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ABSTRACT

Factual correctness is often the limiting factor in practical applications of natural language
generation in high-stakes domains such as healthcare. An essential requirement for main-
taining factuality is the ability to deal with rare tokens. This paper focuses on rare tokens
that appear in both the source and the reference sequences, and which, when missed during
generation, decrease the factual correctness of the output text. For high-stake domains
that are also knowledge-rich, we show how to use knowledge to (a) identify which rare
tokens that appear in both source and reference are important and (b) uplift their conditional
probability. We introduce the “utilization rate” that encodes knowledge and serves as a
regularizer by maximizing the marginal probability of selected tokens. We present a study
in a knowledge-rich domain of healthcare, where we tackle the problem of generating
after-visit care instructions based on patient-doctor dialogues. We verify that, in our dataset,
specific medical concepts with high utilization rates are underestimated by conventionally
trained sequence-to-sequence models. We observe that correcting this with our approach to
knowledge injection reduces the uncertainty of the model as well as improves factuality
and coherence without negatively impacting fluency. [H

1 INTRODUCTION

Recent advances in language modeling (c.f. [Dong et al.|(2021)); Erdem et al.|(2022) for survey) have
enabled applications across multiple domains including education (Shen et al.,2021), jurisprudence
(Bell et al., [2021)), e-commerce (Zhang et al., [2020; Xiao et al., 2021)), and healthcare (Valmianski
et al.| 20215 /Compton et al.|[2021; /Alambo et al., 2022} |[Krishna et al.| 2020).

One of the central challenges in deploying these models in-the-wild is that rare words tend to have
underestimated conditional probability during generation (Luong et al. [2014} |Chintagunta et al.|
2021; Holtzman et al.,|2020). However, in high-stakes applications, many of these rare words are
semantically important and need to be preserved. For example, some symptoms, diseases, and
medications can be both rare and important (Mottaghi et al.l 2020)) (e.g. knowing that the patient is
taking warfarin is extremely important, even if the word “warfarin” occurs infrequently).

Prior approaches for handling rare word generation utilize a copy mechanism (See et al.| 2017}
Joshi et al.| 2020; Xu et al., [2020; |Choi et al., |2021)). This facilitates copying from the source text
using a probabilistic switch to decide if the next output token is generated or copied from the input
(See et al.,[2017). However, it doesn’t properly resolve the main challenge: not all rare tokens are
important. Only specific rare tokens (e.g. warfarin) have a high probability of appearing in the
reference sequence when found in the source sequence. In cases where the training data does not
have enough structure to disambiguate which rare words are essential, the copy mechanism becomes
overly extractive (Gehrmann et al.||2018; See et al., 2017)).

Also relevant to this paper are previous works that integrate knowledge into language models (Duan
et al., 2020; |Liu et al., [2022). In entity-centric summarization, |[Keskar et al.|(2019); [Liu and Chen
(2021)) add key phrases to the prompt, which through the self-attention mechanism influence the
output distribution. However, for prompts containing rare tokens, self-attention struggles to capture
the prompt-reference dependency, and the marginal probability of rare tokens remains underestimated.

!Code is available as part of Supplemental Materials and will be available on Github after acceptance.
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Joshi et al.| (2020) extends this approach by not only explicitly including the medical concepts in the
input sequence, but also adding a related term to the loss function. However, they still find that for
rare tokens the model underestimates the conditional probability during generation.

Finally, dictionary look-up of rare and out-of-vocabulary words has been studied in|Yu et al.| (2022);
Ruzzetti et al.| (2022). However, these papers focus on finding good representations of specific
tokens. In this paper, we tackle the problem of uplifting important rare tokens even when a good
representation is not available.

We base our work on the premise that specific rare tokens (e.g. warfarin) have a high probability of
appearing in the reference sequence if they also appear in the source sequence. The main questions
we tackle in this paper are the following: How do we know which rare tokens have a propensity to
appear in both the source and the reference? How do we encode this information into the model?

We study our approach in the healthcare setting, for the concrete problem of after-visit care instruction
generation from a medical dialog between patient and medical professional. We define the medical
concept utilization rate and utilization-rate-aware training objective in[section 2} discuss the care plan
generation problem and data collection in describe the sequence-to-sequence model setup

in[section 4] and report experimental results in|section

Our contributions are the following:

1. We are the first to explicitly focus on identifying and modeling specific rare tokens that appear
in both the source and the reference. We call them “high utilization concepts.”

2. We propose a measure of “utilization rate” to identify tokens that comprise “high utilization
concepts.” We use external knowledge to help with this computation as these tokens can be
extremely rare.

3. We introduce a regularization term during training that leverages token utilization rate to uplift
the conditional probability of important rare tokens.

4. We demonstrate the application of our approach to the concrete task of generating after-visit
care instructions from medical professional-patient dialogue.

We observe performance improvement with both automatic metrics and human evaluation with
medical experts.

2 APPROACH

In many sequence-to-sequence tasks, certain rare concepts have a high probability to appear in
the reference sequence (y) if they also appear in the source sequence (x). We call these concepts
“high utilization concepts” (¢ € Cyy) and formally define them in[Equation T} These concepts are
comprised of one or more tokens ¢ = [V, 11, ...]. We hypothesize that a source of factuality errors in
many sequence-to-sequence tasks is that learned model underestimate the conditional probability
of high utilization concepts p(y; = v, [y<i, X,V € ¢,¢ € x,¢ € Chy) < p(...), where p denotes the
model estimated probability and p is the true probability.

