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Abstract

We introduce strategic-fl-sim, a lightweight research package for strategic be-
havior in Federated Learning (FL). Most existing FL frameworks target deployment
or other simulation settings—such as privacy, benchmarking or heterogeneity—and
are not designed for modeling strategic clients. strategic-fl-sim fills this gap
by prioritizing easy specification of client strategies (transformations of local
updates) and server defenses (aggregation methods). The design enforces a clean
client–server separation: the Client owns data, local optimizers, local training,
and strategic actions, while the Server handles aggregation, global updates and
records metrics. Out-of-the-box, strategic-fl-sim includes implementations
of common manipulations and aggregators, while remaining extensible. It supports
single-node multi-GPU execution for efficient simulations in heterogeneous set-
tings. We showcase the package’s utility for the FedAvg protocol and three strategic
actions—gradient scaling, sign-flipping, and free-riding. The project repository is
available at https://github.com/dimitarch/strategic-fl-sim.

1 Introduction

Federated learning (FL) enables collaborative model training without centralized data [20, 16]. The
distributed setup creates opportunities for strategic client behavior. Clients may manipulate updates
to gain advantage [8, 4], free-ride to reduce computation [17], or launch adversarial attacks against
the global model [30]. Understanding these dynamics is crucial for building robust FL protocols and
effective incentive mechanisms. Existing FL frameworks, however, are not designed for this purpose.
Production-oriented packages such as Flower [1], PySyft [32], and FEDn [9] emphasize deployment
priorities like communication, privacy, and scalability. Research-oriented frameworks such as FedML
[14], FedScale [19], pfl-research [12], and Pollen [24] focus on heterogeneity, benchmarking, or
privacy, and FL-Byzentine [23, 22] and byzfl [11] are geared towards Byzantine-robustness. While
these existing frameworks serve their goals effectively, they do not explicitly focus on strategic
behavior. As a result, researchers of strategic FL interactions often rely on manual client coordination,
which makes experiments both cumbersome and difficult to replicate.

1.1 Our Contribution

strategic-fl-sim addresses this gap with a general-purpose, extensible toolkit for modeling
strategic behavior in FL. It prioritizes convenient simulation over deployment speed and is therefore
particularly suited for research on incentives in FL and robustness dynamics. Our main contributions
are:

• We introduce strategic-fl-sim, the first FL simulation package designed specifically
for strategic behavior simulation.
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• We provide clean abstractions separating client-side strategies (arbitrary transformations of
updates) from server-side logic (aggregation methods, metrics), with extensible implementa-
tions of both.

• We enable single-node, multi-GPU execution out-of-the-box, supporting high-throughput
simulations.

• We demonstrate the package on three datasets—FeMNIST, Shakespeare, and Twit-
ter/Sent140 [3]—and three strategic actions: gradient scaling, free-riding, and sign-flipping.

We aim for strategic-fl-sim to support the research community in systematically studying
strategic client behavior and server defenses, facilitating reproducible streamlined experimentation
and robust evaluation of FL protocols.

1.2 Related work

strategic-fl-sim complements existing FL packages by addressing a specific research need
unmet by current tools. We organize related work into four categories: production packages, research
simulation packages, specialized packages and prior work on incentives in collaborative learning.

Production-oriented packages. Flower [1], PySyft [32], and FEDn [9] excel at real-world deploy-
ment concerns including network communication, security protocols, and distributed fault tolerance.
However, these production priorities create barriers for strategic behavior research: setting up het-
erogeneous client populations with different strategic actions requires extensive customization and
careful coordination of client states across distributed systems. Research packages like FedML [14]
focus on system heterogeneity simulation rather than strategic dynamics.

Research simulation packages. Several packages target FL research simulation but with different
emphases than strategic-fl-sim. FedScale [19] provides comprehensive benchmarking with
realistic datasets and scalable runtime, focusing on system heterogeneity and performance evaluation.
pfl-research [12] offers high-performance simulation with strong privacy algorithm integration,
achieving 7-72× speedup over alternatives on cross-device setups. Pollen [24] addresses scalability
through resource-aware client placement and high-throughput simulation. While these packages excel
at their respective goals—benchmarking, privacy-preserving FL, and scalable simulation—they do
not provide the specialized abstractions needed for strategic behavior research.

Specialized research packages. Most related are Byzantine-robustness packages like FL-
Byzentine [23, 22] and byzfl [11], which implement SOTA attacks and defenses for Byzantine
FL. Our focus differs by providing a tool for implementing arbitrary client and server behaviors.
Our package abstracts client logic (data, optimizer, local training, strategic actions) and server logic
(aggregation, global training, coordination, metrics logging) , prioritizing extensibility through mod-
ularity. This allows researchers to implement any server and client behavior, including methods
beyond existing SOTA Byzantine approaches. Other recent works like APFL [10] and PPFL [21]
address specific strategic FL aspects through algorithmic contributions for non-IID challenges and
heterogeneous population patterns. However, these lack general-purpose tools for strategic behavior
simulation.

