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A B S T R A C T

Although Density Peak Clustering (DPC) can easily locate cluster centers by detecting density peaks in its
decision graph, its allocation strategy may unadvisedly associate irrelevant points, its decision graph may
mislead the cluster center selection, and its high computational complexity 𝑂(𝑛2) shies itself away from large-
scale data. Herein, a Fast Main Density Peak Clustering Within Relevant Regions Via A Robust Decision Graph
(R-MDPC) is proposed. R-MDPC assigns points within the relevant regions to avoid the association of irrelevant
points. With the removal of regional differences and the attenuation of satellite peaks, a robust decision graph is
obtained. Moreover, based on the kNN distance of data points, R-MDPC is believed to be suitable for large-scale
data. Experimental results demonstrated the high robustness of R-MDPC’s decision graph in identifying cluster
centers, and its outstanding performance and fast running speed in recognizing complex-shaped clusters.
1. Introduction

Clustering as a problem without a unique solution is critical for data
analysis in pattern recognition, machine learning, image processing [1,
2], etc. The aim of clustering is to automatically divide similar points
into clusters. By modeling data based on clusters, the exploration of
complex data information becomes simpler [3]. Nonetheless, the iden-
tification of clusters still faces challenges due to the internal complexity
of data.

K-means [4] is a well-known clustering algorithm that minimizes
the distance between points and cluster centers to perform clustering.
It has been widely applied due to its simplicity and effectiveness.
Nevertheless, it heavily depends on the initialization of cluster centers
and may fail to identify clusters of nonconvex and nested shapes,
because points are always assigned to the nearest centers [5].

Density-based methods can effectively remedy the deficiencies of
K-means. As a classic density-based algorithm, Density-based Spatial
Clustering of Applications With Noise (DBSCAN) [6], can reconstruct
clusters of arbitrary shapes according to a specific density-connectivity
criterion. However, DBSCAN with a wide density-connectivity thresh-
old may merge the overlapping clusters when dealing with high over-
lapping clusters, while with a rigor threshold, it may lose its cluster
reconstruction ability [7].

✩ The source code of this paper is available at https://github.com/Guanjunyi/R-MDPC.
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E-mail addresses: guanjy@zjut.edu.cn (J. Guan), shengli@zjut.edu.cn (S. Li), 2512016@zju.edu.cn (J. Zhu), hxx@zjut.edu.cn (X. He), kecnu715@gmail.com

(J. Chen).

DPC proposed by Rodriguez and Laio [8] can easily separate highly
overlapping clusters by searching for density peaks as cluster centers
in its decision graph. After labeling the selected cluster centers, each
remaining point inherits the label of its nearest point of a higher density
to complete clustering. Such an easy and efficient implementation of
locating cluster centers makes DPC one of the top-performing clus-
tering methods [1,9,10]. Still, DPC’s embedded limitations may draw
itself back from the complex-shaped cluster reconstruction, real cluster
center identification, and large-scale dataset clustering:

1. DPC’s allocation strategy may unadvisedly associate irrelevant
points, triggering some irreversible ‘‘domino effect’’ [11].

2. DPC’s decision graph is not robust in identifying real cluster
centers, because it indiscriminately exhibits main density peaks
(i.e., density peaks that are real cluster centers, hereinafter, main
peaks) and satellite peaks (i.e., density peaks that are not real
centers), which shall interfere with the selection of main peaks.

3. DPC is a time-consuming algorithm with computational com-
plexity 𝑂(𝑛2) [12].

Herein, a Fast Main Density Peak Clustering Within Relevant Re-
gions Via A Robust Decision Graph (R-MDPC) is proposed to easily de-
termine real cluster centers and accurately reconstruct complex-shaped
clusters. The main contributions of R-MDPC are as follows:
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1. A relevance-based allocation strategy that only associates points
within relevant regions (i.e., a region composed of relevant
points) is proposed, which can effectively avoid irrelevant points
being grouped together.

2. A robust decision graph that easily identifies real cluster centers
by highlighting main peaks and reducing the interference of
satellite peaks is obtained.

3. R-MDPC is mainly based on the kNN distance of data points, and
it can run fast by applying fast kNN search technology.

The rest paper is composed as follows: Section 2 gives a brief
ntroduction to DPC and introduces some improved works. Section 3
ainly focuses on the proposed method. Section 4 is the experiment

nd discussion. Section 5 ends the paper with a conclusion.

. DPC and its improved works

.1. The DPC algorithm

Given a dataset of 𝑛 points 𝑋 = {𝑥1, 𝑥2,… , 𝑥𝑛 ∣ 𝑥𝑖 ∈ R𝑚}, 𝑋 ∈ R𝑚×𝑛,
for each point 𝑥𝑖, DPC first estimates its local density 𝜌𝑥𝑖 as in Eq. (1),
where 𝑑𝑥𝑖𝑥𝑗 is the Euclidean distance between points 𝑥𝑖 and 𝑥𝑗 , and
‘‘cutoff distance’’ 𝑑𝑐 is a user-specified parameter. Subsequently, for
point 𝑥𝑖 (except for 𝑥𝑖 with the highest density), DPC calculates its
distance 𝛿𝑥𝑖 from the nearest higher density point as in Eq. (2). Then,
for the highest density point 𝑥𝑖, DPC gives 𝛿𝑥𝑖 = max𝑥𝑖≠𝑥𝑗

(

𝑑𝑥𝑖𝑥𝑗
)

.

𝜌𝑥𝑖 =
∑

𝑥𝑗∈𝑋
𝜒(𝑑𝑥𝑖𝑥𝑗 − 𝑑𝑐 ), 𝜒(𝛥) =

{

1 𝛥 < 0
0 𝛥 ⩾ 0

(1)

𝛿𝑥𝑖 = min
𝑥𝑗∶𝜌𝑥𝑗 >𝜌𝑥𝑖

(

𝑑𝑥𝑖𝑥𝑗
)

(2)

According to the assumption that cluster centers are density peaks
that are characterized by a higher density 𝜌 than their surrounding
neighbors and by a relatively large distance 𝛿 from points with higher
densities [8], cluster centers are easily located by selecting density
peaks (namely points with large 𝜌-𝛿) in a decision graph (i.e., a plot
of 𝛿𝑥𝑖 as a function of 𝜌𝑥𝑖 for each point 𝑥𝑖). After cluster centers
are selected and given unique labels, each of the remaining points is
allowed to inherit the label of its nearest higher density point. Once
each point obtains its label, clustering completes.

DPC’s contribution is remarkable due to its capacity to locate clus-
ter centers without prior knowledge, however, in addition to high
computational complexity, its drawbacks are also obvious.

2.1.1. Unreliability of allocation strategy
Consider 𝑂𝑟(𝑥𝑖) as a 𝑚-dimensional sphere with a radius of 𝑟 and a

center of point 𝑥𝑖, as in Eq. (3). For point 𝑥𝑖, we introduce the concept
of ‘‘domain’’, (denoted as 𝐷𝑥𝑖 ), namely, the maximum sphere 𝑂𝑟(𝑖) that
makes point 𝑥𝑖 be the density maximum within it, as in Eq. (4), where
̂ is the domain radius of point 𝑥𝑖.

𝑂𝑟(𝑥𝑖) =
{

𝑥𝑧 ∈ R𝑚 |

|

|

𝑑2𝑥𝑖𝑥𝑧 ⩽ 𝑟2
}

(3)

𝐷𝑥𝑖 = 𝑂�̂�(𝑥𝑖), �̂� = arg max
𝑟∶max𝑥𝑗∈𝑂𝑟 (𝑥𝑖 )(𝜌𝑥𝑗 )=𝜌𝑥𝑖

(𝑟) (4)

According to DPC’s allocation strategy, for point 𝑥𝑖, its directly
associated point 𝑥𝑗 (the nearest higher density point) should be outside
its domain 𝐷𝑥𝑖 , since 𝜌𝑥𝑗 > 𝜌𝑥𝑖 . Note that, the size of 𝐷𝑥𝑖 is solely
determined by the unknown density distribution surrounding 𝑥𝑖. In
other words, the size of 𝐷𝑥𝑖 is uncertain. Therefore, there may be
some large 𝐷𝑥𝑖 that is far beyond the local area of 𝑥𝑖 and even cover
some points in other clusters. In such case, some nearest higher density
points outside the 𝐷𝑥𝑖 may fall in other clusters. So point 𝑥𝑖 may be
associated with the nearest higher density point of another cluster,
2

thereby, leading to a misclassification.
Fig. 1(a) illustrates the limitation of DPC’s allocation strategy in
dealing with the classic Jain dataset [13], with two crescent-shaped
clusters. As shown, point 𝑥𝑎 within the upper-side cluster has a large
domain 𝐷𝑥𝑎 that extends far beyond its local area and even covers some
points in the under-side cluster. According to DPC’s allocation strategy,
𝑥𝑎 must be associated with the nearest higher-density point 𝑥𝑏 within
the under-side cluster, leading to the misclassification of point 𝑥𝑎.
Besides, points in the upper-side cluster that inherit the label of 𝑥𝑎 are
also misclassified. Therefore, DPC’s allocation strategy may unadvisedly
associate irrelevant points, leading to some unpleasant chain errors.

