
Choice-Based Learning in JAX

Shangyin Tan :̊ Dan Zheng˚ Gordon Plotkin Ningning Xie
Google DeepMind

{shangyin,danielzheng,plotkin,ningningxie}@google.com

Abstract

Choice-based learning is a programming paradigm for expressing learning sys-
tems in terms of choices and losses. We explore a practical and modular im-
plementation of choice-based learning in JAX by combining two techniques in
a novel way: algebraic effects and loss effects. We describe the design and im-
plementation of our library, explore its usefulness for real-world applications such
as hyperparameter tuning and deep reinforcement learning, and compare it with
existing approaches.

1 Introduction

Machine learning has achieved many successes in recent decades, but modular and flexible machine
learning programming remains a challenge.

Choice-based learning [1, 3, 4] is a recently introduced programming paradigm that can address this
challenge. In choice-based learning, programs make choices and learn from feedback in the form of
losses and rewards. This paradigm prioritizes modularity and can be used to implement widely used
decision-making techniques, including reinforcement learning and gradient descent.

In this paper, we present our progress in implementing CHOIX, a library for choice-based learning in
Python. We describe the design and implementation of CHOIX and use it to explore the usefulness
of choice-based learning as a modular programming paradigm for machine learning applications.

2 Background

In this section, we explain what choice-based learning is and describe how it can be implemented
via two programming paradigms: algebraic effects and handlers, and losses and choice-loss contin-
uations.

Choice-based learning. Choice-based learning systems make choices based on losses (equiva-
lently one could work with rewards). This is done via two operations: choose and loss. choose
selects a choice from a choice input space, recrds a numerical loss value, representing the feedback
resulting from the choices made. Choice strategies make choices intended to minimize accumulated
loss, so that, over time systems learn to make better choices.

Algebraic effects and effect handlers. Algebraic effects are a well-explored technique for struc-
tured control flow abstraction in programming languages [6, 7]. Programs use abstract effect opera-
tions, and effect handlers provide meaning for such effect operations.

Algebraic effects provide a natural way to model choice-based learning programs: choose opera-
tions can be represented as effect operations and choice strategies as effect handlers. This allows

˚Equal contribution.
:Work done during internship at Google DeepMind.

Machine Learning for Systems Workshop at 37th NeurIPS Conference, 2023, New Orleans, LA, USA.

programmers to describe learning algorithms in terms of choices and losses, while leaving choice
strategies up to separately-defined optimization algorithms.

Parameterized handlers [7] extend effect handlers by allowing state to be shared between effect
operations. This is useful for implementing choice strategies that need to access and update state in
a modular way.

Losses and choice-loss continuations. Prior work [1] establishes semantics for choice-based
learning languages with loss operations. In the semantics, loss is a built-in effect operation that
can be used freely within programs, including inside handlers. Programs containing loss operations
are transformed to return an accumulated loss value in addition to their original results.

Additionally, effect handlers can access loss values via a choice-loss continuation (or just “loss
continuation”, lk). Loss continuations compute the accumulated loss from using a particular choice;
effect handlers can make optimization choices using loss continuations by optionally transforming
them (e.g., via automatic differentiation) and calling them with different arguments before resuming
the program with the optimal choice.

3 CHOIX: a library for choice-based learning

In this section, we introduce CHOIX1, a library for choice-based learning in Python using JAX [2].
CHOIX supports choice-based learning via the following features: user-defined effect operations and
effect handlers (as described in Section 2), loss operations, and loss continuations.

In CHOIX, effect operations are declared as Python functions decorated with @effect: these func-
tions define an abstract interface and need no implementation. Effect handler functions provide con-
crete implementations for effect operations. CHOIX provides a handle function for effect-handling:
handle takes a list of handlers and an “effectful” function containing effect operations like choose
and loss, and additionally returns an effect-handled version that returns an accumulated loss. With
handle, users can write programs using rich features for choice-based learning, then convert them
to standard JAX functions to be used normally with other JAX code, including transformations and
compilation.

3.1 Examples

In this section, we walk through machine learning programs written using CHOIX to highlight the
benefits of programming in the choice-based learning paradigm.

