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Abstract

While the Minif2f dataset exists for Lean, Isabelle/HOL, and MetaMath, it
has not been formalized in Rocq, limiting cross-system comparisons in auto-
mated theorem proving. We investigate whether state-of-the-art LLMs can
automatically translate formal theorems between proof assistants. Using a
three-stage methodology from basic prompting to multi-turn conversations
with error feedback, we successfully translated 478 out of 488 theorems
(98%) from Minif2f to Rocq. Expert validation of 150 translations con-
firmed high accuracy, with only three errors. This work provides a complete
Rocq formalization of Minif2f and demonstrates the viability of LLM-based
cross-proof-assistant translation.

1 Introduction

Recent advances in Large Language Models (LLMs) have shown remarkable progress in
automated theorem proving using interactive theorem provers (ITPs) such as Isabelle [Wu
et al., 2022, First et al., 2023], Lean [Polu et al., 2023, Yang et al., 2023], and Rocq [Zhang
et al., 2023, Thompson et al., 2024]. However, the landscape of formal mathematics re-
mains fragmented across different proof assistants, each with distinct syntactic conventions,
type systems, and mathematical libraries. This fragmentation poses significant barriers to
knowledge transfer and comparative evaluation.

The challenge of cross-system compatibility is particularly acute in the evaluation of ma-
chine learning approaches to theorem proving. Researchers developing techniques for dif-
ferent proof assistants often work with incompatible datasets, making it difficult to fairly
compare methodologies or transfer insights across systems. While manual translation efforts
exist, they are time-consuming, error-prone, and do not scale with the growing volume of
formalized mathematics.

LLMs have demonstrated particular aptitude for translation tasks between programming
languages, especially when extensive shared resources exist [Xu and Zhu, 2022]. This capa-
bility suggests potential for automated translation between formal proof languages, which
share many structural similarities despite their syntactic differences. Such automated trans-
lation could unlock significant value by enabling: (1) fair comparison of automated proving
techniques across systems, (2) rapid porting of benchmark datasets, and (3) leveraging the
unique strengths of different proof assistants for the same mathematical content.

In this work, we investigate whether state-of-the-art LLMs can effectively translate formal
mathematical theorems between proof assistants. We focus specifically on translating the
Minif2f dataset [Zheng et al., 2021, Jiang et al., 2022] from its existing formalizations in Lean
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and Isabelle to Rocq. Minif2f contains 488 high-school-level mathematical problems with
existing formalizations in multiple systems, making it a popular benchmark for evaluating
automated proof techniques [Polu and Sutskever, 2020, Thakur et al., 2024, Mikula et al.,
2023, Wang et al., 2024].

Our work is available at https://github.com/LLM4Rocq/miniF2F-rocq.

2 Methodology

We focus on translating Minif2f to Rocq, as this system lacks a complete formalization
despite previous community efforts.! The dataset contains 488 theorems spanning various
mathematical domains including algebra, number theory, and geometry.

Our translation task generates Rocq theorem statements based on three input sources: (1)
natural language descriptions of the mathematical problems, (2) existing Lean formaliza-
tions, and (3) existing Isabelle formalizations. We deliberately focus only on theorem state-
ments, ignoring proofs to isolate the translation challenge from proof generation complexity.

All generated Rocq statements are automatically verified using Petanque and its dedicated
interface for python pytanque [Teodorescu et al., 2024], a machine-to-machine interactive
environment for Rocq. This ensures that our translations are both syntactically and type-
theoretically correct within the Rocq system. Then, valid translations are reviewed by a
human to ensure their semantic correctness with regards to the three input sources.

We designed a systematic approach with three stages of increasing complexity. To manage
computational costs while maximizing translation success, we employ a cascading approach:
each stage only processes theorems that remained untranslated in previous stages. This
ensures that expensive model calls are focused on the most challenging cases while simpler
theorems are handled efficiently in earlier stages.

