
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

TUNING FREQUENCY BIAS OF STATE SPACE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

State space models (SSMs) leverage linear, time-invariant (LTI) systems to ef-
fectively learn sequences with long-range dependencies. By analyzing the trans-
fer functions of LTI systems, we find that SSMs exhibit an implicit bias toward
capturing low-frequency components more effectively than high-frequency ones.
This behavior aligns with the broader notion of frequency bias in deep learning
model training. We show that the initialization of an SSM assigns it an innate fre-
quency bias and that training the model in a conventional way does not alter this
bias. Based on our theory, we propose two mechanisms to tune frequency bias:
either by scaling the initialization to tune the inborn frequency bias; or by apply-
ing a Sobolev-norm-based filter to adjust the sensitivity of the gradients to high-
frequency inputs, which allows us to change the frequency bias via training. Using
an image-denoising task, we empirically show that we can strengthen, weaken, or
even reverse the frequency bias using both mechanisms. By tuning the frequency
bias, we can also improve SSMs’ performance on learning long-range sequences,
averaging an 88.26% accuracy on the Long-Range Arena (LRA) benchmark tasks.

1 INTRODUCTION

Sequential data are ubiquitous in fields such as natural language processing, computer vision, gener-
ative modeling, and scientific machine learning. Numerous specialized classes of sequential models
have been developed, including recurrent neural networks (RNNs) (Arjovsky et al., 2016; Chang
et al., 2019; Erichson et al., 2021; Rusch & Mishra, 2021; Orvieto et al., 2023), convolutional neural
networks (CNNs) (Bai et al., 2018; Romero et al., 2022), continuous-time models (CTMs) (Gu et al.,
2021b; Yildiz et al., 2021), transformers (Katharopoulos et al., 2020; Choromanski et al., 2020; Ki-
taev et al., 2020; Zhou et al., 2022; Nie et al., 2023), state space models (SSMs) (Gu et al., 2022b;a;
Hasani et al., 2023; Smith et al., 2023), and Mamba (Gu & Dao, 2023; Dao & Gu, 2024). Among
these, SSMs stand out for their ability to learn sequences with long-range dependencies.

Using the continuous-time linear, time-invariant (LTI) systems,

x′(t) = Ax(t) +Bu(t), y(t) = Cx(t) +Du(t), (1)

where A∈Cn×n, B∈Cn×m, C∈Cp×n, and D∈Cp×m, an SSM computes the output time-series
y(t) from the input u(t) via a latent state vector x(t). Compared to an RNN, a major computational
advantage of an SSM is that the LTI system can be trained both efficiently (i.e., the training can be
parallelized for long sequences) and numerically robustly (i.e., it does not suffer from vanishing and
exploding gradients). An LTI system can be computed in the time domain via convolution:

y(t) = (h ∗ u+Du)(t) =

ˆ ∞

−∞
h(t− τ)u(τ)dτ +Du(t), h(t) = Cexp(tA)B.

Alternatively, it can be viewed as an action in the frequency domain:

ŷ(s) = G(is)û(s), G(is) := C(isI−A)−1B+D, s ∈ R, (2)

where i is the imaginary unit and I is the identity matrix. The function G is called the transfer
function of the LTI system.1 It is a rational function whose poles are at the spectrum of A.

1Equation (2) often appears in the form of the Laplace transform instead of the Fourier transform. We
restrict ourselves to the Fourier transform, due to its widespread familiarity, by assuming decay properties of
u(t). All discussions in this paper nevertheless apply to the Laplace domain as well.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Problem Formulation

Model Input Model Output

SSM

a1 cos(x)

a2 cos(16x)

a3 cos(256x)

ã1

ã2

ã3

0 50 100

10
-2

10
-1

s = 1

s = 16

s = 256

Results

Epochs

|a1−ã1|

|a2−ã2|

|a3−ã3|

M
ea

n
E

rr
or

Figure 1: In a synthetic example to illustrate the frequency bias of SSMs, we form the inputs by
superposing three waves of low, moderate, and high frequencies, respectively. We train an S4D
model to regress the magnitudes of the three waves. We observe that the magnitudes of the low-
frequency waves can be approximated much better compared to those of the high-frequency waves.
In Figure 9, we show how to tune the frequency bias in this example.

The frequency-domain characterization of the LTI systems in eq. (2) sets the stage for understanding
the so-called frequency bias of an SSM. The term “frequency bias” originated from the study of
a general overparameterized multilayer perceptron (MLP) (Rahaman et al., 2019), where it was
observed that the low-frequency content was learned much faster than the high-frequency content.
It is a form of implicit regularization (Mahoney, 2012). Frequency bias is a double-edged sword: on
one hand, it partially explains the good generalization capability of deep learning models, because
most high-frequency noises are not learned until the low-frequency components are well-captured;
on the other hand, it puts a curse on learning the useful high-frequency information in the target.

In this paper, we aim to understand the frequency bias of SSMs. In Figure 1, we observe that, sim-
ilar to most deep learning models, SSMs are also better at learning the low frequencies than the
high ones. To understand that, we develop a theory that connects the spectrum of A to the SSM’s
capability of processing high-frequency signals. Then, based on the spectrum of A, we analyze the
frequency bias in two steps. First, we show that the most popular initialization schemes (Gu et al.,
2020; 2021b; Yu et al., 2024b) lead to SSMs that have an innate frequency bias. More precisely, they
place the spectrum of A, Λ(A), in the low-frequency region in the s-plane, preventing LTI systems
from processing high-frequency input, regardless of the values of B and C. Second, we consider the
training of the SSMs. Using the decay properties of the transfer function, we show that if an eigen-
value aj ∈ Λ(A) is initialized in the low-frequency region, then its gradient is insensitive to the loss
induced by the high-frequency input content. Hence, if an SSM is not initialized with the capability
of handling high-frequency inputs, then it will not be trained to do so by conventional training.

The initialization of the LTI systems equip an SSM with a certain frequency bias, but this is not
necessarily the appropriate implicit bias for a given task. Depending on whether an SSM needs
more expressiveness or generalizability, we may want less or more frequency bias, respectively
(see Figure 9). Motivated by our analysis, we propose two ways to tune the frequency bias:

1. Instead of using the HiPPO initialization, we can scale the initialization of Λ(A) to lower
or higher-frequency regions. This serves as a “hard tuning strategy” that marks out the
regions in the frequency domain that can be learned by our SSM.

2. Motivated by the Sobolev norm, which applies weights to the Fourier domain, we can apply
a multiplicative factor of (1 + |s|)β to the transfer function G(is). This is a “soft tuning
strategy” that reweighs each location in the frequency domain. By selecting a positive or
negative β, we make the gradients more or even less sensitive to the high-frequency input
content, respectively, which changes the frequency bias during training.

One can think of these two mechanisms as ways to tune frequency bias at initialization and dur-
ing training, respectively. After rigorously analyzing them, we present an experiment on image-
denoising with different noise frequencies to demonstrate their effectiveness. We also show that
tuning the frequency bias enables better performance on tasks involving long-range sequences.
Equipped with our two tuning strategies, a simple S4D model can be trained to average an 88.26%
accuracy on the Long-Range Arena (LRA) benchmark tasks (Tay et al., 2021).

Contribution. Here are our main contributions:
1. We formalize the notion of frequency bias for SSMs and quantify it using the spectrum of

A. We show that a diagonal SSM initialized by HiPPO has an innate frequency bias. We

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

are the first to study the training of the state matrix A, and we show that training the SSM
does not alter this frequency bias.

2. We propose two ways to tune frequency bias, by scaling the initialization, and by applying
a Sobolev-norm-based filter to the transfer function of the LTI systems. We study the theory
of both strategies and provide guidelines for using them in practice.

3. We empirically demonstrate the effectiveness of our tuning strategies using an image-
denoising task. We also show that tuning the frequency bias helps an S4D model to achieve
state-of-the-art performance on the Long-Range Arena tasks and provide ablation studies.

To make the presentation cleaner, throughout this paper, we focus on a single single-input/single-
output (SISO) LTI system Γ = (A,B,C,D) in an SSM, i.e., m = p = 1, although all discussions
naturally extend to the multiple-input/multiple-output (MIMO) case, as in an S5 model (Smith et al.,
2023). Hence, the transfer function G : C → C is complex-valued. We emphasize that while we
focus on a single system Γ, we do not isolate it from a large SSM; in fact, when we study the training
of Γ in section 4, we backpropagate through the entire SSM.

Related Work. The frequency bias, also known as the spectral bias, of a general neural network
(NN) was initially observed and studied in Rahaman et al. (2019); Yang & Salman (2019); Xu
(2020). The name spectral bias stemmed from the spectral decomposition of the so-called neural
tangent kernels (NTKs) (Jacot et al., 2018), which provides a means of approximating the training
dynamics of an overparameterized NN (Arora et al., 2019; Su & Yang, 2019; Cao et al., 2019).
By carefully analyzing the eigenfunctions of the NTKs, Basri et al. (2019); Bietti & Mairal (2019)
proved the frequency bias of an overparameterized two-layer NN for uniform input data. The case of
nonuniform input data was later studied in Basri et al. (2020); Yu et al. (2023). The idea of Sobolev-
norm-based training of NNs has been considered in Vlassis & Sun (2021); Yu et al. (2023); Tsay
(2021); Son et al. (2021); Czarnecki et al. (2017); Zhu et al. (2021); Son (2023); Liu et al. (2024).

