
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

CAN LARGE REASONING MODELS SELF-TRAIN?

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent successes of reinforcement learning (RL) in training large reasoning models
motivate the question of whether self-training — the process where a model learns
from its own judgments — can be sustained within RL. In this work, we study
this question using majority voting as a simple self-feedback mechanism. On
a comprehensive set of experiments on both synthetic and real reasoning tasks,
we find that even this basic approach improves not only the model’s reasoning
performance, but also its capability of generating better quality feedback for the
next RL iteration, driving further model improvement. Yet our analysis also
reveals a critical limitation of such a self-training paradigm — prolonged RL with
self-reward leads to reward hacking where models learn to maximize training
(pseudo-)reward, resulting in sudden performance collapse. Together, these results
highlight feedback design as the central challenge and call for future research on
mechanisms to enable prolonged self-improvement.

1 INTRODUCTION

Pre-training on human-curated corpora has endowed language models with broad general-purpose
capabilities (Brown et al., 2020; Rae et al., 2022), but the supply of such data is becoming a bottleneck
as compute scales rapidly (Hoffmann et al., 2022; Sevilla et al., 2022). Reinforcement learning
(RL) (Sutton et al., 1998) with verifiable rewards (RLVR) addresses this limitation by using automatic
correctness checks, and has already shown success in reasoning and agentic tasks (DeepSeek-AI
et al., 2025; OpenAI et al., 2024). Yet in domains where humans cannot provide ground-truth
solutions, external feedback breaks down. In these domains, models must self-improve—judging the
correctness of their own outputs and using this signal to refine future generations (Zelikman et al.,
2022; Song et al., 2025; Huang et al., 2025). If sustained iteratively, and if teacher models can also
self-improve, this process could enable continual progress without human supervision — paving the
way for automatic scientific discovery.

Prior work on self-improvement has mainly relied on supervised fine-tuning (SFT) (Zelikman et al.,
2022; Huang et al., 2023) or direct preference optimization (DPO) (Rafailov et al., 2024; Prasad
et al., 2024), where the self-labeling rule is updated only a handful of times (e.g., 1–10 rounds)
and is generally kept fixed within a training round. These studies show that self-improvement can
be effective, but leave open whether it can be sustained over longer horizons. Moreover, they are
fundamentally bounded by the verification capabilities of the fixed teacher model used to obtain
training supervision. In contrast, RL updates the model continuously, a property that has been
critical to its success in training reasoning models with verifiable rewards. This success raises a
natural question: can self-improvement leverage the same continuous-update paradigm? To study
this question, we investigate the setting in which the feedback signal is updated at every gradient
step—fundamentally altering the dynamics of self-improvement compared to earlier work.

In this RL-based setup, the choice of feedback mechanism is critical. If feedback is always correct
(e.g., perfectly verifying mathematical solutions), the procedure reduces to standard RL with ground-
truth supervision. However, in practice, self-feedback is imperfect, and its design determines whether
self-training is effective or not. As a first step, we study the simplest possible signal: majority
vote. Wang et al. (2023a) has empirically demonstrated that majority vote tends to have higher
accuracy compared to individual generations. Here, we cast the majority vote mechanism as a reward
function — granting positive reward to model outputs that match the most common answer. At
the time of the initial publication of our pre-print on arXiv, we were among the first to consider
self-training via majority voting pseudo-labels, and we discuss concurrent as well as related literature

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: (Overview of SRT) In RLVR, one produces the reward for RL training using a ground truth verifier.
Contrary to that, SRT does not assume access to a ground truth verifier; instead it uses majority voting from the
model’s own generations to estimate the ground truth, and use this proxy reward signal to train the model.

in Section 5. Previous works (Huang et al., 2023; Prasad et al., 2024) have employed majority voting
mainly as a mechanism to extract better quality generations from a fixed teacher policy to then distill
it into the student model. At the time of this manuscript’s initial posting on arXiv, Zuo et al. (2025)
concurrently examined a similar RL procedure with majority voting, but in a different setting, as
their focus is on training and testing on the same set of prompts. In contrast, our aim is to use this
simple pseudo-label generation mechanism to investigate the validity of RL powered self-training
frameworks.

Our comprehensive set of experiments demonstrate that this simple mechanism yields measurable
gains over the base model on key reasoning metrics such as maj@k and avg@k success rates.
Remarkably, we observe clear improvement in the label generating policy after each gradient step,
and this translates to gains over employing labels from a fixed teacher. Moreover, self-training
achieves comparable performance to RLVR on 4 different base models. In synthetic tasks where
one can control the difficulty of the training dataset, we observe that a simple curriculum-based
self-training approach can enable the model to keep climbing on progressively harder tasks without
ground-truth labels. However, prolonged training with this framework consistently teaches models
to ignore the prompt entirely and output the same template final answer, which maximizes training
reward but leads to complete collapse on test datasets. We analyze these dynamics in depth and trace
them to the self-reinforcing nature of imperfect feedback. These findings identify feedback design as
the key challenge that future research should address to sustain self-improvement.

2 PRELIMINARIES

Let πθ denote a language model parameterized by θ. Given a prompt x, the model produces a response
y = (y1, y2, . . .) auto-regressively. Formally, each token in the response sequence is generated
according to the conditional probability:

yk+1 ∼ πθ(· | x, y≤k), (1)
where we use y≤k to refer to the first k tokens generated by the model.

For reasoning-based tasks considered here, the model typically produces responses following a
step-by-step “chain-of-thought” reasoning approach (Wei et al., 2022). A verification function r(y),
whose dependence on x is omitted for brevity, extracts the model’s proposed solution from the
generated response and evaluates its correctness against the prompt-specific ground-truth answer:

r(y) =

{
1 if y is correct,
0 if y is incorrect.

(2)

Typically, one optimizes the expected pass rate, defined as the average accuracy across a distribution
of prompts X :

J(θ) = Ex∼XEy∼πθ(·|x)[r(y)]. (3)

Taking the gradient of the objective function (3) with respect to θ and employing a baseline for
variance reduction (Sutton et al., 1998) leads to the well-known policy gradient formulation:

∇θJ(θ) = Ex∼XEy∼πθ(·|x) [A(y)∇θ log πθ(y | x)] , (4)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

where the advantage function A(y) is given by:

A(y) = r(y)− Ey′∼πθ(·|x)[r(y
′)]. (5)

Here Ey′∼πθ(·|x)[r(y
′)] is the average pass rate for prompt x. In practice, the policy gradient in

equation 4 is estimated through Monte Carlo samples, yielding the classical REINFORCE algorithm
(Williams, 1992). Recent works have modified this base policy gradient formulation to improve its
stability, efficiency, and practicality, resulting in advanced methods such as REINFORCE++ (Hu
et al., 2025), GRPO (Shao et al., 2024), PPO (Schulman et al., 2017), RLOO (Ahmadian et al., 2024),
Dr. GRPO (Liu et al., 2025), GSPO (Zheng et al., 2025), etc. Implicit to the training method used in
our work is the notion of a generation-verification gap (Song et al., 2025), where generating correct
solutions is hard, but verifying them is easy. We present its definition in Appendix A.

3 SELF-REWARDED TRAINING

Our objective in this work is to investigate whether reliable training supervision for language models
can be generated without external labels. The typical practice for online RL involves generating
multiple responses to a prompt, then assigning high or low rewards to each generation according to
a ground-truth verifier. In the absence of such a verifier, one might develop a mechanism to derive
proxy labels. This mechanism then provides a simple recipe for framing self-improvement as an RL
problem. At a high level, each iteration proceeds as follows: (1) Sample a mini-batch of prompts, (2)
Determine pseudo-labels, ypseudo, using the mechanism for each prompt, (3) Generate n responses
per prompt and use agreement with the derived psuedo-labels as an intrinsic binary reward:

r(y) = 1[answer(y) = ypseudo], (6)

and then (4) Perform a single RL update step on this mini-batch using the reward function r(·).

Algorithm 1 Self-Rewarded Training (SRT)
Input: Prompt dataset X
foreach RL iteration do

/* Inference step */
Sample minibatch B ⊆ X
foreach prompt x ∈ B do

Generate n solutions y(1), ..., y(n) ∼ πlabel(·|x)
Identify majority-vote answer:

ymajority ← argmax
y′

n∑
i=1

1[answer(y(i)) = y′]

Define reward function:

r(y)← 1[answer(y) = ymajority]

end
/* Gradient update step */
Perform RL gradient update using r(·)

end

Self-supervision via majority voting.
Among several possible choices
for determining reasonably accurate
pseudo-labels, we explore the sim-
plest one in this work, majority voting.
Majority voting has been empirically
demonstrated to have higher accuracy
compared to individual model genera-
tions (Wang et al., 2023a) and is thus
a suitable choice to exploit an LLM’s
inherent generation-verification gap
(see Appendix Figure 8). In our set-
ting, models typically produce a step-
by-step chain of thought followed by
a final answer (in the case of regular
RL training, this final answer is ex-
tracted and matched with the ground
truth to produce rewards), so one can
group all responses by their final an-
swer to determine the majority vote.
Concretely, assume we want to gen-
erate pseudo-labels using policy πlabel
(which can be any reasonable policy). This procedure then involves: (1) sampling multiple answers
per prompt using policy πlabel, (2) grouping answers according to their parsed final solutions, (3)
estimating the ground truth answer with the most common solution.

Self-Rewarded Training (SRT). The general procedure is described in Algorithm 1, which hence-
forth shall be called Self-Rewarded Training (SRT) in this paper. Since the method prescribes a
specific form of the reward function using model self-consistency, it is compatible with all the com-
mon RL training algorithms such as PPO, RLOO, REINFORCE, GRPO, etc. We study the quality of
generated labels during training by controlling πlabel: setting πlabel to be the base model recovers our
familar setting of learning the majority voting decisions of a fixed model (while still using the current

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

0 50 100 150 200
RL Steps

0.70
0.72
0.74
0.76
0.78
0.80
0.82

Ac
cu

ra
cy

Family Relationships
Level 5

0 50 100 150 200
RL Steps

0.70

0.75

0.80

0.85

0.90
Bitwise Arithmetic

Level 3

0 50 100 150 200
RL Steps

0.50
0.60
0.70
0.80
0.90
1.00

Knights & Knaves
Level 7

Mean@16 (Evolving Teacher) Majority@16 (Evolving Teacher) Mean@16 (Fixed Teacher)

Figure 2: (SRT improves both performance and quality of generated labels during training.) We investigate
self-training under controlled settings on synthetic reasoning tasks from Reasoning Gym. Remarkably, SRT
improves not only the mean accuracy, but the majority voting accuracy as well, which is the source of our
training supervision. Improvement in the quality of training signal drives further improvement in performance,
as SRT outperforms its variant employing the majority votes from a fixed teacher (base model) as proxy labels.

policy’s rollouts for RL training), and setting πlabel to be the current policy πθ after each gradient step
allows us to study whether the quality of the learning signal can be concurrently improved during RL
training. In the case where we use the current policy πθ to generate our pseudo-labels, we can reuse
them for performing the RL gradient step as well. As the number of generations per prompt typically
falls in the range 16-64 (Yu et al., 2025), this variant of SRT incurs no additional compute cost
compared to the versions of these algorithms employing ground truth labels. In our work, whether the
final answer is correctly formatted and parseable is used to filter responses, but given more compute,
one can theoretically employ more sophisticated systems like LLM-as-a-judge (Zheng et al., 2023;
Gu et al., 2025) or generative verifiers (Zhang et al., 2025a) to further improve the quality of the
training signal. We leave these for future work.

As long as majority voting leads to a positive generation-verification gap at each RL iteration, we
expect iterative self-rewarding to provide a useful supervisory signal. We describe our empirical
observations in the following section.

4 EXPERIMENTS

In this section, we present the results of our empirical study. Our primary aim is to answer the two
following research questions: (1) Can SRT improve an LLMs’ reasoning abilities beyond the base
model’s capabilities, in terms of both the quality of training reward signal and pass@1 performance?
(2) If yes, can this improvement be sustained indefinitely? We systematically design experiments to
answer these questions below.

4.1 CAN SRT GO BEYOND THE BASE MODEL’S CAPABILITIES?

There are two potential axes of improvements over the base model for SRT that can be studied: the
improvement in accuracy over held-out prompts, and the improvement in the quality of generated
labels themselves during the training procedure. Unlike previous works (Huang et al., 2023; Prasad
et al., 2024) that distill the majority voting decision of a fixed policy (typically the base model) into
the current model, we want to study whether the quality of the majority votes of the evolving
policy improves as a result of self-improvement.

Experiments on synthetic reasoning tasks. Complex reasoning tasks like math require domain-
specific pre-training/midtraining for online RL to be effective (Wu et al., 2025a; Gandhi et al., 2025);
it is also more difficult to control the difficulty of the individual tasks that the model sees during
training. Therefore, we first study this question using synthetic reasoning tasks from REASONING
GYM (Stojanovski et al., 2025), a collection of over 100 reasoning environments for reinforcement
learning with verifiable rewards. These tasks can also be generated with adjustable difficulty, making
it a suitable test-bed for our work. Concretely, we use 3 tasks from Reasoning Gym: (1) Family
Relationships, a logic puzzle involving a group of individuals connected via different relationships,

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

0 500 1000 1500 2000
RL Steps

0.50

0.55

0.60

M
AT

H-
50

0
Pa

ss
@

1

Llama-3.1-8B-Instruct
(Train: Big-Math-RL-Verified)

0 100 200 300 400
RL Steps

0.4

0.5

0.6

0.7

0.8
Qwen2.5-Math-7B
(Train: MATH-12K)

0 100 200 300
RL Steps

0.4

0.6

0.8

1.0
Qwen3-14B-Base

(Train: DAPO)

0 100 200 300 400 500
RL Steps

0.42

0.44

0.46

0.48
Deepseek-Math-7B-Instruct

(Train: MATH-12K)

SRT Base Model RL on Ground Truth

Figure 3: (Evaluating SRT on real-world math problems.) Comparison between SRT and RL with ground
truth across different base models and training datasets. Following (Oertell et al., 2024), all models are trained
using RLOO (for experiments with GRPO, see Figure 17) and tested using average pass@1 accuracy on MATH-
500. SRT achieves comparable performance to that of ground-truth training across different base models. For
training curves using more combinations of (train, test) dataset pairs, refer to Appendix C.1 and C.2.

and the model has to reason about the relationship between two individuals within this group, (2)
Bitwise Arithmetic, a task for testing models’ understanding of Bitwise Arithmetic operations,
and (3) Knights & Knaves, a logic puzzle involving characters who always either tell the truth
(knights) or always lie (knaves), and the challenge is to deduce who is who based on their statements.
Appendix K shows example prompts from each of these tasks. We use a Qwen-3-4B-Base (Yang
et al., 2025) model for all our reasoning gym experiments.