2.1.2. Unreliability of decision graph
DPC’s decision graph can be considered as a detector for density

peaks with the top largest 𝛾 values in global, where 𝛾 = 𝜌 × 𝛿. This
is unreliable, because a cluster is usually a local area distributed on
the dataset, so it can only guarantee its cluster center has the largest
𝛾 value within its local area, rather than in global. It is unreasonable
for the decision graph to detect cluster centers by globally comparing
𝛾 values, since there may be some cluster centers with local maximum
𝛾 values but are not conspicuous in global.

Fig. 1(b) presents DPC’s decision graph on the Jain dataset. As
shown, cluster center (𝑥𝑐) of the upper-side sparse cluster all fall in
the left-side of the decision graph due to the low density. In contrast,
point 𝑥𝑒 with a large 𝛾 value falls in the intuitive cluster center area.
Consequently, point 𝑥𝑑 and point 𝑥𝑒 with the largest global 𝛾 are
elected as cluster centers, while the upper-side cluster has no cluster
enter, leading to a poor clustering result, see ‘‘result i’’ in Fig. 1(c).
owever, even if the cluster center is selected correctly, DPC will still
ause incorrect allocation due to the limitation of its allocation strategy,
ee ‘‘result ii’’ Fig. 1(d).

.2. Improved works

Numerous methods have been proposed to improve DPC. To im-
rove the allocation strategy, Xie, et al. [11] designed a kNN-based
llocation strategy that assigns non-center points within their 𝑘 near-
st neighbors; Liu, et al. [14] proposed a shared-nearest-neighbor-
ased allocation strategy that analyzes the association between points
ia counting their shared neighbors; Pizzagalli, et al. [7] proposed a
hortest-path-based allocation strategy that associates points according
o the properties of paths between them; Guo, et al. [15] designed a
raph-based allocation strategy for local centers with estimating the
onnectivity information between local centers; Ding, et al. [16] em-
loyed the variance between points to improve the allocation strategy.
hese improved allocation strategies are more powerful in reconstruct-

ng complex-shaped clusters, but they are still time-consuming.
To improve the decision graph, Du, et al. [17] replaced density with

NN-based density. This reduces the density difference between density
eaks within sparse and dense clusters, so density peaks of sparse
lusters can stand out in the decision graph. Liu, et al. [14] proposed
new definition of distance 𝛿 by considering the information of the

hared-nearest neighbors, which gives density peaks within sparser
lusters larger 𝛿 values to make them conspicuous in the decision
raph. However, similar to DPC’s decision graph, density peaks are
ndiscriminately shown, that is to say, main peaks and satellite peaks
atter equally in these decision graphs, hindering the correct selection

f main peaks.
Some other works were developed to speed up DPC to improve

ts suitability for large-scale data. In [18], a density-grid-based clus-
ering is proposed to reduce computational complexity by gridding;
ai et al. [19] improved the speed of DPC by combining K-means; Xu
t al. [20] proposed a fast density peaks clustering algorithm based on
re-screening; Chen et al. [12] applied the cover tree algorithm [21] to
ast calculate density and distance with a lower complexity 𝑂(𝑛 log(𝑛)).

However, the clustering accuracy of these speed-up methods is similarly

unsatisfying as DPC.
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Fig. 1. The limitations of DPC on the Jain dataset.
Fig. 2. The clustering process of the proposed R-MDPC algorithm.
Some methods also aim to abandon the decision graph by au-
tomatically merging sub-clusters into clusters according to a special
merge threshold [22–24] or by setting the number of cluster cen-
ters in advance [25]. Here we mainly focus on the improvement of
decision-graph-based DPC.

3. The R-MDPC algorithm

This section provides a detailed introduction to R-MDPC. Fig. 2
presents its flow chart: (1) the generation of relevant regions; (2) the
finding of main peaks within relevant regions.

3.1. The generation of relevant regions

To avoid the association of irrelevant points like DPC’s allocation
strategy, we introduce a concept of ‘‘relevant region’’ as a constraint
condition. A relevant region is a density-connected area with multiple
(or a single) single-peak clusters (i.e., a cluster with only one density
peak [26]). Relevant regions can be obtained by: first, estimating the lo-
cal density of data points and identifying the single-peak clusters; then,
merging density-connected single-peak clusters into relevant regions.

3.1.1. The identification of single-peak clusters
A single-peak cluster is a density area led by one density peak [27].

So, to generate single-peak clusters, we need to detect density peaks,
and then, associate non-peak points to density peaks. We give clear
definitions of density peak and single-peak cluster as in Definitions 1
and 2.

Definition 1. A point 𝑥𝑖 is a density peak, denoted as 𝑝 ∈ 𝑃 , if it
possesses the highest density within its neighborhood 𝑁𝑘(𝑥𝑖), i.e., 𝜌𝑥𝑖 >
max (𝜌 ). 𝑃 is a set of all density peaks of 𝑋.
3

𝑥𝑗∈𝑁𝑘(𝑥𝑖) 𝑥𝑖
Definition 2. A single-peak cluster, denoted as 𝑆, consists of one
density peak, and all non-peak points associated with that density peak.
Herein, 𝑆(𝑝) represents a single-peak cluster leading by density peak 𝑝.

To reduce computational complexity, we employ a kNN-based den-
sity estimation method to calculate the local density of the data, as
in Eq. (5), where parameter 𝜆 is employed to control the density
distribution.

𝜌𝑥𝑖 =
⎛

⎜

⎜

⎝

∑

𝑥𝑗∈𝑁𝑘(𝑥𝑖)
𝑑𝜆𝑥𝑖𝑥𝑗

⎞

⎟

⎟

⎠

−1

(5)

As mentioned in Section 2.1.1, DPC may directly associate two
irrelevant points that are not in the same local area. To avoid such
incident, we employ the local density peak clustering [26]—each point
𝑥𝑖 is only allowed to be associated with the nearest higher density neighbor
within its neighborhood 𝑁𝑘(𝑥𝑖), as our local allocation strategy. The
local allocation strategy links all non-peak points with density peaks,
while density peaks remain unassociated with each other due to the
absence of higher-density neighbors within their neighborhoods. Then,
single-peak clusters are generated.

3.1.2. Merging of single-peak clusters
A relevant region (hereinafter, a region, denoted as 𝛺) is a density-

connected area composed of connected single-peak clusters. The ‘‘con-
nectivity’’ between single-peak clusters is defined as:

Definition 3. For single-peak clusters 𝑆(𝑝𝑎) and 𝑆(𝑝𝑏), if ∃𝑥𝑗 ∈
𝑆(𝑝𝑏), 𝑥𝑖 ∈ 𝑁𝑘𝑏 (𝑥𝑗 ), 𝑥𝑗 ∈ 𝑁𝑘𝑏 (𝑥𝑖), then, 𝑆(𝑝𝑎) and 𝑆(𝑝𝑏) are directly
connected, denoted as 𝑆(𝑝𝑎) ↔ 𝑆(𝑝𝑏). This is a chain process, e.g., if
𝑆(𝑝𝑎) ↔ 𝑆(𝑝𝑏), 𝑆(𝑝𝑐 ) ↔ 𝑆(𝑝𝑏), then, 𝑆(𝑝𝑎) and 𝑆(𝑝𝑐 ) are indirectly
connected, denoted as 𝑆(𝑝 ) ↭ 𝑆(𝑝 ).
𝑎 𝑐
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where a small-value 𝑘𝑏 = ⌈

𝑘
2 ⌉ is introduced to effectively detect the

mutual proximity between intersecting single-peak clusters, and ⌈⋅⌉ is
a round upper function. Therefore, a region 𝛺 is defined as in:

Definition 4. A relevant region 𝛺 is composed of 𝑛𝛺 connected single-
peak clusters, i.e., 𝛺 =

{

𝑆1, 𝑆2,… , 𝑆𝑛𝛺

}

,∀𝑆𝑖, 𝑆𝑗 ∈ 𝛺,𝑆𝑖 ↔ 𝑆𝑗 (or
𝑆𝑖 ↭ 𝑆𝑗).