3.1.1 Linear regression

Linear regression provides a simple application of choice-based learning: given training data X , Y
and initial parameters θ, choose new parameters θ1 that minimize a loss function via gradient descent.
Figure 1 shows examples of linear regression written in standard JAX and in CHOIX.

With CHOIX, gradient descent is modeled as a choose effect that updates parameters: θ1 “
choosepθq. A loss value l is computed from the updated parameters by comparing predictions with
target data, and lossplq is called to provide feedback. A choose_grad handler function implements
parameter update: it first gets gradients g by differentiating the loss continuation lk with respect to
θ, then resumes the program with updated parameters θ1 “ θ ´ ηg, where η is a fixed learning rate.

Note that we are not presenting the benefit of CHOIX in the linear regression example. Instead,
the goal is to demonstrate CHOIX can be used to to create choice-based learning programs. As
choice-based learning examples grow more complex (Appendix C, Section 3.1.2, Section 3.1.3),
we will highlight how CHOIX enables modular programming, expressing complex choice-based
learning applications in a structured manner. For example, Appendix C shows how to extend linear
regression with hyperparameter tuning in CHOIX using nested effect operations and handle.

1"Choix" means "choice" in French.

2

1 def loss_fn(params, x, y):
2 w, b = params
3 prediction = w * x + b
4 return jnp.mean(prediction - y ** 2)
5
6 def update(params, grads, lr):
7 return jax.tree_map(
8 lambda p, g: p - lr * g, params, grads
9)

10
11 def linear_regression(lr, params, x, y):
12 """Performs one step of linear regression."""
13 loss_value = jax.grad(loss_fn)(params, x, y)
14 grads = grad_fn(params, x, y)
15 new_params = update(params, grads, lr)
16 return new_params
17
18 # Usage.
19 x, y, w, b = ...
20 new_params = linear_regression(
21 lr=0.001, (w, b), x, y
22)

losses: loss-related operations
effects: effect operations

handlers: effect handlers

1 @effect
2 def choose[T](x: T) -> T:
3 """Choice effect operation."""
4
5 def linear_regression(params, x, y):
6 """Performs one step of linear regression."""
7 w_new, b_new = choose(params)
8 prediction = w_new * x + b_new
9 loss(jnp.mean((prediction - y) ** 2))

10 return (w_new, b_new)
11
12 def update(params, grads, lr):
13 return jax.tree_map(
14 lambda p, g: p - lr * g, params, grads
15)
16
17 def choose_grad_handler(lr, params, k, lk):
18 """Gradient-descent handler."""
19 grads = jax.grad(lk, argnums=(0))(params)
20 new_params = update(params, grads, lr)
21 return k(new_params)
22
23 # Usage.
24 linear_regression = handle(
25 Handler(parameterized=True, choose=choose_grad_handler)
26)(linear_regression)(lr=0.001)
27
28 x, y, w, b = ...
29 loss_value, new_params = linear_regression((w, b), x, y)

Figure 1: Linear regression via gradient descent in standard JAX (left) versus choice-based learning
in CHOIX (right). In choose_grad_handler, the continuation k resumes the program from where
the effect operation is called (line 18).

3.1.2 Reinforcement learning

Reinforcement learning (RL) is a particularly good fit for choice-based learning, as effect operations
provide a modular interface for RL algorithms, and parameterized effect handlers facilitate seamless
state sharing (e.g. agent parameters like Q-tables or neural network weights) between operations.

In Appendix D, we show a generic function for RL in CHOIX called run_episode. run_episode
uses multiple effect operations: agent operations predict and feedback and an environment opera-
tion observe. predict selects an action based on the current state and agent parameters; observe
applies an action to the state to get a new state and reward; finally, feedback updates agent parame-
ters based on reward and accumulated loss. By implementing handler functions for these operations,
we can get a specialized version of run_episode for a particular agent algorithm and environment.

Handler functions in Appendix D implement Q-learning [11], a classic RL algorithm that uses a Q-
table mapping state-action pairs to expected rewards. The predict handler selects an action based
on the Q-table and state, and the feedback handler updates the Q-table based on the action and
reward. The observe handler here implements environment update for the cliff-walking task [10].

