, she wrote \\(\\frac25 \\) times more articles than on Mon-
day.
- First, find \\(\\frac25 \\) of the articles written on Monday:
\\[\\frac25 \\times 5 = 2\\]
- Therefore, the total number of articles written on Tuesday is:
\[S +2=T\\]
2. **Calculate the number of articles written on Wednesday:**
- On Wednesday, she wrote twice the number of articles she wrote on Tues-
day.
- The number of articles written on Tuesday is 7.
- Therefore, the number of articles written on Wednesday is:
\\[2 \\times 7 = 14\\]
3. **Calculate the total number of articles written over the three days:**
- Articles on Monday: 5
- Articles on Tuesday: 7
- Articles X

CT3 To find out how many articles Meredith wrote on Tuesday, we need to
calculate 2 / 5 times more than Monday’s articles. Since she wrote 5 articles
on Monday, 2 /5 * 5 =2 more articles than Monday. This means she wrote
5 + 2 =17 articles on Tuesday.

On Wednesday, she wrote twice the number of articles she wrote on Tuesday,
which is 2 * 7 = 14 articles.

In total, she wrote 5 + 7 + 14 = 26 articles over the three days.

Since it takes her 4 hours to research and write about one article, she spent 4
* 26 = 104 hours writing articles in the three days.

Therefore, the answer is 104 hours.

Table 11: A case comparing different methods for solving a time calculation problem with QWEN2.5-3B-INSTRUCT.
The table demonstrates that the baseline (w/o CT3) unnecessarily complicates the problem, while CT3 effectively
maximizes the model’s potential for the current query. CT3 utilizes CT3 to provide a clear, concise, and accurate
solution to the user’s query at the client device.

14

Prompt Question: A wooden bridge can carry no more than 5000 pounds. A delivery
truck filled with identical boxes, each weighing 15 pounds, will pass over
the bridge. The combined weight of the driver and the empty truck is 3755
pounds. What is the maximum number of boxes which can be loaded onto
the truck while not exceeding the bridge’s weight limit? Answer:

Reference Solution The boxes can weigh up to 5000 pounds - 3755 pounds = «5000-
3755=1245»1245 pounds in total. There can be 1245/ 15 = «1245/15=83»83
boxes loaded onto the truck without exceeding the bridge’s weight limit.
#iH#H 83

w/o CT3 First find the total weight capacity of the truck by adding the weight limit of
the bridge to the weight of the driver and empty truck: 5000 pounds + 3755
pounds = 8755 pounds. Then divide that number by the weight of each box
to find the maximum number of boxes: 8755 pounds / 15 pounds / box =
583.666... boxes. Since we can’t have a fraction of a box, we call this 583
boxes. Therefore, the answer is 583. X

CT3 First, we need to find out how much weight the boxes can add to the truck
without exceeding the bridge’s weight limit. We do this by subtracting the
weight of the driver and the empty truck from the bridge’s weight limit:
5000 - 3755 = 1245 pounds.

Next, we divide the remaining weight capacity by the weight of a single box
to find out how many boxes can be added: 1245/ 15 = 83 boxes.
The answer is 83.

Table 12: A case for comparing different methods of solving a weight calculation problem using QWEN2.5-3B-
INSTRUCT. It demonstrates the model’s misunderstanding of the problem when CT3 is not used, specifically by
incorrectly adding the bridge’s weight limit to the truck’s weight.

15

	Introduction
	Related Work
	CT3 System
	Preliminaries: Test-Time Training (TTT)
	Distributed Test-time Training

	Experiments
	Setup
	Main Results
	In-Domain Sample Retrieval
	Memory-Efficient Indexing Alternatives for CT3 Setup
	Exploring Smaller Knowledge Bases
	Performance with Domain-Specific Databases

	Conclusion
	Datasets
	Additional Results with LSM
	Comparing SIFT and Nearest Neighbors Performance in the CT3 Setup
	Case Studies