Since our goal is to study whether SRT can improve performance on top of a reasonably strong
base model, following the setting of Lee et al. (2025), we first train the base model with GRPO
using ground truth labels on the easiest difficulty setting. This is used to teach the base model proper
formatting rules and how to solve the basic task before we train using SRT on the next level of
difficulty without ground-truth labels. The detailed training settings can be found in Appendix B.3.

Results. Figure 2 shows our main results: SRT using the current policy as the label generator
improves both avg@16 and majority vote@16 accuracy on all 3 reasoning gym tasks. Since we
derive our training signal from the majority votes of the current policy evolving with every RL step
— this demonstrates that self-improvement using SRT can progressively improve the quality of the
pseudo-labels as well. Note that this would not be possible in prior works (Prasad et al., 2024; Huang
et al., 2023) which distills the majority votes of a fixed teacher policy throughout one round of training.
We expect the improvement in the evolving teacher policy to result in further performance gain. To
validate this, we compare SRT with a variant of the same algorithm where we use the majority votes
of the fixed starting policy instead of the evolving current policy as pseudo-labels. Figure 2 shows
their comparison: in Family Relationships and Bitwise Arithmetic, we see larger gains in majority
voting performance, and likewise SRT outperforms its fixed teacher variant substantially, by 10%
for Bitwise Arighmatics, 8% in Family Relationship, and 6% in Knights and Knaves. On Knights &
Knaves, the starting policy already has >90% majority voting accuracy, and we see the difference
between the evolving teacher and fixed teacher variants of SRT to be smaller here. Furthermore, these
performance gains cannot be explained by learning to format properly: since the model was trained
on the easiest difficulty level, it can already format its responses correctly in most cases (Appendix E),
and we see performance climbing after saturation in model’s format correctness. Overall, on the
synthetic reasoning tasks, SRT clearly pushes the model beyond its starting capabilities, showing the
promise of self-improvement even from this basic recipe for self-supervision.

Real-world reasoning tasks. Armed with these insights, we next test our algorithm on real-world
reasoning tasks in the math domain (for other tasks like coding, it is unclear how to group generations
to find the majority vote). To investigate the generality of our algorithm, we run a comprehensive set of
experiments with 4 different base models of different sizes: Llama-3.1-8B-Instruct (Grattafiori et al.,
2024), Qwen2.5-Math-7B (Yang et al., 2024), Qwen3-14B-Base (Yang et al., 2025), and Deepseek-
Math-7B-Instruct (Shao et al., 2024). We also use a comprehensive suite of train and test datasets:
namely, for training we employ Big-Math-RL-Verified (Albalak et al., 2025), MATH-12K (Hendrycks
et al., 2021), and DAPO (Yu et al., 2025); for evaluation, we use MATH-500 (Hendrycks et al.,
2021), AIME 2024, AIME 2025 and AMC. We also experiment with different RL algorithms such as
GRPO and RLOO, refer to Appendix B.3 and Figure 17 for more details (they show no noticeable
difference in behavior). All training and validation runs used a temperature value of 1.0, except for

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

0 500 1000 1500 2000
RL Steps

0.50

0.55

0.60

M
AT

H-
50

0
M

aj
or

ity
@

32

Llama-3.1-8B-Instruct
(Train: Big-Math-RL-Verified)

0 100 200 300 400
RL Steps

0.78

0.82

0.86

0.90
Qwen2.5-Math-7B
(Train: MATH-12K)

0 100 200 300
RL Steps

0.84

0.88

0.92

Qwen3-14B-Base
(Train: DAPO)

0 100 200 300 400 500
RL Steps

0.57

0.58

0.59

0.60

0.61
Deepseek-Math-7B-Instruct

(Train: MATH-12K)

SRT Base Model RL on Ground Truth

Figure 4: (Majority@32 accuracy comparison between SRT and RL with ground truth) We compare
the majority@32 accuracy, as opposed to average accuracy shown in Figure 3. Note that for Llama-3.1-8B-
Instruct, we use the official model card evaluation temperature of 0, hence majority@32 is the same
as average@32 accuracy. SRT shows improvement in the quality of the majority votes themselves, which
distinguishes our algorithm from that of learning from a fixed teacher’s majority votes.

Llama-3.1-8B-Instruct, where we evaluated using the official model card setting of temperature 0
(greedy decoding). Note that different sampling temperatures in validation can greatly affect the base
model performance, a phenomenon we explore in Appendix D. Since our goal is to show that SRT
and RL with ground truth lead to a similar improvement over the base model and we are not concerned
about the absolute improvement, our conclusions hold regardless of the decoding temperature.

We show a summary of our empirical findings using different base models and training datasets
in Figures 3 and 4 (for training curves using more combinations of (train, test) dataset pairs, refer
to Appendix C.1 and C.2). On all instances, SRT improves both avg@16 and majority vote@16
accuracies on heldout MATH-500 prompts, and performs on par with regular RL training with ground
truth verification. More impressively, the observations hold for base models like Llama-3.1-8B-
Instruct, which is known to be particularly difficult for RL training on reasoning tasks (Gandhi et al.,
2025), improving its average accuracy from 52.6% to nearly 60%.

We also compare SRT with its offline variants: SFT on the majority vote (Huang et al., 2023),
DPO and ScPO (Prasad et al., 2024) employing contrastive learning between the majority vote and
non-majority vote answer in Table 1. We observe that SRT retains better performance compared to
its offline variants distilling the majority vote decisions of the base policy, showing the benefit of
self-improvement in the label-generating policy. For more details, refer to Appendix F.

Takeaway 1: SRT can improve reasoning capabilities beyond the base model

On both synthetic and real reasoning tasks, SRT improves average and majority voting
accuracies, showing ability gains beyond the base model. Specially, improvement in majority
voting accuracy also signifies improvement of the quality of self-supervision during training,
demonstrating a promising path forward to self-improvement.

4.2 CAN SELF-IMPROVEMENT FROM SRT BE SUSTAINED INDEFINITELY?

Given the strong performance of SRT in various reasoning tasks and model architectures, an important
question is whether self-training can be maintained over extended iterations. Similar to the prior
section, we first test SRT on synthetic tasks with controllable difficulty to rigorously study its
properties, and then test the resulting insights on real-world reasoning domains.

Multi-level self-improvement on synthetic tasks using curriculum. Since Reasoning Gym
provides a built-in way to control the difficulty of generated tasks, we first investigate whether self-
training on an easier set of tasks can produce a model capable of self-improvement on progressively
harder levels of difficulty. To do so, we choose 2 Reasoning Gym tasks: Bitwise Arithmetic and
Knights & Knaves. Similar to our previous setting, we first train using RL on ground truth labels on
the easiest level of difficulty, then progressively train on harder levels without ground truth labels
(i.e., SRT on level 5 starts with the checkpoint obtained from SRT on level 4, and so on). For more
details, refer to Appendix B.3.

Figure 5 shows our primary results: in this controlled setting, SRT is able to maintain self-
improvement on progressively harder difficulties. In particular, SRT can show reasonable im-

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

0 100 200
RL Steps

0.40

0.50

0.60

Ac
cu

ra
cy

Bitwise Arithmetic
Level 3

0 100 200
RL Steps

0.60

0.63

0.65

Bitwise Arithmetic
Level 4

0 50 100 150 200
RL Steps

0.60

0.80

1.00

Knights and Knaves
Level 7

0 100 200
RL Steps

0.93

0.95

0.98

1.00

Knights and Knaves
Level 9

Average Accuracy Majority Vote Accuracy

Figure 5: (Multi-level climbing on Reasoning Gym using curriculum) The Qwen3-4B-Base model can
climb on progressively more difficult tasks without ground truth labels via a simple curriculum strategy — where
we train an earlier level’s final checkpoint with SRT on the next difficulty level. This approach also seems to
improve both average and majority voting accuracy on each level.

provement in Bitwise Arithmetic Level 4 after being initialized on Level 2 with ground-truth training,
and also progressively climb to near 100% accuracy on Knights & Knave Level 9 after being trained
with ground-truth on Level 2 only (intermediate levels are trained with SRT).

0 500 1000 1500 2000
RL Steps

0.1
0.2
0.3
0.4
0.5
0.6

M
AT

H-
50

0
Pa

ss
@

1

Llama-3.1-8B-Instruct
(Train: Big-Math-RL-Verified,

 larger learning rate)

0 200 400 600 800 1000
RL Steps

0.0
0.2
0.4
0.6
0.8
1.0

Qwen2.5-Math-7B
(Train: DAPO)

0 200 400 600 800 1000
RL Steps

0.0
0.2
0.4
0.6
0.8
1.0

Qwen3-14B-Base
(Train: DAPO)

0 400 800 1200
RL Steps

0.0

0.2

0.4

0.6
Deepseek-Math-7B-Instruct

(Train: MATH-12K)

SRT Base Model RL on Ground Truth

Figure 6: (Extended self-training leads to model collapse) Inspired by multi-level improvement on reasoning
gym tasks, we take four LLMs with strong math abilities from pretraining, and train them with SRT for an
extended period of time. SRT improves performance at first, but then demonstrates complete model collapse
on all 4 base models. (Note: on Llama-3.1-8B-Instruct, the learning rate used in Figures 3 and 4, 10−7, does
not lead to model collapse within our training budget, but 3× 10−7, a slightly higher learning rate does — we
hypothesize that with an extended training run, even 10−7 would lead to model collapse. For more details on the
effect of hyperparameters on model collapse, refer to Figure 19.)

Extended SRT-training on math problems. Next, we test our insights on real-world math
problems. Specifically, we take take the same 4 base models as in the previous section, and train
them on a difficult math dataset through an extended number of iterations using SRT. Figure 6
demonstrates our surprising finding: while SRT initially increases the base model’s performance
at a comparable rate with ground-truth RL training, extended training using SRT leads to sudden
performance collapse. We observe performance collapse or degradation from extended SRT-
training across all models and training datasets, and record these in detail in Appendix C.1 and C.2.
Given that this surprising phenomenon deserves more investigation, we study it in more detail next.

What happens after SRT peaks in performance? To develop a clearer understanding of the
underlying reasons for this phenomenon, in this section we investigate this SRT-induced model
collapse closely.

We plot the training statistics of the SRT objective (Eqn. 6) in Figure 7. The observed performance
collapse closely coincides with a sudden increase in the SRT self-reward objective, implying that
the optimization procedure has, in fact, maximally optimized the training objective (self-consistency
majority voting), despite a decline in actual output correctness. On the same figure, we further report
the token-level average Kullback–Leibler divergence between the model under SRT training and
the base model. We observe a sharp increase in KL divergence at the exact point when performance
begins to deteriorate, indicating that the generative distribution of the model has substantially diverged
from the original model.

These findings strongly suggest the occurrence of reward hacking—the model has learned to produce
consistent responses in order to optimize its self-assigned reward, irrespective of their true correctness.
Indeed, manual analysis of the model outputs (examples provided in Appnedix L) confirms this
hypothesis: after collapse, the model outputs a very high entropy, essentially random, set of

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0 200 400 600 800 1000
RLOO Steps

0.0

0.1

0.2

0.3

0.4

Av
er

ag
e@

32
 A

cc
ur

ac
y Accuracy During Training

0 200 400 600 800 1000
RLOO Steps

0.0

0.5

1.0

1.5

2.0

Av
er

ag
e

KL
 P

en
al

ty

KL Penalty During Training

0 200 400 600 800 1000
RLOO Steps

0.0

0.2

0.4

0.6

0.8

1.0

(P
se

ud
o-

)R
ew

ar
d

(Pseudo-)Reward During Training

0 200 400 600 800 1000
RLOO Steps

0
1
2
3
4
5

M
od

el
 E

nt
ro

py

Model Entropy During Training

SRT RL on Ground Truth Model collapse

Figure 7: (Self-Training Dynamics) Extended training via SRT can lead to reward hacking, as demonstrated
by the sudden hike in KL penalty and training (psuedo-)reward, but collapse of accuracy on the held-out test sets.

tokens followed by the same “template” final answer (for example, \boxed{1}) that is nearly
independent of the input prompt. In other words, the initially strong correlation between the SRT
objective and correctness is ultimately compromised, becoming no longer a reliable proxy signal.
This behavior is also related to the well-known simplicity bias in neural networks (Palma et al., 2019;
Valle-Pérez et al., 2019; Mingard et al., 2020; 2025), as well as the Occam’s razor, where neural
networks tend to find the simplest solution that generalizes to the observed signal — in this case this
leads to the same final template answer for all prompts.

Additional experiments and ablations. We have run additional experiments and ablations to
study the behavior of self-training under different training scenarios. Figure 19 of Appendix G.3
shows our main findings: (1) choice of RL algorithm (GRPO vs RLOO) does not affect the final
outcome of SRT-training, (2) increasing KL coefficient to incentivize the model to stay close to the
base policy also does not mitigate reward hacking, as the training signal from the reward hacked
solution is too strong, (3) decreasing learning rate seems to delay model collapse but not eliminate it,
and we hypothesize that prolonged training with lower learning rates would still result in complete
model collapse, and (4) surprisingly, reducing the number of generations per prompt injects noise
into the training signal, which delays quick model collapse by exploiting the majority voting answer.
Additional experiments related to SRT training can be found in Appendix C and G.

Takeaway 2: Self-Training benefits may not extend indefinitely

The question of whether self-training can be extended indefinitely has mixed results: while
under controllable difficulty, SRT can keep improving beyond the base model on progressively
more difficult tasks, training on real-world math problems demonstrate the phenomenon of
reward hacking — sustained self-improvement requires developing additional regularization
measures to be effective.