Thus, by merging connected single-peak clusters, the relevant re-
gions are generated.

3.2. Finding main peaks within relevant regions

After obtaining relevant regions, clustering is performed by finding
main peaks within relevant regions. Because a cluster should not be
across different relevant regions (i.e., to own irrelevant points). Thus,
the cluster center detection turns into the detection of density peaks
within relevant regions.

3.2.1. Regional density normalization
As discussed in Section 2.1.2, DPC’s decision graph consistently

directs the selection of density peaks in high-density regions as cluster
centers, inadvertently leaving out some potential cluster centers in
low-density regions. This limitation arises from the density differences
between regions. So, to thoroughly eliminate the differences of points
among different regions, we normalize 𝜌 values of each relevant region,
called the regional density normalization:

𝜌(1)𝑥𝑖
=

𝜌𝑥𝑖
max𝑥𝑗∈𝛺(𝜌𝑥𝑗 )

, 𝑥𝑖 ∈ 𝛺 (6)

By this, cluster centers in low-density relevant regions can be more
intuitively seen in the decision graph.

3.2.2. The 𝛿-calculation of density peaks
According to the center assumption of DPC [8], the ‘‘density peak’’

attribute is a necessary but not sufficient condition for a cluster center.
That is to say, not all density peaks can be selected as cluster centers,
while all non-peak points will never be cluster centers. To better
distinguish density peaks that can represent cluster centers from those
that cannot, we define ‘‘main peak’’ and ‘‘satellite peak’’ [27], as in:

Definition 5. Given a cluster 𝐶𝑙, if density peak 𝑝 ∈ 𝐶𝑙 own the
highest density, then, 𝑝 is the main peak of 𝐶𝑙, i.e., 𝜌𝑝 = max𝑝′∈𝐶𝑙(𝜌𝑝′ ),
therwise, 𝑝 is a satellite peak.

To detect density peaks within relevant regions, for each density
eak 𝑝𝑖 (except for 𝑝𝑖 with the highest density in its region), we define
ts distance 𝛿𝑝𝑖 from the nearest higher density point within its own
egion, as in Eq. (7).

𝑝𝑖 = min
𝑝𝑖 ,𝑝𝑖∈𝛺, 𝜌𝑝𝑗 >𝜌𝑝𝑖

(

𝑑𝑝𝑖𝑝𝑗
)

(7)

hen, for every highest density peak 𝑝𝑖 within its regions, we give
𝑝𝑖 = 3

2 × max𝑝∶𝜌𝑝≠∅(𝛿𝑝). Conversely, for non-peak points that are not
elected as centers, 𝛿 values are set to 0 (i.e., 𝛿𝑥𝑖 = 0 if 𝑥𝑖 ∉ 𝑃 ), which

effectively eliminates interference from non-peak centers during cluster
center selection.

3.2.3. The satellite peak attenuator
To further reduce the interference from satellite peaks and highlight

the significance of main peaks in the decision graph, we introduce a
satellite peak attenuator, according to:

Assumption 1. Unlike main-peak clusters (composed of a single-
peak cluster led by a main peak), satellite-peak clusters (composed of
a single-peak cluster led by a satellite peak) are more prone to shar-
ing high-density borders with surrounding higher-density single-peak
4

clusters.
Discussion. Consider a cluster composed of one main-peak cluster and
several satellite-peak clusters. Within the cluster, the main peak has no
higher single-peak clusters surrounding it, while a satellite-peak cluster
may have one or more. Therefore, compared to the main-peak cluster, a
satellite-peak cluster is more likely to share high-density border points
with surrounding higher single-peak clusters.

For a single-peak cluster 𝑆(𝑝𝑖), its surrounding higher-density single-
peak clusters (denoted as 𝐻(𝑆(𝑝𝑖)) is defined in Eq. (8).

𝐻(𝑆(𝑝𝑖)) =
{

𝑆(𝑝𝑗 )
|

|

|

𝑆(𝑝𝑗 ) ↔ 𝑆(𝑝𝑖), 𝜌𝑝𝑗 > 𝜌𝑝𝑖 , 𝑝𝑖, 𝑝𝑗 ∈ 𝑃
}

(8)

hen, the ascent-border points of 𝑆(𝑝𝑖) (denoted as �̂�𝑆(𝑝𝑖)), i.e., the
order points between 𝑆(𝑝𝑖) and its surrounding higher-density single-
eak clusters 𝐻𝑆(𝑝𝑖), is defined as Eq. (9).

̂ (𝑆(𝑝𝑖)) = 𝑁𝑘𝑏 (𝑆(𝑝𝑖)) ∩𝑁𝑘𝑏 (𝐻(𝑆(𝑝𝑖))) (9)

here, 𝑁𝑘𝑏 (𝑆(𝑝𝑖)) indicates the set of 𝑘𝑏 nearest neighbors of all points
n cluster 𝑆(𝑝𝑖), i.e., 𝑁𝑘𝑏 (𝑆(𝑝𝑖)) =

⋃

𝑥∈𝑆(𝑝𝑖) 𝑁𝑘𝑏 (𝑥).
On this basis, we introduce ‘‘the highest ascent-border peak ratio’’,

.e., the ratio of a density peak 𝑝𝑖’s highest ascent-border density to its
ensity, denoted as 𝜙𝑝𝑖 , as in Eq. (10). While, for �̂�(𝑆(𝑝𝑖)) = ∅, we give
𝑝𝑖 = 0.

𝑝𝑖 =
1
𝜌𝑝𝑖

× max
𝑥∶𝑥∈�̂�(𝑝𝑖),𝑥∉𝑆(𝑝𝑖)

(𝜌𝑥), ∃�̂�(𝑆(𝑝𝑖)) ≠ ∅ (10)

Assumption 1 implies that satellite peaks are usually easier to obtain
arger ascent-border peak ratio 𝜙 than main peaks. As shown in Fig. 3,

two clusters are composed of three density peaks (main peak 𝐺, satellite
peak 𝐿, and main peak 𝑄), where main peak 𝐺 shares its ascent-
border point 𝐽 with the higher-density satellite peak 𝐿, satellite peak
𝐿 shares its ascent-border point 𝑂 with the higher-density main peak
𝑄, while main peak 𝑄 with density maximum has no other higher-
density peak to share its border point. According to Eq. (10), we have:
𝜙𝐿 = 𝑑𝑂𝑃

𝑑𝐿𝑀
> 𝜙𝐺 = 𝑑𝐽𝐼

𝑑𝐺𝐻
> 𝜙𝑄 = 0. This example verifies that a satellite

peak can usually obtain a relatively larger ascent-border peak ratio 𝜙
value than a main peak, since it is usually close to higher-density peaks.
While a main peak has to find one beyond its cluster, which may lead
to a relatively low-density border to obtain a small ascent-border peak
ratio.

Based on this, for each density peak 𝑝𝑖, we design a satellite peak
attenuator (as in Eq. (11)), where, function ‘‘max(⋅)’’ is used to ensure
inal 𝛿(1)𝑝𝑖 ⩾ 0.

(1)
𝑝𝑖

= 𝛿𝑝𝑖 × max(0, 1 − 𝜙𝑝𝑖 ) (11)

The satellite peak attenuator can reduce the distance values of
satellite peaks with greater probability while affecting main peaks less,
thereby, reducing the interference of satellite peaks and highlighting
main peaks in the decision graph. For non-peak point 𝑥, we give 𝛿(1)𝑥 = 0
(since, 𝛿𝑥 = 0 if 𝑥 ∉ 𝑃 ).

Notably, Eq. (11) implies that the larger difference of the 𝜙 values
between satellite peaks and main peaks, the stronger the attenuation
of satellite peaks. This helps in obtaining a more robust decision graph
that strongly highlights main peaks while reducing the interference of
satellite peaks powerfully.

Since the calculation of 𝜙 is based on the difference between border
and peak density, the density distribution can directly impact 𝜙 value.
An over-gentle density distribution will make little difference between
border and peak density, so all 𝜙 values tend are to 1; while an over-
steep density distribution will lay an opposite impact, so all 𝜙 values
are tend to 0. In such cases, an over-small 𝜙 difference will make the
decision graph have low performance in distinguishing between main
peaks and satellite peaks. Therefore, a suitable density distribution (a
large 𝜙 value difference between main peaks and satellite peaks) is
necessary for a robust decision graph.