The initialization of the LTI systems in SSMs plays a crucial role, which was first observed
in Gu et al. (2020). Empirically successful initialization schemes called “HiPPO” were proposed
in Voelker et al. (2019); Gu et al. (2020; 2023). Other efforts in improving the initialization of an
SSM were studied in Yu et al. (2024b); Liu & Li (2024a). Later, Orvieto et al. (2023); Yu et al.
(2024a) attributed the success of HiPPO to the proximity of the spectrum of A to the imaginary
axis (i.e., the real parts of the eigenvalues of A are close to zero). This paper considers the imagi-
nary parts of the eigenvalues of A, which was also discussed in the context of the approximation-
estimation tradeoff in Liu & Li (2024b). The training of SSMs has mainly been considered in Smékal
et al. (2024); Liu & Li (2024a), where the matrix A is assumed to be fixed, making the optimization
convex. To our knowledge, we are the first to consider the training of A. While we consider the de-
cay of the transfer functions of the LTI systems in the frequency domain, there is extensive literature
on the decay of the convolutional kernels in the time domain (i.e., the memory) (Hardt et al., 2018;
Gu et al., 2020; Wang & Li, 2023; Wang & Xue, 2024; Orvieto et al., 2024; Yu et al., 2024a).

2 WHAT IS THE FREQUENCY BIAS OF AN SSM?

Transfer Function G

simaginary axis /
frequency domain

converge to D converge to D

alow blow

V blow
alow

(G)

ahigh bhigh

V
bhigh
ahigh (G)≫

low-frequency region high-frequency regionhigh-frequency region

Figure 2: The frequency bias of an SSM says that
the frequency response has more variation in the
low-frequency area than the high-frequency one.

In Figure 1, we see an example where an S4D
model is better at predicting the magnitude of
a low-frequency component in the input than a
high-frequency one. This coincides with our
intuitive interpretation of frequency bias: the
model is better at “handling” low frequencies
than high frequencies. To rigorously analyze
this phenomenon for SSMs, however, we need
to formalize the notion of frequency bias. This
is our goal in this section. One might imag-
ine that an SSM has a frequency bias if, given
a time-series input u(t) that has rich high-
frequency information, its time-series output
y(t) lacks high-frequency content. Unfortu-
nately, this is not the case: an SSM is capable of
generating high-frequency outputs. Indeed, the skip connection D of an LTI system is an “all-pass”
filter, multiplying the whole input u(t) by a factor of D and adding it to the output y(t). On the

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

other hand, the secret of a successful SSM hides in A, B, and C (Yu et al., 2024a). In an ablation
study, when D is removed, an S4D model only loses less than 2% of accuracy on the sCIFAR-10
task (Tay et al., 2021; Krizhevsky et al., 2009), whereas the model completely fails when we remove
A, B, and C. This can be ascribed to the LTI system’s power to model complicated behaviors
in the frequency domain. That is, each Fourier mode in the input has its own distinct “pass rate”
(see Adamyan et al. (1971); Sun (2020); Yu & Townsend (2024) for why this is an important feature
of LTI systems). For example, the task in Figure 1 can be trivially solved if the LTI system can filter
out a single mode a1 cos(x), a2 cos(16x), or a3 cos(256x) from the superposition of the three; the
skip connection D alone is not capable of doing that.

Given that, we can formulate the frequency bias of an LTI system as follows (see Figure 2):

Frequency bias of an SSM means that the frequency responses (i.e., the transfer functions G)
of LTI systems have more variation in the low-frequency area than the high-frequency area.

More precisely, given the transfer function G(is), we can study its total variation in a particular
interval [a, b] in the Fourier domain defined by

V b
a (G) := sup

a=s0<s1<···<sN=b,
N∈N

N∑
j=1

|G(isj)−G(isj−1)|, −∞ ≤ a < b ≤ ∞.

Intuitively, V b
a (G) measures the total change of G(is) when s moves from a to b. The larger it is,

the better an LTI system is at distinguishing the Fourier modes with frequencies between a and b.
Frequency bias thus says that for a fixed-length interval [a, b], V b

a (G) is larger when [a, b] is near
the origin than when it lies in the high-frequency region, i.e., when it is far from the origin.

3 FREQUENCY BIAS OF AN SSM AT INITIALIZATION

Our exploration of the frequency bias of an SSM starts with the initialization of a SISO LTI system
(A,B,C,D), where A = diag(a1, . . . , an) ∈ Cn×n is diagonal. The system is assumed to be
stable, meaning that aj = xj + iyj for some xj < 0 for all 1 ≤ j ≤ n, where xj and yj are the real
and the imaginary parts of aj , respectively. Note that the diagonal structure of A is indeed the most
popular choice for SSMs (Gu et al., 2022a; Smith et al., 2023), in which case it suffices to consider
the Hadamard (i.e., entrywise) product B ◦C⊤ = [c1 · · · cn]

⊤ ∈ Cn, where cj = ξj + iζj for
all 1 ≤ j ≤ n. Then, the transfer function G is naturally represented in partial fractions:

G(is) =
c1

is− a1
+ · · ·+ cn

is− an
+D =

ξ1 + iζ1
−x1 + i(s− y1)

+ · · ·+ ξn + iζn
−xn + i(s− yn)

+D.

In most cases, the input u(t) is real-valued. To ensure that output is real-valued, the standard practice
is to take the real part of G as a real-valued transfer function before applying eq. (2):

G̃(is) := Re(G(is)) =

n∑
j=1

ζj(s− yj)− ξjxj

x2
j + (s− yj)2

+D. (3)

We now derive a general statement for the total variation of G̃ given the distribution of yj .

Lemma 1. Let G̃ be the transfer function defined in eq. (3). Given any B > maxj |yj |, we have

V −B
−∞(G̃) ≤

n∑
j=1

|cj |
|yj +B|

, V ∞
B (G̃) ≤

n∑
j=1

|cj |
|yj −B|

.

Given the formula of the transfer function, the proof of Lemma 1 is almost immediate. In this paper,
we leave all proofs to Appendix A and C. Lemma 1 illustrates a clear and intuitive concept:

If the imaginary parts of aj are distributed in the low-frequency region, i.e., |yj | are small,
the transfer function has a small total variation in the high-frequency areas (−∞,−B] and
[B,∞), inducing a frequency bias of the SSM.

We can now apply Lemma 1 to study the innate frequency bias of the HiPPO initialization (Gu
et al., 2020). While there are many variants of HiPPO, we choose the one that is commonly used in
practice (Gu et al., 2021a). All other variants can be similarly analyzed.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Corollary 1. Assume that aj = −0.5 + i(−1)j⌊j/2⌋π and ξj , ζj ∼ N (0, 1) i.i.d., where N (0, 1)
is the standard normal distribution. Then, given B > nπ/2 and δ > 0, we have

V −B
−∞(G̃), V ∞

B (G̃) ≤
√
2n(

√
n+

√
ln(1/δ))

B − n/2
with probability ≥ 1− δ.

In particular, Corollary 1 tells us that the HiPPO initialization only captures the frequencies s ∈
[−B,B] up to B = O(n), because when B = ω(n), we see that V −B

−∞(G̃), V ∞
B (G̃) vanish as n

increases. This means that no complicated high-frequency responses can be learned.

4 FREQUENCY BIAS OF AN SSM DURING TRAINING

In section 3, we see that the initialization of the LTI systems equips an SSM with an innate frequency
bias. A natural question to ask is whether an SSM can be trained to adopt high-frequency responses.
Analyzing the training of an SSM (or many other deep learning models) is not an easy task, and we
lack theoretical characterizations. Two notable exceptions are Liu & Li (2024b); Smékal et al.
(2024), where the convergence of a trainable LTI system to a target LTI system is analyzed, assum-
ing that the state matrix A is fixed to make the optimization problem convex. Unfortunately, this
assumption is too strong to be applied for our purpose. Indeed, Lemma 1 characterizes the frequency
bias using the distribution of yj = Im(aj), making the training dynamics of A a crucial element
in our analysis. Even if we set aside the issue of A, analyzing an isolated LTI system in an SSM
remains unrealistic: when an SSM, consisting of hundreds of LTI systems, is trained for a single
task, there is no clear notion of “ground truth” for each individual LTI system within the model.

To make our discussion truly generic, we assume that there is a loss function L(Θ) that depends on
all parameters Θ of an SSM. In particular, Θ contains xj , yj , ξj , ζj , and D from every LTI system
within the SSM, as well as the encoder, decoder, and inter-layer connections. With mild assumptions
on the regularity of the loss function L, we provide a quantification of the gradient of L with respect
to yj that leads to a qualitative statement about the frequency bias during training.
Theorem 1. Let L(Θ) be a loss function and (A,B,C,D) be a diagonal LTI system in an SSM
defined in section 3. Let G̃ be its associated real-valued transfer function defined in eq. (3). Suppose
the functional derivative of L(Θ) with respect to G̃(is) exists and is denoted by (∂/∂G̃(is))L.
Then, if |(∂/∂G̃(is))L| = O(|s|p) for some p < 1, we have

∂L
∂yj

=

ˆ ∞

−∞

∂L
∂G̃(is)

·Kj(s) ds, Kj(s) :=
ζj((s− yj)

2 − x2
j)− 2ξjxj(s− yj)

[x2
j + (s− yj)2]2

, (4)

for every 1 ≤ j ≤ n. In particular, we have that |Kj(s)| = O
(
|ζjs−2|+ |ξjs−3|

)
as |s| → ∞.

In Theorem 1, we use a technical tool called the functional derivative (Gelfand et al., 2000). The as-
sumption that (∂/∂G̃(is))L exists is easily satisfied, and we leave a survey of functional derivatives
to Appendix B. The assumption that |(∂/∂G̃(is))L| grows at most sublinearly is to guarantee the
convergence of the integral in eq. (4); it is also easily satisfiable. We will see that the growth/decay
rate of |(∂/∂G̃(is))L| plays a more important role when we start to tune the frequency bias using
the Sobolev-norm-based method (see section 5.2). As usual, one can intuitively think of the func-
tional derivative (∂/∂G̃(is))L as a measurement of the “sensitivity” of the loss function L to an LTI
system’s action on a particular frequency s (i.e., G̃(is)). The fact that it is multiplied by a factor of
Kj(s) in the computation of the gradient in eq. (4) conveys the following important message:

The gradient of L with respect to yj highly depends on the part of the loss that has “local”
frequencies near s = yj . It is relatively unresponsive to the loss induced by high frequencies,
with a decaying factor of O(|s|−2) as the frequency increases, i.e., as |s| → ∞.