5 RELATED WORKS

Self Improving LLM. Previous works (Zelikman et al., 2022; Wang et al., 2023b; Huang et al.,
2023; Madaan et al., 2023; Chen et al., 2024; Gulcehre et al., 2023; Singh et al., 2024; Ni et al., 2023;
Hwang et al., 2024; Havrilla et al., 2024; Pang et al., 2024a) have demonstrated the feasibility of
LLMs’ self-improvement over their previous iteration by training on data distilled by the previous
instances of the model. Most of these approaches usually have data filtering/reranking step in the
pipeline, which is often performed by the model itself (Wu et al., 2025b) or by training another
(Hosseini et al., 2024) verifier model. Particularly, (Huang et al., 2023; Wang et al., 2023a; Prasad
et al., 2024) demonstrated the feasibility of using majority voting and self-consistency to filter
chain-of-thought traces that, when used as SFT training data, improve the LLM performance on
downsteaming tasks. A concurrent work, (Zhao et al., 2025a), proposes a self-evolution, self-play
pipeline where an LLM generates coding problems of appropriate difficulty, solves and trains on them
using RLVR. The model-generated solutions are validated by a code executor in the loop. Previous
works have studied self-improvement by generating labels through majority voting (Prasad et al.,
2024; Huang et al., 2023), but these works are typically confined to one or a few rounds of SFT or
DPO (Rafailov et al., 2024). This essentially involves distilling majority voting labels from a fixed
policy into the current policy over each round of training. In contrast, we explore online RLVR’s
potential in self-improving LLMs where the label generating policy evolves after every gradient step.
A few concurrent works (Chen et al., 2025; Prabhudesai et al., 2025; Zhao et al., 2025b; Shao et al.,

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

2025) have also explored various forms of self-rewarding mechanisms through majority voting or a
similar metric of self-consistency (e.g., token/sequence level entropy) in Online RLVR. Finally, in a
recent work, (Song et al., 2025) formalized a generation verification gap as central to the model’s
ability to self-improve. Similarly, (Huang et al., 2025) proposed a “sharpening" mechanism as the
key to self-improvement. Our SRT pipeline builds on top of both of these intuitions. We refer the
interested reader to Gao et al. (2025) for a survey of other works associated with self-evolving LLM
agents.

Online RLVR and Easy to Hard Generalization. Online reinforcement learning with verifiable
reward (RLVR) (Lambert et al., 2025) has emerged as a new paradigm of LLM post-training especially
for enhancing math, coding and reasoning performances (OpenAI et al., 2024; DeepSeek-AI et al.,
2025; Team et al., 2025; Lambert et al., 2025). Despite the success of the reasoning models, it is still
unclear to what extent they can generalize beyond the difficulty of their training data distribution, a
problem termed easy to hard generalization (Sun et al., 2024). (Sun et al., 2024) shows that models
can be trained to solve level 4-5 MATH(Hendrycks et al., 2021) problems after training using a
process reward model trained on MATH level 1-3 dataset. Another work (Lee et al., 2025) explores
this question and finds that transformers are capable of easy-to-hard generalization by utilizing
transcendence phenomenon (Zhang et al., 2024) in the context of simple addition, string copying,
and maze solving using small language models.

Model Collapse and Reward Hacking. Model collapse is a well-known phenomenon in training
on self-generated training data (Alemohammad et al., 2024; Shumailov et al., 2024b;a; Bertrand
et al., 2024; Briesch et al., 2025), and multiple approaches related to data mixing, reliable verification,
training using contrastive loss using negative samples and curriculum learning have been proposed
(Gerstgrasser et al., 2024; Feng et al., 2025; Briesch et al., 2025; Song et al., 2025; Gillman et al.,
2024; Setlur et al., 2024) to prevent models from collapsing, which previous work on LLM’s easy
to hard generalization (Lee et al., 2025) also utilize. However, in RL paradigm, we do not directly
do supervised fine-tuning on model-generated data, and it remains an open question to what extent
the previous findings of model collapse apply to our RLVR setting. In our work, we show that
models trained using RL on self-labeled data often suffer from actor collapsing due to reward hacking
(Amodei et al., 2016; Denison et al., 2024) and propose a few strategies to mitigate it. Finally, a
concurrent and complementary work, Zhang et al. (2025b), has also demonstrated the failure of
various self-reward mechanisms to sustain self-improvement under prolonged training, which further
validates the observations in this work.

Data Efficient RLVR. Several concurrent works look into the data efficiency of the RLVR pipeline.
Notably, (Wang et al., 2025) shows that by just training on one example, the model can achieve
performance equivalent to training on 1.2k examples from the DeepScaleR dataset (Luo et al., 2025).
Similarly, TTRL (Zuo et al., 2025), also proposes a label-free online RLVR paradigm in a test-time
setting, similar to SRT. Our work also explores this paradigm in Section H.1 as an extension of SRT.

6 LIMITATIONS AND CONCLUSION

In this work, we examine a simple strategy of leveraging an LLM’s self-consistency to train it via
an RL framework. Our experiments on synthetic reasoning tasks with controllable difficulty levels
demonstrate the promise of such a framework: not only can LLMs improve their performance on
these tasks, but they can also improve the quality of their self-supervision for the next training
step. Our analysis, however, also reveals the limitation of leveraging self-consistency as training
reward: prolonged training under such a framework can lead to reward hacking and complete model
collapse. Future investigations could explore how to develop more robust forms of verification, extend
self-verification to other domains like coding, and curriculum learning strategies that expose the
model to problems of only the right difficulty. Additionally, leveraging LLM-as-judges or generative
verifiers to improve the training signal, or employing additional consistency regularization between
the chain-of-thought and the final answer to mitigate reward hacking can be promising future research.
We leave these and other promising directions for sustained self-improvement for future work.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Arash Ahmadian, Chris Cremer, Matthias Gallé, Marzieh Fadaee, Julia Kreutzer, Olivier Pietquin,
Ahmet Üstün, and Sara Hooker. Back to basics: Revisiting REINFORCE-style optimization
for learning from human feedback in LLMs. In Lun-Wei Ku, Andre Martins, and Vivek
Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), pp. 12248–12267, Bangkok, Thailand, August
2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.662. URL
https://aclanthology.org/2024.acl-long.662/.

Alon Albalak, Duy Phung, Nathan Lile, Rafael Rafailov, Kanishk Gandhi, Louis Castricato, Anikait
Singh, Chase Blagden, Violet Xiang, Dakota Mahan, and Nick Haber. Big-math: A large-
scale, high-quality math dataset for reinforcement learning in language models, 2025. URL
https://arxiv.org/abs/2502.17387.

Sina Alemohammad, Josue Casco-Rodriguez, Lorenzo Luzi, Ahmed Imtiaz Humayun, Hossein
Babaei, Daniel LeJeune, Ali Siahkoohi, and Richard Baraniuk. Self-consuming generative models
go MAD. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=ShjMHfmPs0.

Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman, and Dan Mané.
Concrete problems in ai safety, 2016. URL https://arxiv.org/abs/1606.06565.

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob
McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Wojciech Zaremba. Hindsight experience replay.
Advances in neural information processing systems, 30, 2017.

Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In
Proceedings of the 26th annual international conference on machine learning, pp. 41–48, 2009.

Quentin Bertrand, Joey Bose, Alexandre Duplessis, Marco Jiralerspong, and Gauthier Gidel. On the
stability of iterative retraining of generative models on their own data. In The Twelfth International
Conference on Learning Representations, 2024. URL https://openreview.net/forum?
id=JORAfH2xFd.

Martin Briesch, Dominik Sobania, and Franz Rothlauf. Large language models suffer from their own
output: An analysis of the self-consuming training loop, 2025. URL https://openreview.
net/forum?id=SaOxhcDCM3.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler,
Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott
Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. Language models are few-shot learners, 2020. URL https:
//arxiv.org/abs/2005.14165.

Lili Chen, Mihir Prabhudesai, Katerina Fragkiadaki, Hao Liu, and Deepak Pathak. Self-questioning
language models, 2025. URL https://arxiv.org/abs/2508.03682.

Zixiang Chen, Yihe Deng, Huizhuo Yuan, Kaixuan Ji, and Quanquan Gu. Self-play fine-tuning
convertsweak language models to strong language models. In Proceedings of the 41st International
Conference on Machine Learning, ICML’24. JMLR.org, 2024.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
Qihao Zhu, Shirong Ma, Peiyi Wang, et al. Deepseek-r1: Incentivizing reasoning capability in
llms via reinforcement learning, 2025. URL https://arxiv.org/abs/2501.12948.

Carson Denison, Monte MacDiarmid, Fazl Barez, David Duvenaud, Shauna Kravec, Samuel Marks,
Nicholas Schiefer, Ryan Soklaski, Alex Tamkin, Jared Kaplan, Buck Shlegeris, Samuel R. Bowman,
Ethan Perez, and Evan Hubinger. Sycophancy to subterfuge: Investigating reward-tampering in
large language models, 2024. URL https://arxiv.org/abs/2406.10162.

10

https://aclanthology.org/2024.acl-long.662/
https://arxiv.org/abs/2502.17387
https://openreview.net/forum?id=ShjMHfmPs0
https://arxiv.org/abs/1606.06565
https://openreview.net/forum?id=JORAfH2xFd
https://openreview.net/forum?id=JORAfH2xFd
https://openreview.net/forum?id=SaOxhcDCM3
https://openreview.net/forum?id=SaOxhcDCM3
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2508.03682
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2406.10162

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Yunzhen Feng, Elvis Dohmatob, Pu Yang, Francois Charton, and Julia Kempe. Beyond model
collapse: Scaling up with synthesized data requires verification. In The Thirteenth International
Conference on Learning Representations, 2025. URL https://openreview.net/forum?
id=MQXrTMonT1.

Carlos Florensa, David Held, Markus Wulfmeier, Michael Zhang, and Pieter Abbeel. Reverse
curriculum generation for reinforcement learning. In Conference on robot learning, pp. 482–495.
PMLR, 2017.

Kanishk Gandhi, Ayush Chakravarthy, Anikait Singh, Nathan Lile, and Noah D. Goodman. Cognitive
behaviors that enable self-improving reasoners, or, four habits of highly effective stars, 2025. URL
https://arxiv.org/abs/2503.01307.

Huanang Gao, Jiayi Geng, Wenyue Hua, Mengkang Hu, Xinzhe Juan, Hongzhang Liu, Shilong
Liu, Jiahao Qiu, Xuan Qi, Yiran Wu, Hongru Wang, Han Xiao, Yuhang Zhou, Shaokun Zhang,
Jiayi Zhang, Jinyu Xiang, Yixiong Fang, Qiwen Zhao, Dongrui Liu, Qihan Ren, Cheng Qian,
Zhenhailong Wang, Minda Hu, Huazheng Wang, Qingyun Wu, Heng Ji, and Mengdi Wang. A
survey of self-evolving agents: On path to artificial super intelligence, 2025. URL https:
//arxiv.org/abs/2507.21046.

Matthias Gerstgrasser, Rylan Schaeffer, Apratim Dey, Rafael Rafailov, Tomasz Korbak, Henry
Sleight, Rajashree Agrawal, John Hughes, Dhruv Bhandarkar Pai, Andrey Gromov, Dan Roberts,
Diyi Yang, David L. Donoho, and Sanmi Koyejo. Is model collapse inevitable? breaking the curse
of recursion by accumulating real and synthetic data. In First Conference on Language Modeling,
2024. URL https://openreview.net/forum?id=5B2K4LRgmz.

Nate Gillman, Michael Freeman, Daksh Aggarwal, Chia-Hong Hsu, Calvin Luo, Yonglong Tian,
and Chen Sun. Self-correcting self-consuming loops for generative model training, 2024. URL
https://arxiv.org/abs/2402.07087.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, et al. The llama 3 herd of models, 2024. URL https://arxiv.
org/abs/2407.21783.

Jiawei Gu, Xuhui Jiang, Zhichao Shi, Hexiang Tan, Xuehao Zhai, Chengjin Xu, Wei Li, Yinghan
Shen, Shengjie Ma, Honghao Liu, Saizhuo Wang, Kun Zhang, Yuanzhuo Wang, Wen Gao, Lionel
Ni, and Jian Guo. A survey on llm-as-a-judge, 2025. URL https://arxiv.org/abs/2411.
15594.

Caglar Gulcehre, Tom Le Paine, Srivatsan Srinivasan, Ksenia Konyushkova, Lotte Weerts, Abhishek
Sharma, Aditya Siddhant, Alex Ahern, Miaosen Wang, Chenjie Gu, Wolfgang Macherey, Arnaud
Doucet, Orhan Firat, and Nando de Freitas. Reinforced self-training (rest) for language modeling,
2023. URL https://arxiv.org/abs/2308.08998.

Alex Havrilla, Sharath Raparthy, Christoforus Nalmpantis, Jane Dwivedi-Yu, Maksym Zhuravinskyi,
Eric Hambro, and Roberta Raileanu. Glore: When, where, and how to improve llm reasoning via
global and local refinements, 2024. URL https://arxiv.org/abs/2402.10963.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the MATH dataset. In
Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track
(Round 2), 2021. URL https://openreview.net/forum?id=7Bywt2mQsCe.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom
Hennigan, Eric Noland, Katie Millican, George van den Driessche, Bogdan Damoc, Aurelia Guy,
Simon Osindero, Karen Simonyan, Erich Elsen, Jack W. Rae, Oriol Vinyals, and Laurent Sifre.
Training compute-optimal large language models, 2022. URL https://arxiv.org/abs/
2203.15556.

Arian Hosseini, Xingdi Yuan, Nikolay Malkin, Aaron Courville, Alessandro Sordoni, and Rishabh
Agarwal. V-STar: Training verifiers for self-taught reasoners. In First Conference on Language
Modeling, 2024. URL https://openreview.net/forum?id=stmqBSW2dV.

11

https://openreview.net/forum?id=MQXrTMonT1
https://openreview.net/forum?id=MQXrTMonT1
https://arxiv.org/abs/2503.01307
https://arxiv.org/abs/2507.21046
https://arxiv.org/abs/2507.21046
https://openreview.net/forum?id=5B2K4LRgmz
https://arxiv.org/abs/2402.07087
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2411.15594
https://arxiv.org/abs/2411.15594
https://arxiv.org/abs/2308.08998
https://arxiv.org/abs/2402.10963
https://openreview.net/forum?id=7Bywt2mQsCe
https://arxiv.org/abs/2203.15556
https://arxiv.org/abs/2203.15556
https://openreview.net/forum?id=stmqBSW2dV

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Jian Hu, Jason Klein Liu, and Wei Shen. Reinforce++: An efficient rlhf algorithm with robustness to
both prompt and reward models, 2025. URL https://arxiv.org/abs/2501.03262.