Stage 1: one-shot prompting In this baseline stage, we provide models with a single
prompt containing the natural language description and existing formalizations, requesting
a direct Rocq translation. We evaluate four state-of-the-art models: GPT-40 mini (40 mini),
Claude-3.5-Sonnet (claude), ol-mini (ol mini), and ol (ol). This stage assesses the models’
inherent translation capabilities without interactive refinement.

Stage 2: multi-turn with error feedback Building on Stage 1 failures, we implement
an interactive approach where models can attempt up to three translations per theorem.
Each subsequent attempt incorporates the error messages from Petanque verification of
previous attempts. This stage tests whether models can learn from their mistakes and
iteratively improve translations. We focus on claude and ol mini for this stage based on
their Stage 1 performance and cost considerations.

Stage 3: refined prompting with extended attempts For the most challenging re-
maining theorems, we implement targeted improvements using claude. Based on error anal-
ysis from earlier stages, we refine our prompts to specifically address common failures. We
progressively increase the number of attempts from 6 to 24, allowing more extensive explo-
ration of the solution space for difficult cases.

3 Results

Figure 1 presents our cumulative translation results across all stages. The progression
demonstrates the value of our multi-stage approach.

One-shot prompting in Stage 1 achieved translation rates of up to 68%, showing that mod-
els already possess strong base capabilities for translation between proof-assistants. Adding
iterative attempts with error feedback in Stage 2 provided significant improvements: claude
successfully translated 31% of the theorems remaining after Stage 1, demonstrating that
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Figure 1: Cumulative translation results for Minif2f to Rocq across all experimental stages.
Numbers in parentheses indicate the maximum number of attempts allowed per theorem in
multi-turn stages.

models can learn from Rocq error messages. In Stage 3, refining the prompt and increasing
the number of attempts yielded the most substantial gains, leaving only ten theorems un-
translated. This highlights the importance of providing models with targeted information
to overcome their limitations.

Quality assessment To validate translation quality, we conducted an expert audit on
a random sample of 150 theorems (approximately 30% of successful translations). Each
expert reviewed a batch of 25 translations, comparing them against the natural language
description as well as the Lean and Isabelle formalizations.

We classify the answers into three categories:
Error: the translation does not correspond to the original problem. For example, a trans-
lation with hypothesis x of type Q of a problem requiring the numerator and denominator
of x to be relatively prime is false in Rocq, as this property is not guaranteed for elements
of type Q (see also Appendix A.1).
Perfectible: the translation is correct but could be improved. For example, the Rocq
statements ... (x >0 A y > 0) -> ... could be written ... x >0 ->y >0 ->
(see also Appendix A.2).

Valid: the translation requires no modification.

Table 1: Expert audit results for 150 randomly sampled translations.

Answers Number of theorems

Error 3
Perfectible 32
Valid 115

Results are presented in Table 1. The low error rate (2%) and high rate of perfect trans-
lations (77%) indicate that LLM-based translation can achieve human-level quality for the
majority of cases.

4 Discussion

To better understand model capabilities for formal language translation, we now focus on
four research questions:



RQ1: Do supposedly superior models actually perform better on translation tasks?
RQ2: Does the amount of information available to the model affect its performance?
RQ3: Is the generated code faithful to the existing formalizations?

RQ4: Can a model assess the semantic correctness of translations?

4.1 RQ1: models comparison

To assess whether model rankings correlate with translation performance, we compared 4o
mini and ol mini on a subset of 100 theorems. We evaluated both pass@1 (single attempt,
equivalent to Stage 1) and pass@3 (three attempts) scenarios. As for Stage 1, a human
ensured the semantic correctness of all proposed translations. Results are presented in
Figure 2.
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Figure 2: Comparison between 40 mini and ol mini performance. The circle area amounts
to the 100 theorems. Red horizontal lines denote theorems translated by 4o mini. Blue
vertical lines denote theorems translated by ol mini. This defines four zones (untranslated,
translated by 40 mini only, translated by ol mini only, translated by both models).