Hence, the loss landscape of the frequency domain contains many local minima, and an LTI system
can rarely learn the high frequencies with the usual training. To verify this, we train an S4D model
initialized by HiPPO to learn the sCIFAR-10 task for 100 epochs. We measure the relative change
of each parameter θ: ∆(θ) = (|θ(0)−θ(100)|)/(|θ(0)|), where the superscripts indicate the epoch
number. As we will show in section 6, the HiPPO initialization is unable to capture the high fre-
quencies in the CIFAR-10 pictures fully. From Table 1, however, we see that Im(diag(A)) is trained

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

very little: every yj is only shifted by 1.43% on average. This can be explained by Theorem 1: yj is
easily trapped by a low-frequency local minimum.

Table 1: The average relative change of each LTI system matrix in an S4D model trained on the
sCIFAR-10 task. We see that the imaginary parts of diag(A) are almost unchanged during training.

Parameter Re(diag(A)) Im(diag(A)) B ◦C⊤ D

∆ 1002.705 0.0143 1.1801 0.8913

An Illustrative Example. Our analysis of the training dynamics of yj in Theorem 1 is very generic,
relying on the notion of the functional derivatives. To make the theorem more concrete, we consider
a synthetic example (see Figure 3). We fall back to the case of approximating a target function

F̃(is) = Re
(

5

is− (−1− 50i)
+

0.2

is− (−1 + 50i)
+ 0.01 cos

(
9

4
s

)
· 1[−2π,2π]

)
, s ∈ R,

using a trainable G̃, where 9/4 is chosen to guarantee the continuity of F̃. We set the number of
states to be one, i.e., n = 1. For illustration purposes, we fix x = −1 and ζ = 0; therefore, we have

G̃(is) = Re
(

ξ

is− (−1− yi)

)
, s ∈ R,

where our only trainable parameters are y and ξ. Our target function F̃ contains two modes and
some small noises between −2π and 2π, whereas G̃ is unimodal with a trainable position and height
(see Figure 3 (left)). We apply gradient flow on y and ξ with respect to the L2-loss in the Fourier
domain, in which case the functional derivative (∂/∂G̃(is))L simply reduces to the residual:

∂L
∂G̃(is)

= −2(F̃− G̃)(is), L = ∥F̃(is)− G̃(is)∥L2 .

In Figure 3 (middle), we show the training dynamics of (y(τ), ξ(τ)), initialized with different val-
ues (y(0), ξ(0) = 3), where τ is the time index of the gradient flow. We make two remarkable
observations that corroborate our discussion of the frequency bias during training:

1. Depending on the initialization of y(0), it has two options of moving left or right. Since
we fix ζ = 0, by Theorem 1, a mode (ŷ, ξ̂) = (−50, 5) or (50, 0.2) in the residual F̃ − G̃
impacts the gradient (∂/∂y)L inverse-proportionally to the cube of the distance between
the mode ŷ and the current y(τ). Since |24.5− 50|3/|24.5− (−50)|3 ≈ 0.2/5, we indeed
observe that when y(0) ≤ 24.5, it tends to move leftward, and rightward otherwise.

2. Although the magnitude of the noises in [−2π, 2π] is only 5% of the smaller mode at
ŷ = 50 and 0.2% of the larger mode at ŷ = −50, once y(τ) of the trainable LTI system
G̃ enters the noisy region, it gets stuck in a local minimum and never converges to one
of the two modes of F̃ (see Region II in Figure 3). This corroborates our discussion that
the training dynamics of y is sensitive to local information and it rarely learns the high
frequencies when initialized in the low-frequency region.

5 TUNING THE FREQUENCY BIAS OF AN SSM

In section 3 and 4, we analyze the frequency bias of an SSM initialized by HiPPO and trained by
a gradient-based algorithm. While we now have a theoretical understanding of the frequency bias,
from a practical perspective, we want to be able to tune it. In this section, we design two strategies
to enhance, reduce, counterbalance, or even reverse the bias of an SSM against the high frequencies.
The two strategies are motivated by our discussion of the initialization (see section 3) and training
(see section 4) of an SSM, respectively.

5.1 TUNING FREQUENCY BIAS BY SCALING THE INITIALIZATION

Since the initialization assigns an SSM some inborn frequency bias, a natural way to tune the fre-
quency bias is to modify the initialization. Here, we introduce a hyperparameter α > 0 as a simple
way to scale the HiPPO initialization defined in Corollary 1:

aj = −0.5 + i(−1)j⌊j/2⌋απ, 1 ≤ j ≤ n. (5)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

-50 0 50

0

2

4

6
Ground Truth

Trainable LTI

The Target Function

fu
nc

tio
n

va
lu

e

s

? ?
-10 -5 0 5 10

-0.1

-0.05

0

0.05

0.1

The L2 Loss Landscape &
Trajectories of (y(τ), ξ(τ))

L
2

L
oss

ξ

y

R
eg

io
n

I

R
eg

io
n

II

R
eg

io
n

II
I

The H2 Loss Landscape &
Trajectories of (y(τ), ξ(τ))

H
2

L
oss

ξ

y

R
eg

io
n

I

R
eg

io
n

II
I

Figure 3: We train an LTI system to learn a noisy bimodal target transfer function. The convergence
to a local minimum depends on the initial location of the pole. Left: the ground truth contains a
large mode and a small mode, plus some small noises. We want to investigate which mode, if any,
our trainable LTI system converges to. Middle: we train the LTI system with respect to the L2-loss.
We show the trajectories of (y(τ), ξ(τ)) given different initializations (y(0), ξ(0) = 3). The two
local minima corresponding to the two modes of F̃ are shown in red crosses. The green trajectories
(initialized in Region I) converge to the mode at y = −50, the magenta trajectories (initialized in
Region III) converge to the mode at y = 50, and the black ones (initialized in Region II) converge
to neither. Right: the experiment is repeated with the H2-loss (see section 5.2).

Compared to the original HiPPO initialization, we scale the imaginary parts of the eigenvalues of A
by a factor of α. By making the modification, we lose the “polynomial projection” interpretation of
HiPPO that was originally proposed as a way of explaining the success of the HiPPO initialization;
yet, as shown in Orvieto et al. (2023); Yu et al. (2024a), this mechanism is no longer regarded as
the key for a good initialization. By setting α < 1, the eigenvalues aj are clustered around the
origin, enhancing the bias against the high-frequency modes; conversely, choosing α > 1 allows us
to capture more variations in the high-frequency domain, reducing the frequency bias.

So far, our discussion in the paper is from a perspective of the continuous-time LTI systems acting
on continuous time-series. For SSMs, however, the inputs come in a discrete sequence. Hence, we
inevitably have to discretize our LTI systems. To study the scaling laws of α, we assume in this
work that an LTI system is discretized using the bilinear transform (Glover, 1984; Gu et al., 2022b)
with a sampling interval ∆t > 0. Other discretization choices can be similarly studied. Then, given
an input sequence u ∈ RL of length L, the output y can be computed by discretizing eq. (2):

y = iFFT(FFT(u) ◦ G̃(s)), sj =
2

∆t

exp (i2π(j − 1)/L)− 1

exp (i2π(j − 1)/L) + 1
, (6)

with the same transfer function G̃ in eq. (3). Our goal is to propose general guidelines for an upper
bound of α. We leave most technical details to Appendix C; but we intuitively explain why α cannot
be arbitrarily large for discrete inputs. Given a fixed sampling interval ∆t, there is an upper bound
for the frequency, called the Nyquist frequency, above which a signal cannot be “seen” by sampling,
causing the so-called aliasing errors (Oppenheim, 1999; Condon & Ransom, 2016; Trefethen, 2019).
As a straightforward example, one cannot distinguish between cos(5t) and cos(t) from their samples
at t = kπ, k ∈ Z. Our next result tells us how to avoid aliasing by constraining the range of α.
Proposition 1. Let a = x + iy be given and define G(is) = 1/(is − a). Let g = G(s) be the
vector of length L, where s is defined in eq. (6). Then, there exist constants C1, C2 > 0 such that

C1∥g∥2≤|y|∆t≤C2∥g∥2, C1∥g∥∞≤ 1

1+||y|−2(∆t)−1 tan ((1−(L−1)/L)π/2)|
≤C2∥g∥∞.

You may have noticed that in Proposition 1, we study the norm of the complex G instead of its real
part restriction G̃. The reason is that in an LTI system parameterized by complex numbers, we mul-
tiply G by a complex number ξ + iζ and then extract its real part. Hence, both Re(G) and Im(G)
are important. By noting that max1≤j≤n |yj | ≈ nπ/2 in our scaled initialization in eq. (5), Propo-
sition 1 gives us two scaling laws of α that prevent ∥g∥2 and ∥g∥∞ from vanishing, respectively.
First, the 2-norm of g measures the average-case contribution of the partial fraction 1/(is − a) to
the input-to-output mapping in eq. (6).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Rule I: (Law of Non-vanishing Average Information) For a fixed task, as n and ∆t vary, one
should scale α = O(1/(n∆t)) to preserve the LTI system’s impact on an average input.

Next, the ∞-norm of g tells us the maximum extent of the system’s action on any inputs. Therefore,
if ∥g∥∞ is too small, then 1/(is− a) can be dropped without seriously affecting the system at all.

Rule II: (Law of Nonzero Information) Regardless of the task, one should never take

α ≫ 4 tan ((1−(L−1)/L)π/2) /nπ∆t

to avoid a partial fraction that does not contribute to the evaluation of the model.