Audrey Huang, Adam Block, Dylan J Foster, Dhruv Rohatgi, Cyril Zhang, Max Simchowitz, Jor-
dan T. Ash, and Akshay Krishnamurthy. Self-improvement in language models: The sharpening
mechanism. In The Thirteenth International Conference on Learning Representations, 2025. URL
https://openreview.net/forum?id=WJaUkwci9o.

Jiaxin Huang, Shixiang Gu, Le Hou, Yuexin Wu, Xuezhi Wang, Hongkun Yu, and Jiawei Han. Large
language models can self-improve. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Proceed-
ings of the 2023 Conference on Empirical Methods in Natural Language Processing, pp. 1051–
1068, Singapore, December 2023. Association for Computational Linguistics. doi: 10.18653/v1/
2023.emnlp-main.67. URL https://aclanthology.org/2023.emnlp-main.67/.

Hyeonbin Hwang, Doyoung Kim, Seungone Kim, Seonghyeon Ye, and Minjoon Seo. Self-
explore: Enhancing mathematical reasoning in language models with fine-grained rewards. In
EMNLP (Findings), pp. 1444–1466, 2024. URL https://aclanthology.org/2024.
findings-emnlp.78.

Wouter Kool, Herke van Hoof, and Max Welling. Buy 4 reinforce samples, get a baseline for
free! In DeepRLStructPred@ICLR, 2019. URL https://api.semanticscholar.org/
CorpusID:198489118.

Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze Brahman,
Lester James V. Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, Yuling Gu, Saumya Malik, Victoria
Graf, Jena D. Hwang, Jiangjiang Yang, Ronan Le Bras, Oyvind Tafjord, Chris Wilhelm, Luca
Soldaini, Noah A. Smith, Yizhong Wang, Pradeep Dasigi, and Hannaneh Hajishirzi. Tulu 3:
Pushing frontiers in open language model post-training, 2025. URL https://arxiv.org/
abs/2411.15124.

Nayoung Lee, Ziyang Cai, Avi Schwarzschild, Kangwook Lee, and Dimitris Papailiopoulos. Self-
improving transformers overcome easy-to-hard and length generalization challenges, 2025. URL
https://arxiv.org/abs/2502.01612.

Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee, and
Min Lin. Understanding r1-zero-like training: A critical perspective, 2025. URL https:
//arxiv.org/abs/2503.20783.

Michael Luo, Sijun Tan, Justin Wong, Xiaoxiang Shi, William Tang, Manan Roongta, Colin Cai,
Jeffrey Luo, Tianjun Zhang, Erran Li, Raluca Ada Popa, and Ion Stoica. Deepscaler: Surpassing
o1-preview with a 1.5b model by scaling rl, 2025. Notion Blog.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement
with self-feedback. Advances in Neural Information Processing Systems, 36:46534–46594, 2023.

Chris Mingard, Joar Skalse, Guillermo Valle-Pérez, David Martínez-Rubio, Vladimir Mikulik, and
Ard A. Louis. Neural networks are a priori biased towards boolean functions with low entropy,
2020. URL https://arxiv.org/abs/1909.11522.

Chris Mingard, Henry Rees, Guillermo Valle-Pérez, and Ard A. Louis. Deep neural networks have an
inbuilt occam’s razor. Nature Communications, 16:220, 2025. doi: 10.1038/s41467-024-54813-x.
URL https://doi.org/10.1038/s41467-024-54813-x.

Ansong Ni, Jeevana Priya Inala, Chenglong Wang, Alex Polozov, Christopher Meek, Dragomir
Radev, and Jianfeng Gao. Learning math reasoning from self-sampled correct and partially-correct
solutions. In ICLR, 2023. URL https://openreview.net/forum?id=4D4TSJE6-K.

Owen Oertell, Wenhao Zhan, Gokul Swamy, Zhiwei Steven Wu, Kiante Brantley, Jason Lee, and
Wen Sun. Heuristics considered harmful: Rl with random rewards should not make llms reason,
2024. Preprint.

12

https://arxiv.org/abs/2501.03262
https://openreview.net/forum?id=WJaUkwci9o
https://aclanthology.org/2023.emnlp-main.67/
https://aclanthology.org/2024.findings-emnlp.78
https://aclanthology.org/2024.findings-emnlp.78
https://api.semanticscholar.org/CorpusID:198489118
https://api.semanticscholar.org/CorpusID:198489118
https://arxiv.org/abs/2411.15124
https://arxiv.org/abs/2411.15124
https://arxiv.org/abs/2502.01612
https://arxiv.org/abs/2503.20783
https://arxiv.org/abs/2503.20783
https://arxiv.org/abs/1909.11522
https://doi.org/10.1038/s41467-024-54813-x
https://openreview.net/forum?id=4D4TSJE6-K

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

OpenAI, :, Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden
Low, Alec Helyar, Aleksander Madry, Alex Beutel, Alex Carney, Alex Iftimie, Alex Karpenko,
Alex Tachard Passos, Alexander Neitz, Alexander Prokofiev, et al. Openai o1 system card, 2024.
URL https://arxiv.org/abs/2412.16720.

Giacomo De Palma, Bobak Toussi Kiani, and Seth Lloyd. Random deep neural networks are biased
towards simple functions, 2019. URL https://arxiv.org/abs/1812.10156.

Jing-Cheng Pang, Pengyuan Wang, Kaiyuan Li, Xiong-Hui Chen, Jiacheng Xu, Zongzhang Zhang,
and Yang Yu. Language model self-improvement by reinforcement learning contemplation.
In The Twelfth International Conference on Learning Representations, 2024a. URL https:
//openreview.net/forum?id=38E4yUbrgr.

Richard Yuanzhe Pang, Weizhe Yuan, Kyunghyun Cho, He He, Sainbayar Sukhbaatar, and Jason
Weston. Iterative reasoning preference optimization, 2024b. URL https://arxiv.org/
abs/2404.19733.

Rémy Portelas, Cédric Colas, Lilian Weng, Katja Hofmann, and Pierre-Yves Oudeyer. Automatic
curriculum learning for deep rl: A short survey. arXiv preprint arXiv:2003.04664, 2020.

Mihir Prabhudesai, Lili Chen, Alex Ippoliti, Katerina Fragkiadaki, Hao Liu, and Deepak Pathak.
Maximizing confidence alone improves reasoning, 2025. URL https://arxiv.org/abs/
2505.22660.

Archiki Prasad, Weizhe Yuan, Richard Yuanzhe Pang, Jing Xu, Maryam Fazel-Zarandi, Mohit Bansal,
Sainbayar Sukhbaatar, Jason Weston, and Jane Yu. Self-consistency preference optimization, 2024.
URL https://arxiv.org/abs/2411.04109.

Jack W. Rae, Sebastian Borgeaud, Trevor Cai, Katie Millican, Jordan Hoffmann, Francis Song, John
Aslanides, Sarah Henderson, Roman Ring, Susannah Young, Eliza Rutherford, Tom Hennigan,
Jacob Menick, Albin Cassirer, Richard Powell, et al. Scaling language models: Methods, analysis
& insights from training gopher, 2022. URL https://arxiv.org/abs/2112.11446.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D. Manning, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model, 2024. URL
https://arxiv.org/abs/2305.18290.

Noam Razin, Sadhika Malladi, Adithya Bhaskar, Danqi Chen, Sanjeev Arora, and Boris Hanin.
Unintentional unalignment: Likelihood displacement in direct preference optimization, 2025. URL
https://arxiv.org/abs/2410.08847.

John Schulman. Approximating kl divergence. http://joschu.net/blog/kl-approx.
html, Mar 2020. Accessed: 2025-05-20.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Amrith Setlur, Saurabh Garg, Xinyang Geng, Naman Garg, Virginia Smith, and Aviral Kumar. Rl
on incorrect synthetic data scales the efficiency of llm math reasoning by eight-fold. Advances in
Neural Information Processing Systems, 37:43000–43031, 2024.

Jaime Sevilla, Lennart Heim, Anson Ho, Tamay Besiroglu, Marius Hobbhahn, and Pablo Villalobos.
Compute trends across three eras of machine learning, 2022.

Rulin Shao, Shuyue Stella Li, Rui Xin, Scott Geng, Yiping Wang, Sewoong Oh, Simon Shaolei Du,
Nathan Lambert, Sewon Min, Ranjay Krishna, Yulia Tsvetkov, Hannaneh Hajishirzi, Pang Wei
Koh, and Luke Zettlemoyer. Spurious rewards: Rethinking training signals in rlvr, 2025. URL
https://arxiv.org/abs/2506.10947.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of
mathematical reasoning in open language models, 2024. URL https://arxiv.org/abs/
2402.03300.

13

https://arxiv.org/abs/2412.16720
https://arxiv.org/abs/1812.10156
https://openreview.net/forum?id=38E4yUbrgr
https://openreview.net/forum?id=38E4yUbrgr
https://arxiv.org/abs/2404.19733
https://arxiv.org/abs/2404.19733
https://arxiv.org/abs/2505.22660
https://arxiv.org/abs/2505.22660
https://arxiv.org/abs/2411.04109
https://arxiv.org/abs/2112.11446
https://arxiv.org/abs/2305.18290
https://arxiv.org/abs/2410.08847
http://joschu.net/blog/kl-approx.html
http://joschu.net/blog/kl-approx.html
https://arxiv.org/abs/2506.10947
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Ilia Shumailov, Zakhar Shumaylov, Yiren Zhao, Yarin Gal, Nicolas Papernot, and Ross Anderson.
The curse of recursion: Training on generated data makes models forget, 2024a. URL https:
//arxiv.org/abs/2305.17493.

Ilia Shumailov, Zakhar Shumaylov, Yiren Zhao, Nicolas Papernot, Ross J. Anderson, and Yarin Gal.
Ai models collapse when trained on recursively generated data. Nat., 631(8022):755–759, July
2024b. URL https://doi.org/10.1038/s41586-024-07566-y.

Avi Singh, John D Co-Reyes, Rishabh Agarwal, Ankesh Anand, Piyush Patil, Xavier Garcia, Peter J
Liu, James Harrison, Jaehoon Lee, Kelvin Xu, Aaron T Parisi, Abhishek Kumar, Alexander A
Alemi, Alex Rizkowsky, Azade Nova, Ben Adlam, Bernd Bohnet, Gamaleldin Fathy Elsayed, Hanie
Sedghi, Igor Mordatch, Isabelle Simpson, Izzeddin Gur, Jasper Snoek, Jeffrey Pennington, Jiri
Hron, Kathleen Kenealy, Kevin Swersky, Kshiteej Mahajan, Laura A Culp, Lechao Xiao, Maxwell
Bileschi, Noah Constant, Roman Novak, Rosanne Liu, Tris Warkentin, Yamini Bansal, Ethan Dyer,
Behnam Neyshabur, Jascha Sohl-Dickstein, and Noah Fiedel. Beyond human data: Scaling self-
training for problem-solving with language models. Transactions on Machine Learning Research,
2024. ISSN 2835-8856. URL https://openreview.net/forum?id=lNAyUngGFK.
Expert Certification.

Yuda Song, Hanlin Zhang, Carson Eisenach, Sham M. Kakade, Dean Foster, and Udaya Ghai. Mind
the gap: Examining the self-improvement capabilities of large language models. In The Thirteenth
International Conference on Learning Representations, 2025. URL https://openreview.
net/forum?id=mtJSMcF3ek.

Zafir Stojanovski, Oliver Stanley, Joe Sharratt, Richard Jones, Abdulhakeem Adefioye, Jean Kaddour,
and Andreas Köpf. Reasoning gym: Reasoning environments for reinforcement learning with
verifiable rewards, 2025. URL https://arxiv.org/abs/2505.24760.

Yu Sun, Xiaolong Wang, Zhuang Liu, John Miller, Alexei A. Efros, and Moritz Hardt. Test-time
training for out-of-distribution generalization, 2020. URL https://openreview.net/
forum?id=HyezmlBKwr.

Zhiqing Sun, Longhui Yu, Yikang Shen, Weiyang Liu, Yiming Yang, Sean Welleck, and Chuang
Gan. Easy-to-hard generalization: Scalable alignment beyond human supervision. In The Thirty-
eighth Annual Conference on Neural Information Processing Systems, 2024. URL https:
//openreview.net/forum?id=qwgfh2fTtN.

Richard S Sutton, Andrew G Barto, et al. Reinforcement learning: An introduction, volume 1. MIT
press Cambridge, 1998.

Fahim Tajwar, Anikait Singh, Archit Sharma, Rafael Rafailov, Jeff Schneider, Tengyang Xie, Stefano
Ermon, Chelsea Finn, and Aviral Kumar. Preference fine-tuning of llms should leverage suboptimal,
on-policy data, 2024. URL https://arxiv.org/abs/2404.14367.

Fahim Tajwar, Yiding Jiang, Abitha Thankaraj, Sumaita Sadia Rahman, J Zico Kolter, Jeff Schneider,
and Ruslan Salakhutdinov. Training a generally curious agent, 2025. URL https://arxiv.
org/abs/2502.17543.

Yunhao Tang and Rémi Munos. On a few pitfalls in kl divergence gradient estimation for rl, 2025.
URL https://arxiv.org/abs/2506.09477.

Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun
Xiao, Chenzhuang Du, Chonghua Liao, Chuning Tang, Congcong Wang, Dehao Zhang, Enming
Yuan, Enzhe Lu, Fengxiang Tang, Flood Sung, Guangda Wei, Guokun Lai, Haiqing Guo, et al.
Kimi k1.5: Scaling reinforcement learning with llms, 2025. URL https://arxiv.org/abs/
2501.12599.

Guillermo Valle-Pérez, Chico Q. Camargo, and Ard A. Louis. Deep learning generalizes because
the parameter-function map is biased towards simple functions, 2019. URL https://arxiv.
org/abs/1805.08522.

Dequan Wang, Evan Shelhamer, Shaoteng Liu, Bruno Olshausen, and Trevor Darrell. Tent: Fully test-
time adaptation by entropy minimization. In International Conference on Learning Representations,
2021. URL https://openreview.net/forum?id=uXl3bZLkr3c.