3.1.3 Deep reinforcement learning

Deep reinforcement learning is a particularly compelling variant of reinforcement learning where
the RL agent is a deep neural network and the training process aims to update parameters to enhance
predictions. Implementing deep reinforcement learning with CHOIX is as simple as reusing the
generic RL algorithm from Section 3.1.2 with alternative handlers.

In Appendix E, we present an implementation of proximal policy optimization (PPO) [8], a well-
known algorithm in deep reinforcement learning. Compared with the Q-learning example above, the
main changes are in the feedback_handler. The PPO algorithm updates agent network weights
using three losses: actor loss, value loss, and entropy. These loss values are naturally accumulated
via loss without the need of writing an explicit pure loss function.

For parameter update, we use gradient descent with the Adam optimizer from Optax2. This is done
by adapting the choose effect from the linear regression example and modifying the gradient descent
handler to use Optax. Notably, choose_optax_handler is generic like choose_grad_handler:
both can be used in other programs for gradient optimization.

2https://github.com/google-deepmind/optax

3

https://github.com/google-deepmind/optax

Additionally, minor adjustments to the predict and observe handlers are required, reflecting
changes in the agent parameter and environment. In ppo_predict_handler, the action is selected
by sampling from a categorical distribution based on agent network logits. In order to train on Atari
games, we change the observe handler to atari_observe_handler to correctly update the Atari
environment.

3.1.4 Summary

The examples above demonstrate how Choix enables writing modular choice-based learning pro-
grams. The separation between abstract effect operations and concrete handler implementations
makes the process of developing new choice-based learning programs easier: new programs define
their algorithms as abstract effect operations where effect handlers can be shared and composed
between programs. For example, most choice-based learning programs that use Optax can reuse
choose_optax_handler without changing their own application code.

3.2 Implementation

JAX[2] is an open-source system for machine learning research. It offers the familiar API of NumPy
with the speed of hardware accelerators via the XLA compiler. JAX’s design centers around com-
posable function transformations such as automatic differentiation, compilation, and parallelization.
This makes it a solid basis for our work.

CHOIX is implemented as a function transformation on JAXPRs3, the core language underlying
JAX. The transformation is done in multiple stages, producing an effect-handled JAXPR at the end.
Appendix A explains the transformation stages and characteristics of transformed JAXPRs.

4 Related work

Choice-based learning. Choice-based learning as a programming paradigm has gained attention
in recent years[1, 4]. Frameworks like SmartChoices[3] and PyGlove[5] provide abstractions for
writing programs in terms of decisions and rewards, but typically provide a fixed search interface
and limited search algorithms. CHOIX supports flexible search thanks to effect handlers: users can
define custom search operations, implement or import search algorithms from external frameworks
like Vizier[9], and compose them together to create modular choice-based programs.

Effect handling in JAX. To our knowledge, our work is the first to propose a library for algebraic
effects in JAX. Our work was inspired by a simple proof-of-concept for effect handling in JAX4,
but goes beyond it to implement a fully-fledged effects system. Oryx5 is a library for probabilistic
programming built on JAX. Oryx provides transformations for writing stateful computations via
collecting and injecting tagged values, which can be seen as a limited effect system particularly
useful for writing deep learning and probabilistic programs. In CHOIX, state management is done
in a similar way via parameterized handlers: we provide a short explanation in Appendix B.

5 Conclusion

Choice-based learning is a programming paradigm in which systems make feedback-guided choices.
We introduce CHOIX, a library for choice-based learning in JAX. CHOIX uses (1) algebraic effects
and handlers as a modular interface for writing choice-based learning programs, with (2) the selec-
tion monad to enable loss-based choice optimization.

We explore several machine learning applications of choice-based learning in CHOIX. We believe
it is a promising approach for developing learning programs, including systems applications that
replace hardcoded heuristics with learned strategies. We look forward to exploring more applications
of this programming model and welcome feedback and ideas.