We reemphasize that our scaling laws provide upper bounds of α. Of course, one can always choose
α to be much smaller to capture the low frequencies better.

5.2 TUNING FREQUENCY BIAS BY A SOBOLEV FILTER

In section 5.1, we see that we can scale the HiPPO initialization to redefine the region in the Fourier
domain that can be learned by an LTI system. Here, we introduce another way to tune the frequency
bias: by applying a Sobolev-norm-based filter. The two strategies both tune the frequency bias, but
by different means: scaling the initialization identifies a new set of frequencies that can be learned by
the SSM, whereas the filter in this section introduces weights to different frequencies. Our method
is rooted in the Sobolev norm, which extends a general L2 norm. Imagine that we approximate a
ground-truth transfer function F̃(is) using G̃(is). We can define the loss to be

∥F̃− G̃∥2Hβ :=

ˆ ∞

−∞
(1 + |s|)2β |F̃(is)− G̃(is)|2 ds (7)

for some hyperparameter β ∈ R. The scaling factor (1 + |s|)2β naturally reweighs the Fourier
domain. When β = 0, eq. (7) reduces to the standard L2 loss. The high frequencies become less
important when β < 0 and more important when β > 0. Unfortunately, as discussed in section 4,
there lacks a notion of the “ground-truth” F̃ for every single LTI system within an SSM, mak-
ing eq. (7) uncomputable. To address this issue, instead of using a Sobolev loss function, we apply
a Sobolev-norm-based filter to the transfer function G̃ to redefine the dynamical system:

ŷ(s) = G̃(β)(is)û(s), G̃(β)(is) := (1 + |s|)βG̃(is). (8)

This equation can be discretized using the same formula in eq. (6) by replacing G̃ with G̃(β).

Equation (8) can be alternatively viewed as applying the filter (1 + |s|)β to the FFT of the input
u, which clearly allows us to reweigh the frequency components. Surprisingly, there is even more
beyond this intuition: applying the filter allows us to modify the training dynamics of yj!
Theorem 2. Let L(Θ) be a loss function and Γ = (A,B,C,D) be a diagonal LTI system in an
SSM defined in section 3. For any β ∈ R, we apply the filter in eq. (8) to Γ and let G̃(β) be the new
transfer function. Suppose the functional derivative of L(Θ) with respect to G̃(β)(is) exists and is
denoted by (∂/∂G̃(β)(is))L. Then, if |(∂/∂G̃(β)(is))L| = O(|s|p) for some p < 1− β, we have

∂L
∂yj

=

ˆ ∞

−∞

∂L
∂G̃(β)(is)

·K(β)
j (s)ds, K

(β)
j (s) :=(1+|s|)β

ζj((s−yj)
2−x2

j)−2ξjx(s−yj)

[x2
j + (s− yj)2]2

, (9)

for every 1 ≤ j ≤ n. In particular, we have that
∣∣∣K(β)

j (s)
∣∣∣=O

(
|ζjs−2+β |+|ξjs−3+β |

)
as |s| → ∞.

Compared to Theorem 1, the gradient of L with respect to yj now depends on the loss at frequency s
by a factor of O(|s|−2+β). Thus, the effect of our Sobolev-norm-based filter is not only a rescaling
of the inputs in the frequency domain, but it also allows better learning the high frequencies:

The higher the β is, the more sensitive yj is to the high-frequency loss. Hence, yj is no longer
constrained by the “local-frequency” loss and will activately learn the high frequencies.

The decay constraint that |(∂/∂G̃(β)(is))L| = O(|s|p) for some p < 1− β is needed to guarantee
the convergence of the integral in eq. (9). When it is violated, the theoretical statement breaks, but
we could still implement the filter in practice, which is similar to Yu et al. (2023). In Figure 3

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

(right), we reproduce the illustrative example introduced in Section 4 using the Sobolev-norm-based
filter in eq. (8) with β = 2. This is equivalent to training an ordinary LTI system with respect to
the H2-loss function defined in eq. (7). We find that in this case, the trajectories of (y(τ), ξ(τ))
always converge to one of the two modes in F̃ regardless of the initialization, with more of them
converging to the high-frequency global minimum on the left. This verifies our theory, because by
setting β = 2, we amplify the contribution of the high-frequency residuals in the computation of
(∂/∂y)L, pushing a y out of the noisy region between −2π and 2π. We leave more illustrative
experiments to Appendix D, which show the effect of our tuning filter also when β < 0.

6 EXPERIMENTS AND DISCUSSIONS

(I) SSMs as Denoising Sequential Autoencoders. We now provide an example of how our two
mechanisms allow us to tune frequency bias. In this example, we train an SSM to denoise an
image in the CelebA dataset (Liu et al., 2015). We flatten an image into a sequence of pixels in the
row-major order and feed it into an S4D model. We collect the corresponding output sequence and
reshape it into an image. Similar to the setting of an autoencoder, our objective is to learn the identity
map. To make the task non-trivial, we remove the skip connection D from the LTI systems. During
inference, we add two different types of noises to the input images: horizontal or vertical stripes
(see Figure 4). While the two types of noises may be visually similar to each other, since we flatten
the images using the row-major order, the horizontal stripes turn into low-frequency noises while
the vertical stripes become high-frequency ones (see Figure 8). In Figure 4, we show the outputs of
the models trained with different values of α and β as defined in section 5.1 and 5.2, respectively.

Inputs

Tr
ue

Im
ag

e

α=0.1, β=−1

Outputs of Four Models
α=1, β=0 α=10, β=1 α=100, β=1

L
ow

-F
re

q.
N

oi
se

H
ig

h-
Fr

eq
.N

oi
se

High-Frequency-Pass Filter

Figure 4: The outputs of image-denoising S4D models trained with different configurations.

From Figure 4, we can see that as α and β increase, our model learns the high frequencies in the input
better; consequently, the high-frequency noises get preserved in the outputs and the low-frequency
noises are dampened. This corroborates our intuitions from section 5.1 and 5.2. We can further
quantify the “pass rates” of the low and high-frequency noises. That is, we compute the percentage
of the low and high-frequency noises that are preserved in the output. We show in Table 2 the ratio
between the low-pass rate and the high-pass rate, which decreases as α and β increase.

(II) Tuning Frequency Bias in the Long-Range Arena. The two tuning strategies section 5.1
and 5.2 are not only good when one needs to deal with a particular high or low frequency, but
they also improve the performance of an SSM on general long-range tasks. In Table 3, we show
that equipped with the two tuning strategies, our SSM achieves state-of-the-art performance on the
Long-Range Arena (LRA) tasks (Tay et al., 2021).

(III) Ablation Studies. To show the effectiveness of our two tuning mechanisms, we perform abla-
tion studies by training a smaller S4D model to learn the grayscale sCIFAR-10 task. From Figure 5,

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 2: We compute the percentage of the low and high-frequency noises that are preserved in the
output of a model trained with a pair of configurations (α, β). The table shows the ratio between the
low-frequency pass rate and the high-frequency pass rate. The more bluish a cell is, the better our
model learns the high frequencies. Circled in red is the S4D default.

β
−1.0 −0.5 0.0 0.5 1.0

α

0.1 4.463e+07 2.409e+06 1.198e+05 4.613e+03 1.738e+02
1 4.912e+05 2.124e+05 1.758e+04 9.595e+02 5.730e+01
10 9.654e+04 7.465e+03 6.073e+02 5.699e+01 6.394e+00
100 3.243e+00 3.745e-02 3.801e-03 7.299e-05 5.963e-06

1 2 3 4 5

0.5

1

1.5

2

2.5

3

3.5

4

4.5

10
-4

10
-2

10
0

10
2

10
4

10
6

Table 3: Test accuracies in the Long-Range Arena of different variants of SSMs. The bold (resp.
underlined) numbers indicate the best (resp. second best) performance on a task. An entry is left
blank if no result is found. The row labeled “Ours” stands for the S4D model equipped with our
two tuning strategies. Experiments were run with 5 random seeds and the medians and the standard
deviations are reported. The S4 and S4D results are from the original papers (Gu et al., 2022b;a).
The sizes of our models are the same or smaller than the corresponding S4D models.

Model ListOps Text Retrieval Image Pathfinder Path-X Avg.
DSS (Gupta et al., 2022) 57.60 76.60 87.60 85.80 84.10 85.00 79.45

S4++ (Qi et al., 2024) 57.30 86.28 84.82 82.91 80.24 - -
Reg. S4D (Liu & Li, 2024a) 61.48 88.19 91.25 88.12 94.93 95.63 86.60

Spectral SSM (Agarwal et al., 2023) 60.33 89.60 90.00 - 95.60 90.10 -
Liquid S4 (Hasani et al., 2023) 62.75 89.02 91.20 89.50 94.80 96.66 87.32

S5 (Smith et al., 2023) 62.15 89.31 91.40 88.00 95.33 98.58 87.46
S4 (Gu et al., 2022b) 59.60 86.82 90.90 88.65 94.20 96.35 86.09

S4D (Gu et al., 2022a) 60.47 86.18 89.46 88.19 93.06 91.95 84.89
Ours 62.75 89.76 92.45 90.89 95.89 97.84 88.26

±0.78 ±0.22 ±0.16 ±0.35 ±0.13 ±0.21

we see that we obtain better performance when we slightly increase α or decrease β. One might
feel it as a contradiction because increasing α helps the high frequencies to be better learned while
decreasing β downplays their role. It is not: α and β control two different notions of frequency bias:
scaling α affects “which frequencies we can learn;” scaling β affects “how much we want to learn a
certain frequency.” They can be used collaboratively and interactively to attain the optimal extent of
frequency bias that we need for a problem.