14

https://arxiv.org/abs/2305.17493
https://arxiv.org/abs/2305.17493
https://doi.org/10.1038/s41586-024-07566-y
https://openreview.net/forum?id=lNAyUngGFK
https://openreview.net/forum?id=mtJSMcF3ek
https://openreview.net/forum?id=mtJSMcF3ek
https://arxiv.org/abs/2505.24760
https://openreview.net/forum?id=HyezmlBKwr
https://openreview.net/forum?id=HyezmlBKwr
https://openreview.net/forum?id=qwgfh2fTtN
https://openreview.net/forum?id=qwgfh2fTtN
https://arxiv.org/abs/2404.14367
https://arxiv.org/abs/2502.17543
https://arxiv.org/abs/2502.17543
https://arxiv.org/abs/2506.09477
https://arxiv.org/abs/2501.12599
https://arxiv.org/abs/2501.12599
https://arxiv.org/abs/1805.08522
https://arxiv.org/abs/1805.08522
https://openreview.net/forum?id=uXl3bZLkr3c

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H. Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
models. In The Eleventh International Conference on Learning Representations, 2023a. URL
https://openreview.net/forum?id=1PL1NIMMrw.

Yiping Wang, Qing Yang, Zhiyuan Zeng, Liliang Ren, Lucas Liu, Baolin Peng, Hao Cheng, Xuehai
He, Kuan Wang, Jianfeng Gao, Weizhu Chen, Shuohang Wang, Simon Shaolei Du, and Yelong
Shen. Reinforcement learning for reasoning in large language models with one training example,
2025. URL https://arxiv.org/abs/2504.20571.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A. Smith, Daniel Khashabi, and
Hannaneh Hajishirzi. Self-instruct: Aligning language models with self-generated instructions. In
Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), Proceedings of the 61st Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 13484–
13508, Toronto, Canada, July 2023b. Association for Computational Linguistics. doi: 10.18653/
v1/2023.acl-long.754. URL https://aclanthology.org/2023.acl-long.754/.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, brian ichter, Fei Xia, Ed H. Chi, Quoc V
Le, and Denny Zhou. Chain of thought prompting elicits reasoning in large language models.
In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), Advances in
Neural Information Processing Systems, 2022. URL https://openreview.net/forum?
id=_VjQlMeSB_J.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8:229–256, 1992.

Haoze Wu, Cheng Wang, Wenshuo Zhao, and Junxian He. Mirage or method? how model-task
alignment induces divergent rl conclusions, 2025a. URL https://arxiv.org/abs/2508.
21188.

Tianhao Wu, Weizhe Yuan, Olga Golovneva, Jing Xu, Yuandong Tian, Jiantao Jiao, Jason E Weston,
and Sainbayar Sukhbaatar. Meta-rewarding language models: Self-improving alignment with LLM-
as-a-meta-judge, 2025b. URL https://openreview.net/forum?id=lbj0i29Z92.

Chulin Xie, Yangsibo Huang, Chiyuan Zhang, Da Yu, Xinyun Chen, Bill Yuchen Lin, Bo Li, Badih
Ghazi, and Ravi Kumar. On memorization of large language models in logical reasoning. 2024.
URL https://arxiv.org/abs/2410.23123.

An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu,
Jianhong Tu, Jingren Zhou, Junyang Lin, Keming Lu, Mingfeng Xue, Runji Lin, Tianyu Liu,
Xingzhang Ren, and Zhenru Zhang. Qwen2.5-math technical report: Toward mathematical expert
model via self-improvement, 2024. URL https://arxiv.org/abs/2409.12122.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, et al. Qwen3 technical
report, 2025. URL https://arxiv.org/abs/2505.09388.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Tiantian Fan, Gaohong
Liu, Lingjun Liu, Xin Liu, Haibin Lin, Zhiqi Lin, Bole Ma, Guangming Sheng, Yuxuan Tong, Chi
Zhang, Mofan Zhang, Wang Zhang, Hang Zhu, Jinhua Zhu, Jiaze Chen, Jiangjie Chen, Chengyi
Wang, Hongli Yu, Weinan Dai, Yuxuan Song, Xiangpeng Wei, Hao Zhou, Jingjing Liu, Wei-Ying
Ma, Ya-Qin Zhang, Lin Yan, Mu Qiao, Yonghui Wu, and Mingxuan Wang. Dapo: An open-source
llm reinforcement learning system at scale, 2025. URL https://arxiv.org/abs/2503.
14476.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Goodman. Star: Bootstrapping reasoning with
reasoning. Advances in Neural Information Processing Systems, 35:15476–15488, 2022.

Edwin Zhang, Vincent Zhu, Naomi Saphra, Anat Kleiman, Benjamin L. Edelman, Milind Tambe,
Sham M. Kakade, and eran malach. Transcendence: Generative models can outperform the experts
that train them. In The Thirty-eighth Annual Conference on Neural Information Processing Systems,
2024. URL https://openreview.net/forum?id=eJG9uDqCY9.

15

https://openreview.net/forum?id=1PL1NIMMrw
https://arxiv.org/abs/2504.20571
https://aclanthology.org/2023.acl-long.754/
https://openreview.net/forum?id=_VjQlMeSB_J
https://openreview.net/forum?id=_VjQlMeSB_J
https://arxiv.org/abs/2508.21188
https://arxiv.org/abs/2508.21188
https://openreview.net/forum?id=lbj0i29Z92
https://arxiv.org/abs/2410.23123
https://arxiv.org/abs/2409.12122
https://arxiv.org/abs/2505.09388
https://arxiv.org/abs/2503.14476
https://arxiv.org/abs/2503.14476
https://openreview.net/forum?id=eJG9uDqCY9

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Lunjun Zhang, Arian Hosseini, Hritik Bansal, Mehran Kazemi, Aviral Kumar, and Rishabh Agarwal.
Generative verifiers: Reward modeling as next-token prediction, 2025a. URL https://arxiv.
org/abs/2408.15240.

Yanzhi Zhang, Zhaoxi Zhang, Haoxiang Guan, Yilin Cheng, Yitong Duan, Chen Wang, Yue Wang,
Shuxin Zheng, and Jiyan He. No free lunch: Rethinking internal feedback for llm reasoning, 2025b.
URL https://arxiv.org/abs/2506.17219.

Andrew Zhao, Yiran Wu, Yang Yue, Tong Wu, Quentin Xu, Yang Yue, Matthieu Lin, Shenzhi Wang,
Qingyun Wu, Zilong Zheng, and Gao Huang. Absolute zero: Reinforced self-play reasoning with
zero data, 2025a. URL https://arxiv.org/abs/2505.03335.

Xuandong Zhao, Zhewei Kang, Aosong Feng, Sergey Levine, and Dawn Song. Learning to reason
without external rewards, 2025b. URL https://arxiv.org/abs/2505.19590.

Chujie Zheng, Shixuan Liu, Mingze Li, Xiong-Hui Chen, Bowen Yu, Chang Gao, Kai Dang, Yuqiong
Liu, Rui Men, An Yang, Jingren Zhou, and Junyang Lin. Group sequence policy optimization,
2025. URL https://arxiv.org/abs/2507.18071.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica.
Judging llm-as-a-judge with mt-bench and chatbot arena, 2023. URL https://arxiv.org/
abs/2306.05685.

Yuxin Zuo, Kaiyan Zhang, Shang Qu, Li Sheng, Xuekai Zhu, Biqing Qi, Youbang Sun, Ganqu
Cui, Ning Ding, and Bowen Zhou. Ttrl: Test-time reinforcement learning. arXiv preprint
arXiv:2504.16084, 2025.

16

https://arxiv.org/abs/2408.15240
https://arxiv.org/abs/2408.15240
https://arxiv.org/abs/2506.17219
https://arxiv.org/abs/2505.03335
https://arxiv.org/abs/2505.19590
https://arxiv.org/abs/2507.18071
https://arxiv.org/abs/2306.05685
https://arxiv.org/abs/2306.05685

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

A DEFINITION OF GENERATION-VERIFICATION GAP

The single-generation accuracy is defined as:

Accgen(θ) = Ex∼X ,y∼πθ(·|x)[1(y = y∗)],

where y∗ is the correct solution. A verifier function f selects one candidate from multiple generations:

f
(
x, {y(1), . . . , y(n)}

)
∈ {y(1), . . . , y(n)}.

We define verification accuracy as:

Accver(θ, n) = Ex∼X

[
1
(
f
(
x, {y(1), . . . , y(n)}

)
= y∗

)]
.

We say that a positive generation-verification gap occurs whenever Accver(θ, n) > Accgen(θ). Such
a gap indicates the verifier’s greater proficiency in recognizing correct solutions within a set of
candidates compared to the generator independently generating correct answers.

A.1 GENERATION VERIFICATION GAP THROUGH MAJORITY VOTING

0.0 0.2 0.4 0.6 0.8 1.0
Confidence Threshold

0.0

0.2

0.4

0.6

0.8

1.0

Va
lu

e

Dataset: AIME 2024

0.0 0.2 0.4 0.6 0.8 1.0
Confidence Threshold

Dataset: AMC-23

0.0 0.2 0.4 0.6 0.8 1.0
Confidence Threshold

Dataset: MATH-500 (100 Sampled)

% of Prompts > Threshold Average per prompt accuracy Majority vote accuracy

Figure 8: Three of our test datasets display evidence of generation verification gap through majority
voting. The positive gap between majority voting accuracy and per prompt accuracy means
LLMs can utilize this gap as a learning signal to improve their average accuracy. x axis refers
to the threshold cut off for self-consistency (proportion of answers that are majority voted answers).
Higher x value refers to more self-consistent LLM outputs. For example, at x = 0.4, we only keep
LLM responses where at least 40% of the (properly parsed) responses were the majority voted answer.
On y axis, average per prompt accuracy refers to the average number of correct answers out of the
(successfully parsed) responses, across 32 generations per question (computed on a per prompt basis
and then averaged over the dataset). Majority vote accuracy refers to how often the majority vote is
the correct answer for that prompt (then averaged over the dataset). % of Prompts was computed
over all 32 generations (not on the parsable answers for a fair comparison). If there is no prompt left
over a certain threshold, the line plot ends there.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

B DETAILS ON IMPLEMENTATION AND TRAINING

B.1 RL ALGORITHMS

We use two RL algorithms in this work: RLOO(Ahmadian et al., 2024; Kool et al., 2019) and
GRPO (Shao et al., 2024). Recent work (Oertell et al., 2024) has shown that heuristic policy
gradient algorithms like GRPO can produce unexpected results by increasing or decreasing reasoning
performance even under random rewards, where policy gradient should be zero in expectation, and
that RLOO does not have this problem. Since SRT is compatible with both RL algorithms, we
experiment with both and observe no noticeable difference in the resulting behavior.

In our implementation (verl), we use the following RL objective for both RLOO and GRPO:

JGRPO(θ) = Ex∼D, {yi}G
i=1∼πθold (·|x)

[
1

G

G∑
i=1

1

|yi|

|yi|∑
t=1

min
(
wi,t(θ)Âi,t,

clip(wi,t(θ), 1− ε, 1 + ε)Âi,t

)]

where wi,t(θ) is the importance ratio, defined as:

wi,t(θ) =
πθ(yi,t | x, yi,<t)

πθold(yi,t | x, yi,<t)

Since we operate fully on-policy, i.e., one RL step per one batch of generated rollouts, this is always
one in our experiments. The same advantage defined at a sequence level is applied to each token in
the sequence, so henceforth we will drop the t from the notation as well.

The main difference between GRPO and RLOO then stems from their use of different advantage
functions. RLOO objective uses the following advantage function:

1

G

G∑
i=1

[R(y(i), x)−
1

G− 1

∑
j ̸=k

R(y(j), x)]

whereas GRPO uses the following advantage function:

Âi =
r(x, yi)−mean

(
{r(x, yi)}Gi=1

)
std

(
{r(x, yi)}Gi=1

)
Here G is the number of online samples generated. Both RLOO and GRPO creates a dynamic baseline
for each sample without needing a separate value function, effectively estimating the expected return
on-the-fly during training. Not having a value networks makes the training much simpler for both
algorithms.

In our implementation, we did not add KL penalty to the loss function, rather to the re-
ward itself while running RLOO, following recent work such as Tang & Munos (2025). In
verl framework, this can be configured using algorithm.use_kl_in_reward=True and
actor_rollout_ref.actor.use_kl_loss=False. However, this does not work for
GRPO due to advantage normalization by the standard deviation, and so for GRPO we add KL
penalty to the loss function directly. To estimate KL penalty, we use the low variance KL estimator
proposed by Schulman (2020):

DKL(πθ||πref) ≈
πref(y|x)
πθ(y|x)

− 1− log

(
πref(y|x)
πθ(y|x)

)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Sampling. For all experiments, we kept the generation temperature to 1.0, top_k to -1, and
top_p to 1 for rollouts generated during RL rollouts. Decoding temperature used for validation
varies in different settings, see Appendix B.3 and D for more discussion. We cut off maximum prompt
length at 1024 and maximum response length to 3072 (note: Qwen2.5-Math-7B models support a
maximum context window of 4096).

B.2 GPU INFRASTRUCTURE

All experiments in this work were conducted using either a single node consisting of 8 NVIDIA H200
GPUs (141 GB of GPU memory per GPU) or a single node consisting of 4 NVIDIA GH200 GPUs (96
GB of GPU memory per GPU). All experiments can be replicated in single-node training, and we did
not, in fact, utilize multinode training. In total, this work consumed ∼15000 GPU hours (including
preliminary studies and failed runs). All the final results listed in this paper can be replicated within
2000 H200 GPU hours.

B.3 DETAILS ON TRAINING SETTINGS

We choose Family Relationships, Bitwise Arithmetic, and Knights & Knaves (Xie et al., 2024) tasks
from Reasoning Gym (Stojanovski et al., 2025) for our experiments. Examples for each task is shown
in Appendix K.

For the Bitwise Arithmetic task, Level refers to the difficulty parameter. The model was first
trained with level 2 data for 950 steps, reaching 97% accuracy. We then used this initialized model to
train with SRT on levels 3 and 4.

For the Family Relationships task, we trained a model to 99% accuracy on the level 4 dataset. Here,
Level corresponds to the parameters min_family_size and max_family_size, both set to 4.
We then applied SRT on level 5.

For the Knights & Knaves task, we varied only the n_people parameter as the difficulty control.
We first trained a model with difficulty level 2 to 99% accuracy, and then used that checkpoint to
further experiment with SRT, climbing from level 2 to 3, 3 to 5, 5 to 7 and 7 to 9. We only report
levels 7 and 9 in the paper since they are the highest level difficulty among our experiments.