Despite ol mini’s chain-of-thought capabilities, 40 mini achieved superior pass@1 perfor-
mance. However, both models converged to similar performance levels at pass@3, suggest-
ing that superior model architecture does not guarantee better translation performance.
Notably, both models tend to succeed and fail on the same theorems.

4.2 RQ2: ablation study

We conducted an ablation study using ol mini on the same 100 theorems, systematically
varying the input information: informal description only, as it is the reference content on
which the Rocq version must be based; formal versions only, to test pure translation between
proof assistants; Lean version only as Lean is most similar to Rocq; or everything at once
(our initial set up). The same methodology as in the models comparison is employed to
compute pass@l and pass@3 performance.

Table 2: Ablation study showing the effect of input information on translation.

Information in the prompt pass@Ql1 pass@3
informal description + isabelle version + lean version 35% 62%
informal description 43% 65%
isabelle version + lean version 41% 62%
lean version 40% 56%

Results are presented in Table 2. Surprisingly, varying the input information does not
substantially influence performance. Providing only the informal description achieved the
best performance, suggesting that natural language descriptions constitute the most crucial
information for models, while additional formal representations may introduce confusion
rather than clarity.



4.3 RQ3: faithfulness

When evaluating semantic correctness of translations, we observed that a formalization can
be valid for a theorem prover while failing to capture the complete intent of the natural
language problem. For example, when expressing that m is the maximum of a function
f, formalizing only that f is bounded above by m is insufficient, the statement must also
ensure that this bound is attained.

When both Lean and Isabelle formalizations were provided, mismatches originated from
these reference versions (e.g., the maximum example above; see also Appendix A.3) in all but
one case. This indicates that residual inaccuracies exist in the original Minif2f formalizations,
likely due to human error, and that our translated dataset achieves quality comparable to the
original versions. To investigate these discrepancies, we analyzed results from the ablation
study, focusing on the two prompting strategies containing informal descriptions: informal
description only versus everything (Lean, Isabelle, and informal description).
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everything 5}]
informal description
pass@3
everything
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Figure 3: Effect of input information on translation faithfulness. Black bars represent errors,
dotted bars indicate faithfulness errors, and white bars show valid translations.

Figure 3 reveals that prompting models with only informal descriptions produces more Rocg-
accepted theorems but exhibits a higher overall error rate compared to including both Lean
and Isabelle formalizations. Additionally, faithfulness errors constitute a larger proportion
of total errors when formal versions are provided in the prompt.

4.4 RQ4: LLM-as-a-judge

To assess whether an LLM can perform semantic verification in place of human reviewers, we
compared model judgments against human evaluations from the RQ1 and RQ2 experiments.
For this task, we selected DeepSeek R1, a model distinct from those used for translation
and known for strong reasoning capabilities. Detailed results are provided in Appendix A.4.

DeepSeek R1 and human reviewers agreed on 95.2% of translations. However, the model
demonstrated limited accuracy in error detection: it failed to recognize 41.7% of errors
identified by human reviewers. Since the verification step aims to identify semantic errors,
DeepSeek R1’s poor error identification performance indicates that human review remains
necessary for this task.

5 Conclusion

We successfully translated 478 of 488 theorems (98%) from the Minif2f dataset to Rocq using
state-of-the-art LLMs, providing the first complete Rocq formalization of this important
benchmark. Our three-stage methodology demonstrates that interactive approaches with
error feedback substantially improve one-shot translation, with expert validation confirming
high translation quality (only 2% error rate). This work establishes LLM-based translation
as a viable approach for translation between proof assistants.
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A Appendix

A.1 Example of an answer with an Error and its correction

The natural language statement of the problem is: The number a = 2, where p and ¢
are relatively prime positive integers, has the property that the sum of all real numbers z
satisfying |z| - {2} = a- 22 is 420, where |z| denotes the greatest integer less than or equal
to  and {z} =  — |x] denotes the fractional part of . What is p + ¢?