10
-1

10
0

10
1

10
2

72

74

76

78

80

82

84

86

α

A
cc

ur
ac

y

S4
D

D
ef

au
lt

O
pt

im
al

Little high-freq. info.
can be learned

Limited deg. of freedom
in the low-freq. domain

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
72

74

76

78

80

82

84

86

β

A
cc

ur
ac

y

S4
D

D
ef

au
lt

O
pt

im
al

High freqs. get
too little attention

High freqs. are
weighted too much

Figure 5: Two ablation studies of the tuning strategies proposed in this paper. We train an S4D
model with varying parameters of α and β, respectively. On the left, we see that holding β = 0
(the default value), the model achieves its best performance when α = 4; on the right, when we fix
α = 1 (the default value), the model performs the best when β = −0.5.

(IV) More Experiments. One can find more supplementary experiments in Appendix F on wave
prediction (see Figure 1) and video generation.

7 CONCLUSION

We formulated the frequency bias of an SSM and showed its existence by analyzing both the initial-
ization and training. We proposed two different tuning mechanisms based on scaling the initializa-
tion and on applying a Sobolev-norm-based filter to the transfer function. As a future direction, one
could develop ways to analyze the spectral information of the inputs of a problem and use it to guide
the selection of the hyperparameters in our tuning mechanisms.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Vadim Movsesovich Adamyan, Damir Zyamovich Arov, and Mark Grigor’evich Krein. Analytic
properties of schmidt pairs for a hankel operator and the generalized schur–takagi problem.
Matematicheskii Sbornik, 128(1):34–75, 1971.

Naman Agarwal, Daniel Suo, Xinyi Chen, and Elad Hazan. Spectral state space models. arXiv
preprint arXiv:2312.06837, 2023.

Martin Arjovsky, Amar Shah, and Yoshua Bengio. Unitary evolution recurrent neural networks. In
International Conference on Machine Learning, pp. 1120–1128. PMLR, 2016.

S. Arora, S. S. Du, W. Hu, Z. Li, and R. Wang. Fine-grained analysis of optimization and generaliza-
tion for overparameterized two-layer neural networks. In Inter. Conf. Mach. Learn., pp. 322–332.
PMLR, 2019.

Shaojie Bai, J Zico Kolter, and Vladlen Koltun. An empirical evaluation of generic convolutional
and recurrent networks for sequence modeling. arXiv preprint arXiv:1803.01271, 2018.

R. Basri, D. Jacobs, Y. Kasten, and S. Kritchman. The convergence rate of neural networks for
learned functions of different frequencies. Adv. Neur. Info. Proc. Syst., 32, 2019.

R. Basri, M. Galun, A. Geifman, D. Jacobs, Y. Kasten, and S. Kritchman. Frequency bias in neural
networks for input of non-uniform density. In Inter. Conf. Mach. Learn., pp. 685–694. PMLR,
2020.

A. Bietti and J. Mairal. On the inductive bias of neural tangent kernels. Adv. Neur. Info. Proc. Syst.,
32, 2019.

Yuan Cao, Zhiying Fang, Yue Wu, Ding-Xuan Zhou, and Quanquan Gu. Towards understanding the
spectral bias of deep learning. arXiv preprint arXiv:1912.01198, 2019.

Bo Chang, Minmin Chen, Eldad Haber, and Ed H Chi. Antisymmetricrnn: A dynamical system
view on recurrent neural networks. In International Conference on Machine Learning, 2019.

Krzysztof Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea Gane, Tamas
Sarlos, Peter Hawkins, Jared Davis, Afroz Mohiuddin, Lukasz Kaiser, et al. Rethinking attention
with performers. In International Conference on Machine Learning, 2020.

James J Condon and Scott M Ransom. Essential radio astronomy, volume 2. Princeton University
Press, 2016.

W. M. Czarnecki, S. Osindero, M. Jaderberg, G. Swirszcz, and R. Pascanu. Sobolev training for
neural networks. Adv. Neur. Info. Proc. Syst., 30, 2017.

Tri Dao and Albert Gu. Transformers are ssms: Generalized models and efficient algorithms through
structured state space duality. arXiv preprint arXiv:2405.21060, 2024.

Li Deng. The MNIST database of handwritten digit images for machine learning research. IEEE
signal processing magazine, 29(6):141–142, 2012.

N Benjamin Erichson, Omri Azencot, Alejandro Queiruga, Liam Hodgkinson, and Michael W Ma-
honey. Lipschitz recurrent neural networks. In International Conference on Learning Represen-
tations, 2021.

Izrail Moiseevitch Gelfand, Richard A Silverman, et al. Calculus of Variations. Courier Corporation,
2000.

Keith Glover. All optimal hankel-norm approximations of linear multivariable systems and their
L,∞-error bounds. International journal of control, 39(6):1115–1193, 1984.

Walter Greiner and Joachim Reinhardt. Field quantization. Springer Science & Business Media,
2013.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023.

Albert Gu, Tri Dao, Stefano Ermon, Atri Rudra, and Christopher Ré. Hippo: Recurrent memory
with optimal polynomial projections. Advances in neural information processing systems, 33:
1474–1487, 2020.

Albert Gu, Karan Goel, and Christopher Ré. s4. https://github.com/state-spaces/s4,
2021a.

Albert Gu, Isys Johnson, Karan Goel, Khaled Saab, Tri Dao, Atri Rudra, and Christopher Ré. Com-
bining recurrent, convolutional, and continuous-time models with linear state space layers. Ad-
vances in neural information processing systems, 34:572–585, 2021b.

Albert Gu, Karan Goel, Ankit Gupta, and Christopher Ré. On the parameterization and initialization
of diagonal state space models. Advances in Neural Information Processing Systems, 35:35971–
35983, 2022a.

Albert Gu, Karan Goel, and Christopher Re. Efficiently modeling long sequences with structured
state spaces. In International Conference on Learning Representations, 2022b.

Albert Gu, Isys Johnson, Aman Timalsina, Atri Rudra, and Christopher Ré. How to train your hippo:
State space models with generalized orthogonal basis projections. International Conference on
Learning Representations, 2023.

Ankit Gupta, Albert Gu, and Jonathan Berant. Diagonal state spaces are as effective as structured
state spaces. Advances in Neural Information Processing Systems, 35:22982–22994, 2022.

Moritz Hardt, Tengyu Ma, and Benjamin Recht. Gradient descent learns linear dynamical systems.
Journal of Machine Learning Research, 19(29):1–44, 2018.

Ramin Hasani, Mathias Lechner, Tsun-Hsuan Wang, Makram Chahine, Alexander Amini, and
Daniela Rus. Liquid structural state-space models. International Conference on Learning Repre-
sentations, 2023.

A. Jacot, F. Gabriel, and C. Hongler. Neural tangent kernel: Convergence and generalization in
neural networks. Adv. Neur. Info. Proc. Syst., 31, 2018.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are
rnns: Fast autoregressive transformers with linear attention. In International conference on ma-
chine learning, pp. 5156–5165. PMLR, 2020.

Nikita Kitaev, Łukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. In
International Conference on Machine Learning, 2020.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Beatrice Laurent and Pascal Massart. Adaptive estimation of a quadratic functional by model selec-
tion. Annals of statistics, pp. 1302–1338, 2000.

Soon Hoe Lim. Understanding recurrent neural networks using nonequilibrium response theory.
Journal of Machine Learning Research, 22(47):1–48, 2021.

Fusheng Liu and Qianxiao Li. From generalization analysis to optimization designs for state space
models. arXiv preprint arXiv:2405.02670, 2024a.

Fusheng Liu and Qianxiao Li. The role of state matrix initialization in ssms: A perspective on the
approximation-estimation tradeoff. ICML 2024 NGSM Workshop, 2024b.

Xinliang Liu, Bo Xu, Shuhao Cao, and Lei Zhang. Mitigating spectral bias for the multiscale
operator learning. Journal of Computational Physics, 506:112944, 2024. ISSN 0021-9991.

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild.
In Proceedings of International Conference on Computer Vision (ICCV), December 2015.

12

https://github.com/state-spaces/s4

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

M. W. Mahoney. Approximate computation and implicit regularization for very large-scale data
analysis. In Proceedings of the 31st ACM Symposium on Principles of Database Systems, pp.
143–154, 2012.

Yuqi Nie, Nam H Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth 64
words: Long-term forecasting with transformers. In The Eleventh International Conference on
Learning Representations, 2023.

Alan V Oppenheim. Discrete-time signal processing. Pearson Education India, 1999.

Antonio Orvieto, Samuel L Smith, Albert Gu, Anushan Fernando, Caglar Gulcehre, Razvan Pas-
canu, and Soham De. Resurrecting recurrent neural networks for long sequences. arXiv preprint
arXiv:2303.06349, 2023.

Antonio Orvieto, Soham De, Caglar Gulcehre, Razvan Pascanu, and Samuel L Smith. Universality
of linear recurrences followed by non-linear projections: Finite-width guarantees and benefits of
complex eigenvalues. In Forty-first International Conference on Machine Learning, 2024.

Robert G. Parr and Weitao Yang. Density-Functional Theory of Atoms and Molecules. International
Series of Monographs on Chemistry. Oxford University Press, 1994. ISBN 9780195357738.

Biqing Qi, Junqi Gao, Dong Li, Kaiyan Zhang, Jianxing Liu, Ligang Wu, and Bowen Zhou. S4++:
Elevating long sequence modeling with state memory reply. 2024.

N. Rahaman, A. Baratin, D. Arpit, F. Draxler, M. Lin, F. Hamprecht, Y. Bengio, and A. Courville.
On the spectral bias of neural networks. In Inter. Conf. Mach. Learn., pp. 5301–5310. PMLR,
2019.

David W Romero, Anna Kuzina, Erik J Bekkers, Jakub M Tomczak, and Mark Hoogendoorn. Ck-
conv: Continuous kernel convolution for sequential data. In International Conference on Machine
Learning, 2022.

