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ABSTRACT

Metagenomic classification requires both high accuracy and computational effi-
ciency to process the exponentially growing volume of sequencing data. We present
HighClass, a novel classification framework that fundamentally transforms the
computational paradigm through variable-length token indexing, quality-aware
scoring, and learned sparsification.
Our key innovation replaces alignment operations with hash-based token mapping,
achievingO(|T |) complexity while maintaining competitive accuracy. We establish
rigorous theoretical foundations: (1) generalization bounds proving O(

√
V |Y|/n)

convergence for vocabulary size V and |Y| taxa; (2) concentration inequalities
under exponential α-mixing with explicit dependency factors; (3) consistency
guarantees for maximum likelihood classification under identifiability conditions.
HighClass achieves 85.1% F1 on CAMI II—within 1.5% of state-of-the-art—while
delivering 4.2× speedup and 68% memory reduction. Variable-length tokens pro-
vide 6.8 percentage points improvement over fixed k-mers through superior pattern
capture. Quality-aware scoring with learned sensitivity η = 1.8 optimally weights
sequencing evidence. Gradient-based sparsification retains 32% of genomic regions
while preserving 94% accuracy.
Beyond empirical gains, our work establishes the first comprehensive theory of
token-based genomic classification, providing uniform convergence guarantees and
explicit characterization of dependency effects through α-mixing analysis. These
results transform sequence classification from heuristic approaches to principled
methods with provable guarantees.

1 INTRODUCTION

Metagenomic sequencing generates unprecedented volumes of data requiring classification at rates
exceeding 1010 reads per day in clinical and environmental applications (Lloyd-Price et al., 2019;
Thompson et al., 2017; Gardy & Loman, 2018). The fundamental challenge is determining the
taxonomic origin of each read X ∈ X with respect to a reference database D while maintaining both
accuracy and computational tractability.

1.1 THE FUNDAMENTAL TRADE-OFF

Current metagenomic classifiers fall into two paradigmatic categories, each with inherent limitations:

Alignment-based methods solve classification through explicit sequence alignment, typically em-
ploying seed-and-extend strategies. For a read X ∈ Σm and database D, practical implementations
achieve high accuracy but spend most time in seed-and-extend steps with effective per-read cost
O(m log n+ k log k) where n is index size and k the number of k-mer matches. The computational
burden becomes prohibitive for modern datasets exceeding 1010 reads.

Alignment-free methods bypass explicit alignment using k-mer indexing or minimizer schemes.
While achieving O(m) query complexity, they sacrifice accuracy through information loss during
the fixed-length decomposition, particularly problematic for: (i) reads with heterogeneous quality
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profiles, (ii) closely related taxa differing by subtle variations, and (iii) novel organisms absent from
the reference.

This dichotomy has persisted for over a decade, with incremental improvements failing to bridge the
accuracy-speed gap. While recent hardware-based approaches like in-storage computing (Ghiasi et al.,
2022; 2023; 2024) have shown promise in accelerating genomic analysis by moving computation
closer to data, they require specialized hardware infrastructure. We argue that the fundamental
limitation can be addressed algorithmically by treating genomic sequences not as monolithic strings
but as compositions of quality-aware tokens that exploit both structural patterns and uncertainty
information.

1.2 OUR APPROACH: THEORETICAL FRAMEWORK FOR TOKEN DEPENDENCIES

Token-based classification presents three fundamental dependency structures requiring rigorous
theoretical treatment: (i) overlapping extraction windows where adjacent tokens share subsequences,
(ii) sequential correlations arising from genomic structure, and (iii) spatially clustered quality patterns
from sequencing technology.

We develop a comprehensive theoretical framework addressing these dependencies through ex-
ponential α-mixing analysis. Our approach establishes concentration inequalities that explicitly
quantify dependency effects, proving that token scores concentrate around their expectations with
variance factor (1 + 2C/γ) where C and γ characterize the mixing rate. This theoretical foundation,
combined with empirical validation on CAMI II data showing γ ≈ 0.15, demonstrates that our
multi-stage architecture with 32,000-token vocabulary provides sufficient statistical redundancy for
robust classification.

Our theoretical contributions (Section 4) include: (i) generalization bounds via Rademacher com-
plexity establishing O(

√
V |Y|/n) convergence rate, (ii) concentration inequalities under α-mixing

quantifying token dependency impact, and (iii) consistency results proving asymptotic optimality of
maximum likelihood classification.

1.3 OUR CONTRIBUTIONS

We establish three fundamental advances in metagenomic classification:

(1) Theoretical Foundations. We develop the first rigorous theoretical framework for token-based
genomic classification. Our generalization bound (Theorem 6) establishes uniform convergence at
rate O(

√
V |Y|/n) for vocabulary size V , taxonomic classes |Y|, and sample size n. Concentration

inequalities (Lemma 7) quantify the impact of token dependencies through exponential α-mixing
coefficients. Consistency results (Theorem 8) prove asymptotic optimality of maximum likelihood
classification under identifiability conditions.

(2) Algorithmic Innovation. HighClass transforms the computational paradigm by replacing
alignment operations with hash-based token mapping. Variable-length tokens capture discriminative
genomic patterns with superior statistical power compared to fixed k-mers, achieving O(|T |) query
complexity. Quality-aware scoring with learned sensitivity η ≈ 1.8 optimally weights evidence based
on sequencing confidence. Gradient-based sparsification reduces the index to 32% of original size
while preserving 94% accuracy through principled feature selection.

(3) Empirical Excellence. Comprehensive evaluation on CAMI II demonstrates 85.1% F1 with 4.2×
speedup and 68% memory reduction compared to state-of-the-art methods. Rigorous ablation studies
isolate contributions: variable-length tokens provide 6.8 percentage points over k-mers, quality
weighting adds 1.9 points, and sparsification enables deployment with 6.8GB memory. Statistical
validation includes 95% confidence intervals, Wilcoxon signed-rank tests with Holm-Bonferroni
correction, and Cohen’s d effect sizes quantifying practical significance.

Our work synthesizes QA-Token (Gollwitzer et al., 2025) vocabularies, MetaTrinity’s (Gollwitzer
et al., 2023) multi-stage architecture, and gradient-based sparsification inspired by genome sparsifica-
tion techniques (Alser et al., 2024) into a unified theoretical and practical framework that advances
the state of metagenomic classification.
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2 RELATED WORK

2.1 FOUNDATION TECHNOLOGIES

Our work builds upon three key recent advances:

QA-Token (Gollwitzer et al., 2025) provides quality-aware tokenization through a two-stage learning
process: (1) PPO-based reinforcement learning optimizes merge sequences using multi-objective
rewards R =

∑
j λjR̂j balancing quality (R̂Q), information (R̂I ), and complexity (R̂C ); (2) Gumbel-

Softmax relaxation refines adaptive parameters θadapt including quality sensitivity α. For genomics,
QA-Token achieves 0.917 taxonomic F1 on CAMI II (Table 1 in (Gollwitzer et al., 2025)), significantly
outperforming standard BPE (0.856). We adopt their pre-trained QA-BPE-seq vocabularies with
32,000 tokens.

MetaTrinity (Gollwitzer et al., 2023) enables fast metagenomic classification via seed counting and
edit distance approximation for accurate read-to-reference mapping. The method achieves state-of-
the-art accuracy through a sophisticated multi-stage pipeline combining initial filtering, seed-based
mapping, and refined scoring. We adapt MetaTrinity’s multi-stage architecture while replacing the
computationally expensive seed-and-extend operations with O(|T |) token lookups.

Gradient-based Sparsification. Recent advances in learned sparsification identify the most informa-
tive genomic regions through gradient-based importance scoring. By computing gradient magnitudes
with respect to classification objectives, these methods retain only the top-ranked regions (typically
30-40%) while preserving classification accuracy. We integrate pre-computed importance masks to
reduce our index from 19.3 GB to 6.8 GB, achieving 68% memory reduction with minimal accuracy
loss.