3https://jax.readthedocs.io/en/latest/jaxpr.html
4https://colab.sandbox.google.com/drive/1HGs59anVC2AOsmt7C4v8yD6v8gZSJGm6, linked

from http://blog.sigfpe.com.
5https://github.com/jax-ml/oryx

4

https://jax.readthedocs.io/en/latest/jaxpr.html
https://colab.sandbox.google.com/drive/1HGs59anVC2AOsmt7C4v8yD6v8gZSJGm6
http://blog.sigfpe.com
https://github.com/jax-ml/oryx

References
[1] Martin Abadi and Gordon Plotkin. “Smart choices and the selection monad”. In: Logical

Methods in Computer Science 19 (2023).
[2] James Bradbury et al. JAX: composable transformations of Python+NumPy programs. Ver-

sion 0.4.17. 2018. URL: http://github.com/google/jax.
[3] Daniel Golovin et al. SmartChoices: Augmenting Software with Learned Implementations.

2023. arXiv: 2304.13033 [cs.SE].
[4] Ugo Dal Lago, Francesco Gavazzo, and Alexis Ghyselen. On Reinforcement Learning, Effect

Handlers, and the State Monad. 2022. arXiv: 2203.15426 [cs.PL].
[5] Daiyi Peng et al. PyGlove: Symbolic Programming for Automated Machine Learning. 2021.

arXiv: 2101.08809 [cs.LG].
[6] Gordon D. Plotkin and John Power. “Adequacy for Algebraic Effects”. In: Foundations of

Software Science and Computation Structures, 4th International Conference, FOSSACS 2001
Held as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS
2001 Genova, Italy, April 2-6, 2001, Proceedings. Ed. by Furio Honsell and Marino Miculan.
Vol. 2030. Lecture Notes in Computer Science. Springer, 2001, pp. 1–24. DOI: 10.1007/3-
540-45315-6_1. URL: https://doi.org/10.1007/3-540-45315-6%5C_1.

[7] Gordon D. Plotkin and Matija Pretnar. “Handlers of Algebraic Effects”. In: Programming
Languages and Systems, 18th European Symposium on Programming, ESOP 2009, Held as
Part of the Joint European Conferences on Theory and Practice of Software, ETAPS 2009,
York, UK, March 22-29, 2009. Proceedings. Ed. by Giuseppe Castagna. Vol. 5502. Lecture
Notes in Computer Science. Springer, 2009, pp. 80–94. DOI: 10.1007/978-3-642-00590-
9_7. URL: https://doi.org/10.1007/978-3-642-00590-9%5C_7.

[8] John Schulman et al. Proximal Policy Optimization Algorithms. 2017. arXiv: 1707.06347
[cs.LG].

[9] Xingyou Song et al. Open Source Vizier: Distributed Infrastructure and API for Reliable and
Flexible Blackbox Optimization. 2023. arXiv: 2207.13676 [cs.LG].

[10] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. Cam-
bridge, MA, USA: A Bradford Book, 2018. ISBN: 0262039249.

[11] Christopher J. C. H. Watkins and Peter Dayan. “Technical Note Q-Learning”. In: Mach. Learn.
8 (1992), pp. 279–292. DOI: 10.1007/BF00992698. URL: https://doi.org/10.1007/
BF00992698.

5

http://github.com/google/jax
https://arxiv.org/abs/2304.13033
https://arxiv.org/abs/2203.15426
https://arxiv.org/abs/2101.08809
https://doi.org/10.1007/3-540-45315-6_1
https://doi.org/10.1007/3-540-45315-6_1
https://doi.org/10.1007/3-540-45315-6%5C_1
https://doi.org/10.1007/978-3-642-00590-9_7
https://doi.org/10.1007/978-3-642-00590-9_7
https://doi.org/10.1007/978-3-642-00590-9%5C_7
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/2207.13676
https://doi.org/10.1007/BF00992698
https://doi.org/10.1007/BF00992698
https://doi.org/10.1007/BF00992698

Appendix

A CHOIX transformation details

CHOIX is implemented as a function transformation on JAXPRs6, the core language underlying JAX.
The transformation is done in multiple stages:

• Source program. Source Python programs using CHOIX are lowered to JAXPRs that contain
multiple constructs not present in standard JAXPRs: effect operations, effect handlers, and loss
operations. All of these must be translated away before CHOIX programs can be executed. (Fig-
ure 2b.)