Across all multi-level experiments, we applied SRT progressively. For example, in Bitwise Arithmetic
we trained on level 2 with ground truth supervision; then, starting from the level 2 checkpoint, we
applied SRT on level 3; finally, we repeated SRT again on level 4 using the checkpoint from level 3.
For comparing against SRT with fixed teacher, we use the same starting policy (Qwen3-4B-Base
trained with ground-truth on the easiest difficulty level on each task) and generate the same number
of rollouts per prompt using temperature 1.0 and perform majority voting among these rollouts to
generate our pseudo-labels.

Default training hyperparameters for Reasoning Gym tasks. For all Reasoning Gym experi-
ments, we used the Qwen3-4B-Base model, with GRPO as the main algorithm. The learning rate
was set to 1e-6 and the KL penalty to 0.0001. For all experiments, we used 32 rollouts per prompt
for training and 16 rollouts for evaluation.

Default training hyperparameters for Math Datasets.

• Qwen2.5-Math-7B: Learning rate 10−6, KL penalty coefficient 0.001, decoding tempera-
ture for training and evaluation rollouts 1.0, top-p 1.0, and no top-k sampling.

• Qwen3-14B-Base: Same default hyperparameter setting as Qwen2.5-Math-7B.
• Llama-3.1-8B-Instruct: Learning rate 10−7, KL penalty coefficient 0.001, decoding tem-

perature for training is 1.0 and evaluation is 0.0, top-p 1.0, and no top-k sampling. We
subsample the Big-Math-RL-Verified dataset to only keep prompts that has average Llama-
3.1-8B-Instruct pass rate between 0.3 and 0.7, since the model is unable to improve during
training otherwise.

• Deepseek-Math-7B-Instruct: Learning rate 10−7, KL penalty coefficient 0.001, decoding
temperature for training is 1.0 and evaluation is 0.7 (following official protocol), top-p 1.0,
and no top-k sampling.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

C ADDITIONAL EXPERIMENTAL RESULTS

C.1 QWEN2.5-MATH-7B

Here we compare the performance of training Qwen2.5-Math-7B with SRT and RL with ground
truth on each individual test set for the sake of completeness. Figures 9, 10, and 11 show the detailed
results when we train on DAPO, MATH-12K, and AIME (1983-2023) respectively. Additionally,
when training on MATH-12K and DAPO, we also evaluate the intermediate checkpoints on the
heldout set MATH-500, which is reported in Figure 10. Since MATH-500 contains 500 examples,
calculating average@32 accuracy becomes expensive, and hence we could not use it as a test set
for all our training setups.

0 200 400 600 800 1000
RL Steps

0.0

0.1

0.2

0.3

Av
er

ag
e@

32
 A

cc
ur

ac
y AIME 2024

0 200 400 600 800 1000
RL Steps

0.0

0.1

0.2 AIME 2025

0 200 400 600 800 1000
RL Steps

0.0

0.2

0.4

0.6

0.8 AMC

0 200 400 600 800 1000
RL Steps

0.0
0.2
0.4
0.6
0.8
1.0 MATH-500

SRT Base Model RL on Ground Truth

Figure 9: (Individual test set performance during training on DAPO) We record the average@32 accuracy
during training Qwen2.5-Math-7B on DAPO, on three heldout test sets: AIME 2024, AIME 2025 and AMC. In
all three cases, SRT performance collapses, while training with ground truth keeps improving steadily.

0 400 800 1200
RL Steps

0.0

0.1

0.2

0.3

Av
er

ag
e@

32
 A

cc
ur

ac
y AIME 2024

0 400 800 1200
RL Steps

0.0

0.1

0.2 AIME 2025

0 400 800 1200
RL Steps

0.3

0.4

0.5

0.6
AMC

0 400 800 1200
RL Steps

0.4

0.6

0.8
MATH-500

SRT Base Model RL on Ground Truth

Figure 10: (Individual test set performance during training on MATH-12K) We record the average@32
accuracy during training Qwen2.5-Math-7B on MATH-12K, on three heldout test sets: AIME 2024, AIME 2025
and AMC. We also evaluate intermediate checkpoints on MATH-500 since we are training on MATH-12K (we
could not do this for other training datasets due to a lack of computational resources). In all 4 heldout test sets,
SRT results in similar performance gain as one would obtain from training with ground truth labels. However,
performance collapses after 1200 RL steps, similar to our other observations.

0 100 200 300 400 500
RL Steps

0.1

0.2

0.3

Av
er

ag
e@

32
 A

cc
ur

ac
y AIME 2024

0 100 200 300 400 500
RL Steps

0.02

0.04

0.06

0.08

0.10 AIME 2025

0 100 200 300 400 500
RL Steps

0.3

0.4

0.5

0.6

0.7 AMC

SRT Base Model RL on Ground Truth

Figure 11: (Individual test set performance during training on AIME (1983-2023)) We record the aver-
age@32 accuracy during training Qwen2.5-Math-7B on AIME (1983-2023), on three heldout test sets: AIME
2024, AIME 2025 and AMC. SRT performs similarly or better compared to training with ground truth labels
over 10 epochs of training.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

C.2 QWEN3-14B-BASE

In addition to Qwen2.5-Math-7B, we apply our algorithm on another LLM — namely Qwen3-
14B-Base (Yang et al., 2025). We choose the base model since it has not gone through additional
post-training on reasoning tasks, unlike the Qwen3-14B model. Additionally, this is a significantly
larger model with a different pre-training, making it suitable for testing our algorithm’s effectiveness.

0 200 400 600 800 1000
RL Steps

0.0

0.1

0.2

0.3

Av
er

ag
e@

32
 A

cc
ur

ac
y AIME 2024

0 200 400 600 800 1000
RL Steps

0.0

0.1

0.2

0.3 AIME 2025

0 200 400 600 800 1000
RL Steps

0.0
0.2
0.4
0.6
0.8
1.0 AMC

0 200 400 600 800 1000
RL Steps

0.0
0.2
0.4
0.6
0.8
1.0 MATH-500

SRT Base Model RL on Ground Truth

Figure 12: (Individual test set performance during Qwen3-14B-Base on DAPO) We record the average@32
accuracy during training a Qwen3-14B-Base model on DAPO, on four heldout test sets: AIME 2024, AIME
2025, AMC, and MATH-500.

0 200 400 600
RL Steps

0.0

0.1

0.2

0.3

Av
er

ag
e@

32
 A

cc
ur

ac
y AIME 2024

0 200 400 600
RL Steps

0.0

0.1

0.2

0.3 AIME 2025

0 200 400 600
RL Steps

0.3
0.4
0.5
0.6
0.7
0.8 AMC

0 200 400 600
RL Steps

0.5

0.7

0.9
1.0 MATH-500

SRT Base Model RL on Ground Truth

Figure 13: (Individual test set performance during training Qwen3-14B-Base on MATH-12K) We record
the average@32 accuracy during training a Qwen3-14B-Base model on MATH-12K, on four heldout test sets:
AIME 2024, AIME 2025, AMC, and MATH-500.

0 100 200 300 400 500
RL Steps

0.1

0.2

0.3

Av
er

ag
e@

32
 A

cc
ur

ac
y AIME 2024

0 100 200 300 400 500
RL Steps

0.0

0.1 AIME 2025

0 100 200 300 400 500
RL Steps

0.3
0.4
0.5
0.6
0.7
0.8 AMC

0 100 200 300 400 500
RL Steps

0.4

0.6

0.8

1.0 MATH-500

SRT Base Model RL on Ground Truth

Figure 14: (Individual test set performance during training Qwen3-14B-Base Model on AIME (1983-2023)
We record the average@32 accuracy during training a Qwen3-14B-Base model on AIME (1983-2023), on four
heldout test sets: AIME 2024, AIME 2025, AMC, and MATH-500.

Figures 12, 13, and 14 shows our results with DAPO, MATH-12K, and AIME (1983-2023) used as
training dataset respectively. Our experiments with Qwen3-14B-Base mostly follows similar patterns
as Qwen2.5-Math-7B: SRT maintains stable performance on MATH-12K, mixed results on AIME
(1983-2023), and performance collapse on DAPO.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

D EFFECT OF DECODING TEMPERATURE (QWEN2.5-MATH-7B)

0 100 200 300 400 500 600 700
Global Step

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

Av
er

ag
e@

1
Ac

cu
ra

cy
SRT vs Regular RL

(Train: MATH) Test: MATH

RL w. ground truth SRT
t=0.0 (REGULAR_RLOO)
t=0.0 (SRT)
t=0.3 (REGULAR_RLOO)
t=0.3 (SRT)

t=0.7 (REGULAR_RLOO)
t=0.7 (SRT)
t=1.0 (REGULAR_RLOO)
t=1.0 (SRT)

(a) Math-500 evaluation accuracy during training,
when decoded under various temperature (Qwen2.5-
Math-7B).

0.0 0.3 0.7 1.0
Temperature

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Ac
cu

ra
cy

@
1

di
ffe

re
nc

e

Absolute Performance Gain per Temperature
RL w Ground Truth
SRT

(b) Absolute performance improvement after one
epoch of training when decoded under various temper-
atures (Qwen2.5-Math-7B).

Figure 15: Our method (SRT) performs consistently regardless of decoding temperature for validation
(Figure 15a). All experiments are run using Qwen2.5-Math-7B as the base model, trained on MATH-
12K and tested on MATH-500. Notice that even though the performance is low initially at high
temperature, at the later stages, they plateau around the same point. Figure 15b shows the absolute
gain when decoded under different temperatures. Note that decoding with higher temperature might
give the impression of a larger gain compared to low-temperature decoding. However, the evaluation
curves during training resulting from SRT and RL with ground-truth look almost identical regardless
of decoding temperature, which is one of our main observations in this work.

E ADDITIONAL SELF-TRAINING METRICS

0 50 100 150 200
RL Steps

0.75

0.80

0.85

0.90

0.95

1.00

Ac
cu

ra
cy

Family Relationships (Level 5)

0 50 100 150 200
RL Steps

0.80

0.85

0.90

0.95

Bitwise Arithmetic (Level 3)

0 50 100 150 200 250
RL Steps

0.50

0.60

0.70

0.80

0.90

1.00
Knights & Knaves (Level 7)

Fraction Correctly Parsed Fraction Correct Among Parsed

Figure 16: (Tracking format following success rate during SRT-training on Reasoning Gym) In order to
track whether SRT is teaching reasoning strategies beyond just formatting the final answer correctly, we track
two additional metrics throughout SRT-training: fraction of generations among all generations where the final
answer is parseable and fraction of generations among those that are parseable where the final answer is correct.
We see that due to training with RLVR on an easier level of difficulty, the starting policy can already format most
generations correctly, and in the case of Knights & Knaves, fraction of correct responses keeps increasing even
after fraction of properly formatted (and thus parseable) responses have saturated. This shows that the model
learns reasoning strategies beyond formatting rules.

We are interested to know if SRT teaches actual reasoning strategies beyond just proper formatting
rules necessary for extracting the final answer. To do so, we track two additional metrics throughout
SRT-training: fraction of generations among all generations where the final answer is parseable and
fraction of generations among those that are parseable where the final answer is correct. Figure 16
summarizes our findings on Reasoning Gym: We see that due to training with RLVR on an easier
level of difficulty, the starting policy can already format most generations correctly, and in the case
of Knights & Knaves, fraction of correct responses keeps increasing even after fraction of properly
formatted (and thus parseable) responses have saturated.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

F MORE DETAILS ON BASELINES

Baseline Implementation. For all three methods (SFT, DPO (Rafailov et al., 2024), ScPO (Prasad
et al., 2024)), we sweep over three learning rates (10−5, 10−6 and 10−7) and pick the checkpoint
with the highest validation score. The best checkpoint with highest validation in the SFT stage has
been used to initialize the DPO/ScPO training. We also train DPO with the above mentioned learning
rates and picked the best score. For DPO and ScPO (Prasad et al., 2024), we used β = 0.1, which we
also found through sweep over (0.1, 0.3 and 0.5). Moreover, we add a negative log-likelihood loss
with weight 1.0 to the DPO and ScPO losses to stabilize them, similar to RPO (Pang et al., 2024b).
We do not train for more than 1 epoch to prevent overfitting/unintentional unalignment (Tajwar et al.,
2024; Razin et al., 2025) and fair comparison with SRT.

Train Dataset Method AMC/AIME MATH500

MATH

SFT 0.18 0.75
ScPO 0.20 0.72
DPO 0.23 0.74
SRT (Ours) 0.32 0.80

DAPO

SFT 0.18 0.75
ScPO 0.20 0.72
DPO 0.21 0.76
SRT (Ours) 0.31 0.75

Base Model Accuracy 0.15 0.42
Majority@32 Acc 0.20 0.79

Table 1: Comparison of different methods trained on either the MATH or DAPO dataset. Performance
is evaluated on AMC/AIME24, 25 (average accuracy@32) and MATH500 (average accuracy@1).
Notice that majority@32 accuracy scores are not directly comparable with the other accuracy metrics
listed in the table.

Dataset Curation For DPO and ScPO we labeled the most consistent response as the positive
example and the least consistent response as the negative example for each question. Moreover, we
only kept the instances where w(x), the variance based weighing parameter (Prasad et al., 2024), was
greater than 2.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

G DETAILED EXPERIMENT RESULTS ON DIFFERENT TRAINING SETTINGS

G.1 GRPO VS RLOO

0 200 400 600 800 1000
RL Steps

0.0

0.1

0.2

0.3

Pa
ss

@
1

Ac
cu

ra
cy

AIME 2024

0 200 400 600 800 1000
RL Steps

0.00

0.05

0.10

0.15

0.20 AIME 2025

0 200 400 600 800 1000
RL Steps

0.0

0.2

0.4

0.6

0.8 AMC

0 200 400 600 800 1000
RL Steps

0.0
0.2
0.4
0.6
0.8
1.0 MATH-500

SRT (GRPO)
Base Model

RL on Ground Truth (GRPO)
SRT (RLOO)

RL on Ground Truth (RLOO)

Figure 17: (GRPO vs RLOO comparison) We compare the behavior of SRT under two different RL
optimization algorithm: GRPO vs RLOO. All experiments use a Qwen2.5-Math-7B model trained on DAPO,
with the other hyperparameters being the default ones described in Appendix B.3. While SRT with GRPO seems
to achieve higher performance than that of SRT employing RLOO, ultimately prolonged training using both
algorithms lead to reward hacking and model collapse on all test datasets.

Figure 17 shows our experiment comparing how SRT behaves with different RL algorithms. In partic-
ular, we test two algorithms: GRPO and RLOO. While GRPO seems to achieve higher performance,
both GRPO and RLOO training with SRT-reward leads to model collapse at similar number of steps
— showing that the choice of the RL algo does not influence model collapse.