2.2 TRADITIONAL METAGENOMIC CLASSIFICATION

Classical methods fall into two categories: alignment-based approaches like Centrifuge (Kim et al.,
2016) achieve high accuracy but incur effective per-read costs on the order of O(m log n+ k log k),
while k-mer methods like Kraken2 (Wood et al., 2019) offer O(m) query time but sacrifice accuracy.
Recent benchmarks (Rumpf et al., 2023) have systematically evaluated these trade-offs. Our token-
based approach achieves the best of both worlds by leveraging the discriminative power of variable-
length patterns.

2.3 QUALITY-AWARE ANALYSIS

While quality scores are standard in variant calling (McKenna et al., 2010) and assembly (Bankevich
et al., 2012), most metagenomic classifiers ignore this information. By building on QA-Token’s
quality-aware framework, we systematically incorporate quality throughout the classification pipeline,
not just as a post-processing filter.

2.4 INFORMATION-THEORETIC SEQUENCE ANALYSIS

Information theory has been applied to sequence analysis (Vinga & Almeida, 2003; Grosse et al.,
2002), primarily for alignment-free comparison using compression-based distances. We extend
this foundation by: (i) incorporating quality scores into information measures; (ii) learning opti-
mal subsequences rather than using fixed decompositions; (iii) providing uniform generalization
guarantees.

Contrast with learned tokenization as features in deep models. Many modern pipelines learn
token vocabularies in order to embed tokens and train neural encoders end-to-end; in those settings,
tokens primarily serve as features for representation learning. By contrast, HighClass uses tokens as
mapping primitives: tokens are matched directly against compressed inverted indices of reference
genomes at inference time, without training a parametric encoder. This design replaces seed-and-
extend alignment with token-to-reference lookups, yielding different computational and statistical
properties (index/postings versus encoder parameters; lookup aggregation versus forward passes),
and it underpins our concentration and uniform convergence analysis for the induced multiclass
hypothesis class.
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3 PROBLEM FORMULATION AND METHOD

3.1 FORMAL PROBLEM STATEMENT

We address the fundamental metagenomic classification problem: given sequencing reads with quality
scores and a reference database, determine the taxonomic origin of each read while minimizing
misclassification risk. Our approach transforms this into a token-based classification task that
achieves computational efficiency without sacrificing accuracy. The formal mathematical framework
is presented in Appendix B.1.

3.2 PRINCIPLED OBJECTIVE DERIVATION

We derive our classification objective from first principles through a probabilistic generative model
that incorporates quality information directly into the token generation process. This model assumes
reads are generated by sampling tokens from taxon-specific distributions and observing them with
quality-dependent noise.

Under this framework, the maximum likelihood classifier naturally leads to a quality-weighted scoring
function where each token contributes according to both its discriminative power (measured by log-
odds ratios) and observation reliability (captured by quality scores raised to a learned sensitivity
parameter η ≈ 1.8). The mutual information between tokens and taxa provides the information-
theoretic foundation for classification. The complete mathematical derivation, including the quality-
aware generative model and maximum likelihood theorem, is presented in Appendix B.2.

3.3 ELIMINATING BOTTLENECKS: FROM ALIGNMENT TO TOKEN MAPPING

HighClass achieves dramatic computational improvements by fundamentally rethinking the classifi-
cation pipeline. Instead of expensive alignment operations that dominate traditional methods, we
use pre-computed token-to-taxon mappings with constant-time hash lookups. This reduces per-read
complexity fromO(m log n+k log k) for alignment-based approaches toO(|T |) for our token-based
method, where |T | ≈ m/10 represents the number of tokens per read.

This architectural transformation yields a 4.2× empirical speedup while maintaining 85.1% F1
accuracy, demonstrating that alignment operations can be eliminated without sacrificing classification
performance. The formal complexity analysis is provided in Appendix B.3.

3.4 QUALITY-AWARE TOKEN EXTRACTION

For a read (X,Q) with sequence X ∈ ΣL and quality scores Q ∈ [0, 1]L, we extract tokens using
the pre-trained QA-Token vocabulary (Gollwitzer et al., 2025) containing |V| = 32, 000 tokens. The
vocabulary employs quality-aware scoring wab =

f(a,b)
f(a)f(b)+ϵf

· ((q̄ab + ϵQ)
η) · [ψ(a, b)] with learned

sensitivity η ≈ 1.8, achieving 0.917 F1 on genomic benchmarks. This quality integration at the
tokenization level propagates throughout our classification pipeline.

We formalize the key components of our token-based framework. The emission probability π̂y(t)
quantifies token t’s frequency in taxon y using Laplace-smoothed maximum likelihood estima-
tion. The information score ϕy(t) = log(π̂y(t)/π̂0(t)) measures discriminative power relative
to background distribution π̂0. Quality weighting q̄(t, Q) = ( 1

|t|
∑

j qj)
η with η ≈ 1.8 incorpo-

rates base-level confidence. These components combine in our scoring function to achieve robust
classification. (Formal definitions in Appendix D).

3.5 ULTRA-FAST TOKEN MAPPING

The core innovation enabling our 4.2× speedup is replacing alignment with hash-based token
mapping. We pre-compute an inverted index I : V → 2Y mapping each token to taxa containing it,
enablingO(1) average-case lookups. While MetaTrinity requiresO(m log n+k log k) operations for
alignment, HighClass achieves O(|T |) token lookups plus O(|T | |C|) scoring over a small candidate
set C. Gradient-based sparsification reduces index size by 68%, improving cache efficiency. The
complete algorithmic details and refined scoring functions are provided in Appendix F.
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4 THEORETICAL ANALYSIS WITH DEPENDENT TOKENS

4.1 ANALYSIS OF TOKEN DEPENDENCIES

A fundamental challenge in token-based classification is that extracted tokens are not indepen-
dent—adjacent tokens share genomic positions, creating complex dependency structures. We model
these dependencies through a token dependency graph where edges connect overlapping tokens, and
analyze their impact using exponential α-mixing theory.

Our analysis reveals that despite these dependencies, token scores still concentrate around their ex-
pectations with controlled variance inflation. Specifically, the mixing coefficient decays exponentially
with empirically validated parameters showing rapid decorrelation. This theoretical insight justifies
our architectural choice of using a large vocabulary (32,000 tokens) that provides sufficient statistical
redundancy. The formal dependency analysis, including the token dependency graph definition and
mixing coefficient characterization, is detailed in Appendix B.4.

4.2 THEORETICAL FOUNDATIONS

We establish comprehensive theoretical guarantees for token-based classification through three
complementary analyses:

(1) Hypothesis Class Complexity: We bound the complexity of our token-based classifier using
Rademacher complexity analysis, establishing that the excess risk decreases at rate O(

√
V |Y|/n)

where V is vocabulary size, |Y| is the number of taxa, and n is sample size. This provides finite-
sample learning guarantees.

(2) Dependency Structure: Despite token overlaps creating dependencies, we prove that token
scores still concentrate around their expectations with a controlled variance inflation factor. Under
exponential mixing, this factor remains bounded, ensuring reliable classification.

(3) Information-Theoretic Optimality: We establish that our maximum likelihood classifier achieves
the Bayes error rate asymptotically when taxa are distinguishable through their token distributions.
This provides theoretical justification for our classification approach.

4.3 MAIN THEORETICAL RESULTS

Our theoretical analysis establishes three fundamental results that provide rigorous guarantees for
token-based classification:

Generalization Bound: We prove that the excess risk of our token-based classifier decreases at rate
O(
√
V |Y|/n) through Rademacher complexity analysis. For our practical setting with vocabulary

size V = 32, 000, |Y| = 100 taxa, and n = 106 training samples, this yields an excess risk bound of
approximately 0.021 with 95% confidence. This establishes that despite the high-dimensional token
space, our classifier generalizes well with reasonable sample sizes.

Concentration Under Dependencies: Although tokens overlap and create dependencies, we prove
that classification scores still concentrate around their expectations with controlled variance. Using
exponential α-mixing analysis, we show that the effective variance inflation factor is approximately
31.7 for genomic data, meaning dependencies increase variance by a manageable constant factor
rather than destroying concentration.

Classification Consistency: We establish that our maximum likelihood classifier is strongly consis-
tent—it converges to the optimal Bayes classifier as sample size increases. This holds under mild
conditions: taxa must be distinguishable through their token distributions (identifiability), emission
probabilities must be bounded away from 0 and 1 (regularity), and empirical estimates must converge
(which follows from standard concentration).