Show that it is 929.

Theorem amcl2a_2020_p25 : Theorem amcl2a_2020_p25 :
forall (a : Q), forall (p q : nat),
Nat.gcd p q = 1%nat ->
forall (S : list R), forall (S : list R),
(forall x : R, In x S <-> (forall x : R, In x S <->
(IZR (Int_part x) * (IZR (Int_part x) *
(x - IZR (Int_part x)) (x - IZR (Int_part x))
= Q2R a * Rpower x 2)) = INR p / INR g * Rpower x 2))
-> NoDup S -> NoDup S
-> fold_left Rplus S 0 = 420 -> fold_left Rplus S 0 = 420
-> (Z.pos (Qden a) + Qnum a = 929)%Z. -> (p + g = 929)%nat.
(a) Rocq formalization before the audit. (b) Rocq formalization after the audit.

Example 1: an answer with an Error and its correction: a is replaced by the ratio of its
numerator p and its denominator g, and a hypothesis ensuring they are relatively prime is
added.

A.2 Example of a Perfectible problem and its editing

The natural language statement of the problem is: Let a and b be two positive real numbers,
and n be a positive integer.
Show that (4Fb)m < atb™,

Theorem Theorem
algebra_apbon2pownlegapownpbpowon2 : algebra_apbon2pownlegapownpbpowon2 :
forall (a b : R) (n : nat), forall (a b : R) (n : nat),

0 <a N 0<b-> 0 < a->
0 <b ->
(0 < n)%nat -> (0 < n)%nat ->
((a+b) / 2)n ((a +b) / 2)'n
<=(a”"n+b”"n)/ 2. <=(a”n+b"n)/ 2.
(a) Rocq formalization before the audit. (b) Rocq formalization after the audit.

Example 2: a Perfectible problem and its editing: the conjunction a < @ A b < 0 is curry-
fied into two separate hypotheses a < 0 and b < 0.

A.3 Example of an answer that is not faithful and its adjusment

The natural language statement of the problem is: What is the maximum value of Qt;itsm
for real values of t7

Show that it is 1—12

This additional statement is not present in the Lean version? where only a proof for the
upper bound is required:

theorem amc12b_2020_p22
(t : R) :
(2™ -3 xt) *t) / (4™t) <1/ 12 :=

2Lean formalization from https://github.com/facebookresearch/miniF2F
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Theorem amc12b_2020_p22 : Theorem amc12b_2020_p22 :

forall t : R, forall t : R,
((exp (t * ln2) -3 %t)*t) ((exp (t * ln2) -3 %t)*=t)/
/ (exp (t = 1n 4)) (exp (t = 1n 4))
<=1/ 12. <=1/ 12
AN

exists t : R,
((exp (t * ln2)-3%t)*=t)/
(exp (t = 1n 4))
=1/ 12.

(a) Rocq formalization before the audit. (b) Rocq formalization after the audit.

Example 3: An answer the is not faithful and its adjustment: an additional proof that the
maximum is indeed reached is required.

We consider it as an Faithfulness issue: the formal statement in Lean or answered (before
the audit) is valid but not as strong as the informal statement.

Here is another example where the natural language statement is: Solve the system of
equations
|a1 — ag‘l'g + |a1 — a3‘$3 + |a1 — a4\x4
|(J,2 — al\xl + |(J,2 — CL3‘SL‘3 + |CL2 — CL4‘SL‘4 =
|0,3 — al\xl + |0,3 — ag‘l‘z + |G,3 — a4\x4 =

—_ = = =

lag — ail|zy + |ag — az|ze + |ag — az|ws
where a1, as, asz, as are four different real numbers.

In this case, the formalization process requires to have a look at the solution. However,
the informal proof (in https://github.com/facebookresearch/miniF2F) assumes that a; >
as > az > a4 and shows that in this case, x93 = 23 = 0, and 21 = z4 = 1/(a; — a4). This
informal proof only solves a particular case. It turns out that the general solution can be
written as follows: define m = argmax; a; and n = argmin; a;, then z,,, = z,, = and
for all ¢ #£ n,m, x; = 0.