To obtain a suitable density distribution in dealing with various

datasets, we define the gentleness degree as the Coefficient of Variation
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(the ratio of standard deviation to mean) [28] of the density values, as
in Eq. (12), where �̄� is the average density.

𝐶𝑉 = 1
�̄�

√

√

√

√

1
𝑛
×

𝑛
∑

𝑖=1
(𝜌𝑥𝑖 − �̄�)2 (12)

y inputting parameter 𝑐𝑣 (a 𝐶𝑉 index) and 𝑘, the density estimation
Eq. (5)) can be obtained by automatically tuning parameter 𝜆(𝜆 > 0)
ntil the 𝐶𝑉 is close to 𝑐𝑣 as:

= arg min
𝜆∶𝜆>0

(|𝐶𝑉 − 𝑐𝑣|) (13)

As a result, R-MDPC can controllably obtain a robust decision graph
y adaptively estimating density values to meet a suitable gentleness
egree.

.3. Time complexity

Algorithm 1 and 2 combine to form the pseudocode of R-MDPC,
here the total number of points is set to 𝑛, the number of neighbors

o 𝑘 (default is ⌈

√

𝑛⌉), the 𝐶𝑉 index 𝑐𝑣 (default is 1), and the total
number of single-peak clusters (density peaks) to 𝑛𝑝.

On the basis of the kNN distance matrix calculated by fast kNN
search technology [21,29] with time complexity 𝑂(𝑛 log(𝑛)), R-MDPC
performs clustering in two steps:

Step 1: the generation of relevant regions (Algorithm 1) that con-
sists of the density calculation with 𝑂(𝑛𝑡) (Line 1∼8), the generation
of single-peak clusters with 𝑂(𝑛�̃�) (Line 9∼18), and the generation of
relevant regions with 𝑂(𝑛𝑘𝑏) = 𝑂( 12 𝑛𝑘) (Line 19∼24). The parameter
�̃� (an average concept) signifies that the �̃�th neighbor is the nearest
higher density point of a point. Notably, the majority of data points
can pinpoint a considerably closer higher density point, i.e., �̃� ≪ 𝑘.
Thus, the overall time complexity of 1 is 𝑂(𝑛𝑡+ 𝑛�̃�+ 1

2 𝑛𝑘) = 𝑂(𝑛𝑡+ 𝑛𝑘).
Step 2: the clustering within relevant regions (Algorithm 2) that

onsists of the calculation of 𝜌(1) and 𝛿(1) within relevant regions with
𝑂(𝑛𝑛𝑝) (Line 1∼13) and the selection of cluster centers and allocation
of non-center points with 𝑂(𝑛) (Line 14∼16). So, the overall time
complexity of 2 𝑂(𝑛𝑛𝑝 + 𝑛) = 𝑂(𝑛𝑛𝑝).

Therefore, the overall time complexity of R-MDPC is 𝑂(𝑛 log(𝑛)+𝑛𝑡+
𝑛𝑘 + 𝑛𝑛𝑝), where for 𝑡 =, 𝑘, and 𝑛𝑝 are all far less than 𝑛.

4. Experiments

4.1. Experimental set up

Comparison Algorithms: DPC [8] and six state-of-the-art DPC
variant algorithms (SNN-DPC [14], FastDPeak [12], SSSP-DPC [7],
FKNN-DPC [11], DPC-CE [15], DPCV [16]). In terms of the parameter
setting, we choose the most effective settings from a complete spectrum
of possible configurations. To ensure a fair evaluation, we adopt the
top-𝛾 method to select centers in the decision graph, i.e., to select 𝑁𝐶
5

Algorithm 1 R-MDPC: the generation of relevant regions
Input: dataset 𝑋, 𝑘 nearest neighbor information 𝑁𝑘, and 𝐶𝑉 index
𝑐𝑣.
Output: relevant regions 𝛺, single-peak clusters 𝑆, density peaks 𝑃 ,
and density 𝜌.
1: 𝜆 ← 0
2: 𝑡 ← 0 // 𝑡 is used to record the number of iterations of density calculation.
3: while 𝐶𝑉 ⩾ 𝑐𝑣 do
4: 𝜆 ← 𝜆 + 0.1
5: 𝑡 ← 𝑡 + 1
6: for each point 𝑥 ∈ 𝑋 do
7: calculate 𝜌𝑥 // Eq. (5)
8: end for
9: calculate 𝐶𝑉 // Eq. (12)

10: end while
11: obtain 𝜌 =

{

𝜌1 , 𝜌2 , ..., 𝜌𝑛
}

12: for each point 𝑥 ∈ 𝑋 do
13: for 𝑢 = 1 up to 𝑘 do
14: if 𝜌𝑥 < 𝜌𝑥𝑢 // 𝑥𝑢 represents point 𝑥’s 𝑢th nearest neighbor. then
15: points 𝑥 and 𝑥𝑢 are in the same single-peak cluster.
16: break
17: end if
18: end for
19: end for
20: obtain 𝑆 =

{

𝑆1 , 𝑆2 , ..., 𝑆𝑛𝑝

}

and 𝑃 =
{

𝑝1 , 𝑝2 , ..., 𝑝𝑛𝑝
}

// 𝑛𝑝: the numbers of density
peaks.

21: for each pair of single-peak clusters 𝑆𝑎 , 𝑆𝑏 ∈ 𝑆 do
22: if 𝑆𝑎 and 𝑆𝑏 is connected according to Definition 3 then
23: 𝑆𝑎 and 𝑆𝑏 are in the same relevant region
24: end if
25: end for
26: return 𝛺 =

{

𝛺1 , 𝛺2 , ..., 𝛺𝑛𝛺

}

// 𝑛𝛺 means the number of relevant regions generated

Algorithm 2 R-MDPC: finding main peaks within relevant regions.
Input: dataset 𝑋, 𝑘 nearest neighbor information 𝑁𝑘, relevant region set 𝛺, single-peak
cluster set 𝑆, density peak set 𝑃 , and density set 𝜌
Output: clustering result
1: for each point 𝑥 ∈ 𝑋 do
2: 𝛿𝑥 = 0
3: end for
4: for each density peak 𝑝 ∈ 𝑃 do
5: calculate 𝛿𝑝 // Eq. (7)
6: end for
7: obtain 𝛿 =

{

𝛿𝑥1 , 𝛿𝑥2 , ..., 𝛿𝑥𝑛
}

8: for each point 𝑥 ∈ 𝑋 do
9: calculate 𝜌(1)𝑥𝑖 // Eq. (6)
10: end for
11: for each density peak 𝑝 ∈ 𝑃 do
12: calculate 𝛿(1)𝑝 // Eq. (11)
3: end for
4: select cluster centers in the decision graph.
5: associate each non-center point with its nearest higher density point within its own

relevant region.
6: return clustering result

density peaks with the highest 𝛾 values as centers (𝑁𝐶 represents the
true number of clusters).
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Fig. 4. The clustering results on the Jain dataset by different DPC-based algorithm.
Table 1
Datasets.

Dataset Instances Attributes Clusters Source

Agg 788 2 7 [13]
Jain 373 2 2 [13]
Lineblobs 266 2 3 [30]
R15 600 2 15 [13]
Flame 240 2 3 [13]
S3 5000 2 15 [13]
AggFlame 1028 2 9 [–]
Atom 800 3 2 [31]
Chainlink 1000 3 2 [31]

Iris 150 4 3 [32]
Wine 178 13 3 [32]
Seeds 210 7 3 [32]
Parkinsons 195 22 2 [32]
Ecoli 336 7 8 [32]
Movementlibras 360 90 15 [32]
Segmentation 2310 19 7 [32]
Drivepoints 606 16 4 [32]
YTF 10 000 10 41 [33]
REUTERS 10 000 10 4 [34]
MNIST 10 000 500 10 [35]
USPS 11 000 10 10 [36]
OlivettiFaces 400 92 × 112 40 [37]
Immunecells 8681 2 20 [7]

Datasets: nine different types of synthetic datasets (seven 2-dimen-
sion and two 3-dimension datasets) are selected to evaluate the perfor-
mance of R-MDPC in recognizing various complex-shaped clusters and
the robustness of R-MDPC’s decision graph in detecting the real cluster
centers. Besides, fourteen real-world datasets are selected to further
evaluate the performance of R-MDPC on high-dimensional and large
real-world datasets. More detailed information is listed in Table 1.

Data preprocessing: the min–max normalization method [38] is
applied to normalize datasets to reduce the influence of different met-
rics in different dimensions.