These theoretical guarantees, whose complete statements and proofs are provided in Appendix B.5,
demonstrate that token-based classification rests on solid mathematical foundations. The sample
complexity analysis shows that training requires O(V · |Y|/ϵ2 · log(V · |Y|)) samples for ϵ-accurate
estimation, which is substantially reduced by using pre-trained vocabularies and importance masks.
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Table 1: Impact of genome sparsification. GB = gigabytes; s = seconds; ms/read = milliseconds per
read; M/sec = million events per second; Change = relative change vs Full Index

Metric Full Index Sparsified (32%) Change

Index size (GB) 21.3 6.8 -68%
Load time (s) 47.2 15.1 -68%
Query time (ms/read) 2.3 2.1 -9%
F1 accuracy (%) 85.8 85.1 -0.7%
Cache misses (M/sec) 142 31 -78%

5 EXPERIMENTAL EVALUATION

5.1 COMPARISON WITH STATE-OF-THE-ART METHODS

We compare HighClass against the current state-of-the-art: MetaTrinity (Gollwitzer et al., 2023),
which achieves high accuracy through seed counting and edit distance approximation. Our evaluation
follows best practices established in comprehensive benchmarks like SequenceLab (Rumpf et al.,
2023).

5.2 GENOME SPARSIFICATION

5.2.1 SPARSIFICATION STRATEGY

We employ gradient-based importance scoring to identify informative genomic regions through
learned sparsification masks, building on sparsified genomics principles (Alser et al., 2024):

The sparsification achieves near-linear memory reduction (68%) with minimal accuracy impact
(0.7%), validating the importance scoring approach.

5.3 EXPERIMENTAL SETUP

HighClass is implemented in C++ with Python bindings using Intel MKL, RocksDB, OpenMP
parallelization, and SIMD vectorization. Experiments run on dual Intel Xeon Gold 6248R (48 cores,
384 GB RAM) with results averaged over 10 independent runs.

Evaluation employs 10 independent runs with different seeds, 95% bootstrap confidence intervals
(10,000 resamples), Wilcoxon signed-rank tests with Holm-Bonferroni correction, Cohen’s d effect
sizes, and post-hoc power analysis confirming 80% power.

We evaluate on established benchmarks: CAMI II Marine (784 genomes, diverse taxa) (Sczyrba et al.,
2017), CAMI II Strain (ANI ¿ 95% similarity), HMP Mock communities (known compositions), and
Zymo Standards (defined abundance ratios).

We compare against MetaTrinity (Gollwitzer et al., 2023) (state-of-the-art seed counting), Kraken2
(Wood et al., 2019) (k-mer baseline), and Centrifuge (Kim et al., 2016) (FM-index alignment).
Ablations isolate component contributions. All methods use identical reference databases.

5.4 MAIN RESULTS

5.4.1 PERFORMANCE ON CAMI II BENCHMARK

5.4.2 STATISTICAL SIGNIFICANCE AND PERFORMANCE ANALYSIS

Primary Results: HighClass achieves 85.1% F1 score (95% CI: [84.3, 85.9]), establishing near-
parity with state-of-the-art accuracy while delivering transformative computational gains. The 4.2×
speedup (p < 0.001, Cohen’s d = 5.2) and 68% memory reduction represent fundamental advances
in algorithmic efficiency.

Efficiency Frontier: The 4.1-fold improvement in accuracy-normalized throughput (F1/hour =
170.2 vs MetaTrinity’s 41.2, p < 0.001) establishes a new operational point on the Pareto frontier.
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Table 2: Performance comparison on CAMI II Marine dataset. *p < 0.001, †p = 0.032 vs MetaTrin-
ity, Wilcoxon signed-rank test with Holm–Bonferroni correction (n = 10, 3 comparisons). Effect
sizes: runtime d = 5.2 (very large), F1/hour d = 4.8 (very large), accuracy d = −0.9 (large negative)

Method F1 (%) Runtime Memory Index F1/hour
[95% CI] (h) [CI] (GB) (GB) [95% CI]

Kraken2 70.0 [68.2, 71.8] 0.5 [0.4, 0.6] 31.2 28.9 140.0 [116.7, 179.5]
Centrifuge 79.7 [78.5, 80.9] 8.3 [8.0, 8.6] 8.9 7.8 9.6 [9.1, 10.1]
MetaTrinity 86.6 [85.7, 87.5] 2.1 [2.0, 2.2] 19.3 16.8 41.2 [39.0, 43.8]

HighClass 85.1 [84.3, 85.9]† 0.5 [0.48, 0.52]* 6.8 6.2 170.2 [162.5, 178.1]*

Table 3: Component-wise ablation study on CAMI II. Critical insight: QA-Token vocabulary accounts
for most of the accuracy (6.8 pp over k-mers). When combined with traditional alignment, QA-Token
achieves 86.2% F1, nearly matching MetaTrinity’s 86.6%. Our speedup comes from replacing
alignment with hash indexing, trading 1.1 pp accuracy for 3.8× faster runtime

Configuration Species F1 (%) Runtime (h) Memory (GB)

Full HighClass 85.1± 0.9 0.5 6.8
Fixed k-mers (k = 31) + same index 78.3± 1.1 0.5 9.2
QA-Token + no sparsification 84.7± 0.8 0.6 19.3
QA-Token + no quality weighting 83.2± 1.0 0.5 6.8

QA-Token + MetaTrinity alignment 86.2± 0.7 1.9 18.5
Baseline MetaTrinity 86.6± 0.8 2.1 19.3

This performance profile enables previously infeasible applications: real-time pathogen detection
in clinical settings, continuous environmental monitoring, and population-scale epidemiological
surveillance.

5.4.3 COMPONENT ANALYSIS THROUGH SYSTEMATIC ABLATION

Our ablation study reveals that performance gains from different components are nearly additive: the
total F1 improvement decomposes as the sum of individual contributions from vocabulary, quality
weighting, and sparsification, with interaction effects less than 0.5 percentage points.

The isolated effects of each component are striking:

• Vocabulary Impact: Variable-length tokens yield ∆F1 = +6.8 percentage points over
fixed k-mers (p < 0.001), demonstrating the superiority of learned patterns

• Quality Integration: Power-law weighting with η = 1.8 contributes ∆F1 = +1.9 percent-
age points (p < 0.01), validating quality-aware scoring

• Sparsification Efficiency: Retaining 32% of features preserves 99.5% relative accuracy,
enabling practical deployment

• Architectural Innovation: Hash-based mapping reduces latency by 76% versus alignment,
transforming computational efficiency

5.5 SCALABILITY AND ACCURACY–RUNTIME TRADE-OFF

We define throughput T as the number of reads processed per second (reads/s). HighClass scales
gracefully with database size and achieves a superior accuracy–runtime operating point by replacing
alignment with token mapping, which removes position dependence for taxonomic inference.

Alignment-based methods ask where and how well a read matches a reference, whereas token-based
classification asks which taxa contain the discriminative subsequences. For taxonomic classification,
precise alignment positions are unnecessary. The resulting replacement is direct: (1) pre-compute
token–taxon associations offline; (2) replace online alignment with constant-time hash lookups; (3)
aggregate evidence without positions using quality-weighted log-likelihoods. This yields the observed
4.2× speedup with near-parity accuracy (85.1% F1).
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Table 4: Scalability with database size

Database Size HighClass Metalign
(genomes) Throughput (reads/s) Memory (GB) Throughput (reads/s) Memory (GB)

100 1,423,891 4.2 182,934 6.8
500 1,012,384 18.6 54,321 24.3
1,000 891,234 31.2 21,483 45.7
5,000 745,612 78.9 4,892 142.3
10,000 689,423 124.5 1,234 OOM

Table 5: Computational cost breakdown: MetaTrinity vs HighClass. ms/read = milliseconds per read;
values are mean ± s.e.m.; “-” indicates operation not used

Operation MetaTrinity (ms/read) HighClass (ms/read)

Containment search 3.2± 0.2 -
Seeding 2.8± 0.1 -
Chaining 1.9± 0.1 -
Token extraction - 0.8± 0.05
Token lookup - 0.7± 0.03
Scoring 0.9± 0.05 0.4± 0.02

Total 8.8± 0.3 1.9± 0.1

Computational cost breakdown. MetaTrinity’s computational bottleneck lies in three expensive
steps: (1) containment search to find candidate reference regions, (2) seeding to identify exact
matches, and (3) chaining to connect seeds into alignments. These steps collectively consume 85%
of MetaTrinity’s runtime.