Incentives in Collaborative Learning. There have been several prominent directions of theoretical
research that could benefit from our unified toolkit. For instance, prior work has investigated voluntary
participation and individual rationality [28, 31], and explored the impact of privacy concerns on FL
participation incentives [27]. Some of the works that consider non-truthful participation focus on
free-riding [17, 26], study defection [13], look at agents who wish to keep their data collection low [2],
incentivize diverse and high-quality data contributions [15, 29], or consider manipulating updates due
to competition in homogeneous settings [8]. In heterogeneous settings, earlier works have successfully
designed truthful mechanisms for single-round mean estimation [5, 7] and peer prediction [6], and
federated stochastic gradient descent under strategic positive definite transformations [4].

2 Theoretical framework

We consider a standard FL setting with N clients collaborating through a central server. All clients
work with a shared loss function f(θ; z) where θ ∈ Rd and z ∈ Z . Each client i has their own data
distribution Di over z ∈ Z , and their objective is Fi(θ) = Ez∼Di [f(θ; z)]. The server’s objective is
to minimize the average expected loss F (θ) = 1

N

∑N
i=1 Fi(θ).
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Strategic Client Actions. The client action space A consists of gradient transformations a : Rd →
Rd that clients can apply to their local updates. We may assume that A always contains the identity
action id(g) = g, representing honest behavior. For instance, the action space might contain gradient
scaling, free-riding or sign flipping. At round t, client i chooses an action ait ∈ A, computes a
gradient update git(θt), which may be a simple stochastic gradient, the result of several local SGD
steps or any other local training method, and sends the transformed message mi

t = ait(g
i
t(θt)) to the

server. The server then aggregates these potentially manipulated gradients and updates the global
model as described below (Section 2).

Server Protocol. We consider a general FL protocol M of the following type. At time t client i
sends a gradient message mi

t ∈ Rd to the server. The server aggregates all messages according to
a fixed aggregation function Aggregate : Rd×N → Rd, such as mean, median or trimmed mean
aggregation, so m̄t = Aggregate

(
{mi

t}Ni=1

)
. Then it updates the central model θt+1 = θt − γtm̄t,

where γt is the learning rate at step t. Finally, the server broadcasts θt+1 to all clients. This process is
repeated for T steps. Furthermore, in the strategic FL literature often the server implements defenses
that calculate a gradient-based client payment [8, 4], complementing robust aggregation.
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Figure 1: Example with strategic actions in an oversimplified FL protocol.

3 The strategic-fl-sim Package Architecture

strategic-fl-sim is implemented in PyTorch with minimal dependencies (NumPy, OmegaConf
for configurations). The architecture directly translates the theoretical framework from Section 2 into
a practical research tool. The project repository is available at https://github.com/dimitarch/
strategic-fl-sim.

3.1 Design principles

strategic-fl-sim’s architecture reflects the following three core principles.

Research-first philosophy. strategic-fl-sim prioritizes ease of experimentation and simulation
over deployment concerns, such as network protocols, security, or distributed fault tolerance.

Clean Client-Server separation. Clients and servers have clearly separated responsibilities. Clients
own their data, local optimization, training procedures, and strategic actions. The server exclusively
handles aggregation, global model updates, and system-wide metrics collection.

Extensibility by default. Both strategic actions and aggregation methods come with default functions,
but are designed for easy customization. Adding new strategic behaviors or defense mechanisms
requires minimal code changes, encouraging rapid prototyping and comparative studies.

3.2 Overview of architecture

The theoretical setup from Section 2 defines clients as entities that own data and apply strategic
actions ait, while servers handle aggregation functions Aggregate (·) and global model updates. The
software architecture enforces this separation through two main classes that encapsulate distinct
responsibilities and don’t cross boundaries. This design choice serves a critical research purpose:
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investigators can modify client strategies independently of server defenses, and vice versa, enabling
controlled experiments where exactly one variable changes at a time.

Consider the fundamental research workflow in strategic federated learning: researchers typically
want to compare how different aggregation methods perform against the same strategic population, or
evaluate how a fixed aggregation method handles different types of strategic behavior.

strategic-fl-sim’s clean separation makes such studies straightforward—swap the aggregation
function without touching client code, modify client actions without changing server logic, customize
the server training methodology through subclassing the existing class with no modifications to the
client logic and vice versa.