T Konstantin Rusch and Siddhartha Mishra. Unicornn: A recurrent model for learning very long
time dependencies. In International Conference on Machine Learning, pp. 9168–9178. PMLR,
2021.

Jakub Smékal, Jimmy TH Smith, Michael Kleinman, Dan Biderman, and Scott W Linderman. To-
wards a theory of learning dynamics in deep state space models. arXiv preprint arXiv:2407.07279,
2024.

Jimmy Smith, Shalini De Mello, Jan Kautz, Scott Linderman, and Wonmin Byeon. Convolutional
state space models for long-range spatiotemporal modeling. Advances in Neural Information
Processing Systems, 36, 2024.

Jimmy T.H. Smith, Andrew Warrington, and Scott Linderman. Simplified state space layers for se-
quence modeling. In The Eleventh International Conference on Learning Representations, 2023.

H. Son, J.W. Jang, W.J. Han, and H.J. Hwang. Sobolev training for the neural network solutions of
PDEs. arXiv preprint arXiv:2101.08932, 2021.

Hwijae Son. Sobolev acceleration for neural networks. 2023.

Nitish Srivastava, Elman Mansimov, and Ruslan Salakhudinov. Unsupervised learning of video rep-
resentations using lstms. In International conference on machine learning, pp. 843–852. PMLR,
2015.

L. Su and P. Yang. On learning over-parameterized neural networks: A functional approximation
perspective. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett
(eds.), Adv. Neur. Info. Proc. Syst., volume 32. Curran Associates, Inc., 2019.

Dennis Sun. Introduction to probability. https://dlsun.github.io/probability/, 2020.

Yi Tay, Mostafa Dehghani, Samira Abnar, Yikang Shen, Dara Bahri, Philip Pham, Jinfeng Rao,
Liu Yang, Sebastian Ruder, and Donald Metzler. Long range arena: A benchmark for efficient
transformers. International Conference in Learning Representations, 2021.

13

https://dlsun.github.io/probability/

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Lloyd N Trefethen. Approximation theory and approximation practice, extended edition. SIAM,
2019.

C. Tsay. Sobolev trained neural network surrogate models for optimization. Comp. Chem. Eng.,
153:107419, 2021.

N.N. Vlassis and W. Sun. Sobolev training of thermodynamic-informed neural networks for inter-
pretable elasto-plasticity models with level set hardening. Compu. Meth. Appl. Mech. Eng., 377:
113695, 2021.

Aaron Voelker, Ivana Kajić, and Chris Eliasmith. Legendre memory units: Continuous-time repre-
sentation in recurrent neural networks. Advances in neural information processing systems, 32,
2019.

Shida Wang and Qianxiao Li. Stablessm: Alleviating the curse of memory in state-space models
through stable reparameterization. arXiv preprint arXiv:2311.14495, 2023.

Shida Wang and Beichen Xue. State-space models with layer-wise nonlinearity are universal ap-
proximators with exponential decaying memory. Advances in Neural Information Processing
Systems, 36, 2024.

Z.-Q. J. Xu. Frequency principle: Fourier analysis sheds light on deep neural networks. Commun.
Comput. Phys., 28(5):1746–1767, 2020.

G. Yang and H. Salman. A fine-grained spectral perspective on neural networks. arXiv preprint
arXiv:1907.10599, 2019.

Cagatay Yildiz, Markus Heinonen, and Harri Lähdesmäki. Continuous-time model-based reinforce-
ment learning. In International Conference on Machine Learning, pp. 12009–12018. PMLR,
2021.

Annan Yu and Alex Townsend. Leveraging the hankel norm approximation and data-driven algo-
rithms in reduced order modeling. Numerical Linear Algebra with Applications, pp. e2555, 2024.

Annan Yu, Yunan Yang, and Alex Townsend. Tuning frequency bias in neural network training with
nonuniform data. International Conference on Learning Representations, 2023.

Annan Yu, Michael W Mahoney, and N Benjamin Erichson. There is hope to avoid hippos for
long-memory state space models. arXiv preprint arXiv:2405.13975, 2024a.

Annan Yu, Arnur Nigmetov, Dmitriy Morozov, Michael W. Mahoney, and N. Benjamin Erichson.
Robustifying state-space models for long sequences via approximate diagonalization. In The
Twelfth International Conference on Learning Representations, 2024b.

Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. Fedformer: Frequency
enhanced decomposed transformer for long-term series forecasting. In International Conference
on Machine Learning, pp. 27268–27286. PMLR, 2022.

B. Zhu, J. Hu, Y. Lou, and Y. Yang. Implicit regularization effects of the Sobolev norms in image
processing. arXiv preprint arXiv:2109.06255, 2021.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A PROOFS

In this section, we provide the proofs of all theoretical statements in the manuscript.

First, we prove the statements about the initialization of the LTI systems. The total variation can be
bounded straightforwardly using the decay of the transfer functions.

Proof of Lemma 1. Since G̃ is the real part of G, its total variation is always no larger than the total
variation of G. Hence, we have

V −B
−∞(G̃) ≤ V −B

−∞(G) ≤
n∑

j=1

∣∣∣∣ cj
−iB − aj

∣∣∣∣ ≤ n∑
j=1

∣∣∣∣ cj
B + yj

∣∣∣∣ .
The other bound is similarly obtained.

Proof of Corollary 1. By Lemma 1 and the Hölder’s inequality, we have

V −B
−∞(G̃) ≤

n∑
j=1

|cj |
|yj +B|

≤ ∥B ◦C⊤∥2∥y∥2,

where yj = 1/(yj + B). Since ξj , ζj ∼ N (0, 1) i.i.d., we have that ∥B ◦ C⊤∥22 follows the χ2-
distribution with degree 2n. By Laurent & Massart (2000), we have with probability at least 1 − δ
that

∥B ◦C⊤∥22 ≤ 2n+
√

2n ln(1/δ) + 2 ln(1/δ) ≤ 2(
√
n+

√
ln(1/δ))2.

By the definition of B, we have that

∥y∥22 ≤ n

(B − n/2)2
.

The result for V −B
−∞(G̃) follows from the last two inequalities. The bound on V ∞

B (G̃) can be derived
similarly.

We skip the proof of Proposition 1 and defer it to Appendix C when we present a detailed derivation
of the scaling laws. We next prove the statement about the training dynamics of the imaginary parts
of diag(A).

Proof of Theorem 1. Fix some 1 ≤ j ≤ n, we first view the transfer function G̃(s, yj) as a function
of two variables. We compute the derivative of G̃(s, yj) with respect to yj :

∂G̃(s, yj)

∂yj
=

∂

∂yj

 n∑
j=1

ζj(s− yj)− ξjxj

x2
j + (s− yj)2

+D =
∂

∂yj

(
ζj(s− yj)− ξjxj

x2
j + (s− yj)2

)

=
(x2

j + (s− yj)
2) · (∂/∂yj)(ζj(s− yj)− ξjxj)

(x2
j + (s− yj)2)2

−
(ζj(s− yj)− ξjxj) · (∂/∂yj)(x2

j + (s− yj)
2)

(x2
j + (s− yj)2)2

=
−(x2

j + (s− yj)
2)ζj

(x2
j + (s− yj)2)2

+
2(ζj(s− yj)− ξjxj)(s− yj)

(x2
j + (s− yj)2)2

=
ζj(−x2

j − (s− yj)
2 + 2(s− yj)

2)− ξj(2xj(s− yj))

(x2
j + (s− yj)2)2

= Kj(s).

Since we assume that |(∂/∂G̃(is))L| = O(|s|p) for some p < 1, the integral in eq. (4) converges.
By Parr & Yang (1994, Appendix A), eq. (4) holds.

The statement about the training dynamics of yj given a Sobolev filter follows immediately
from Theorem 1.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Proof of Theorem 2. Since we assume that |(∂/∂G̃(is))L| = O(|s|p) for some p < 1 − β, the
integral in eq. (9) converges. The result follows by noting that

∂G̃(β)(s, yj)

∂yj
= (1 + |s|)β ∂G̃(s, yj)

∂yj
= (1 + |s|)βKj(s) = K

(β)
j (s)

and applying the equation in Parr & Yang (1994, Appendix A).

B FUNCTIONAL DERIVATIVES

In this section, we briefly introduce the notion of functional derivatives (see Appendix A.1 in (Lim,
2021) for a more technical overview). To make our discussion concrete, we do it in the context
of Theorem 1. Consider the transfer function G̃(is) defined in eq. (3). It depends on the model
parameters xj , yj , ξj , and ζj . In this section, we separate out a single yj for a fixed 1 ≤ j ≤ n,
leaving the remaining parameters unchanged. Then, for every y ∈ R, we can define f (y)(s) to be
the transfer function G̃(is) when yj = y. Under this setting, the set of all possible transfer functions
indexed by y, i.e., F = {f (y)|y ∈ R} is a subset of a Banach space, say L2(R). To avoid potential
confusions, we shall remark that f (y) is not linear in its index y, i.e., f (y1+y2) ̸= f (y1) + f (y2) in
general, neither is F a subspace of L2(R). This does not impact our following discussion.