Am —0n

The Lean formalization relies on the weak informal proof and it is acknowledged in the file
that this formal statetment is weaker than the informal original problem:

-- Solution encoded in the theorem statement.

-- Conclusion too weak. It doesn't show "if and only if"

theorem imo_1966_p5 (x a : N> R) (hy, : a1 #a2) (h, :al1#a3)(h, :al#ah4s)
(h, :a2#a3)(h, :a2#a4)(h, :a3#ab4)Chyg :al1>a2)(h,:a2>a3)
(hg : @3 >at4)

(hy : abs (a1 -a2)*x2+abs(al-a3)*x3+abs(al-as4)*xib=1)
(h,, : abs (a 2 al)*x1+abs(a2-a3)*x3+abs(a2-as4)+*x=5b4-=1)
(h,, :abs (a3 -a1)*x1+abs (a3 -a2)*x2+abs(a3-au4)*x=4=1)
(h,, : abs (a4 -a1)*x1+abs (a4 -a2)*x2+abs (ast-a3)*x3=1):
X2=0AX3=0nAx1=1/abs(al-a4)naxb=1/abs (al-atb):=nhy

sorry

Thanks to our audit, we were able to get a stronger formal version closer to the original
informal statement.

Theorem imo_1966_p5':

forall (mn : nat) (x a : nat -> R),

(forall i j, ai=aj->1i=73) —>

(Rabs (a 1%nat - a 2%nat) * x 2%nat + Rabs (a 1%nat - a 3%nat) * x 3%nat
+ Rabs (a 1%nat - a 4%nat) * x 4%nat = INR 1) ->

(Rabs (a 2%nat - a 1%nat) * x 1%nat + Rabs (a 2%nat - a 3%nat) * x 3%nat
+ Rabs (a 2%nat - a 4%nat) * x 4%nat = INR 1) ->

(Rabs (a 3%nat - a 1%nat) * x 1%nat + Rabs (a 3%nat - a 2%nat) * x 2%nat
+ Rabs (a 3%nat - a 4%nat) * x 4%nat = INR 1) ->
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(Rabs (a 4%nat - a 1%nat) * x 1%nat + Rabs (a 4%nat - a 2%nat) * x 2%nat
+ Rabs (a 4%nat - a 3%nat) * x 3%nat = INR 1) ->

(1 <=m <= 4 )%nat -> (1 <= n <= 4)%nat ->

(forall 1 : nat, am >= a i) ->

(forall i, an<=a i) ->

(xm=1/(am-an)) AN (xn=xm)
A (forall i : nat , (di<=4)%nat -> i <>m ->1 <>n ->x i = R0O).

A.4 Complete report of research questions results

Tables on the following pages present all detailed results computed in RQ1 and RQ2, listed
by theorem. All experimental configurations are represented: 4o mini versus ol mini com-
parisons, and various prompt information conditions for ol mini. For each configuration,
we computed pass@3 results, generating three translations per theorem. Within each table
cell, results for the three translation attempts are presented and separated by blank spaces.
A dash indicates that the model failed to produce a valid Rocq statement. For translations
that successfully type-checked, results from the semantic verification phase are shown. A
V indicates a valid statement, a F denotes a faithfulness error, and a E represents an error.
Human reviews are displayed in black, while DeepSeek R1 answers are shown in gray. The
reviews where the assessments of humans and DeepSeek R1 diverged are highlighted in bold
(F classifications by humans are considered valid for DeepSeek R1, as they align with the
Lean and Isabelle formalizations in most cases).