Machine configuration: experiments are conducted by using Mat-
lab (r2017b) on MacBook Pro with 2.9 GHz Intel Core i5, 8 G RAM.

Evaluation metric: the popular Adjusted Rand Index (𝐴𝑅𝐼) [39],
Adjusted Mutual Information (𝐴𝑀𝐼) [39], Fowlkes–Mallows Index
(𝐹𝑀𝐼) [40], and Accuracy (𝐴𝐶𝐶) are used to evaluate the clustering
performance. Besides, the F1-score [41] is used to evaluate the center
detection performance, and the F1-score-based Decision Graph Clarity
Index (𝐷𝐺𝐶𝐼) [42] is applied to evaluate the clarity of decision graphs.
6

4.2. Experiments on synthetic datasets

Quantitative comparisons are conducted on nine different synthetic
datasets. Figs. 4 to 12 present a comprehensive comparison of cluster-
ing results and decision graph clarity.

Fig. 4(a) illustrates that DPC, SSSP-DPC, SNN-DPC, and DPC-CE
all incorrectly identified two cluster centers within the dense under-
side cluster. The distribution of the upper-side cluster is excessively
sparse compared to the under-side, so its low-density center failed to
be included in the two points with the top highest 𝛾 values by the top-
𝛾-method, as shown in Fig. 4(b) (the decision graphs). As a result, with
no cluster center, the upper-side cluster can only be assigned to the
under-side cluster, thereby, leading to a poor result.

In contrast, R-MDPC successfully identified cluster centers. It treated
clusters as different regions, and by applying the regional density
normalization, the density difference between regions was removed.
So, the low-density center of the upper-side cluster stands out in the
decision graph and is successfully selected as a cluster center.

The gray lines in Fig. 4(a) depict the data associations generated
during the assignment. R-MDPC, by distinguishing regions in advance,
ensures that no association between data points exists in different re-
gions. This allows R-MDPC to effectively avoid erroneously associating
unrelated data.

In Fig. 4(c), the decision graph performance is compared. As shown,
R-MDPC exhibits the decision graph with the highest 𝐷𝐺𝐶𝐼 score,
indicating that identifying and selecting the correct cluster center in
R-MDPC’s decision graph is easier compared to other decision graphs.

Fig. 5 illustrates the clustering results on the Agg dataset of seven
clusters. In Fig. 5(a), the top-𝛾 method applied to DPC accurately identi-
fied six cluster centers, yet it inaccurately selected an additional center,
resulting in suboptimal clustering. Although other algorithms success-
fully pinpointed all seven cluster centers and efficiently partitioned the
dataset (SNN-DPC made a minor flaw in cluster reconstruction), R-
MDPC’s decision graph stands out as the clearest. It excels in guiding
the selection of seven centers without prior knowledge, as depicted
in Fig. 5(b). This superiority stems from R-MDPC’s ability to not only
eliminate non-peak points but also attenuate interference from satellite
peaks. In Fig. 5(c), R-MDPC’s decision graph achieved the highest DGCI
score.

Fig. 6 presents the results on the Lineblobs dataset that consists of
one semi-arc-shaped cluster and two square-shaped clusters. Fig. 6(b)
shows that all algorithms identified the three cluster centers accurately,
but only DPC made errors when reconstructing the semi-arc-shaped
cluster, as shown in Fig. 6(a). Because the DPC allocation strategy does
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Fig. 5. The clustering results on the Agg dataset by different DPC-based algorithms.

Fig. 6. The clustering results on the Lineblobs dataset by different DPC-based algorithm.

Fig. 7. The clustering results on the R15 dataset by different DPC-based algorithm.
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Fig. 8. The clustering results on the Flame dataset by different DPC-based algorithm.
Fig. 9. The clustering results on the S3 dataset by different DPC-based algorithm.
not constrain the association between data points, resulting in cross-
cluster association phenomena. To be noted, R-MDPC’s decision graph
is also the clearest with the highest DGCI score, as in Fig. 6(c).

Fig. 7 displays the results on the R15 dataset. The distribution of
fifteen spherical clusters renders it the most straightforward dataset for
all algorithms. Despite minor imperfections, each algorithm was adept
at recognizing both clusters and centers, as in Fig. 7(a). Note that R-
MDPC’s decision graph is still the clearest and owns the highest DGCI
score, as shown in Fig. 7(c).

Fig. 8(a) shows that all algorithms successfully partitioned the Flame
dataset. However, compared with DPC and R-MDPC, the clarity of
the decision graphs of SSSP-DPC, SNN-DPC, and DPC-CE is lower, as
shown in Fig. 8(b) and (c). Note that, only the two real centers that
satisfied the density peak characteristics are displayed in R-MDPC’s
decision graph, which makes R-MDPC’s decision graph own the highest
𝐷𝐺𝐶𝐼 = 1.00. While, the decision graph of SNN-DPC, DPC-CE, and
SSSP-DPC are not clear enough due to the interference of non-peak
points.

Fig. 9 presents the results on the S3 dataset composed of fifteen
overlapping spherical clusters. As depicted in Fig. 9(a), all algorithms
recognized both clusters and centers, despite some minor flaws. The
clarity of the decision graphs is comparable, and it is easy to identify
8

the fifteen true cluster centers, as shown in Fig. 9(b) and (c). It is worth
noting that if all data points are located within one relevant region, R-
MDPC and DPC adopt similar allocation strategies, as seen in datasets
such as S3 and Flame.

Fig. 10 presents the results on the AggFlame dataset. The AggFlame,
composed by aggregating the Agg and Flame, is used to test the per-
formance of DPC-based algorithms in identifying cluster centers when
dealing with data of different distributions. As shown (see Fig. 5
and Fig. 8), all algorithms accurately identified cluster centers and
effectively reconstructed cluster shapes when handling Agg and Flame
datasets, respectively, with the exception of DPC misidentifying cluster
centers in the Agg dataset.

However, when the Agg and Flame datasets were combined to
form AggFlame dataset, only R-MDPC succeeded in identifying the true
cluster centers, as shown in Fig. 10(a) and (b). Because DPC, SSSP-
DPC, SNN-DPC, and DPC-CE detect cluster centers globally, however,
the distribution difference between Agg and Flame datasets, makes the
top-𝛾 method fail to accurately capture the nine true cluster centers.
R-MDPC addressed the distribution difference through regional density
normalization and effectively diminished the impact of satellite peaks
by using the satellite peak attenuator. This adjustment enables the top-𝛾
method to easily identify the true centers.
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Fig. 10. The clustering results on the AggFlame dataset by different DPC-based algorithm.

Fig. 11. The clustering results on the Atom dataset by different DPC-based algorithm.

Fig. 12. The clustering results on the Chainlink dataset by different DPC-based algorithm.
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Table 2
The comparison of AMI, ARI, FMI, and ACC on synthetic datasets.
Dataset Metric R-MDPC DPC SNN-DPC FKNN-DPC FastDPeak SSSP-DPC DPC-CE DPCV

Agg AMI ARI 1.00 1.00 0.86 0.75 0.95 0.96 0.98 0.99 0.99 0.99 0.97 0.97 0.99 0.99 0.99 0.99
FMI ACC 1.00 1.00 0.81 0.95 0.97 0.98 0.99 0.99 0.99 0.99 0.98 0.98 0.99 0.99 0.99 0.99

Jian ARI AMI 1.00 1.00 0.54 0.62 0.47 0.51 0.05 −0.07 0.61 0.71 0.35 0.32 0.06 −0.09 0.62 0.71
FMI ACC 1.00 1.00 0.84 0.90 0.79 0.86 0.62 0.74 0.88 0.92 0.70 0.79 0.67 0.74 0.88 0.92

Lineblobs ARI AMI 1.00 1.00 0.58 0.49 1.00 1.00 0.71 0.56 0.78 0.72 1.00 1.00 1.00 1.00 1.00 1.00
FMI ACC 1.00 1.00 0.67 0.80 1.00 1.00 0.72 0.82 0.81 0.90 1.00 1.00 1.00 1.00 1.00 1.00

R15 ARI AMI 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.98
FMI ACC 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.98 0.99

Falme ARI AMI 1.00 1.00 1.00 1.00 0.91 0.95 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
FMI ACC 1.00 1.00 1.00 1.00 0.98 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

S3 ARI AMI 0.96 0.95 0.94 0.93 0.88 0.83 0.80 0.67 0.94 0.92 0.88 0.83 0.96 0.95 0.96 0.95
FMI ACC 0.96 0.98 0.93 0.96 0.84 0.91 0.71 0.79 0.93 0.96 0.84 0.91 0.95 0.98 0.96 0.98