Now, consider the loss function L. Given a choice of yj = y and a corresponding transfer function
f (y), the loss function maps f (y) to a real number that corresponds on the current loss. Hence, L
can be viewed as a (not necessarily linear) functional of f (y). We would like to ask: how does L
respond to a small change of f (y)(s) at some s ∈ R? Ideally, this can be measured as

lim
ϵ→0

L(f (y) + ϵδs)− f (y)

ϵ
, (10)

where δs is the Dirac delta function at s. However, the loss function L is not defined for distri-
butions, making eq. (10) not directly well-defined. To fix this issue, we have to go through the
functional derivatives. The idea, as usual in functional analysis, is to pass the difficulty of handling
a distribution to smooth functions that approximate it. If there exists a function (∂/∂f (y))L such
that the equation ˆ ∞

−∞

∂L
∂f (y)

(s)ϕ(s) ds = lim
ϵ→0

L(f (y) + ϵϕ)− L(f (y))

ϵ

holds for all smooth C∞
0 functions ϕ that are infinitely differentiable and vanish at infinity, then

(∂/∂f (y))L is defined to be the functional derivative of L at f (y). Taking {ϕj}∞j=1 to be an approx-
imate identity centered at s, we recover eq. (10) using (∂/∂f (y))L(s).
One nice thing about the functional derivatives is that they allow us to write down a continuous
analog of the chain rule, which is the meat of Theorem 1. To get some intuition, let us first consider
a function L̃(y) = L̃(f1(y), . . . , fk(y)) that depends on y via k intermediate variables f1, . . . , fk.
Assuming sufficient smoothness conditions, the derivative of L̃ with respect to y can be calculated
using the standard chain rule:

∂L̃
∂y

=

k∑
j=1

∂L̃
∂fj

∂fj
∂y

=
[

∂L̃
∂f1

· · · ∂L̃
∂fk

]
∂f1
∂y
...

∂fk
∂y

 . (11)

The only difference in the case of L is that instead of depending on k discrete intermediate variables
f1, . . . , fk, our L depends on a continuous family of intermediate variables f (y)(s) indexed by
s ∈ R. In this case, one would naturally expect that in eq. (11), the sum becomes an integral, or
equivalently, the row and the column vectors become the row and the column functions. This is
indeed the case given our functional derivative:

∂L
∂y

=

ˆ ∞

−∞

∂L
∂f (y)

(s)
∂f (y)(s)

∂y
ds.

This formula can be found in Parr & Yang (1994, (A.24)) and Greiner & Reinhardt (2013, sect. 2.3).

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

C SCALING LAWS OF THE INITIALIZATION

In this section, we expand our discussions in section 5.1 and give the proof of Proposition 1.
Throughout this section, we assume that we use the bilinear transform to discretize our continuous-
time LTI system. The length of our sequence is L and the sampling interval is ∆t. The bilinear
transform is essentially a Mobius transform between the closed left half-plane of the s-domain and
the closed unit disk in the z-domain. Hence, it gives us two ways to study this filter — by either
transplanting the transfer function G̃ onto the unit circle and analyzing in the discrete domain or
by transplanting the FFT nodes from the z-domain to the imaginary axis in the s-domain. The two
ways are equivalent, but we choose the second method for simplicity.

The output of an LTI system can be computed by

y = iFFT(FFT(u) ◦G(ω)),

where G is the transfer function of the discrete system and where

ω =
[
exp

(
2πi 0L

)
· · · exp

(
2πiL−1

L

)]⊤
is the length-L vector consisting of Lth roots of unity. We do not have direct access to G, but we
do know G̃, its continuous analog, in the partial fractions format. They are related by the following
equation:

G(z) = G̃(s), s =
2

∆t

z − 1

z + 1
.

In that case, the vector G(ω) can be equivalently written as

G(ωj) = G̃

(
2

∆t

exp
(
2πi jL

)
− 1

exp
(
2πi jL

)
+ 1

)
= G̃

(
i
2

∆t
tan

(
π
j

L

))
.

This is how we obtained eq. (6). The locations of the new samplers on the imaginary axis are shown
in Figure 6, with L = 101 and ∆t = 0.01.

-0.5 0 0.5 1

-1.5

-1

-0.5

0

0.5

1

1.5

-2000 0 2000
10

0

10
1

10
2

10
3

10
4

Figure 6: The poles of the FFT samplers in the z-domain and the samplers in the s-domain for L =
101 and ∆t = 0.01. Due to the essential difficulty of plotting the entire real line on a logarithmic
scale, we only show the semilog plot of the upper half-plane of the s-domain (right). Hence, on the
right figure, we omit the samplers corresponding to the lower arc of the unit circle on the left.

Note that the right figure (the s-domain) is on a logarithmic scale and only the upper half-plane is
shown due to the scale. We also choose L odd; when L is even, a pole is placed “at infinity” in
the s-domain, at which any partial fraction vanishes. Why do we go through all the pains to study
this bilinear transformation? The reason is that it gives us a guideline for scaling the poles. For
instance, for L = 101 and ∆t = 0.01, if a pole has a much larger imaginary part than 104, then
the discrete sequence will hardly see the effect of this partial fraction even though the underlying

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

continuous system will. This corresponds to the intuition behind the aliasing error that we discussed
in the main text.

As in Proposition 1, it suffices to study a single partial fraction instead of all. Hence, instead of
studying the entire transfer function together, we focus on one component of it:

G(is) =
1

is− a
, Re(s) = 0, Re(a) < 0.

This is a partial fraction in the s-domain. For a fixed L and ∆t, this partial fraction corresponds to a
bounded linear operator G : ℓ2([L]) → ℓ2([L]) that maps an input sequence to an output sequence,
where [L] = {1, . . . , L} is the set of the first L natural numbers. We consider the norm of this
operator, where we will find that as |Im(s)| → ∞, the norm of the operator vanishes. The rate of
vanishing will guide us in selecting an appropriate range for the pole. So, how can we tell the norm
of this operator? By definition, the norm of G is defined by

∥G∥ℓ2→ℓ2 = sup
∥u∥ℓ2=1

∥y∥ℓ2 = sup
∥û∥ℓ2=1

∥ŷ∥ℓ2 ,

where y is the output of the operator G given input u, i.e., y = Gu, and the second step follows
from the Parseval’s identity. By Hölder’s inequality, we further have

∥G∥ℓ2→ℓ2 = sup
∥û∥ℓ2=1

∥û ◦G(ω)∥ℓ2 ≤ ∥g∥ℓ∞ ,

where G(ω) = g is the sample vector of the bilinearly transformed transfer function of G in the
z-domain, i.e.,

g = G(ω), G(ω)j = G(ωj) = G

(
i
2

∆t
tan

(
π
j

L

))
=

1

i2 tan (πj/L) /∆t− a
.

Hence, we have

|gj |2 =
1

Re(a)2 + (Im(a)− 2 tan (πj/L) /∆t)
2 .

When Im(a) > 2 tan (πj/L) /∆t for all j, |gj |2 is maximized when j = ⌊L/2⌋ − 1, in which case
we have

∥G∥2ℓ2→ℓ2 ≤ 1

Re(a)2 + (Im(a)− (2/∆t) tan ((π/2)(1− (L− 1)/L)))
2 . (12)

This gives us the second rule (Law of Zero Information) when scaling the diagonal of A. This is
a worst-case analysis, where we essentially assume that the Fourier coefficient of u is one-hot at
the highest frequency. In practice, of course, this assumption is a bit unrealistic; in fact, the Fourier
coefficients usually decay as the frequency gets higher. Therefore, we should derive another rule
for the average-case scenario. We consider the operator Ĝ that maps the Fourier coefficients of the
inputs to those of the outputs, then the norm ∥Ĝ∥ℓ∞→ℓ2 is a good average-case estimate, because

arg max∥û∥ℓ∞=1∥Ĝû∥ℓ2

is necessarily at a vertex of the simplex defined by ∥û∥ℓ∞ ≤ 1 2. That is, ûj = ±1 for all 1 ≤ j ≤ L.
Now, using the Hölder’s inequality again, we have

∥Ĝ∥ℓ∞→ℓ2 = sup
∥û∥ℓ∞=1

∥û ◦ g∥ℓ2 ≤ ∥g∥ℓ2 .

Hence, instead of studying the ℓ∞-norm of g, we consider the ℓ2-norm for the average-case estimate.
The precise computation of the ℓ2-norm can be hard, but let us write out the full expression:

∥g∥2ℓ2 =

L∑
j=1

|g|2 ≤
L∑

j=1

1

Re(a)2 + (Im(a)− (2/∆t) tan (πj/L))
2 .

2Note that we can use max instead of sup because the domain {∥û∥ℓ∞ = 1} is compact.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Given the imaginary part of a > 0, we grab all Fourier nodes on the jω axis that are below Im(a)/2
and lower-bound them; we also grab all above Im(a)/2 and assume that they collapse to Im(a). This
gives us an estimate of the ℓ2 norm:

∥g∥2ℓ2 ≤
(
|{j|(2/∆t) tan (πj/L) ≤ Im(a)/2}|

Re(a)2 + Im(a)2/4
+

|{j|(2/∆t) tan (πj/L) > Im(a)/2}|
Re(a)2

)
≤
(
L(2 arctan(Im(a)∆t/4)/π) + 1

Re(a)2 + Im(a)2/4
+

L(1− 2 arctan(Im(a)∆t/4)/π) + 1

Re(a)2

)

= L

 (2 arctan(Im(a)∆t/4)/π) + 1/L

Re(a)2 + Im(a)2/4︸ ︷︷ ︸
N1

+
(1− 2 arctan(Im(a)∆t/4)/π) + 1/L

Re(a)2︸ ︷︷ ︸
N2

(13)

Proof of Proposition 1. Given eq. (12) and (13). Proposition 1 follows immediately.

Let us take a closer look at this expression. Ideally, the ℓ2-norm of g should be independent of L
and ∆t; that is, as L → ∞ and ∆t → 0, we do not want ∥g∥2ℓ2/L to diminish. First, we note that
N1 and N2 are independent of L as L → ∞. As ∆t → 0, N1 inevitably vanish, regardless of the
location of Im(a). In order to maintain N2 a constant, we would need Im(a)∆t/4 to not blow up.
This gives us the first rule (Law of Zero Information) for scaling the poles. We can further work out
some constants in O to be used in practice. For example, to guarantee that Im(a) is smaller than the
top 5% Fourier nodes, we would need that

2

π
arctan

(
Im(a)∆t

4

)
≤ 0.95 ⇒ Im(a) ≤ 50.82

∆t
.