40 mini ol mini

Theorems everything everything formal versions lean version informal description
aime_1983_p1 —- - - - - -
aime_1990_p4 — VV V -V - vV VYV VV VE - EC VYV

aime_1991_p6 - R R R R
aimeII_2001_p3 R T — S — R — R

algebra_3rootspoly_ ... - -V LAY LARYAUY \ARYAUY LAY
algebra_9onxpypzleq ... VvV VYV VV VY- - VV V - - - -— VV V
algebra_apb4leq8taspb4 VvV VYoV \ARYAUY LAY -— VV Vv VYV VYoV
algebra_others_exir... -— - - —— - — - - Ef — — [
algebra_sqineq_at2m... VvV VYoV AR"AUY LAY \ARYAUY VYV VYV
amcl2_2000_p6 — - - — - — - - [
amcl2_2001_p9 VvV -V AR"A") AR'AY) - -V VARANY)
amcl2a_2002_p21 Fv - - - - - F- FC F FV - - —— -
amcl2a_2003_p5 - - E vV VvV - - - EV - -- - - E
amcl2a_2008_p15 VvV VoV - VVV VvV -V VvV VvV VvV -

amcl2a_2009_p2 EV — V — VvV V v/ -V VvV VV E VYV VYV
amcl2a_2009_p9 AR"AY - = - ViV - - VYV o—- - VUV VYUV
amcl2a_2010_p11 — = - — = - — =V —_— [
amcl2a_2013_p7 - = - — - - [ — — - - — -V
amcl2a_2013_p8 W - - AR 'AY) _— = - - VvV - -— VV Vv
amcl2a_2017_p2 VvV VvV Vv VvV VY- AR "AY) -— - - -— VV V

amc12a_2020_p21 R R — R I — I
amc12a_2020_p25 R — - - - -

amcl2a_2021_p8 -— = - - =V -— = - -— = - - Eb -
amc12b_2003_p9 - VV V - VV/ V - -V - - - VW o— -
amc12b_2004_p3 VvV VvV VvV VvV - VVV v/ -—-V - VvV
amc12b_2020_p13 _— - - —_— = - —_— = - - VW - _— = -
amc12b_2020_p22 - - F - FV -- - - - - - - VW o—- -
amc12b_2021_p18 - - - - - - -— VvV - - - -— - -
imo_1977_p5 _—— - _—— - (VA —— - EV - E
imo_1977_p6 VvV -V ARRAY) - =V VvV - - E- E- E
imo_1981_p6 Fv FV - - FV -- VvV FV F F/ FV - -— = -
imo_1997_p5 vy -V ViV - - V- - Vv -V Vv o -—- Vv
imo_2001_p6 - - - - - - - - - - - - -— - -
imos1_2007_algebra_p6 - - - - - - - - - - - - - - -
induction_nfactltne ... - - - - VV Vv - VvV - - - - - -V
induction_seq_mul2pnpl VvV VYoV - VV VvV - - - - - - Vo — -
induction_sum_loktkp1l - - - - - - - - - - -V - - -
mathd_algebra_13 LA VATERY) - VvV VW - - VYV o—- - VV/ VV E
mathd_algebra_15 vy -V -— VvV - - - VW o— - W o— -
mathd_algebra_24 ARYANY) - VvV Vv LAR"AY) ARANY) ViV Vv Vv
mathd_algebra_48 -— VvV -— VvV VvV VYV VvV VeV VvV VY -
mathd_algebra_51 VvV VUV - = - - VV V v/ -V VvV VYV Vv
mathd_algebra_67 \ARYAURY) VvV VY- Vv -V VW o— - W - -
mathd_algebra_77 VvV VY- - VvV vV VY- - -V VvV VvV
mathd_algebra_104 AR"AY) Vv -V ARANY Vv " \ARANY)
mathd_algebra_107 FvV FV F VvV FV F FvV FV - FV FV F F/ FV E
mathd_algebra_119 VvV VY- VvV VYV VvV VY- \% Vv VvV VYV
mathd_algebra_123 VvV VE V v/ -V vV VYV vV VvV EV VV V
mathd_algebra_131 LA VATERY) vV VvV - - - -— -V E/ -- E
mathd_algebra_149 - - - - - - - - - - - - EE — --
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40 mini ol mini