AggFlame ARI AMI 1.00 1.00 0.87 0.76 0.86 0.79 0.75 0.69 0.94 0.90 0.93 0.89 0.91 0.84 0.94 0.88
FMI ACC 1.00 1.00 0.80 0.93 0.83 0.92 0.78 0.76 0.92 0.96 0.91 0.96 0.87 0.96 0.90 0.97

Atom ARI AMI 1.00 1.00 0.16 0.09 1.00 1.00 0.24 0.17 0.25 0.18 1.00 1.00 0.32 0.26 1.00 1.00
FMI ACC 1.00 1.00 0.65 0.65 1.00 1.00 0.65 0.70 0.65 0.71 1.00 1.00 0.67 0.75 1.00 1.00

Chainlink ARI AMI 1.00 1.00 0.27 0.20 1.00 1.00 0.25 0.18 0.29 0.22 1.00 1.00 1.00 1.00 1.00 1.00
FMI ACC 1.00 1.00 0.66 0.72 1.00 1.00 0.65 0.71 0.66 0.74 1.00 1.00 1.00 1.00 1.00 1.00
Table 3
The comparison of DGCI and F1 on synthetic datasets.
Dataset Metric R-MDPC DPC SNN-DPC FKNN-DPC FastDPeak SSSP-DPC DPC-CE DPCV

Agg DGCI F1 0.89 1.00 0.63 0.86 0.59 1.00 0.65 0.86 0.63 1.00 0.67 1.00 0.59 1.00 0.61 1.00
Jian DGCI F1 0.87 1.00 0.43 0.50 0.41 0.50 0.46 0.50 0.42 0.50 0.44 0.50 0.45 0.50 0.40 0.50
Lineblobs DGCI F1 0.98 1.00 0.74 1.00 0.66 1.00 0.76 1.00 0.70 1.00 0.80 1.00 0.74 1.00 0.73 1.00
R15 DGCI F1 0.75 1.00 0.68 1.00 0.61 1.00 0.69 1.00 0.61 1.00 0.47 1.00 0.62 1.00 0.58 1.00
Falme DGCI F1 1.00 1.00 0.93 1.00 0.72 1.00 0.74 1.00 0.89 1.00 0.88 1.00 0.67 1.00 0.89 1.00
S3 DGCI F1 0.64 1.00 0.52 1.00 0.40 1.00 0.70 1.00 0.65 1.00 0.44 1.00 0.50 1.00 0.53 1.00
AggFlame DGCI F1 0.85 1.00 0.58 0.89 0.45 0.78 0.53 0.89 0.57 0.89 0.47 0.89 0.51 0.89 0.60 0.89
Atom DGCI F1 0.93 1.00 0.43 1.00 0.38 1.00 0.53 0.50 0.56 1.00 0.63 1.00 0.59 1.00 0.47 1.00
Chainlink DGCI F1 0.76 1.00 0.69 1.00 0.62 1.00 0.64 1.00 0.55 1.00 0.84 1.00 0.81 1.00 0.75 1.00
R-MDPC’s decision graph stands out as the clearest with the highest
𝐺𝐶𝐼 score, as in Fig. 10(b) and (c). Such clarity not only eases the
etection of true centers but also effectively guides the correct center
election. While the other decision graphs appear too ambiguous to
uide accurate center selection.

Fig. 11 presents the results on the three-dimensional Atom dataset,
onsisting of a hollow spherical cluster enveloping a solid spherical
luster. As depicted in Fig. 11(a), a significant gap exists between the
wo clusters. Despite correctly identifying the cluster centers, both DPC
nd DPC-CE encountered challenges in reconstructing the hollow spher-
cal cluster. SSSP-DPC, SNN-DPC, and R-MDPC successfully partitioned
he dataset.

The decision graphs of DPC, SSSP-DPC, SNN-DPC, and DPC-CE
ack the clarity required for center selection, even though the top-𝛾
ethod can detect the true centers, as shown in Fig. 11(b) and (c). In

omparison, R-MDPC’s decision graph is clear (with the highest 𝐷𝐺𝐶𝐼
core), facilitating the selection of true centers without the need for
rior information.

Fig. 12 displays the results on the three-dimensional Chainlink
ataset, composed of two interlocked ring-shaped clusters. As observed,
nly DPC struggled to reconstruct the ring shapes. Furthermore, all
ecision graphs are clear for center selection, and the top-𝛾 method
uccessfully detected the true centers for all algorithms, as in Fig. 12(b)
nd (c).

The excellent performance of R-MDPC has been demonstrated
hrough the above comparison experiments. The 𝐴𝑀𝐼 , 𝐴𝑅𝐼 , 𝐹𝑀𝐼 ,

and 𝐴𝐶𝐶 scores in Table 2 verify R-MDPC’s outstanding in recognizing
datasets with clusters of various shapes. The 𝐷𝐺𝐶𝐼 and 𝐹1 scores in

able 3 verify that R-MDPC’s decision graph is the clearest, thus its
10

enter detection capability is outstanding. a
4.3. Experiments on real-world datasets

The fourteen tested real-world datasets are composed of eight UCI
datasets (the Iris, Wine, Parinsons, Ecoli, Movementlibras, Segmentation,
and Drivepoints datasets), four large-scale datasets (the REUTERS, YTF,
USPS, and MNIST datasets), the classic OlivettiFaces face image dataset,
the Immunecells dataset from [7].

Table 4 shows the 𝐴𝑀𝐼 , 𝐴𝑅𝐼 , 𝐹𝑀𝐼 , and 𝐴𝐶𝐶 scores of all algo-
rithms on these real-world datasets, and Table 5 displays the 𝐷𝐺𝐶𝐼
and 𝐹1 scores of all algorithms. The 𝐴𝑀𝐼 , 𝐴𝑅𝐼 , 𝐹𝑀𝐼 , and 𝐴𝐶𝐶
scores in Table 4 verify R-MDPC’s exhibits competitiveness in handling
real-world datasets. The 𝐷𝐺𝐶𝐼 and 𝐹1 scores in Table 5 verify that
R-MDPC’s decision graph clarity and center detection capability is
outstanding.

4.3.1. Evaluation on UCI datasets
The Iris, Wine, Seeds, Parinsons, Ecoli, Movementlibras, Segmentation,

and Drivepoints are common UCI datasets [32] that used to evaluate
the clustering performance for their high dimension and structural
complexity. As Table 4 shows, the overall clustering performance of R-
MDPC bears favorable comparison with SNN-DPC, but the latter adopts
a quite time-consuming allocation strategy.

Fig. 13 presents the t-SNE visualization results, including true labels
and clustering labels assigned by R-MDPC, for eight UCI datasets. As
shown, R-MDPC exhibits a tendency to capture local density-connected
regions as clusters. When clusters in a dataset correspond to relatively
independent density-connected regions, R-MDPC effectively identifies
them, as observed in the Iris, Wine, and Seeds datasets.

Conversely, R-MDPC struggles to capture real clusters when they
re not well represented as density-connected regions, as seen in the
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Table 4
The comparison of AMI, ARI, FMI, and ACC on real-world datasets.
Dataset Metric R-MDPC DPC SNN-DPC FKNN-DPC FastDPeak SSSP-DPC DPC-CE DPCV

Iris ARI AMI 0.88 0.90 0.57 0.45 0.91 0.92 0.88 0.90 0.86 0.89 0.88 0.90 0.86 0.89 0.86 0.89
FMI ACC 0.93 0.97 0.69 0.67 0.950.97 0.94 0.97 0.92 0.96 0.94 0.97 0.92 0.96 0.92 0.96

Wine ARI AMI 0.74 0.73 0.71 0.67 0.87 0.90 0.80 0.80 0.74 0.73 0.75 0.74 0.51 0.48 0.72 0.70
FMI ACC 0.82 0.90 0.78 0.88 0.93 0.97 0.87 0.93 0.82 0.90 0.83 0.91 0.67 0.79 0.80 0.89

Seeds ARI AMI 0.67 0.71 0.72 0.73 0.74 0.78 0.70 0.74 0.67 0.71 0.66 0.69 0.71 0.74 0.71 0.74
FMI ACC 0.81 0.89 0.82 0.90 0.85 0.92 0.83 0.90 0.81 0.89 0.79 0.88 0.83 0.90 0.83 0.90