In particular, eq. (12) and eq. (13) together give us the proof of the lower bounds in Proposition 1.
The upper bounds are proved by noting all all derivations in this section are asymptotically tight.

D MORE NUMERICAL EXPERIMENTS ON THE ILLUSTRATIVE EXAMPLE

In section 4 and 5.2, we see that using a Sobolev-norm-based filter with β > 0, one is able to
escape from the local minima caused by small local noises. In this section, we present a similar
set of experiments to show the effect of our filter, even when β < 0. We choose our new objective
function to be

F̃(is) = Re
(

5

is− (−1− 75i)
+

0.2

is− (−1 + 25i)

)
, s ∈ R.

Compared to the objective in section 4, we see two differences. First, we remove the sinusoidal
noises around the origin. Second, we shift the locations of the two modes in the target: instead of
locating at s = −50 and s = 50, we shift them to s = −75 and s = 25, respectively. This allows us
to have a large high-frequency mode and a small low-frequency mode in the ground truth.

We show the results in Figure 7 when we train an LTI system using a Sobolev-norm-based filter with
different values of β. Note that when β = 0, the picture only differs from Figure 1 (middle) in the
frequency labels because in that case, the gradient (∂/∂y)L only cares about the relative difference
y − s but not the absolute values of s. From Figure 7, we see that as β increases, more trajectories
converge to the local minimum near (ξ = 5, y = −75). The reason is that a larger β favors a higher
frequency (see Theorem 2).

E DETAILS OF THE EXPERIMENTS

E.1 DENOISING SEQUENTIAL AUTOENCODER

For every image in the CelebA dataset, we reshaped it to have a resolution of 1024 × 256 pixels
to allow for higher-frequency noises. We trained a single-layer S4D model with n = 128 and
d model = 3. We dropped the skip connection D from the model. The model was trained using

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

β = −2

H
−
2

L
oss

ξ

y

β = 0

H
0

(i.e.,
L

2)L
oss

ξ

y

β = 2

H
2

L
oss

ξ

y

Figure 7: An SSM is trained with a filter based on the Sobolev-norm (see section 5.2). The plots
are read in the same way as those in Figure 1. The transfer function converges to one of the two
local minima. As β ranges from −2 to 2, the transfer function becomes more sensitive to the high-
frequency global information rather than the local information. Hence, the edge between the two
different convergences shifts rightward.

Flattening
Vertical Stripes

Horizontal Stripes
Low-Frequency Noises

High-Frequency Noises

Image Sequence of Pixels
Figure 8: When a noisy image is flattened into pixels using the row-major order, the noises induced
by horizontal stripes become low-frequency noises while those induced by vertical stripes become
high frequencies.

the MSE loss. That is, for every predicted sequence of pixels, we compared the model against the
true image and computed the 2-norm of the difference vector.

We trained the model on the original images, i.e., those without any noises. When we inferred
from the model, we added noises to the inputs, introducing about 10 cycles of horizontal or vertical
stripes, respectively. Our noises were large, almost shielding the underlying images. When the value
of a pixel was out of range, then we ignored such as issue during training; we clipped its value to
the appropriate range when rendering the image in Figure 4.

To obtain the numbers in Table 2, we computed with our trained models, where we set the inputs to
be pure horizontal or vertical noises with no underlying images. Then, we evaluated the size of the
output image and took the ratio of the outputs over the inputs. We call this value the “pass rate” of
a particular noise. Table 2 shows the ratio between the pass rate of the low-frequency noises over
the high-frequency ones. Our model did not have a nonlinear activation function, which made the
model linear. Hence, it does not matter what the magnitude of the inputs was.

E.2 LONG-RANGE ARENA

In this section, we present the hyperparameters of our models trained on the Long-Range Arena
tasks. Our model architecture and hyperparameters are almost identical to those of the S4D models
reported in Gu et al. (2022a), with only two exceptions: for the ListOps experiment, we set n = 2
instead of n = 64, which aligns with Smith et al. (2023) instead; for the PathX experiment, we set
d model = 128 to reduce the computational burden. We do not report the dropout rates since they
are set to be the same as those in Gu et al. (2022a). Also, we made β a trainable parameter.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Task Depth #Features Norm Prenorm α LR BS Epochs WD ∆ Range
ListOps 8 256 BN False 3 0.002 50 80 0.05 (1e-3,1e0)

Text 6 256 BN True 5 0.01 32 300 0.05 (1e-3,1e-1)
Retrieval 6 128 BN True 3 0.004 64 40 0.03 (1e-3,1e-1)

Image 6 512 LN False 3 0.01 50 1000 0.01 (1e-3,1e-1)
Pathfinder 6 256 BN True 3 0.004 64 300 0.03 (1e-3,1e-1)

Path-X 6 128 BN True 5 0.001 20 80 0.03 (1e-4,1e-1)

Table 4: Configurations of our S4D model, where LR, BS, and WD stand for learning rate, batch
size, and weight decay, respectively. The hyperparameter α is the scaling factor introduced in sec-
tion 5.1. We set the parameter in section 5.2 as a trainable parameter to reduce the need for hyper-
parameter tuning.

F SUPPLEMENTARY EXPERIMENTS

F.1 PREDICT THE MAGNITUDES OF WAVES

In Figure 1, we see an example of the frequency bias of SSMs, where the model is better at extract-
ing the wave information of a low-frequency wave than a high-frequency one. In this section, we
produce more examples on the same task to show that one is able to tune frequency bias by playing
with α and β we introduced in section 5.1 and 5.2, respectively.

0 50 100

10
-2

10
-1

Frequency bias is . . .

M
ea

n
E

rr
or

Epochs

Enhanced

0 50 100

10
-2

10
-1

Default

Epochs
0 50 100

10
-2

10
-1

Counterbalanced

Epochs
0 50 100

10
-2

10
-1

s = 1

s = 16

s = 256

Reversed

Epochs

Figure 9: Reproduction of the experiment shown in Figure 1, with difference choices of (α, β).
From the left to right, our choices of (α, β) are (0.01,−1), (1, 0) (the default), (10, 0.5), and
(100, 1), respectively. The legend applies to all pictures. We can see that these choices allow us
to enhance, counterbalance, or even reverse the frequency bias.

We see from Figure 9 that by tuning hyperparameters, we can change the frequency bias of an SSM.
In particular, when α = 100 and β = 1, we reversed the frequency bias so that the magnitude of
the low-frequency wave cos(t) cannot be well-predicted, while a high-frequency wave is captured
relatively well.

F.2 TUNING FREQUENCY BIAS IN MOVING MNIST VIDEO PREDICTION

In this section, we present an experiment to tune frequency bias in a video prediction task. We
show that our frequency bias analysis and the tuning strategies not only work for vanilla SSMs
but also their variants. We examine a model architecture called ConvS5 that combines SSMs and
spatial convolution (Smith et al., 2024). We apply the model to predict movies from the Moving
MNIST dataset (Srivastava et al., 2015). In this dataset, two (or more) digits taken from the MNIST
dataset (Deng, 2012) move on a larger canvas and bounce when touching the border. This forms a
video over time. In our experiment, we slightly modify the movies by coloring the two digits. In
particular, every movie contains two moving digits — a fast-moving red one and a slow-moving
blue one. The speed of the red digit is ten times that of the blue digit; consequently, the red digit
can be considered as a “high-frequency” component, whereas the blue digit is a “low-frequency”
component. Our goal in this experiment is to use a ConvS5 model to generate up to 100 frames,
conditioned on 500 frames. The ConvS5 model applies LTI systems to the time domain (i.e., the
axis of the frames), but in the meantime incorporates spatial convolutions in the LTI systems, where
the LTI systems are still initialized by the HiPPO initialization.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

In this experiment, we train two models using two different initializations. The first initialization we
use is the default HiPPO initialization. Then, we try another initialization, where for every yj that is
the imaginary part of an eigenvalue of A, we transform yj by

yj 7→ sign(yj)(|yj |+ 200). (14)

That is, we shift every yj away from the origin by 200. This does not correspond to any α > 0 that
we introduced in section 5.1, but our intuition is still based on our discussions in section 3 and 4.
That is, when we move away every yj that is contained in [−200, 200], our model is incapable
of handling the low frequencies. This is indeed observed in Figure 10: when we use the original
HiPPO initialization, the high-frequency red digit cannot be predicted, whereas when we modify the
initialization based on eq. (14), we well-predicted the red digit but the low-frequency blue digit is
completely distorted.

t = 0

Tr
ue

1 2

. . .

3 498 499 500 501 502

. . .

598 599

M
od

el
1

.

Conditioning

M
od

el
2

. . .

Prediction

. . .

Figure 10: A ConvS5 model is trained to predict the Moving MNIST videos. In “Model1”, we use
the original HiPPO initialization; in “Model2”, we modify the initialization based on eq. (14). We
see that when we use the HiPPO initialization, only the slow-moving blue digit can be generated; on
the other hand, pushing all eigenvalues of A to the high-frequency regions (see eq. (14)) allows us
to predict the fast-moving red digit.

22

	Introduction
	What is the Frequency Bias of an SSM?
	Frequency Bias of an SSM at Initialization
	Frequency Bias of an SSM during Training
	Tuning the Frequency Bias of an SSM
	Tuning Frequency Bias by Scaling the Initialization
	Tuning Frequency Bias by a Sobolev Filter

	Experiments and Discussions
	Conclusion
	Proofs
	Functional Derivatives
	Scaling Laws of the Initialization
	More Numerical Experiments on the Illustrative Example
	Details of the Experiments
	Denoising Sequential Autoencoder
	Long-Range Arena

	Supplementary Experiments
	Predict the Magnitudes of Waves
	Tuning Frequency Bias in Moving MNIST Video Prediction