3.3 Core API example

The following example demonstrates how strategic-fl-sim’s API directly reflects the theoretical
framework while remaining simple to use:� �

# Step 1: Define what each client owns and how they behave
honest_client = Client(

model=CNN(), # Local copy of generic
PyTorch CNN model
data_loader=honest_data , # Private dataset
action=create_scalar_action (1.0) # Strategy: honest reporting

)

strategic_client = Client(
model=CNN(),
data_loader=strategic_data , # Different data distribution
action=create_scalar_action (2.0) # Strategy: 2x gradient
scaling

)

byzantine_client = Client(
model=CNN(),
data_loader=byzantine_data ,
action=create_sign_flip_action () # Strategy: Byzantine attack

)

# Step 2: Define what the server controls globally
server = Server(

model=global_model , # Global model state
theta_t
aggregate_fn=get_aggregate("mean"), # Aggregation function
Aggregate (.)
metrics_hook=get_gradient_metrics # Metrics hook for logging

)

# Step 3: Package coordinates interaction automatically
clients = [honest_client , strategic_client , byzantine_client]
losses , metrics = server.train(clients=clients , T=100)
 	

This API enforces our theoretical framework in practice. Clients own their datasets, local training
procedures, and strategic action functions ait. The server owns the global model state θt, aggregation
mechanism Aggregate (·), the metrics gathering function and system-wide coordination. Neither
side needs implementation details of the other—the package handles all message passing, device
coordination, and state synchronization automatically.

3.4 Core components

The clean theoretical separation translates into clear software responsibilities that enable different
types of strategic behavior research.
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Client Class. Local data loaders and model parameters enable heterogeneity studies by allowing
different clients to have different data distributions Di and different local model initializations. Local
training procedures and optimizers enable studies of how different local update methods git(θt)
interact with strategic actions—for instance, comparing how gradient scaling affects single-step
SGD versus multi-step local training. Strategic action functions ait allow for transforming computed
gradients before transmission to the server. Finally, device placement enables both high-throughput
simulation and modeling of federated environments where clients have different computational
capabilities. Clients perform only local computations and strategic transformations. They never access
information from other clients, can’t perform aggregation, and can’t update the global model directly.
This restriction ensures that strategic clients operate within realistic federated constraints.

Server Class. The server handles everything global in the federated learning protocol. It manages
the global model state θt and applies aggregation mechanisms Aggregate

(
{mi

t}Ni=1

)
to transform

client messages into global updates. The server coordinates cross-device tensor transfers when clients
are distributed across multiple GPUs. The server never accesses client private data, local optimizers,
or strategic action implementations. This separation ensures that aggregation methods operate only
on the information that would be available in real federated deployments.

Metrics hooks. The server also maintains a metrics collection through customizable metrics hooks
that can compute gradient norms, cosine similarities, outlier detection scores, and other indicators of
strategic behavior without storing complete gradient histories. This allows the server to also compute
client payment schemes: for example, the payment schemes from Chakarov et al. [4] and Dorner et
al. [8] can be implemented because all gradients can be tracked via the metrics hooks.

3.5 Extensibility

The separation between client and server responsibilities enables the modification of either side
independently without breaking the other. Clients can implement arbitrarily sophisticated strategic
behaviors: adaptive strategies using model history, collusion simulation, data-dependent actions. As
long as the client produces a tensor of appropriate dimensions to send to the server, the package han-
dles the rest automatically. Similarly, the server can implement complex robust mechanisms, adaptive
defenses that change based on detected strategic behavior, or incentive-compatible mechanisms. The
aggregation function receives the client messages {mi

t}Ni=1, ensuring that defensive mechanisms
remain realistic. Below is an example of a custom strategic action based on gradient magnitude:� �

def magnitude_adaptive_scaling(gradient , scaling_factor =2.0,
threshold =0.1):
grad_norm = torch.norm(gradient)
if grad_norm < threshold: # Scale aggressively when small

return gradient * scaling_factor
else:

return gradient # Honest behavior for large gradients

client = Client(model=CNN(), data_loader=data , action=
magnitude_adaptive_scaling)
 	

3.6 Single-node multi-GPU execution

strategic-fl-sim’s device abstraction serves dual purposes beyond simple performance improve-
ment: (1) it enables high-throughput simulation by distributing clients across multiple GPUs on a
single node, and (2) it supports modeling federated environments where clients have heterogeneous
computational capabilities by placing clients on devices with different memory and processing con-
straints. The package handles device coordination automatically during aggregation and broadcasting,
transferring tensors between client devices and the server device as needed.� �

# Distribute clients across available GPUs
client1 = Client(model=CNN(), data_loader=data1 , device="cuda:0")
client2 = Client(model=CNN(), data_loader=data2 , device="cuda:1")
client2 = Client(model=CNN(), data_loader=data2 , device="cuda:2")
server = Server(model=CNN(), aggregate_fn=median , device="cuda:3")
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3.7 Built-in components for common research patterns

strategic-fl-sim ships with a set of common strategic actions and aggregation methods from the
strategic FL literature. These components function as both immediately usable tools and templates
that could be adapted for novel studies. For instance, a gradient scaling action can be extended
to include adaptive scaling based on training round, local data characteristics, or observed server
responses. Similarly, aggregation methods can incorporate learned parameters, multi-round memory,
or incentive-compatible scoring mechanisms.