G.2 DIFFERENT KL PENALTY COEFFICIENTS

0 200 400 600 800 1000
RL Steps

0.0

0.1

0.2

0.3

Pa
ss

@
1

Ac
cu

ra
cy

AIME 2024

0 200 400 600 800 1000
RL Steps

0.00

0.05

0.10

0.15 AIME 2025

0 200 400 600 800 1000
RL Steps

0.0

0.2

0.4

0.6

0.8 AMC

0.0001
Base Model

0.0003
0.001

0.003
0.01

Figure 18: (SRT with different KL penalty coefficients) We compare the behavior of SRT with different KL
penalty coefficients and report performance on all test datasets. All experiments here use a Qwen2.5-Math-7B
model trained with RLOO on the DAPO dataset, with the other hyperparameters being the default ones described
in Appendix B.3. Stronger KL penalty does not prevent or delay model collapse.

The most straightforward way of preventing reward hacking is to add a strong KL penalty to the
training objective. In Figure 18, we explore this idea: to our surprise, we don’t find a higher KL
penalty coefficient to delay or prevent model collapse. We attribute this to the reward hacking training
signal being too strong to be overcome by the KL regularization.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

G.3 SWEEP OVER TRAINING CONFIG

0 200 400 600 800 1000
RL Steps

0.00

0.05

0.10

0.15
AI

M
E

20
25

 P
as

s@
1 Choice of RL Algorithm

SRT (GRPO)
SRT (RLOO)

0 200 400 600 8001000
RL Steps

0.00

0.05

0.10

0.15 KL Coefficient
0.0001
0.0003
0.001
0.003

0 1000 2000 3000
RL Steps

0.00

0.05

0.10

0.15Num generations per prompt
n=16
n=32
n=4
n=8

0 500 1000 1500
RL Steps

0.00

0.05

0.10

0.15 Learning Rate

lr=1e-6
lr=3e-7

Figure 19: (Sweep over training configurations) We vary the training settings for SRT from the default ones
described in Appendix B.3 and record the observations. All experiments are run using Qwen2.5-Math-7B on
DAPO. Evaluations are done using AIME 2025, but other datasets show similar behavior. In summary, choice of
RL algorithm between GRPO and RLOO, and different KL coefficients do not affect model collapse significantly.
Lowering learning rate slows down model collapse as expected. Finally, reducing number of generations injects
noise into the majority vote, surprisingly resulting in a slow down of model collapse.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

H TEST-TIME SELF-IMPROVEMENT

H.1 SRT CAN BE USED FOR TEST-TIME TRAINING

0 200 400 600
RLOO Steps

0.75

0.80

0.85

0.90

M
aj

or
ity

@
32

 A
cc

ur
ac

y

Train & Test Dataset: MATH-500

0 200 400 600
RLOO Steps

0.60

0.65

0.70

0.75

0.80

M
aj

or
ity

@
32

 A
cc

ur
ac

y

Train & Test Dataset: AMC

0 200 400 600
RLOO Steps

0.36

0.38

0.40

0.42

M
aj

or
ity

@
32

 A
cc

ur
ac

y

Train & Test Dataset: AIME 2024

0 200 400 600
RLOO Steps

0.15

0.20

0.25

M
aj

or
ity

@
32

 A
cc

ur
ac

y

Train & Test Dataset: AIME 2025

SRT Qwen2.5-Math-7B (Base Model)

Figure 20: (Test-Time Self-Training Performance) Given the test dataset Dtest, one can perform SRT on Dtest
before making predictions. Our results show that this improves the majority voting performance on Dtest without
access to ground truth labels. Notice that the y axis is showing majority@32 accuracy instead of average@32
accuracy, for a fairer comparison with the baseline.

An appealing application of self-training is improving model accuracy via test-time training (Sun
et al., 2020; Wang et al., 2021), a direction also explored by the concurrent work of Zuo et al. (2025).
Test-time training refers to the procedure of further adapting or fine-tuning a pre-trained model on the
actual test set itself, typically without access to labels or ground truth annotations. Applying SRT as
a test-time training technique is remarkably straightforward: the unlabeled test set is treated precisely
as if it were a training dataset, and SRT is directly applied.

We compare the test-time performance of majority voting after SRT test-time training as well as
without any test-time training. Empirically, we observe (Fig 20) that test-time training via SRT
provides relatively limited, yet noticeable, performance gains when measured under the maj@32
metric, compared to the popular majority voting baseline applied directly to outputs generated by the
base model.

H.2 WHY DOESN’T THE PERFORMANCE COLLAPSE DURING TEST-TIME-TRAINING?

0 1000 2000 3000
RLOO Steps

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e@

32
 A

cc
ur

ac
y Accuracy During Training

0 1000 2000 3000
RLOO Steps

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

KL
 P

en
al

ty

KL Penalty During Training

0 1000 2000 3000
RLOO Steps

0.0

0.2

0.4

0.6

0.8

1.0

(P
se

ud
o-

)R
ew

ar
d

(Pseudo-)Reward During Training

0 1000 2000 3000
RLOO Steps

0.0
0.2
0.4
0.6
0.8
1.0
1.2

M
od

el
 E

nt
ro

py

Model Entropy During Training

SRT RL on Ground Truth

Figure 21: (Test-Time Self-Training Dynamics) We apply test-time training on AIME 2024 and observe no
performance collapse. However, SRT’s performance quickly saturates (leftmost plot), and the pseudo-reward
value (second plot) also approaches saturation.

Interestingly, upon completion of test-time training, a visual inspection of model’s outputs reveals that
the model’s predictions still degenerate to a single response for nearly every test prompt—precisely
the behavior identified as optimal solution to the SRT objective; however, the test-time accuracy
remains high.

We conjecture that test-time self-training is inherently more stable due to crucial differences in
dataset size. For example, consider the AIME24 test dataset, which contains only 30 samples for
self-improvement. With such a limited sample size, the model quickly converges to a stable majority
vote answer on these examples by reinforcing the particular chain-of-thought reasoning that leads to
such solutions. After reaching this convergence, SRT ceases to receive meaningful gradient signals
for further parameter updates, naturally stabilizing test-time performance (see Figure 21 for test-time
training dynamics).

In contrast, during regular training on large-scale datasets, the iterative supply of many fresh samples
continually pushes the model to optimize heavily for consistency. In such conditions, the model

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

is incentivized to adopt an overly simplistic generalization strategy (producing same \boxed{}
answer)—eventually collapsing by producing a uniform, prompt-independent prediction.

I MORE ON MODEL COLLAPSE RESULTING FROM SELF-TRAINING

As discussed before, the optimization objective in SRT can lead to significant initial improvements
followed by eventual model collapse. Here, we explore complementary strategies to address model
collapse and further enhance the performance achievable via self-training:

(1) An early stopping strategy leveraging a small labeled validation dataset to detect and prevent
model collapse.

(2) An algorithmic strategy that delays model collapse by using pseudo-labels generated from a
stable base model rather than from the continuously updated model.

(3) A data-driven curriculum-based strategy to enhance model performance beyond simple
early stopping.

I.1 EARLY STOPPING

0 200 400 600 800 1000
RLOO Steps

0.0

0.2

0.4

0.6

0.8

Av
er

ag
e@

32
 A

cc
ur

ac
y

Performance on Different Heldout Datasets

DAPO (1% Sampled)
AIME 2024

AIME 2025
AMC

Peak perf on heldout DAPO subset

Figure 22: (Early Stopping is Effective) The peak performance occur at nearly the same point for all heldout
sets, so using any would be effective for early stopping.

In our algorithm, even a small labeled validation dataset can effectively identify the peak performance
point during self-training, thereby mitigating model collapse. Figure 22 shows the progression of
model performance, measured throughout training on the DAPO dataset and evaluated across several
test sets. Crucially, we find that the peak performance consistently occurs around the same training
step across different held-out datasets. The vertical line in Figure 22 marks early stopping using only
1% of DAPO as validation, with performance on other datasets remaining near-optimal.

I.2 SELF-TRAINING WITH OFFLINE-GENERATED LABELS

The tendency toward model collapse arises because SRT prioritizes consistency over correctness,
increasingly rewarding model agreement even if incorrect. A straightforward yet effective approach
that delays (but not completely prevent) the model collapse is to get the pseudo-labels from a stable,
previously fixed checkpoint, rather than leveraging labels from the evolving policy (but with the
downside that the generated labels will not benefit from the improvement in majority voting as training
progressed, observed in Figure 2). Here we generate pseudo-labels via majority voting rollouts from
the Qwen2.5-Math-7B base model, store these offline-generated labels, and subsequently perform
RL training against them. Figure 23 demonstrates that training with these offline-generated labels
significantly stabilizes training while achieving performance comparable to SRT. Importantly, this
indicates that the dynamic updating of pseudo-labels during training (online labeling) may not always
confer substantial benefits, and instead can contribute to training instability. However, we noticed
training collapse even with offline labeled datasets when trained for longer than one epoch for
the MATH-12k dataset.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

0 200 400 600 800 1000 1200
RLOO Steps

0.1

0.2

0.3

0.4

Av
er

ag
e

Ac
cu

ra
cy

@
32

MATH-12K

0 500 1000
RLOO Steps

0.0

0.1

0.2

0.3

0.4

Av
er

ag
e

Ac
cu

ra
cy

@
32

DAPO

SRT (Labels by Current Policy at Each Step)
Llama-3.1-8B-Instruct (Base Model)

SRT (Labels by Base Model) RL on Ground Truth

Figure 23: (Self-Training with Offline-Generated Labels) Performance comparison between SRT and
a baseline variant, where pseudo-labels are precomputed from a fixed base model checkpoint. The offline-
generated labels maintain training stability while achieving comparable performance to SRT, highlighting a
limitation of the online labeling strategy. Note that training starts to collapse for MATH-12k dataset 1000 steps
(which is roughtly 1.5 epoch).

I.3 SELF-TRAINING WITH CURRICULUM LEARNING

0 200 400 600 800 1000
RL Steps

0.0

0.1

0.2

0.3

0.4

Av
er

ag
e

Ac
cu

ra
cy

@
32

Curriculum: Majority Vote

0 200 400 600 800 1000
RL Steps

0.0

0.1

0.2

0.3

0.4 Curriculum: Pass Rate

SRT (Full Dataset)
Base Model

RL on Ground Truth (Full Dataset)
SRT (Easy Subset)

RL on Ground Truth (Easy Subset)

Figure 24: (Curriculum-Based Self-Training) Performance of SRT on curated subsets containing the easiest
1/3 of prompts from the DAPO dataset, selected based either on model pass rate or frequency of the majority vote.
Training on these easier subsets prevents reward hacking even after extensive training (3 epochs), demonstrating
the effectiveness of curriculum learning strategies in sustaining continual model improvement.

Our third approach, curriculum learning, is motivated by the observation that the model experiences
earlier collapse when training on the difficult DAPO dataset compared to the simpler MATH-12K
dataset. The intuition is that, on a more challenging dataset, the model finds it easier to abandon its
pretrained knowledge in favor of optimizing self-consistency rather than genuinely learning to solve
the underlying task.

We leverage this hypothesis to implement a curriculum learning strategy (Bengio et al., 2009;
Andrychowicz et al., 2017; Portelas et al., 2020; Florensa et al., 2017; Song et al., 2025; Lee et al.,
2025; Tajwar et al., 2025) by identifying the ‘easiest’ subset of the DAPO dataset. To be precise, we
retain 1/3-rd of the easiest DAPO prompts selected according to two distinct metrics:

(1) Pass rate of the base model, which utilizes ground-truth labels.

(2) Frequency of the majority vote, which does not require ground-truth labels.

Figure 24 shows that training on these easier subsets significantly delays the onset of reward hacking,
allowing for continuous improvement even across multiple epochs. Remarkably, performance on
these curriculum subsets reaches levels comparable to standard RL training with ground-truth labels
on the entire DAPO dataset. More importantly, we did not observe training collapse even after
3 epochs of training on 1/3rd of "easy" DAPO dataset. These promising results suggest that
curriculum strategies may further extend the benefits of SRT, which we leave as a future research
direction.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

0 200 400 600 800 1000
RLOO Steps

0.0

0.1

0.2

0.3

0.4

Av
er

ag
e@

32
 A

cc
ur

ac
y Accuracy During Training

0 200 400 600 800 1000
RLOO Steps

0.0

0.5

1.0

1.5

2.0

Av
er

ag
e

KL
 P

en
al

ty

KL Penalty During Training

0 200 400 600 800 1000
RLOO Steps

0.0

0.2

0.4

0.6

0.8

1.0

(P
se

ud
o-

)R
ew

ar
d

(Pseudo-)Reward During Training

0 200 400 600 800 1000
RLOO Steps

0
1
2
3
4
5

M
od

el
 E

nt
ro

py

Model Entropy During Training

SRT RL on Ground Truth SRT (Easy Subset) Model collapse

Figure 25: (Training Dynamics of SRT on the Easy Subset of DAPO, using Qwen2.5-Math-7B) We show
the training dynamics of SRT on the easiest 1/3-rd of the DAPO dataset, chosen by ground truth pass rate of the
base model. Compared to SRT on the entire DAPO dataset, SRT on the easier subset does not show any signs of
reward hacking, even after taking 3 full passes over the training set.

I.4 TRAINING DYNAMICS OF SRT (QWEN2.5-MATH-7B) ON THE EASY DAPO SUBSET

Figure 7 showed the common signs of reward hacking during SRT-training: namely, sudden drop
in accuracy on a held-out dataset, sudden increase in KL penalty, etc. However, we found a simple
yet effective way of mitigating reward hacking — simply train on the easiest subset of the training
data seems to retain the performance improvement obtained by training on the entire dataset, while
preventing reward hacking within the same compute budget. Here we attempt to analyze this
phenomenon further, from the lense of the same metrics we recorded in Figure 7.

Figure 25 shows our results on Qwen2.5-Math-7B: SRT-training on the easiest subset does not show
the same behavior as training on the full dataset: accuracy on the heldout set does not drop, and
KL penalty, while being slightly higher than that of training with ground truth, is still significantly
lower than SRT-training on the full dataset. We also see that model entropy does not explode, so
the model keeps outputting reasonable responses instead of the degenerate ones resulting from full
dataset training. The most intriguing observation is that regarding pseudo-reward (Figure 25, second
from left): it very quickly gets very close to 1 and stabilizes around 0.9. This tends to suggest the
model gets very little learning signal as the mean of the pseudo reward is already approximately 1,
which is probably the reason it does not learn to reward hack within the same compute budget. We
leave investigating this further for future work.