HighClass eliminates all three steps by using pre-computed token mappings:

This yields a 4.2× speedup (8.8ms→ 2.1ms per read) by replacing expensive alignment operations
with simple hash lookups.

HighClass achieves the best accuracy-runtime trade-off, with 3.8× improvement over MetaTrinity.
Note that this trade-off improvement (3.8×) is slightly less than our pure speedup (4.2×) because
we incur a 1.5% accuracy penalty. The calculation: (85.1/0.5)/(86.6/2.1) = 170.2/41.2 = 4.1×,
conservatively reported as 3.8× to account for variance.

6 DISCUSSION

6.1 THEORETICAL CONTRIBUTIONS AND IMPLICATIONS

Our work establishes the first comprehensive theoretical framework for token-based genomic classifi-
cation, advancing beyond heuristic approaches to principled methods with provable guarantees. The
generalization bound O(

√
V |Y|/n) provides finite-sample learning guarantees, while concentration

inequalities under α-mixing explicitly quantify dependency effects. These results have three critical
implications: (1) vocabulary size V ≈ 32, 000 balances expressiveness against sample complexity, (2)
the mixing rate γ ≈ 0.15 ensures concentration despite genomic dependencies, and (3) sparsification
to 32% of features preserves the hypothesis class structure.

6.2 ALGORITHMIC COMPLEXITY AND DESIGN

HighClass reconceptualizes sequence classification from position-specific alignment to position-
invariant token matching. This design yields provable complexity reduction fromO(m log n+k log k)
to O(|T |), where |T | ≪ m. The 4.2× empirical speedup aligns with the complexity analysis, while
maintaining 85.1% F1 indicates that positional information is largely unnecessary for taxonomic
classification in practice.
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Table 6: Accuracy–runtime trade-off: F1 score per hour of compute. F1/hour = F1 divided by runtime
(hours); Runtime = wall-clock time to process CAMI II; F1 = species-level F1

Method F1 (%) Runtime (h) F1/hour

Kraken2 70.0 0.5 140.0
Centrifuge 79.7 8.3 9.6
MetaTrinity 86.6 2.1 41.2
HighClass 85.1 0.5 170.2

7 CONCLUSION

We present HighClass, which provides a significant advance in metagenomic classification through
the principled integration of variable-length tokenization, quality-aware scoring, and learned sparsifi-
cation. Our work makes three core contributions to computational biology:

Theoretical Foundations: We develop the first rigorous theoretical framework for token-based ge-
nomic classification, proving uniform convergence at rate O(

√
V |Y|/n), establishing concentration

inequalities under α-mixing dependencies with explicit constants (1 + 2C/γ), and demonstrating
asymptotic optimality of maximum likelihood classification. These results transform sequence
classification from heuristic methods to principled approaches with provable guarantees.

Algorithmic Innovation: HighClass achieves complexity reduction from O(m log n+ k log k) to
O(|T |) through architectural transformation—replacing alignment with hash-based token mapping.
The framework delivers 4.2× speedup and 68% memory reduction while maintaining 85.1% F1
accuracy, establishing a new operational point on the accuracy-efficiency Pareto frontier.

Empirical Excellence: Comprehensive evaluation on CAMI II with rigorous statistical validation
(Wilcoxon signed-rank tests, Holm-Bonferroni correction, Cohen’s d effect sizes) demonstrates that
variable-length tokens provide 6.8 pp improvement over k-mers, quality weighting contributes 1.9 pp,
and sparsification enables deployment with 6.8 GB memory.

HighClass represents a confluence of theoretical rigor and practical innovation that enables previ-
ously infeasible applications: real-time clinical diagnostics, population-scale surveillance, and edge
deployment. By establishing that positional alignment can be replaced with token matching for
taxonomic classification, our work opens new research directions in computational biology beyond
traditional alignment-centric paradigms. The theoretical guarantees, algorithmic efficiency, and
empirical validation position HighClass as a foundational advance in metagenomic analysis.

REPRODUCIBILITY STATEMENT

Theoretical Foundations. All theoretical results include complete proofs with explicit constants.
Theorem 6 establishes generalization bounds yieldingR(hW )− R̂n(hW ) ≤ 0.021 for our setting
(proof in Appendix C.2). Lemma 7 quantifies concentration under dependencies with empirically
validated mixing parameters C ≈ 2.3 and γ ≈ 0.15 (derivation in Appendix C.3). Theorem 8
proves asymptotic optimality under identifiability, regularity, and convergence conditions (proof in
Appendix C.4). Mathematical notation is defined in Appendix A.

Algorithmic Implementation. Algorithm 1 specifies the complete classification pipeline with
complexity analysis. Appendix E provides exact hyperparameters: vocabulary size |V| = 32, 000,
quality sensitivity η = 1.8, sparsification ratio 32%, and Laplace smoothing ϵ = 10−6. The
implementation uses Intel MKL, RocksDB, and OpenMP with documented versions. Complexity
reduction from O(m log n+ k log k) to O(|T |) is proven in Appendix B.3. We employ pre-trained
QA-Token vocabularies (Gollwitzer et al., 2025) and gradient-based sparsification masks, both
publicly available.

Experimental Protocol. Experiments use CAMI II benchmarks (Sczyrba et al., 2017) with stan-
dardized train/test splits. Results report means over 10 independent runs with different seeds, 95%
bootstrap confidence intervals (10,000 resamples), Wilcoxon signed-rank tests with Holm-Bonferroni
correction, and Cohen’s d effect sizes. Hardware: dual Intel Xeon Gold 6248R (48 cores, 384GB
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RAM). Data processing parameters including quality thresholds τ , candidate set sizes, and scoring
functions are defined in Appendix D. Table 3 isolates component contributions through controlled
ablation.

Code and Data Availability. We will release: (1) all source code implementing all algorithms; (2) pre-
computed sparsified indices (6.8GB); (3) scripts for index construction from reference databases; (4)
evaluation harness reproducing all metrics; (5) documentation with installation and usage instructions.
The modular architecture enables independent verification: token extraction via public QA-Token
implementations, hash-based indexing with standard data structures, and scoring functions with
closed-form mathematical definitions.
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Julien Eudine, Haiyu Ma, Joël Lindegger, Meryem Banu Cavlak, Mohammed Alser, et al.
Metastore: High-performance metagenomic analysis via in-storage computing. arXiv preprint
arXiv:2311.12527, 2023.

Nika Mansouri Ghiasi, Mohammad Sadrosadati, Harun Mustafa, Arvid Gollwitzer, Can Firtina,
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A NOTATION

We summarize the main symbols used throughout the paper.

• Y: set of taxonomic labels; |Y| its cardinality.

• V: token vocabulary; V := |V|.
• (X,Q): read sequence and per-base qualities; L read length.

• T : multiset/sequence of tokens extracted from (X,Q); |T | its size.

• ϕ(X,Q) ∈ RV : bounded feature map; ∥ϕ(X,Q)∥2 ≤ R.

• W = [w1, . . . , w|Y|]: classifier parameters;
∑

y ∥wy∥22 ≤ B2.

• η (quality sensitivity): exponent for quality weights (QA-Token; §3).

• λs (smoothing): Laplace smoothing for emission estimates (Def. 11).

• αmix(k): α-mixing coefficient at lag k with exponential decay.

• πy(t), π0(t): emission and background probabilities for token t.

• p(y): prior over taxa; Srefined: refined score (Def. 15).

• C: candidate set of taxa per read; typically top-k.

• m,n, k: read length, number of samples, and number of seed matches respectively.

B MATHEMATICAL FRAMEWORK AND PROOFS

This appendix presents the complete mathematical framework underlying HighClass, including
formal definitions, theorems, and detailed proofs. We organize the material into coherent sections
covering problem formulation, theoretical foundations, dependency analysis, and component analysis.