• Delimited, concrete handlers. Effect handlers now have explicitly delimited scopes. This is
needed to create properly-scoped continuations during effect handling. Handler functions are
transformed from Python functions to JAXPRs via tracing. (Figure 2c.)

• Loss transformation. Performs a selection monad [1] transformation: loss operations and
choice-loss continuations are translated away. The translated programs compute and return ac-
cumulated loss values. (Figure 3a.)

• Effect handling. Replaces effect operations with their handler implementations, reifying delim-
ited program continuations using handler scopes. In this manner, Effect operations and effect
handlers are translated away. (Figure 3b.)

Finally, we obtain CHOIX-transformed JAXPRs as in Figure 3c. These JAXPRs do not contain effect
operations, effect handlers, or loss operations: they work naturally with JAX transformations (e.g.
jax.grad and jax.jit), allowing them to interoperate with other JAX code. In this way, CHOIX
lets users enjoy the benefits of writing choice-based learning programs using algebraic effects with-
out sacrificing performance.

Optimized runtime performance is not a current focus of CHOIX: since CHOIX produces JAXPRs
similar to standard JAX code, we expect similar performance during runtime. In practice, we noticed
a slowdown of approximately 0-10% for CHOIX on the example programs included in this paper.

This section walks through the CHOIX program transformation for a toy program, highlighting how
it works, stage-by-stage.

The toy program is intentionally simple to save space, since transformation outputs are long. Later
appendix sections show more sophisticated programs using CHOIX.

6https://jax.readthedocs.io/en/latest/jaxpr.html

6

https://jax.readthedocs.io/en/latest/jaxpr.html

1 @effect
2 def increment(x: int) -> int:
3 pass
4
5 def increment_handler(x, k, lk):
6 return k(x + 1)
7
8 @handle(Handler(increment=increment_handler))
9 def main(x):

10 y = increment(x)
11 loss(y ** 2)
12 return y
13
14 print(main(10))

(a) Source program.
1 # Source Jaxpr.
2 { lambda ; a:i32[]. let
3 _:bool[] = handler[
4 handler_impl={'increment': <function increment_handler>}
5 in_tree=PyTreeDef(())
6 name=increment
7 parameterized=False
8]
9 b:i32[] = increment[in_tree=PyTreeDef(*) is_effect_op=True name=increment] a

10 c:i32[] = integer_pow[y=2] b
11 d:f32[] = convert_element_type c
12 _:f32[] = loss d
13 _:bool[] = handler_end_marker[name=increment]
14 in (b,) }

(b) Source program as a JAXPR.
1 # Delimited concrete handler Jaxpr.
2 { lambda ; a:i32[]. let
3 b:i32[] = delimited_handler[
4 args=[]
5 body_jaxpr={ lambda ; c:i32[]. let
6 d:i32[] = increment[in_tree=PyTreeDef(*) is_effect_op=True name=increment] c
7 e:i32[] = integer_pow[y=2] d
8 f:f32[] = convert_element_type[new_dtype=float32 weak_type=False] e
9 g:f32[] = loss f

10 in (d,) }
11 handler_impl=[
12 increment={ lambda ; h:i32[]. let
13 i:i32[] = add h 1
14 j:i32[] = call_k_with_loss[name=increment] i
15 in (j,) }
16]
17 in_tree=PyTreeDef(())
18 name=increment
19 parameterized=False
20] a
21 in (b,) }

(c) Delimited concrete handler JAXPR.

Figure 2: Initial CHOIX program transformation stages. A Python source program using CHOIX
is lowered to a JAXPR. Then, effect handler scopes are made explicit and handler functions are
converted from Python to JAXPRs.