I.5 TRAINING QWEN3-14B-BASE ON THE EASY DAPO SUBSET

0 200 400 600 800 1000
RL Steps

0.0

0.1

0.2

0.3

0.4

Av
er

ag
e

Ac
cu

ra
cy

@
32

Curriculum: Majority Vote

0 200 400 600 800 1000
RL Steps

0.0

0.1

0.2

0.3

0.4
Curriculum: Pass Rate

SRT (Full Dataset)
Base Model

RL on Ground Truth (Full Dataset)
SRT (Easy Subset)

RL on Ground Truth (Easy Subset)

Figure 26: (Qwen3-14B-Base Trained on the Easy DAPO Subset) We take the same easy subsets of DAPO
used in Figure 25 and train a Qwen3-14B-Base model with SRT on it. We see the same behavior as Qwen2.5-
Math-7B (Figure 24), that SRT on the easy subset does not exhibit performance collapse within the same
compute budget.

One of our most interesting observations is that simply using the easiest 1/3-rd of the DAPO dataset
eliminates the performance collapse within our training budget (it can still happen if one trains more,
though we do not observe it). We want to test whether this is still true for a different base model. To
do so, we take the same easiest subset used in Figure 25 (so the subset is determined using either
the ground truth pass rate or the frequency of the majority answer of a Qwen2.5-Math-7B model)
and train a Qwen3-14B-Base model with SRT on this subset. Figure 26 shows the result of our

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

experiments: similar to Qwen2.5-Math-7B model, the Qwen3-14B-Base model also does not exhibit
performance collapse within the same training budget.

I.6 GENERATING EASY DAPO SUBSET USING QWEN2.5-MATH-1.5B

0 200 400 600 800 1000
RL Steps

0.0

0.1

0.2

0.3
Av

er
ag

e
Ac

cu
ra

cy
@

32
Curriculum: Majority Vote

0 200 400 600 800 1000
RL Steps

0.0

0.1

0.2

0.3 Curriculum: Pass Rate

SRT (Full Dataset)
Base Model

RL on Ground Truth (Full Dataset)
SRT (Easy Subset)

RL on Ground Truth (Easy Subset)

Figure 27: (Generating Easy DAPO Subset Using Qwen2.5-Math-1.5B) To see if the curriculum generation
process is reproducible, we generate the easy 1/3-rd subset (by both majority voting frequency and pass rate)
using a Qwen2.5-Math-1.5B model. This is in contrast with Figure 24 and Figure 26, where we used a Qwen2.5-
Math-7B model for the easy subset generation. Furtheremore, we train the Qwen2.5-Math-1.5B on the easy
subset as before, and make similar observations: training with SRT on a easy subset, even for 3 epochs, does not
lead to performance collapse.

Next, we want to test if the easy subset generation process of our curriculum algorithm itself is
reproducible using different base models. To do so, we generate the easy 1/3-rd subset using a
Qwen2.5-Math-1.5B model by both majority voting frequency and pass rate. This is in contrast with
our earlier sections, especially Figure 24 and Figure 26, where we used a Qwen2.5-Math-7B model
for the subset generation. We also train the Qwen2.5-Math-1.5B model on the resulting easy subsets.
Figure 27 shows our results — we see the same trend as our earlier result, i.e., training on the easy
subsets, even for 3 epochs, does not lead to any performance collapse. Moreover, surprisingly, up to
our training budget, SRT on the easy subset matches the performance of RL training with ground
truth labels.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

J DETAILED EXPERIMENT RESULTS USING NON-QWEN MODELS

To validate the efficacy of SRT on LLMs with different pre-training/post-training routine, we run
additional experiments on two more models: Deepseek-Math-7B-Instruct (Shao et al., 2024) and
Llama-3.1-8B-Instruct (Grattafiori et al., 2024). Our results are described below.

J.1 DEEPSEEK-MATH-7B-INSTRUCT

We train Deepseek-Math-7B-Instruct on the MATH-12K dataset, and test on AIME 24, AIME 2025,
AMC and MATH-500. For training, we use the same hyperparameters use used to train Qwen2.5-
Math-7B-Instruct due to lack of compute for running a sweep over possible hyperparameters. We
note that we did not find the recommended temperature or other sampling parameters for the Instruct
model in (Shao et al., 2024), but their base models were evaluated with temperature 0.7, so we choose
temperature 0.7, top-p 1.0 and no top-k sampling for our evaluations. Figure 28 shows our results:
we see similar trends as our earlier experiments, where SRT initially matches performance gain from
RL with ground truth, but then leads to performance collapse after prolonged training.

0 500 1000 1500 2000
RL Steps

0.00

0.01

0.02

0.03

Av
er

ag
e@

32
 A

cc
ur

ac
y AIME 2024

0 500 1000 1500 2000
RL Steps

0.00

0.01

0.02 AIME 2025

0 500 1000 1500 2000
RL Steps

0.0

0.1

0.2

0.3 AMC

0 500 1000 1500 2000
RL Steps

0.0

0.2

0.4

0.6 MATH-500

SRT Base Model RL on Ground Truth

Figure 28: (Training Deepseek-Math-7B-Instruct on MATH-12K using SRT) We see similar trends for
SRT-training on Deepseek-Math-7B-Instruct as we saw on our experiments with Qwen models: SRT initially
matches performance gain obtained with RL training with ground truth, but faces performance collapse after
prolonged training.

J.2 LLAMA-3.1-8B-INSTRUCT

0 500 1000 1500 2000
RL Steps

0.04

0.08

0.12

Pa
ss

@
1

Ac
cu

ra
cy

AIME 2024

0 500 1000 1500 2000
RL Steps

0.00

0.01

0.02

0.03

0.04
AIME 2025

0 500 1000 1500 2000
RL Steps

0.2

0.3

0.4 AMC

0 500 1000 1500 2000
RL Steps

0.50

0.55

0.60 MATH-500

SRT Base Model RL on Ground Truth

Figure 29: (Training Llama-3.1-8B-Instruct on Big-Math-RL-Verified with learning rate 10−7 Llama-
3.1-8B-Instruct, when trained on a filter subset of the Big-Math dataset, shows significant gains on MATH-500
from both SRT and RL with ground truth. In fact, up to our training budget of 2K steps, both seem to improve
performance at the same rate, from 52.6% to around 60%.

0 500 1000 1500 2000
RL Steps

0.00

0.04

0.08

0.12

Pa
ss

@
1

Ac
cu

ra
cy

AIME 2024

0 500 1000 1500 2000
RL Steps

0.00

0.01

0.02

0.03

0.04 AIME 2025

0 500 1000 1500 2000
RL Steps

0.0

0.1

0.2

0.3

0.4 AMC

0 500 1000 1500 2000
RL Steps

0.0

0.2

0.4

0.6 MATH-500

SRT Base Model RL on Ground Truth

Figure 30: (Training Llama-3.1-8B-Instruct on Big-Math-RL-Verified with learning rate 3× 10−7 Llama-
3.1-8B-Instruct, when trained on a filter subset of the Big-Math dataset with a higher learning rate (3× 10−7

instead of 10−7 in Figure 29) demonstrates model collapse within the same training budget.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Llama-3.1-8B-Instruct showed no gains while being trained on DAPO or MATH-12K. This can
be due to insufficient hyperparameter tuning or the model’s starting performance on these datasets
not suitable for learning. So we chose the Big-Math dataset (Albalak et al., 2025), a dataset with
over 250,000 math questions with verifiable answers. Moreover, this dataset has been constructed
by filtering common evaluation datasets like MATH-500, making it suitable for our purposes. The
primary benefit of using this dataset is that it comes with Llama-3.1-8B-Instruct pass rate, so
we can easily ascertain the difficulty of each datapoint and aggregate a subset that can be suitable for
training the Llama model. Specifically, we take the subset of Big-Math where Llama-3.1-8B-Instruct
has pass rate between 0.3 and 0.7, to filter away too easy or too difficult questions. Next, we train
the model on this subset using the same hyperparameters as we used for training the Qwen2.5-Math-
7B-Instruct, except we lower the learning rate to 10−7 (from 10−6), as we see that leads to more
stable learning curves. For evaluation, we use the same prompt template but temperature 0 (greedy
decoding), to match the starting model’s performance reported on its model card, and report pass@1
accuracy.

Figure 29 shows our results: on MATH-500, Llama-3.1-8B-Instruct shows the same performance
growth when trained via SRT or RL with ground truth, up to our training budget of 2000 steps.
Performance growth is also significant, and training improves pass@1 accuracy from 52.6% to around
60%. Note that we do note report performance on the harder datasets like AIME, because the Llama
model’s performance remain close to 0 throughtout training (with both objectives) on these datasets,
signalling that they might be too hard for this model. We also ran an additional experiment using a
higher learning rate of 3× 10−7. Figure 30 shows our empirical findings: with the higher learning
rate, Llama-3.1-8B-Instruct also start to show model collapse within our training budget.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

K EXAMPLE TASKS FROM REASONING GYM

Example Tasks

Task: Family Relationships (Level 4)
Question: John is married to Isabella. They have a child called Edward. Edward is married to
Victoria.
What is Isabella to Edward? Respond only with the word that describes their relationship.
Answer: mother

Task: Bitwise Arithmetic (Level 2)
Question: Please solve this problem. Assume there is arbitrary bit depth and that there are
signed integers. If the answer is negative, reply as a negative value (e.g., −0x3), not the
two’s-complement form. Reply only with the final hexadecimal value.

((0x3a24− 0x24b8) + (0x1741≫ 0x3))

Answer: 0x1854

Task: Knights and Knaves (Level 2)
Question: A very special island is inhabited only by sages and fools. Sages always tell the truth,
and fools always lie. You meet 2 inhabitants: Zoey and Riley. Zoey commented, “Riley is a
fool.” In Riley’s words: “Zoey is a sage or Riley is a sage.” So who is a sage and who is a fool?
(Format your answer like: “Zoey is a sage/fool, and Riley is a sage/fool”)
Answer: Zoey is a fool, and Riley is a sage.

Above of we see one example from each of the three Reasoning Gym tasks used in our work. The
examples shown are of the lowest difficulties that we first train the model on using ground truth RL.
We do self training on more difficult variants on the tasks. Difficulty can be changed by the modifying
the either number of person or digits. In this work, we abstract it away by calling it "level".

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

L BEHAVIOR OF A MODEL AFTER PERFORMANCE COLLAPSE

We provide example generations from a Qwen2.5-Math-7B model before and after prolonged training
with SRT on DAPO in Table 2. After SRT training for 1200 steps, the model exhibits performance
collapse and generates \boxed{1} together with some other incoherent set of tokens for all prompts.
This also shows that the model has learned to reward hack the SRT objective, since outputting the
same answer for all queries will invariably lead to maximum consistency regardless of the accuracy
of the answer.

Table 2: Three examples of model responses for the same prompt, before and after prolonged training with
SRT on the DAPO dataset, for a Qwen2.5-Math-7B model. Notice that for some prompts, the model responses
before training ends before completion, this is due to the model running out of our token generation budget. The
model after 1200 steps of SRT training exhibits performance collapse, and it outputs \boxed{1} and some
other incoherent set of tokens irrespective of the given prompt.

Prompt Response before any training Response after 1200 steps of SRT training
How many positive perfect
squares less than 2023 are di-
visible by 5?

To determine how many positive perfect
squares less than 2023 are divisible by 5,
let’s break the problem down. 1. Iden-
tify the range of perfect squares: We need
to find all perfect squares n2 such that
n2 < 2023. This means n <

√
2023. Since√

2023 ≈ 44.98, the largest integer n for
which n2 < 2023 is 44. 2. Check for divis-
ibility by 5: For a perfect square n2 to be
divisible by 5, n itself must be divisible by
5. So, we need to f

espionage—– \boxed{1}

What is the value of

23−13+43−33+63−53+

· · ·+ 183 − 173?

What is the final answer within
\boxed{}.
Define the range of numbers and the ex-
pression to calculate ... (Model writes code
here, we ignore for the sake of simplicity)
4046
The value of the expression 23 − 13 +
43 − 33 + 63 − 53 + · · · + 183 − 173 is
\boxed{4046}.

drained , \boxed{1} Zac MemoryStream

Find the sum of all integer
bases b > 9 for which 17b is
a divisor of 97b.

It is important to first convert the numbers
given in base b to base 10 for mathematical
operations. The number 17b is 1 · b+ 7 in
base 10. The number 97b is 9 · b+7 in base
10. We need to find integer bases b > 9
such that 17b divides 97b. In other words:

9b+ 7 = k(1b+ 7)

for some integer k. Let’s proceed with the
necessary calculations in Python to ensure
accuracy. # define a functi

-//////\boxed{1}

34

	Introduction
	Preliminaries
	Self-Rewarded Training
	Experiments
	Can SRT go beyond the base model's capabilities?
	Can Self-Improvement from SRT be Sustained Indefinitely?

	Related Works
	Limitations and Conclusion
	Definition of Generation-Verification Gap
	Generation Verification Gap Through Majority Voting

	Details on Implementation and Training
	RL Algorithms
	GPU Infrastructure
	Details on Training Settings

	Additional Experimental Results
	Qwen2.5-Math-7B
	Qwen3-14B-Base

	Effect of Decoding Temperature (Qwen2.5-Math-7B)
	Additional Self-Training Metrics
	More Details on Baselines
	Detailed Experiment Results on Different Training Settings
	GRPO vs RLOO
	Different KL Penalty Coefficients
	Sweep Over Training Config

	Test-Time Self-Improvement
	SRT can be used for test-time training
	Why Doesn’t the Performance Collapse during Test-Time-Training?

	More on Model Collapse Resulting from Self-Training
	Early Stopping
	Self-Training with Offline-Generated Labels
	Self-Training with Curriculum Learning
	Training Dynamics of SRT (Qwen2.5-Math-7B) on the Easy DAPO Subset
	Training Qwen3-14B-Base on the Easy DAPO Subset
	Generating Easy DAPO Subset using Qwen2.5-Math-1.5B

	Detailed Experiment Results using non-Qwen models
	Deepseek-Math-7B-Instruct
	Llama-3.1-8B-Instruct

	Example Tasks from Reasoning Gym
	Behavior of a Model after Performance Collapse