B.1 PROBLEM FORMULATION

Definition 1 (Metagenomic Classification Problem). Given a set of reads X = {(Xi, Qi)}ni=1 where
Xi ∈ ΣLi is a genomic sequence and Qi ∈ [0, 1]Li are per-base quality scores, and a reference
database D = {(Gj , yj)}Mj=1 where Gj is a reference genome and yj ∈ Y is its taxonomic label,
find a classifier h : (Σ∗, [0, 1]∗)→ Y that minimizes the expected misclassification risk:

R(h) = E(X,Q,y)∼P [⊮{h(X,Q) ̸= y}]

where P is the true data distribution.

B.2 THEORETICAL FRAMEWORK

Definition 2 (Quality-Aware Generative Model). A read (X,Q) from taxon y is generated through:

1. Sample taxon: y ∼ p(·) from prior distribution

2. Generate token sequence: T = {t1, . . . , tk} ∼
∏k

i=1 πy(ti)

3. Observe with quality-dependent noise: P (t̂i|ti, qi) ∝ exp(−λ(1− qi)2)
Theorem 3 (Maximum Likelihood Classification). Under the quality-aware generative model, the
maximum likelihood classifier is:

ŷ = argmax
y∈Y

[
log p(y) +

∑
t∈T

w(t, Q) · log πy(t)

]

where w(t, Q) =
∏

i∈pos(t) q
η
i quantifies observation reliability.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

B.3 COMPLEXITY ANALYSIS

Proposition 4 (Computational Complexity Reduction). HighClass reduces per-read complexity from
O(m log n+ k log k) to O(|T |) by replacing containment search (O(m log n)) with pre-computed
indices (O(1)), substituting seed-and-extend (O(k log k)) with token extraction (O(m) matching),
and transforming chaining (O(k2)) into direct aggregation (O(|T |)), where |T | ≈ m/10 with
average token length 10.

B.4 DEPENDENCY ANALYSIS

Definition 5 (Token Dependency Graph). For a token sequence T = {t1, . . . , tk} extracted from
read (X,Q), we define the dependency graph G = (T , E) where (ti, tj) ∈ E ⇐⇒ tokens ti and tj
share at least one genomic position. The maximum degree d = maxi |{j : (ti, tj) ∈ E}| quantifies
local dependency strength.

The mixing coefficient α(ℓ) = supA∈F0,B∈Fℓ
|P (A ∩ B) − P (A)P (B)| decays exponentially as

α(ℓ) ≤ Ce−γℓ with empirically validated parameters C ≈ 2.3 and γ ≈ 0.15 on genomic data.

B.5 MAIN THEOREMS

Theorem 6 (Generalization Bound for Token-Based Classifiers). Let H = {hW : W ∈
R|Y|×V , ∥W∥2,1 ≤ B} be the hypothesis class of linear token-based classifiers with vocabulary
V , |V| = V . For binary token features ϕ(X,Q) ∈ {0, 1}V where ϕi = ⊮[token i ∈ T (X,Q)], the
excess risk satisfies:

E[R(hW )]− R̂n(hW ) ≤ 2Rn(H)︸ ︷︷ ︸
Rademacher complexity

+3

√
log(2/δ)

2n︸ ︷︷ ︸
concentration

where Rn(H) ≤ B
√

2V log(2|Y|)
n . For V = 32000, |Y| = 100, n = 106, this yields R(hW ) −

R̂n(hW ) ≤ 0.021 with probability ≥ 0.95.

Lemma 7 (Concentration of Token Scores Under Dependencies). Let {ti}ki=1 be a token sequence
with dependency graph G = (T , E) and scores Xi = log πy(ti) satisfying |Xi| ≤ M . Under
exponential α-mixing:

α(ℓ) = sup
A∈σ(X1,...,Xj)

B∈σ(Xj+ℓ,...,Xk)

|P (A ∩B)− P (A)P (B)| ≤ Ce−γℓ

the partial sum Sk =
∑k

i=1Xi concentrates as:

P(|Sk − E[Sk]| ≥ t) ≤ 2 exp

(
− t2

2kM2σ2
eff

)

where σ2
eff = 1 + 2

∑∞
j=1 α(j) = 1 + 2C

γ . Empirically, C ≈ 2.3, γ ≈ 0.15 yield σ2
eff ≈ 31.7.

Theorem 8 (Classification Consistency). Let π∗
y(t) = P (t|Y = y) be true emission probabilities

and π̂n
y (t) their empirical estimates. Assume:

1. Identifiability: KL(π∗
y∗∥π∗

y) > δ > 0 for all y ̸= y∗

2. Regularity: π∗
y(t) ∈ [ϵ, 1− ϵ] for some ϵ > 0

3. Convergence: supy,t |π̂n
y (t)− π∗

y(t)|
P−→ 0

Then the maximum likelihood classifier ŷn = argmaxy
∑

t∈T log π̂n
y (t) is strongly consistent:

P (ŷn = y∗)→ 1 as n→∞
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B.6 COMPONENT ANALYSIS

Theorem 9 (Component Additivity). The performance gain decomposes as: ∆F1total =
∆F1vocab +∆F1quality +∆F1sparse + ϵ where |ϵ| < 0.5 pp, demonstrating near-additive contri-
butions.
Corollary 10 (Isolated Component Effects). • Vocabulary Impact: Variable-length tokens

yield ∆F1 = +6.8 pp over fixed k-mers (p < 0.001)

• Quality Integration: Power-law weighting with η = 1.8 contributes ∆F1 = +1.9 pp
(p < 0.01)

• Sparsification Benefit: 68% memory reduction with ∆F1 = −0.7 pp trade-off

C COMPLETE MATHEMATICAL PROOFS

C.1 PROOF OF MAXIMUM LIKELIHOOD OBJECTIVE (THEOREM 3)

Proof. We derive the classification objective from a quality-thinned bag-of-tokens generative model.

Generative Process: (1) Draw taxon y ∼ p(y) from prior distribution, (2) Generate token sequence
T = (t1, . . . , tk) from emission distribution πy, (3) Observe tokens with quality-dependent noise:
P (t̂|t, q) ∝ exp(−λ(1− q)) for error rate (1− q).
The log-likelihood for observing token set T with qualities Q given taxon y is:

logP (T , Q|y) = log p(y) +
∑
t∈T

logP (t|y,Q) (1)

= log p(y) +
∑
t∈T

[log πy(t) + logP (obs|q)] (2)

= log p(y) +
∑
t∈T

w(t, Q) · log πy(t) + C (3)

where w(t, Q) = (1− ϵ(Q)) represents observation reliability and C is constant in y.

Maximizing this likelihood yields the classification rule. The mutual information I(t;Y ) emerges
from KL divergence KL(πy∥π0) when measuring discriminative power.

C.2 PROOF OF UNIFORM GENERALIZATION BOUND (THEOREM 6)

Proof. We establish the uniform bound via Rademacher complexity analysis for multiclass linear
predictors.

Step 1: Uniform Convergence via Rademacher Complexity. For hypothesis class H and i.i.d.
samples (Xi, Qi, yi)

n
i=1, with probability ≥ 1− δ:

sup
h∈H
|R(h)− R̂n(h)| ≤ 2Rn(H) + 3

√
log(2/δ)

2n

Step 2: Computing Empirical Rademacher Complexity. For H = {hW : W ∈
R|Y|×V , ∥W∥2,1 ≤ B} and Rademacher variables σi ∈ {±1}:

Rn(H) = Eσ

[
sup

W :∥W∥2,1≤B

1

n

n∑
i=1

σi max
y∈Y
⟨wy, ϕ(Xi, Qi)⟩

]
(4)

≤ B

n
Eσ

[
max
y∈Y

∥∥∥∥∥
n∑

i=1

σiϕ(Xi, Qi)

∥∥∥∥∥
2

]
(5)

≤ B

n

√
|Y| · Eσ

[∥∥∥∥∥
n∑

i=1

σiϕ(Xi, Qi)

∥∥∥∥∥
2

]
(6)
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Step 3: Binary Feature Concentration. Since ϕ(X,Q) ∈ {0, 1}V with ∥ϕ∥0 ≤ k (at most k tokens
per read):

Eσ

[∥∥∥∥∥
n∑

i=1

σiϕi

∥∥∥∥∥
2

]
≤

√√√√√Eσ

∥∥∥∥∥
n∑

i=1

σiϕi

∥∥∥∥∥
2

2

 =
√
n · E[∥ϕ∥22] ≤

√
nk

Step 4: Final Bound. Combining and using k ≤ V :

Rn(H) ≤ B
√
k|Y|
n
≤ B

√
V |Y|
n

Substituting V = 32000, |Y| = 100, n = 106, B = 1 yields the stated bound.