The built-in strategic actions cover the following. Gradient scaling [8, 4] attacks are implemented
through create_scalar_action(alpha, beta), which models upscaling attacks that amplify
client influence (α > 1), free-riding [18, 26] behaviors where clients minimize effort while benefiting
from others (α < 1), and noisy reporting scenarios with controlled variance injection (non-zero β).
Byzantine attacks [30, 25] are supported through create_sign_flip_action() for coordinated
malicious behavior and create_coordinate_attack() for dimension-specific perturbations.

Server-side defenses span from standard baselines to robust aggregation mechanisms [30]. Basic
methods like arithmetic mean and weighted mean provide essential baselines for measuring attack
effectiveness, while robust alternatives including coordinate-wise median, trimmed mean with con-
figurable percentile cutoffs, and coordinate-wise trimmed mean offer graduated levels of Byzantine
tolerance.

4 Experimental studies

We demonstrate strategic-fl-sim’s capability through three strategic behavior scenarios using
the FeMNIST, Shakespeare and Twitter/Sent140 datasets from LEAF [3]. Each experiment isolates a
specific strategic action—scaling, free-riding, sign-flipping. Each experiment requires only creating
the necessary agents (clients and server) and calling the training function of the server.

Gradient scaling on FeMNIST. We use a two-layer CNN classifier: the first layer has 3 input
channels and 32 output channels, and the second layer has 32 input channels and 64 output channels.
Both layers apply a 5×5 kernel with stride 1 and padding 2. After each layer we add ReLU activation
and 2 × 2 max pooling with stride 2. We train on FeMNIST with 10 clients using FedAvg with 3
local steps with batch size 32 for T = 3500 rounds. One client applies gradient scaling with α = 2.0
while others remain honest. Figure 2 shows that the scaling client achieves better final loss compared
to all but one of the honest participants.

Free-Riding on Shakespeare. We use a two-layer LSTM with embedding dimension of 8, 80 classes
and 256 hidden units per layer. We train on Shakespeare with 1 local step and batch size 16 for
T = 1000 rounds. One client free-rides and sends zero gradients at each step. Figure 3 shows that
free-riding gives competitive performance for the strategic client with no local computation.

Byzantine Attack on Twitter/Sent140. We use a two-layer linear classifier with 384 hidden neurons
on top frozen BERT embeddings. We train on Twitter with 5 clients using FedAvg with 1 local step
and batch size 8 for T = 500 rounds. One client uses Byzantine sign-flipping. Figure 4 shows that
this has minimal impact on convergence.

5 Limitations and future work

strategic-fl-sim currently targets single-node simulation, which is sufficient for strategic behav-
ior research but limits scalability studies. The framework focuses on gradient-level strategic actions
rather than model-level or data-level manipulations. Communication costs and network effects are
not modeled, as these are secondary concerns for strategic behavior analysis. Future extensions could
include: distributed multi-node execution for scalability research, communication cost modeling
for practical deployment studies, and integration with mechanism design frameworks for incentive
analysis.

Ackonwledgements. DC acknowledges funding and compute resources from TTIC. DC would like
to thank Adam Bohlander for several useful discussions about implementing and executing distributed
training. This research was partially funded by the Ministry of Education and Science of Bulgaria
(support for INSAIT, part of the Bulgarian National Roadmap for Research Infrastructure).
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Figure 2: Training of CNN classifier with the FeMNIST dataset and 10 clients, where one is scaling
their update by a factor of 2 and everyone else is honest. The protocol is FedAvg with 3 local steps
and batch size 32 at each timestep, learning rate of 0.06 and runs for T = 3500 steps.

Figure 3: Training of LSTM with the Shakespeare dataset and 10 clients, where one is free-riding and
everyone else is honest. The protocol is FedAvg with 1 local steps and batch size 16 at each timestep,
mean aggregation, learning rate of 0.06 and runs for T = 1000 steps.

Figure 4: Training of BERT classifier with the Sent140/Twitter dataset and 5 clients, where one is
using Byzentine sign flipping and everyone else is honest. The protocol is FedAvg with 1 local steps
and batch size 8 at each timestep, mean aggregation, learning rate of 0.06 and runs for T = 500 steps.
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