Theorems everything everything formal versions lean version informal description

mathd_algebra_153 - - - - - - - - - - - - - - -

mathd_algebra_158 _—— - - — E _—— - -—— - VvV VvV F
mathd_algebra_188 - Eb - Ef — - - - - - -V VV VY -
mathd_algebra_192 - ==V vV VUV v/ -V v/ -V - VvV -
mathd_algebra_209 - — E VvV - E - - - - VvV Vv LAY
mathd_algebra_263 VW o—- - VvV VYV VvV VYV VvV VYV -— VvV
mathd_algebra_282 -— = - -— = - - - - -— - - -— - -
mathd_algebra_304 -— Ve Vv - - - VvV VYV VvV VYoV VvV VY -
mathd_algebra_320 - - - -— - - -— = - -— = - -— = -
mathd_algebra_405 FV o — - - - - - =V - — E - — F
mathd_algebra_410 FV - -- FV FV F FV —- F FV - - - VV -
mathd_algebra_419 ViV Vv ViV Vv -— VvV VvV VYV VvV VYV
mathd_algebra_s440 VvV VvV Vv ABR"AY) ABR"AY) AR'AY) VvV VV Vv
mathd_algebra_455 - VV V \ARYAUY vV o— - v/ -V -— VvV Vv
mathd_algebra_487 VvV VY- LA AT vV VYV vV VvV F/ EV F
mathd_algebra_s493 VV VYV - VvV Vv - VvV Vv VV o= - LAY,
mathd_algebra_509 -— VvV VvV -V VvV VYV -— VvV -— VvV
mathd_algebra_513 v/ - - - VvV Vv LARYAUY VvV VYoV VYV VYoV
mathd_numbertheory_22 EE - -- FV FV F FV FV F - - - — EE -
mathd_numbertheory_24 - - - \% - - - VV - —- -— VvV -
mathd_numbertheory_42 vy -V -— VvV _— = - _— = - -- EE --
mathd_numbertheory_45 VvV VY- - -V - VvV - -V - VvV
mathd_numbertheory_64 - - - -— VvV vV - - - - - -— VvV
mathd_numbertheory_127 - FV V V/ -- F LA VAT - FV -- FV FV F

mathd_numbertheory_149 - — - _— - - — - - - - [
mathd_numbertheory_150 — - - —— - — - — - [
mathd_numbertheory_175 LAY v Vi
mathd_numbertheory_185 -V Y Vv
mathd_numbertheory_188 VvV VY- VW - - vV VY- — - - [ VA —
mathd_numbertheory_207 LAY Vv "
mathd_numbertheory_212 LAY \Y \%
mathd_numbertheory_221 — - - — - - [ — — [
mathd_numbertheory_234 VW == - vV VY - - -V v/ -V
mathd_numbertheory_252 - - - -— VvV VvV VY- - -
mathd_numbertheory_293 - - - — - — - — - -
mathd_numbertheory_296 E Vv
mathd_numbertheory_299 Vv \Y
mathd_numbertheory_321 VE VE vV LAY - VV Vv -- EV -
mathd_numbertheory_328 " Vv
mathd_numbertheory_342 \% v
mathd_numbertheory_543 — - - — - - — - — [
mathd_numbertheory_552 —_ - - — - - — - [ EV Ef —
mathd_numbertheory_629 - - - TR - VY VY - [ — — F
mathd_numbertheory_640 VV VUV vV VY - - VV - LA AU LAY
mathd_numbertheory_765 FV FV F -— VvV - - - - —- F FV VvV —
numbertheory_2pownm ... — - - —— - — - — [
numbertheory_exk2po ... v/ o— - vV o— - - VV V v/ -V [
numbertheory_fxeq4p ... - - - — - - — - — - - RVVARY]
numbertheory_notequ ... - - - —_— - V/ -V — - —— - E
numbertheory_sumkmu ... — - - —— - — - Y [
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