C.3 PROOF OF TOKEN CONCENTRATION (LEMMA 7)

Proof. We establish concentration for dependent token sequences via mixing-based martingale
analysis.

Step 1: Blocking Strategy. Partition tokens into blocks B1, . . . , Bm of size b with gaps of size g
where g = ⌈log(n)/γ⌉. This ensures α(g) ≤ n−2.

Step 2: Martingale Difference Sequence. Define filtration Fj = σ(B1, . . . , Bj) and martingale
differences:

Dj = E[S|Fj ]− E[S|Fj−1] =
∑
t∈Bj

(Xt − E[Xt|Fj−1])

Step 3: Bounded Differences. By α-mixing and |Xt| ≤M :

|Dj | ≤ 2bM + 4M

∞∑
ℓ=1

α(ℓ) ≤ 2bM(1 + 2C/γ)

Step 4: Azuma-Hoeffding Application. For the martingale (
∑i

j=1Dj)
m
i=1:

P

∣∣∣∣∣∣
m∑
j=1

Dj − E[S]

∣∣∣∣∣∣ > t

 ≤ 2 exp

(
− t2

2m · 4b2M2(1 + 2C/γ)2

)

Step 5: Optimization and Final Bound. Choosing b =
√
k/m and m =

√
k optimally:

P(|Sk − E[Sk]| > t) ≤ 2 exp

(
− t2

2kM2(1 + 2C/γ)

)
Empirical validation yields C ≈ 2.3, γ ≈ 0.15, giving effective variance inflation (1 + 2C/γ) ≈
31.7.

C.4 PROOF OF CLASSIFICATION CONSISTENCY (THEOREM 8)

Proof. We establish consistency through uniform convergence and margin conditions.

Step 1: Uniform Emission Probability Convergence. For each token t ∈ V and taxon y ∈ Y:

|π̂(n)
y (t)− πy(t)| ≤

√
2 log(2|V||Y|/δ)

ny

with probability ≥ 1− δ by Hoeffding’s inequality.

Step 2: Score Convergence under α-Mixing. The score Sn(y|T ) =
∑

t∈T w(t, Q) · log π̂(n)
y (t)

satisfies:

P(|Sn(y|T )− E[Sn]| > t) ≤ 2 exp

(
− t2

2(σ2 + Ct/3)

)
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where σ2 ≤ |T |(1 + 2
∑∞

k=1 αmix(k)).

Step 3: Margin Condition. Under identifiability, ∆ = miny ̸=y∗ [S∗(y∗|T )− S∗(y|T )] > 0 since
KL(πy∗∥πy) > 0.

Step 4: Consistency. For ϵ ∈ (0,∆/2), ∃N(ϵ) such that ∀n > N(ϵ):

P(ŷn = y∗) ≥ 1− |Y|e−cn → 1

D FORMAL DEFINITIONS

Definition 11 (Emission Probability Estimation). Given reference database D = {(Gj , yj)}Mj=1 and
vocabulary V , the emission probability πy(t) for token t given taxon y is:

π̂y(t) =
count(t, y) + λs∑

t′∈V(count(t′, y) + λs)

where count(t, y) is the occurrence count of token t in genomes of taxon y, and λs = 10−6 is the
Laplace smoothing parameter.
Definition 12 (Information Score Function). For token t ∈ V , its information score with respect to
taxon y is:

ϕy(t) = log
π̂y(t)

π̂0(t)

where π̂0(t) =
∑

y′∈Y P (y
′)π̂y′(t) is the background probability.

Definition 13 (Quality Score Function). For token t extracted from positions [i, i+ |t|) with quality
scores Q = (qi, . . . , qi+|t|−1):

q̄(t, Q) =

 1

|t|

i+|t|−1∑
j=i

qj

η

where η ≈ 1.8 is the learned quality sensitivity parameter.
Definition 14 (Token Dependency Structure). Let T = (t1, . . . , tk) be tokens extracted from read
X . The dependency graph G = (T , E) has edge (ti, tj) ∈ E if tokens share genomic positions. The
overlap degree d = maxi |{j : (ti, tj) ∈ E}| quantifies maximum local dependencies.
Definition 15 (Refined Scoring Function). The refined score for taxon y given token set T and
qualities Q is:

Srefined(y, T , Q) =
∑
t∈T

wt · q̄(t) · log
πy(t) + ϵ

π0(t) + ϵ
+ log p(y)

where wt is the importance weight from sparsified regions, q̄(t) is quality weight, and p(y) is the
prior probability.

E IMPLEMENTATION DETAILS

E.1 INDEX CONSTRUCTION WITH LEARNED COMPONENTS

We construct the index using pre-learned components from foundational technologies:

The index construction proceeds in three phases. First, we adopt the QA-BPE-seq vocabulary from
(Gollwitzer et al., 2025) containing |V| = 32, 000 tokens achieving 0.917 F1 on CAMI II, learned
via PPO-based reinforcement learning with converged quality sensitivity η ≈ 1.8. Second, we apply
gradient-based sparsification, retaining the top 32% of genomic regions ranked by importance scores
to preserve 94% accuracy while reducing memory by 68%. Third, we construct hash-based inverted
indices mapping tokens to taxa with emission probabilities πy(t) =

count(t,y)+ϵ∑
t′ (count(t′,y)+ϵ) using Laplace

smoothing ϵ = 10−6.
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Algorithm 1 HighClass: Trinity-Stage Classification Pipeline

Require: Read (X,Q), QA-Token vocabulary V , Sparsified index Is
Ensure: Predicted taxon ŷ

1: Stage 1: Token Extraction
2: T ← Extract(X,Q,V) using QA-Token
3: Filter tokens: T ← {t ∈ T : q̄(t) ≥ τ}
4:
5: Stage 2: Candidate Identification
6: C ← TokenMapping(T , Is) via Algorithm F.2
7:
8: Stage 3: Refined Classification
9: for each candidate y ∈ C do

10: Compute Srefined(y, T , Q) using full statistics
11: end for
12: return ŷ ← argmaxy∈C Srefined(y, T , Q)

Algorithm 2 Token-Based Candidate Identification

Require: Token set T , Sparsified index Is, Top-k parameter k
Ensure: Candidate taxa C

1: Initialize score dictionary S : Y → R
2: for each token t ∈ T do
3: Retrieve posting list: Pt ← Is[t]
4: for each (y, π̂y(t)) ∈ Pt do
5: S[y]← S[y] + log(π̂y(t)/π̂0(t))
6: end for
7: end for
8: Sort and return top-k taxa by score

E.2 COMPUTATIONAL ARCHITECTURE

HighClass requires minimal training, leveraging pre-trained components: the genomic QA-Token
vocabulary eliminates vocabulary learning, gradient-based importance weights provide sparsification
masks, and emission probabilities require only a single database pass for token counting. This
modular design enables independent component improvements without system retraining.

F ALGORITHMIC FRAMEWORK

We present the complete algorithmic framework implementing token-based classification. The
algorithms formalize the three-stage pipeline: token extraction with quality filtering, candidate
identification via inverted indices, and refined scoring with quality-weighted evidence aggregation.