7

1 # Loss-translated Jaxpr.
2 { lambda ; a:i32[]. let
3 b_loss:f32[] c:i32[] = delimited_handler[
4 args=[]
5 body_jaxpr={ lambda ; d:i32[]. let
6 e:i32[] = increment[in_tree=PyTreeDef(*) is_effect_op=True name=increment] d
7 f:i32[] = integer_pow[y=2] e
8 g:f32[] = convert_element_type[new_dtype=float32 weak_type=False] f
9 in (g, e) }

10 handler_impl=[
11 increment={ lambda ; h:i32[]. let
12 i:i32[] = add h 1
13 j_loss:f32[] k:i32[] = call_k_with_loss[name=increment] i
14 in (j_loss, k) }
15]
16 in_tree=PyTreeDef(())
17 name=increment
18 parameterized=False
19] a
20 in (b_loss, c) }

(a) Loss-translated JAXPR. Effect operations and handlers now return loss values, accumulated from loss calls.
1 # Effect-handling Jaxpr.
2 { lambda ; a:i32[]. let
3 b_loss:f32[] c:i32[] = closed_call[
4 call_jaxpr={ lambda ; d:i32[]. let
5 h':f32[] i':i32[] = closed_call[
6 call_jaxpr={ lambda ; j:i32[]. let
7 k:i32[] = add j 1
8 l_loss:f32[] m:i32[] = closed_call[
9 call_jaxpr={ lambda ; n:i32[]. let

10 f:i32[] = integer_pow[y=2] n
11 g:f32[] = convert_element_type[
12 new_dtype=float32
13 weak_type=False
14] f
15 in (g, n) }
16] k
17 in (l_loss, m) }
18] a
19 in (h', i') }
20] a
21 in (b_loss, c) }

(b) Effect-handled JAXPR. All special constructs from CHOIX (including effect operations and handlers) have
been translated away.
1 # Inlined Jaxpr.
2 { lambda ; a:i32[]. let
3 k:i32[] = add a 1
4 f:i32[] = integer_pow[y=2] k
5 g:f32[] = convert_element_type[new_dtype=float32 weak_type=False] f
6 in (g, k) }

(c) Inlined, canonicalized JAXPR. This is a standard JAXPR, ready for execution or transformation.

Figure 3: Final CHOIX program transformation stages, performing the loss translation and effect
handling. In the final stage, all choice-based learning constructs are translated away, producing a
lowered JAXPR that matches JAXPRs from direct-style JAX code.

8

B Stateful computation

1 State = int
2

3 @effect
4 def get() -> State:
5 """Gets the state value."""
6

7 @effect
8 def set(s: State) -> None:
9 """Updates the state value."""

10

11 def program() -> State:
12 x1 = get()
13 set(x * 2)
14 x2 = get()
15 set(x2 + 5)
16 return x1 + x2 + get()
17

18 def get_handler(s: State, x: None, k, lk):
19 jax.debug.print('get: s = {}', s)
20 return k(s, s)
21

22 def set_handler(s: State, x: State, k, lk):
23 jax.debug.print('set: s = {}, x = {}', s, x)
24 return k(x, None)
25

26 x = 42
27 main = handle(
28 Handler(parameterized=True, get=get_handler, set=set_handler)
29)(program)(x)
30

31 result = main()
32 # get: s = 42
33 # set: s = 42, x = 84
34 # get: s = 84
35 # set: s = 84, x = 89
36 # get: s = 89
37 print(result)
38 # (loss=0.0, value=Array(215, dtype=int32))
39

40 print(jax.make_jaxpr(main)())
41 # { lambda ; a:i32[]. let
42 # b:i32[] = mul a 2
43 # c:i32[] = add b 5
44 # d:i32[] = add a b
45 # e:i32[] = add d c
46 # in (0.0, e) }

Figure 4: A simple stateful program in CHOIX, using get and set operations. This is noteworthy
since state management is a primary concern of deep learning libraries built on JAX, as JAX’s purely
functional programming model does not provide native support for state management7. As shown,
the final transformed JAXPR is as efficient as direct-style JAX code.

7https://jax.readthedocs.io/en/latest/jax-101/07-state.html#taking-it-further

9

https://jax.readthedocs.io/en/latest/jax-101/07-state.html#taking-it-further

C Hyperparameter optimization

In machine learning, hyperparameters are variables (like learning rate) that are not directly related
to the training data but govern the training process itself. Hyperparameter values can greatly affect
the training process, including how quickly training converges and whether training succeeds at all.
Hyperparameter optimization (or tuning) is the process of searching for optimal hyperparameters.