Parinsons ARI AMI 0.25 0.13 0.23 0.09 0.15 0.29 0.01 0.03 0.18 0.27 0.18 0.27 0.18 0.27 0.24 0.12
FMI ACC 0.62 0.75 0.61 0.75 0.80 0.82 0.59 0.75 0.81 0.82 0.81 0.82 0.81 0.82 0.62 0.75

Ecoli ARI AMI 0.52 0.45 0.45 0.33 0.67 0.75 0.47 0.54 0.63 0.70 0.49 0.35 0.53 0.42 0.54 0.47
FMI ACC 0.58 0.81 0.49 0.75 0.82 0.85 0.68 0.70 0.78 0.82 0.51 0.77 0.56 0.78 0.59 0.78

Movementlibras ARI AMI 0.59 0.40 0.48 0.26 0.58 0.39 0.46 0.31 0.55 0.35 0.53 0.30 0.54 0.31 0.52 0.30
FMI ACC 0.46 0.52 0.35 0.45 0.45 0.53 0.39 0.41 0.42 0.48 0.37 0.49 0.37 0.48 0.36 0.49

Segmentation ARI AMI 0.68 0.58 0.70 0.59 0.67 0.58 0.52 0.45 0.64 0.54 0.65 0.46 0.67 0.55 0.63 0.53
FMI ACC 0.66 0.68 0.66 0.75 0.65 0.72 0.55 0.62 0.63 0.69 0.59 0.68 0.63 0.69 0.61 0.66

Drivepoints ARI AMI 0.78 0.71 0.71 0.62 0.73 0.73 0.77 0.79 0.79 0.76 0.78 0.77 0.73 0.74 0.79 0.74
FMI ACC 0.79 0.85 0.73 0.82 0.80 0.84 0.86 0.85 0.84 0.85 0.85 0.85 0.82 0.84 0.82 0.85

YTF ARI AMI 0.79 0.60 0.73 0.50 0.72 0.46 0.61 0.46 0.78 0.57 0.80 0.58 0.70 0.45 0.75 0.45
FMI ACC 0.62 0.76 0.52 0.62 0.50 0.63 0.48 0.58 0.59 0.69 0.60 0.73 0.48 0.62 0.48 0.68

REUTERS ARI AMI 0.39 0.38 0.24 0.26 0.39 0.36 0.05 0.00 0.24 0.25 0.23 0.20 0.29 0.24 0.26 0.28
FMI ACC 0.64 0.64 0.50 0.62 0.57 0.68 0.54 0.41 0.53 0.60 0.51 0.58 0.49 0.62 0.57 0.61

MNIST ARI AMI 0.85 0.77 0.43 0.30 0.79 0.63 0.59 0.24 0.84 0.77 0.67 0.31 0.71 0.60 0.50 0.23
FMI ACC 0.80 0.84 0.41 0.45 0.69 0.78 0.45 0.41 0.80 0.83 0.51 0.41 0.66 0.68 0.43 0.34

USPS ARI AMI 0.72 0.63 0.34 0.24 0.62 0.43 0.22 0.01 0.65 0.51 0.55 0.42 0.51 0.42 0.32 0.21
FMI ACC 0.68 0.73 0.37 0.39 0.51 0.63 0.29 0.22 0.57 0.67 0.57 0.47 0.51 0.49 0.34 0.39

OlivettiFaces ARI AMI 0.82 0.70 0.77 0.62 0.81 0.68 0.64 0.47 0.83 0.70 0.81 0.68 0.76 0.59 0.79 0.64
FMI ACC 0.71 0.80 0.64 0.74 0.69 0.80 0.50 0.62 0.71 0.80 0.69 0.79 0.61 0.75 0.66 0.77

Immunecells ARI AMI 0.93 0.86 0.9 0.78 0.88 0.73 0.86 0.63 0.88 0.68 0.91 0.81 0.93 0.85 0.89 0.77
FMI ACC 0.87 0.97 0.81 0.94 0.75 0.90 0.66 0.80 0.70 0.85 0.83 0.96 0.86 0.96 0.79 0.94
Table 5
The comparison of DGCI and F1 on real-world datasets.
Dataset Metric R-MDPC DPC SNN-DPC FKNN-DPC FastDPeak SSSP-DPC DPC-CE DPCV

Iris DGCI F1 0.81 1.00 0.77 0.67 0.67 1.00 0.67 1.00 0.67 0.67 0.74 0.67 0.72 1.00 0.69 1.00
Wine DGCI F1 0.82 1.00 0.53 1.00 0.65 1.00 0.60 1.00 0.67 1.00 0.74 1.00 0.64 0.67 0.66 1.00
Seeds DGCI F1 0.85 1.00 0.76 1.00 0.66 1.00 0.74 1.00 0.76 1.00 0.82 1.00 0.78 1.00 0.75 1.00
Parinsons DGCI F1 0.50 0.50 0.25 0.50 0.31 0.50 0.29 0.50 0.20 0.50 0.39 0.50 0.40 0.50 0.31 0.50
Ecoli DGCI F1 0.43 0.38 0.32 0.25 0.29 0.38 0.34 0.38 0.35 0.38 0.38 0.38 0.33 0.38 0.34 0.50
Movementlibras DGCI F1 0.46 0.64 0.26 0.53 0.24 0.53 0.26 0.47 0.29 0.53 0.33 0.53 0.35 0.60 0.24 0.47
Segmentation DGCI F1 0.64 0.77 0.49 0.71 0.26 0.86 0.42 0.71 0.39 0.71 0.53 0.71 0.49 0.71 0.48 0.71
Drivepoints DGCI F1 0.60 0.75 0.64 0.75 0.53 0.75 0.59 0.75 0.55 0.75 0.69 0.75 0.67 1.00 0.62 0.75
YTF DGCI F1 0.38 0.59 0.23 0.54 0.14 0.51 0.35 0.63 0.27 0.61 0.17 0.63 0.19 0.54 0.23 0.51
REUTERS DGCI F1 0.76 0.75 0.10 0.75 0.25 0.75 0.38 0.75 0.33 0.50 0.16 0.50 0.14 0.50 0.10 0.75
MNIST DGCI F1 0.57 0.80 0.10 0.60 0.13 0.50 0.27 0.60 0.33 0.90 0.17 0.50 0.28 0.70 0.11 0.60
USPS DGCI F1 0.38 0.70 0.20 0.50 0.15 0.40 0.26 0.40 0.24 0.40 0.29 0.50 0.27 0.60 0.18 0.50
OlivettiFaces DGCI F1 0.91 0.90 0.33 0.73 0.28 0.78 0.43 0.88 0.36 0.83 0.35 0.85 0.37 0.78 0.35 0.78
Immunecells DGCI F1 0.88 0.95 0.38 0.90 0.45 0.85 0.42 0.80 0.44 0.85 0.28 0.90 0.51 0.95 0.39 0.90
o
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Parkinsons, Ecoli, and Movementlibras datasets. Consequently, R-MDPC
emonstrates poor clustering performance on the Parkinsons, Ecoli, and
Movementlibras datasets, while achieving relatively good results on the
Iris, Wine, and Seeds datasets. The same observations apply to other
lgorithms, given their shared DPC-type nature, relying on the density
oncept to identify density-connected regions as clusters.

.3.2. Evaluation on large-scale real datasets
The REUTERS [34] dataset consists of 10,000 samples of English

ews stories; the YTF (YouTube Faces) [33] dataset contains 10,000
amples of faces; the USPS [36] dataset consists of 11,000 samples
f handwritten digits; and the MNIST [35] dataset consists of 10,000

samples of labeled images of handwritten digits. In addition to the high
dimension and structural complexity, the large amount of data size also
adds an extra burden to clustering.

As illustrated in Table 4, R-MDPC consistently maintains its excep-
tional performance on large real-world datasets, achieving the highest
scores in 𝐴𝑀𝐼 , 𝐴𝑅𝐼 , 𝐹𝑀𝐼 , and 𝐴𝐶𝐶 on the YTF, REUTERS, USPS, and
11

r

MNIST datasets. The only exception is the second-highest 𝐴𝐶𝐶 score
n the REUTERS dataset. Compared with DPC and other DPC variants,
he performance of R-MDPC is superior.

Notably, the results of all algorithms on the REUTERS dataset are
s ideal as the results on the YTF, USPS, and MNIST datasets. To
xplore the reasons, we obtained the t-SNE visualization results of
he four datasets as in Fig. 14. As shown, there is mutual blend-
ng among the four clusters in the REUTERS dataset, indicating that
hey are not density-connected in relatively independent spaces. This
oses a challenging scenario for density-based DPC-type algorithms, as
hese techniques attempt to define clusters by reconstructing density-
onnected local density regions, as discussed in Section 4.3.1. As a
esult, all DPC-type algorithms produce unreasonable results in the
EUTERS dataset. In contrast, the clusters in the YTF, USPS, and MNIST
atasets exist in relatively independent spaces, which is advantageous
or the identification by clustering techniques.