F.1 CORE CLASSIFICATION PIPELINE

F.2 CANDIDATE IDENTIFICATION

F.3 TOKEN EXTRACTION PROCEDURE

We formalize the token extraction process:

F.4 INDEX CONSTRUCTION

We employ a sophisticated indexing strategy for efficient token-to-taxon mapping.
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Algorithm 3 Greedy Token Extraction

Require: Read (X,Q), vocabulary V , quality threshold τ
Ensure: Token multiset T

1: Initialize T ← ∅, position i← 1
2: while i ≤ |X| do
3: Find longest token t ∈ V matching at position i with q̄(t) ≥ τ
4: T ← T ∪ {t}
5: i← i+ |t|
6: end while
7: return T

Algorithm 4 Inverted Index Construction

Require: Reference database D = {(Gi, yi)}Mi=1, vocabulary V
Ensure: Inverted index I

1: Initialize empty index I
2: for each genome (Gi, yi) ∈ D do
3: Extract all tokens: Ti ← Tokenize(Gi,V)
4: for each unique token t ∈ Ti do
5: Compute frequency: fi,t ← count(t in Gi)/|Gi|
6: Add to posting list: I[t].append((yi, fi,t))
7: end for
8: end for
9: for each token t ∈ V do

10: Estimate π̂y(t) using maximum likelihood
11: Compress posting list using Elias-Fano encoding
12: end for
13: return I

F.5 QUERY PROCESSING

G SCORING FUNCTIONS AND DEFINITIONS

G.1 REFINED SCORING FUNCTION

Definition 16 (Refined Scoring Function). The refined score for taxon y given token set T and
qualities Q is:

Srefined(y, T , Q) =
∑
t∈T

wt · q̄(t) · log
πy(t) + ϵ

π0(t) + ϵ
+ log p(y) (7)

where:

• wt is the importance weight of token t from sparsified regions

• q̄(t) is the quality weight for token t as defined in Definition 13

• πy(t), π0(t) are emission probabilities

• p(y) is the prior probability of taxon y

• ϵ = 10−6 for numerical stability
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Algorithm 5 Quality-Aware Classification Query

Require: Read (X,Q), index I, vocabulary V , threshold τ
Ensure: Predicted taxon ŷ

1: Extract tokens: T ← Tokenize(X,Q,V)
2: Initialize score accumulator: S[·]← 0
3: for each token t ∈ T with wobs(t, Q) ≥ τq do
4: Compute quality weight: ω ← wobs(t, Q)
5: Retrieve posting list: Pt ← I[t]
6: for each posting (y, π̂y(t)) ∈ Pt do
7: S[y] += ω · log π̂y(t)+ϵ

π̂0(t)+ϵ

8: end for
9: end for

10: return ŷ = argmaxy S[y]

H BENCHMARK DESIGN AND EVALUATION

H.1 EVALUATION METRICS

H.1.1 ACCURACY METRICS

Definition 17 (Hierarchical F1-Score). For taxonomic level ℓ ∈
{species, genus, family, order, phylum}:

F1ℓ = 2 · Precisionℓ · Recallℓ
Precisionℓ + Recallℓ

where precision and recall are computed over the collapsed taxonomy at level ℓ.
Definition 18 (Abundance-Weighted Accuracy).

AWA =
∑
y∈Y

ay · ⊮[ŷ = y]

where ay is the true relative abundance of taxon y.

H.1.2 CALIBRATION METRICS

Definition 19 (Expected Calibration Error).

ECE =

B∑
b=1

nb
n
|acc(b)− conf(b)|

where bins b partition predictions by confidence, acc(b) is the accuracy in bin b, and conf(b) is the
mean confidence.

I ADDITIONAL MATHEMATICAL DETAILS

I.1 COMPUTATIONAL COMPLEXITY ANALYSIS

Proposition 20 (Computational Complexity). The per-read computational complexities are:

• MetaTrinity: O(m · k) for seeding plus O(k log k) for chaining, where k is the number of
k-mer matches

• HighClass: O(|T |) for token extraction plus O(|T |) for hash lookups

where |T | is the number of tokens (typically m/10 for average token length 10).

Note: The claimed O(mn) complexity for alignment is pessimistic; modern aligners use indexing to
achieve sublinear complexity in practice. Our speedup comes primarily from eliminating the constant
factors in alignment operations, not from asymptotic improvements.
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Algorithm 6 Greedy Token Vocabulary Learning

Require: Training corpus D, vocabulary size V , regularization λ
Ensure: Token vocabulary V∗

1: Initialize V ← ∅
2: Compute base tokens from single characters: T0 ← Σ
3: while |V| < V do
4: t∗ ← None, ∆∗ ← −∞
5: for each candidate token t ∈ T0 ∪Merges(V) do
6: Compute mutual information: I(t;Y ) =

∑
y,t′ P (t

′, y) log P (t′,y)
P (t′)P (y)

7: Compute quality entropy: H(t|Q) = −
∑

q P (q)
∑

t′ P (t
′|q) logP (t′|q)

8: Compute gain: ∆J (t) = I(t;Y )− λH(t|Q)
9: if ∆J (t) > ∆∗ then

10: t∗ ← t, ∆∗ ← ∆J (t)
11: end if
12: end for
13: V ← V ∪ {t∗}
14: Update corpus statistics with new token t∗
15: end while
16: return V∗ ← V

Proof. The analysis depends heavily on implementation details:

MetaTrinity:

• Uses FM-index for efficient k-mer lookup: O(m) for a read of length m

• Seeding finds k matches: O(mk) operations

• Chaining via dynamic programming: O(k log k)

• However, constant factors are large due to index traversal and memory access patterns

HighClass:

• Token extraction via greedy matching: O(m)

• Hash lookups: O(|T |) with good expected case

• Scoring: O(|T | · |C|) where |C| is small

• Better cache locality due to smaller working set

The 4.2× empirical speedup comes from eliminating expensive operations and improving cache
efficiency, not from asymptotic improvements.

I.2 GREEDY TOKEN LEARNING ALGORITHM

I.3 TOKEN VOCABULARY PROPERTIES

We leverage the pre-trained QA-Token vocabulary (Gollwitzer et al., 2025), which achieves 0.917 F1
on genomic benchmarks through:

• PPO-based reinforcement learning with multi-objective reward R =
∑

j λjR̂j

• Quality-aware merge scoring with learned sensitivity η ≈ 1.8

• Convergence to 32,000 tokens balancing expressiveness and statistical efficiency

Proposition 21 (Vocabulary Sufficiency). The QA-Token vocabulary with V = 32, 000 tokens
satisfies:
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1. Coverage: > 99.8% of genomic sequences can be tokenized without OOV tokens

2. Discrimination: Average mutual information I(t;Y ) > 0.12 bits per token

3. Efficiency: Average token length 10.3 bp yields compression ratio 0.097

Our theoretical framework analyzes classification performance given this fixed vocabulary, establish-
ing generalization and consistency guarantees independent of vocabulary learning.

I.4 MATHEMATICAL TREATMENT OF TOKEN DEPENDENCIES

Theorem 22 (Dependency Characterization). Token sequences from genomic reads exhibit three
dependency structures:

1. Local Overlap: Adjacent tokens share ℓ ∈ [1,min(|ti|, |tj |)− 1] positions

2. Sequential Correlation: Autocorrelation ρ(k) ≈ 0.7k decays exponentially

3. Quality Clustering: Error positions follow Markov chain with transition probability p01 =
0.03

Theorem 23 (Concentration Under Dependencies). Despite dependencies, token scores concentrate
via three mechanisms:

1. Bounded Contributions: Each token contributes | log πy(t)| ≤M = 5 to total score

2. Exponential Mixing: α(ℓ) ≤ 2.3e−0.15ℓ ensures finite dependency radius

3. Vocabulary Redundancy: Multiple tokens capture similar patterns, providing robustness

These properties guarantee concentration with effective variance (1+2C/γ) ≈ 2.3× the independent
case.

The concentration results (Theorem 6, Lemma 7, Theorem 8) establish that HighClass achieves robust
classification despite token dependencies through principled mathematical design.

I.5 SAMPLE COMPLEXITY ANALYSIS

Theorem 24 (Parameter Estimation Complexity). For emission probability estimation with error ϵ
and confidence 1− δ:

nrequired = O

(
|Y| · |V| · log(|Y| · |V|/δ)

ϵ2

)
(8)

≈ O
(
3.2× 106 · log(3.2× 106/δ)

ϵ2

)
(9)

for |Y| = 100 taxa and |V| = 32, 000 tokens.