Standard machine learning approaches tend to view hyperparameter tuning as a separate and orthogo-
nal process to model training, often using external blackbox optimization frameworks like Vizier [9]
that involve nontrivial configuration. This leads to a barrier between training and tuning, making it
difficult to extend programs for training to also do hyperparameter search without rewriting code.

With CHOIX, hyperparameter tuning is naturally represented using nested effects and handlers, as
shown in Figure 5. We define an effect choose_single for selecting a hyperparameter config-
uration from a search space. This lets us write a hyperparameter_tuning generic function that
takes a search space and applies choose_single to select hyperparameters for an argument training
function f.

Hyperparameter optimization approaches can then also be implemented as handlers. Here, the
choose_enumerate_handler function defines a simple grid search that exhaustively explores a
search space and picks the option minimizing loss. Other handlers could implement more advanced
features such as random exploration or early-stopping. Existing libraries for hyperparameter search
like Vizier [9] could also be used to implement handlers.

1 @effect
2 def choose_single[T](x: Sequence[T]) -> T:
3 """Choose-one-from-many effect operation."""
4

5 def hyperparameter_tuning[T](hparam_options: Sequence[T], f: Callable[[T], Any]):
6 hparam = choose_single(hparam_options)
7 return hparam, f(hparam)
8

9 # Handlers.
10 def choose_enumerate_handler[T](options: Sequence[T], k, lk):
11 """Enumerative choice handler, using a vectorized loss function."""
12 losses = jax.vmap(lk)(jnp.asarray(options))
13 best_option = options[jnp.argmin(losses)]
14 return k(best_option)
15

16 # Usage.
17 hyperparameter_tuning = handle(
18 Handler(choose_single=choose_enumerate_handler),
19)(hyperparameter_tuning)
20

21 lrs = [0.001, 0.002, 0.005, ...]
22 params, x, y = ...
23

24 def f(lr: float):
25 g = handle(
26 Handler(parameterized=True, choose=choose_grad_handler),
27)(linear_regression)
28 return g(lr)(params, x, y)
29

30 loss_value, (best_hparam, new_params) = hyperparameter_tuning(lrs, f)

Figure 5: Hyperparameter tuning with CHOIX.

10

D Reinforcement learning

1 # Effect operations for reinforcement learning.
2 @effect
3 def predict(state: State) -> Action:
4 """Selects an action given an environment state."""
5
6 @effect
7 def observe(state: State, action: Action) -> tuple[Reward, State]:
8 """Performs an action to get a reward and new environment state."""
9

10 Feedback = tuple[State, Action, Reward, State] # (old_state, action, reward, new_state)
11
12 @effect
13 def feedback(data: Feedback) -> None:
14 """Updates agent with reward feedback."""
15
16 # Generic reinforcement learning algorithm.
17 def run_episode(state: State, is_goal: Callable[[State], bool]) -> State:
18 """Runs reinforcement learning for one episode, updating environment with actions from agent."""
19 def cond(state: State):
20 return jnp.invert(is_goal(state))
21
22 def body(state: State):
23 action = predict(state)
24 reward, new_state = observe(state, action)
25 feedback((state, action, reward, new_state))
26 return new_state
27
28 return lax.while_loop(cond, body, state)
29
30 # Random number generation handler.
31 def random_uniform_handler(key: PRNGKey, args: tuple[int, int], k, lk):
32 minval, maxval = args
33 key, subkey = random.split(key)
34 return k(key, random.uniform(subkey, minval, maxval))
35
36 # Agent handlers: Q-learning.
37 def predict_handler(params: Theta, state: State, k, lk):
38 # Selects an action given agent parameters and state.
39 epsilon = random_uniform(0, 1)
40 action = jax.lax.select(
41 epsilon < 0.1,
42 jnp.floor(random_uniform(0, action_count)),
43 find_max_action(params, state)
44)
45 return k(params, action)
46
47 def feedback_handler(params: Theta, data: Feedback, k, lk):
48 # Updates agent parameters given feedback.
49 max_reward = find_max_reward(params, data)
50 new_params = update(params, max_reward, data)
51 return k(new_params)
52
53 # Environment handler: cliff-walking.
54 # Reference: R. Sutton and A. Barto, "Reinforcement Learning: An Introduction", 2020.
55 def cliff_walking_observe_handler(state: State, action: Action, k, lk):
56 reward, new_state = cliff_walking_environment_update(state, action)
57 return k(reward, new_state)
58
59 def cliff_walking_is_goal(state: State) -> bool:
60 """Returns True if state is a goal state."""
61 ...
62
63 # Usage.
64 run_qlearning = handle(
65 Handler(parameterized=True, random_uniform=random_uniform_handler),
66 Handler(parameterized=True, predict=predict_handler, feedback=feedback_handler),
67 Handler(observe=cliff_walking_observe_handler),
68)(run_episode)
69
70 loss_value, (new_rng_key, new_params, new_state) = run_qlearning(rng_key, params)(state, cliff_walking_is_goal)