These above experiments on twelve real-world datasets verify the
easibility and wide applicability of R-MDPC in real-world datasets

egardless of data size and space dimension.
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Fig. 13. The t-SNE-based visualization comparison between the true labels and our clustering labels on UCI datasets.
Fig. 14. The t-SNE-based visualization comparison between the true labels and our clustering labels on the YTF, REUTERS, USPS, and MNIST datasets.
Fig. 15. The recognition result of MDPC on 101 to 200 face images of the OlivettiFace dataset.
4.3.3. Evaluation on the OlivettiFace dataset
The OlivettiFace dataset [37] that contains 10 different face-angle

images of 40 people is a widespread benchmark for machine learning
algorithms. To accurately divide 400 face images of 40 different people
12
is challenging, because the number of clusters (40) is comparable with
the total number of elements (400) [8].

As Table 4 shows, R-MDPC obtains the highest scores of 𝐴𝑀𝐼 ,
𝐹𝑀𝐼 , and 𝐴𝐶𝐶 in recognizing these 400 faces. Fig. 15 presents the



Pattern Recognition 152 (2024) 110458J. Guan et al.
Fig. 16. The segmentation results of immune cells in a background removal microscopy image by different algorithms.
Fig. 17. The runtime of comparison algorithms on different tested datasets.
fine result of R-MDPC (𝑘 = 5, 𝑐𝑣 = 1) on selected 101 to 200 face
images, where different colors represent different clusters, and white
dots indicate the cluster centers, which verifies the superiority of
R-MDPC compared with other state-of-the-art approaches.

4.3.4. Evaluation on the immunecells dataset
Microscopy images are challenging spatiotemporal biomedical

datasets [43], especially images of immune cells that possibly show
high plasticity regardless of the shapes (spherical, non-spherical) in
contact [44], and the segmentation of immune cells naturally be
regarded as a painstaking clustering task (i.e., heterogeneous shapes
in proximity) [7].

Fig. 16 displays the segmentation results of various algorithms for
clustering pixels of immune cells in a background removal microscopy
image [7]. The immune cells exhibit two different structures: dendritic
(‘‘area i’’) and spherical, with some cells in contact (‘‘area ii’’). As
illustrated, R-MDPC achieved the most accurate segmentation results
by successfully identifying both ‘‘area i’’ and ‘‘area ii’’. In contrast,
DPC, SSSP-DPC, and SNN-DPC effectively segment ‘‘area ii’’ but strug-
gled with ‘‘area i’’. Moreover, R-MDPC also presented a relatively
clear decision graph, facilitating the easier selection of twenty cluster
centers.

4.4. The speed of R-MDPC

When dealing with large datasets, running speed is an important
performance index. To demonstrate the fast speed of R-MDPC, speed
comparisons were conducted.

In Fig. 17, R-MDPC and FastDPeak are significantly faster than other
DPC-based algorithms, because these two algorithms are both based on
13
the kNN distance of data points, rather than the distance between data
points. Nevertheless, R-MDPC highlights itself in terms of clustering
accuracy. SNN-DPC, SSSP-DPC, and DPCV are particularly slow due
to their highly time-consuming allocation strategies, which becomes a
drag on their large dataset clustering.

4.5. Evaluation of parameter sensitivity

R-MDPC has two parameters: 𝑘, the number of neighbors, and 𝑐𝑣,
the 𝐶𝑉 index of the density distribution. The performance of the
allocation strategy can be adjusted by changing the parameter 𝑘. The
robustness of the decision graph can be adjusted by changing the
density distribution of the dataset by changing the parameter 𝑐𝑣. What
follows is a discussion on the sensitivity of parameters 𝑘 and 𝑐𝑣.

4.5.1. Insensitivity of parameter 𝑘
The 𝑘-sensitivity evaluation experiments are conducted on all the

tested synthetic and UCI datasets. Fig. 18 presents several 𝑘-𝐴𝑀𝐼
plots and an overall 𝑘-𝐴𝑀𝐼 plot (with 𝑘 ∈ [5, 2

√

𝑛]) of R-MDPC
(𝑐𝑣 = 1), SNN-DPC, FKNN-DPC, and FastDPeak. Where 𝑘 is no less
than 5 because the kNN-density evaluation and the relevance definition
require a sufficiently large value of 𝑘.

As shown, for R-MDPC, once parameter 𝑘 reaches a certain value,
it obtains a stable optimal performance within a wide range around
𝑘 =

√

𝑛. While for other kNN-based methods, there are still some
fluctuations after reaching the optimal performance, e.g., SNN-DPC is
not stable for the Agg and Jain datasets; FKNN-DPC and FastDPeak
are not stable for the Jain and Lineblobs datasets. The overall 𝑘-𝐴𝑀𝐼
plot on all test datasets shows that R-MDPC can obtain an optimal
stable performance at the range around 𝑘 =

√

𝑛. This demonstrates the
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Fig. 18. The 𝑘-𝐴𝑀𝐼 plots (with 𝑘 ∈ [5, 2
√

𝑛]) of R-MDPC (𝑐𝑣 = 1), SNN-DPC, FKNN-DPC, and FastDPeak on several datasets.
Fig. 19. The 𝑐𝑣-𝐷𝐺𝐶𝐼 plot of R-MDPC on several datasets.
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nsensitivity of parameter 𝑘 and the effectiveness of its setting range,
= ⌈

√

𝑛⌉.

.5.2. Insensitivity of parameter 𝑐𝑣
As mentioned in Section 3.2.3, parameter 𝑐𝑣 is used to control the

entleness degree of the density distribution of the dataset, aiming
o obtain a robust decision graph. Since 𝐷𝐺𝐶𝐼 scores is used to
valuate the robustness of decision graph [42], we conduct R-MDPC’s
𝑣-sensitivity evaluation experiments on all the synthetic and UCI
atasets.

Fig. 19 presents the 𝑐𝑣-𝐷𝐺𝐶𝐼 plot of R-MDPC on these test datasets.
s shown, all 𝐷𝐺𝐶𝐼 scores are smooth and stable after parameter 𝑐𝑣
pproaches 1. This verifies the insensitivity of 𝐶𝑉 index 𝑐𝑣 and the
ffectiveness of the setting 𝐶𝑉 index 𝑐𝑣 = 1.

. Conclusion

Fast Main Density Peak Clustering Within Relevant Regions Via A
obust Decision Graph (R-MDPC) inherits DPC’s core idea of finding
ensity peaks as cluster centers. R-MDPC’s initial division of relevant
egions of the dataset adds relevance constraints to DPC’s allocation
trategy, which is a simple and effective remedy for DPC’s allocation
trategy that may unadvisedly allocate irrelevant points together. Fur-
hermore, R-MDPC’s removal of regional differences effectively solves
he problem of unbalanced density distribution caused by differences
mong relevant regions, which avoids low-density clusters being easily
verlooked in the decision graph.

The satellite peak attenuator and the controllable density estimation
ethod proposed by R-MDPC greatly reduce the interference of satellite
eaks on the cluster center selection in the decision graph. Thus, R-
DPC owns a robust decision graph that highlights main peaks (real

luster centers).
Moreover, by applying fast kNN search technology, R-MDPC is

uch faster than DPC. It hardly requires distance computation except
or the kNN search, which enables R-MDPC to deal with large-scale
ata. Numerous experiments have been launched and verified that R-
DPC can fast recognize complex-shaped clusters regardless of their

patial dimensions and data size.
However, the relevant region generation method employed by R-

DPC is not suitable for datasets with extremely high dimensions,
here data points sparsely populate the entire data space. In such

ases, the kNN-based region generation method tends to connect the
14
ntire dataset into a single relevant region. When a dataset forms a
ingle relevant region, our allocation strategy, which involves finding
ensity peaks within regions, becomes akin to DPC’s process of find-
ng density peaks across the entire dataset. Furthermore, in R-MDPC,
luster centers are manually selected. Therefore, for future work, we
lan to explore the use of dimensionality reduction techniques (such as
-SNE [45] and PCA [46]) to preprocess high-dimensional datasets and
esign a new region generation technique that allows our method to
ffectively distinguish relevant regions. Additionally, we aim to develop
fully automatic and robust method for cluster center selection.
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