Proposition 25 (Practical Sample Reduction). The effective sample complexity reduces through:

1. Sparsity: Only ≈ 5% of token-taxon pairs have non-zero probability

2. Regularization: Laplace smoothing with λ = 10−6 handles rare events

3. Transfer: Pre-trained vocabularies provide initialization

4. Hierarchy: Taxonomic structure enables parameter sharing

These factors reduce practical requirements by ≈ 20×, enabling training with n ≈ 106 samples.
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I.6 INFORMATION-THEORETIC ANALYSIS

Theorem 26 (Information Content). The token-based representation preserves classification-relevant
information:

I(T ;Y ) ≥ I(X;Y )−H(Y |T , X) (10)
≥ 0.89 · I(X;Y ) (11)

where empirical estimation on CAMI II yields information retention ≥ 89%.
Remark 27 (Minimax Optimality). While classical minimax bounds require independence assump-
tions violated by token dependencies, our empirical performance (85.1% F1) approaches the Bayes
error estimated at ≈ 82% for CAMI II, suggesting near-optimal classification despite theoretical
limitations.

J EMPIRICAL VALIDATION OF MIXING ASSUMPTIONS

We empirically validate the exponential α-mixing assumption on CAMI II data. Computing autocor-
relation functions for token sequences across 10,000 reads reveals exponential decay with estimated
γ ≈ 0.15, confirming our theoretical assumptions. The mixing coefficient αmix(k) ≤ Ce−0.15k with
C ≈ 2.3 provides concrete constants for our concentration bounds.

K ADDITIONAL IMPLEMENTATION DETAILS

K.1 VOCABULARY LEARNING DETAILS

The QA-Token vocabulary learning employs several optimizations: mutual information computation
uses 10% sampling to reduce corpus scanning costs, merge candidates require 100+ co-occurrences
to avoid spurious patterns, quality filtering prunes tokens with q̄ < 0.8 early, and incremental caching
minimizes redundant statistics computation. These techniques enable vocabulary learning on large
genomic corpora.

Edge cases receive principled treatment: ambiguous bases (N) act as wildcards during token extraction,
reads shorter than minimum token length are discarded with appropriate warnings, and missing quality
scores default to 0.5 representing maximum uncertainty.

K.2 IMPLEMENTATION OPTIMIZATIONS

The inverted index employs Robin Hood hashing for token-to-posting-list mapping, variable-byte
encoding for compressed taxon IDs, tiered storage placing frequent tokens in RAM, and Bloom filters
for rapid negative lookups. Query processing leverages AVX2 vectorization for quality computations,
early stopping when confidence thresholds are met, batch processing to amortize index access, and
thread pooling to minimize overhead. These optimizations collectively enable the observed 4.2×
speedup.

L THEORETICAL ASSUMPTIONS AND VALIDATION

L.1 ON THE α-MIXING ASSUMPTION

We analyze token dependencies under exponential α-mixing characterized by parameters (C, γ):
α(ℓ) ≤ Ce−γℓ.

Empirical validation on CAMI II (Appendix J) shows exponential decay with γ ≈ 0.15. Genomic
phenomena such as conserved regions, horizontal gene transfer, and repetitive elements modulate
local dependence but do not negate the observed exponential tail behavior at practical scales. Our
concentration bounds (Lemma 7) are expressed explicitly in terms of (C, γ), providing transparent
assumptions with verifiable constants.

Robustness arises from three design principles: (i) bounded per-token contributions, (ii) multi-stage
filtering that attenuates correlated false positives, and (iii) vocabulary redundancy that distributes
evidence across tokens.
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L.2 CALIBRATION OF GENERALIZATION BOUNDS

Our uniform convergence analysis (Theorem 6) yields:

R(hW )− R̂n(hW ) ≤ 2Rn(H) + 3

√
log(2/δ)

2n
,

with Rn(H) ≤ B
√

V log(2|Y|)
n . For V = 32,000, |Y| = 100, n = 106, B = 1, this gives ≤ 0.021

with probability ≥ 0.95.

Interpretation: (1) the bound is non-vacuous at practical scales; (2) sparsity (few active tokens per
read) and taxonomic hierarchy further reduce effective complexity; (3) pre-trained vocabularies and
regularization concentrate probability mass on informative tokens, sharpening constants in practice.

L.3 COMPARISON WITH K-MER METHODS

Our approach extends k-mer indexing methods (e.g., Kraken2) by using variable-length tokens. The
key differences are:

• Token length: Variable (5-50bp) vs fixed (typically 31bp)

• Quality integration: Built into tokenization vs post-hoc filtering

• Vocabulary learning: Data-driven vs combinatorial

The improvement comes primarily from the learned vocabulary capturing discriminative patterns
more effectively than fixed k-mers.

M EXTENDED EXPERIMENTAL RESULTS

M.1 TECHNICAL INTEGRATION

HighClass synthesizes advances from multiple foundational technologies. From QA-Token (Goll-
witzer et al., 2025), we adopt the quality-aware vocabulary with merge score wab = f(a,b)

f(a)f(b)+ϵf
·

((q̄ab + ϵQ)
η) and pre-trained QA-BPE-seq achieving 0.917 F1. From MetaTrinity (Gollwitzer et al.,

2023), we adapt the multi-stage architecture for efficient classification. We apply gradient-based
importance scoring inspired by sparsified genomics (Alser et al., 2024) to achieve 68% memory
reduction through principled feature selection. Our theoretical framework unifies these components
and establishes that token mapping can entirely replace alignment operations while maintaining
classification accuracy.

M.2 ROBUSTNESS ANALYSIS

HighClass demonstrates exceptional robustness to sequencing errors. At 5% error rate, accuracy de-
grades only 2.1% versus 4.3% for quality-agnostic methods, validating our quality-aware framework.
The method maintains stable performance across diverse sequencing platforms (Illumina, PacBio,
Nanopore) and varying coverage depths (0.1× to 100×).

M.3 HYPERPARAMETER ROBUSTNESS

Sensitivity analysis reveals strong robustness to hyperparameter choices:

• Performance plateaus at vocabulary size V = 32, 000 (QA-Token’s choice)

• Quality threshold τ = 0.8 proves optimal with stability across [0.7, 0.9]

• The learned weight parameter η = 1.8 is near-optimal

This insensitivity to hyperparameter variations demonstrates the method’s practical reliability.
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Table 7: Extended comparison on CAMI II benchmark. Speed = reads per second (reads/s); Memory
= gigabytes (GB); FDR = false discovery rate; Trade-off = F1 × Speed

Method F1 Score Speed Memory FDR Trade-off
(%) (reads/s) (GB) (F1 · speed)

CLARK (Ounit et al., 2015) 71.8 423,891 68.4 0.183 304k
Bracken 74.2 567,234 32.1 0.142 421k
MEGAN 77.9 8,234 12.4 0.098 64k
MetaPhlAn3 (Segata et al., 2012) 80.9 123,456 4.8 0.067 999k
MetaTrinity (Gollwitzer et al., 2023) 86.6 87,432 19.3 0.043 757k
HighClass 85.1 367,123 6.8 0.048 3,124k

Table 8: Performance across sequencing platforms (F1 scores on CAMI II)

Platform HighClass MetaTrinity Kraken2

Illumina HiSeq 85.1 86.6 70.0
Illumina MiSeq 84.7 85.9 69.2
PacBio Sequel 78.3 81.2 58.4
Oxford Nanopore 75.9 79.1 54.7

M.4 DETAILED TRADE-OFF ANALYSIS

The accuracy-runtime trade-off analysis reveals that HighClass achieves a 4.1-fold improvement in
F1/hour metric (170.2 vs MetaTrinity’s 41.2). This improvement stems from:

• 4.2× speedup from eliminating alignment operations
• 1.5% accuracy penalty from approximate token matching
• Net 3.8× improvement in accuracy-normalized throughput

M.5 ADDITIONAL BASELINE COMPARISONS

M.6 ERROR ANALYSIS

Systematic analysis of misclassified reads reveals predictable failure modes: 42% stem from closely
related species with ANI ¿ 95% where discriminative tokens are rare, 31% originate from low-quality
regions with mean q̄ < 0.7 where token extraction becomes unreliable, 18% occur in highly conserved
genomic regions lacking taxon-specific markers, and 9% arise from chimeric reads or sequencing
artifacts. These patterns suggest targeted improvements through enhanced tokenization of conserved
regions and quality-adaptive thresholds.

M.7 CROSS-PLATFORM EVALUATION
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