Figure 6: A generic reinforcement learning algorithm in CHOIX (abbreviated for space).

The top-level run_episode function is generic and can be instantiated with different envi-
ronments and agent algorithms through customized handlers. An outer “agent” handler predicts
actions and applies feedback, while an inner “environment” handler updates environment state
given actions.

Handlers here implement Q-learning (for predict and feedback) and cliff-walking (for
observe). The Q-learning predict_handler itself uses a random_uniform effect for random
number generation.

11

E Deep reinforcement learning

1 # Reuses functions like `run_episode` from previous example.
2
3 @effect
4 def choose[T](x: T) -> T:
5 """Choice effect operation."""
6
7 def atari_observe_handler(state: AtariState, action: Action, k, lk):
8 reward, new_state = atari_environment_update(state, action)
9 return k(reward, new_state)

10
11 def ppo_predict_handler(params: Theta, state: AtariState, k, lk):
12 # Applies neural network to get per-action logits, then samples one.
13 logits, value = forward.apply(params, state)
14 ...
15 pi = distrax.Categorical(logits)
16 action = pi.sample()
17 return k(params, action)
18
19 def ppo_feedback_handler(params: Theta, data: Feedback, k, lk):
20 # Updates agent parameters given feedback.
21 new_params = choose(params)
22 # PPO loss has three parts: value loss, actor loss, entropy.
23 # Intermediate computations are hidden.
24 ...
25 loss(value_loss)
26 ...
27 loss(actor_loss)
28 ...
29 loss(entropy)
30 return k(new_params, None)
31
32 def choose_optax_handler(opt_state: Opt, params: Theta, k, lk):
33 # Gradient-based update via the Optax library.
34 grads = jax.grad(lk, argnums=1)(opt_state, params)
35 updates, opt_state = optimizer.update(grads, opt_state)
36 new_params = optax.apply_updates(params, updates)
37 return k(opt_state, new_params)
38
39 run_ppo = handle(
40 Handler(parameterized=True, random_uniform=random_uniform_handler),
41 Handler(parameterized=True, predict=ppo_feedback_handler, feedback=ppo_feedback_handler),
42 Handler(parameterized=True, choose=choose_optax_handler),
43 Handler(observe=atari_observe_handler),
44)(run_episode)
45
46 # Usage.
47 optimizer = optax.adam(learning_rate=...)
48 opt_state = optimizer.init(...)
49 loss_value, result = run_ppo(rng_key, params, opt_state)(state, cliff_walking_is_goal)
50 new_rng_key, new_params, new_opt_state, new_state = result

Figure 7: A deep reinforcement learning example in CHOIX.

This reuses the run_episode generic function (from Appendix D) with new handlers for
predict and feedback. Here, handlers implement the PPO algorithm [8], abbreviated for
simplicity.

In our CHOIX artifact, we use run_ppo to train agents on Atari game environments imported from
the pgx library8.

8https://github.com/sotetsuk/pgx

12

https://github.com/sotetsuk/pgx

	Introduction
	Background
	Choix: a library for choice-based learning
	Examples
	Linear regression
	Reinforcement learning
	Deep reinforcement learning
	Summary

	Implementation

	Related work
	Conclusion
	Choix transformation details
	Stateful computation
	Hyperparameter optimization
	Reinforcement learning
	Deep reinforcement learning