Definition 2.1 (High utilization concepts) Given a universe of concepts C, the set of high utilization
concepts Cyy is defined as

CHU{cec:p(CGyCGX)>>1} (1
plcey)

answers the question “How do we know which rare tokens have a propensity to appear in
both source and target?” while at the same time it works for rare tokens.

This key insight leads us to define two goals for this work:

1. Develop a method for identifying high utilization concepts, Cyy for a dataset D = {(x*,y")} ;.

2. Develop a method for augmenting the training procedure of sequence-to-sequence models to
correctly estimate the conditional probability of tokens forming high utilization concepts.



Under review as a conference paper at ICLR 2023

2.1 IDENTIFYING HIGH UTILIZATION CONCEPTS USING EXTERNALLY PROVIDED KNOWLEDGE

The major challenge in identifying high utilization concepts in real datasets is that the concepts we
are interested in are present in very few examples. This means that it is hard to directly estimate
p(c € y|c € x) and p(c € y) from[Equation 1]due to the high variance. In particular, a frequency-
based estimate of probability has an uncertainty proportional to 1/sqrt(N) where N is the number
of samples for a given concept. However, these rare concepts can still be very impactful to the overall
performance of the model. This is because, for a given reference, y, it is unlikely that a particular
high utilization concept will be present (Yc € Chy,p(c € y) < 1), but it is also unlikely that no
high utilization concept will be present (] | c€Ch p(c € y) < 1). This is well documented in the
medical domain, where medical concepts have a very long-tailed distribution (Prabhu et al.,[2019;
Mottaghi et al., 2020), yet may appear in almost every relevant sequence. As an illustration, imagine
a list of medication instructions. Every instruction may have a different medication so no medication
token appears more than once; however, each instruction is rendered useless if it doesn’t include the
relevant medication (e.g. see “Medication Plan” instructions in[Figure T)).

To overcome this challenge, we propose computing what we call “utilization rate”, rg, which we
define in[Equation 2] This function relies on the concept equivalence class map ¢ : Ce; — £ where
Cse1 C C and € is a set of equivalence classes. (¢, Cy, £) cannot be derived from the data or the
model, but instead are provided from an external source of knowledge. If ¢ is an identity (id) then
Tid(cn) = ﬁ(cn € Y‘cn € X)a (XaY) eD.

Definition 2.2 (Utilization rate) The utilization rate of concept c,, is defined as

o) — Zecca T e € %0 ¢ € 39,9(0) = o) @
TS e T e € %9.6(0) = dlca)

Here,[Equation 2tries to make the intuition from [Equation T|applicable to a real dataset. We generally

cannot compute the lift because for rare words the dataset frequency derived probability estimates are
poor.

Note that combines both externally provided knowledge (¢, Cs, £) and dataset derived
values. This allows us to inject domain-specific information. Because concepts are mapped to
equivalence classes, every concept in a particular equivalence class has the same utilization rate. If a
concept ¢, € Cy has marginal probability to appear in the reference sequence that is much lower
than r,(c,,) then it is a high utilization concept.

2.2  UTILIZATION-RATE-AWARE SEQ2SEQ TRAINING

Our analysis insection 5|(see |[Figure 3)) shows that conventionally trained seq2seq models underesti-
mate the utilization rate (r4) for many rare concepts. While we cannot optimize the utilization rate
directly, we can optimize the approximate marginal probability p(v|x) of a token v given a source

sequence X, as seen in[Equation

llyll p(y2) is uniform Iyl

p(vlx) = ZP(V|Y<t)P(Y<t) ~ ZP(V‘YQ)Z?(YQ) ~ ﬁ ZP(V|Y<t) 3

y<t t=1

Given the source sequence x, the tokens for which we aim to optimize the marginal probability are
{v € ¢,c € xN Cyy}. We define the unweighted utilization loss.

Definition 2.3 (Unweighted utilization loss)
1
Lu(x) = > logp(v]x) &

I{v € ¢,c € xN Cuul}| AV

However, not all concepts in Cyy are equally likely to appear in the reference given their appearance
in the source. To better reflect we also propose a weighted utilization loss where the weight for each
token is determined by its utilization rate.
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Definition 2.4 (Weighted utilization loss)

ZDGC,CE(XOCHU) T¢(C) 10gp(1/|x)
ZVEC,CE(XOCHU) T¢(C)

L(x) = - 5)

Note that[Equation 3| directly injects externally provided knowledge through its dependence on ¢.

We use utilization loss as a regularization term and augment the objective function. We use o > 0 to
balance the strength of the regularization:

1(x,y) = lan(y) + - luorw(X) (6)

where [,; = — 27'5‘11 log p(yt|y <t,x) and ly, o  is either [, from or [,, from

3  AFTER-VISIT CARE INSTRUCTION GENERATION: TASK AND DATA
DESCRIPTION

After-visit care instructions (care plan) are a set of actions (instructions) that a medical profes-
sional writes in the patient’s electronic health record (EHR) as a follow-up to the patient’s visit. A
care plan often includes a list of medications with appropriate directions, further medical evaluations,
or educational information for preventive care. Before writing the care plan, the medical profes-
sional discusses it with the patient, and together, they jointly agree on the next course of action. This
joint decision-making implies that most of the necessary information for writing the care plan is
already available in the conversation.

Charted in EHR
Medication Plan:Take
Ibuprofen or Tylenol as
needed, as directed, for
pain.

Instruction: Gargle with
warm salt water several
times a day to help throat
inflammation

Patient-provider dialogue
Yes, | generally recommend
giving it a week, taking motrin
and tylenol as needed for
pain, drinking/eating soft food
so it doesn't irritate your
throat. Please do gargle with
the warm salt water, that will
help the swelling more

Patient-provider dialogue  Charted in EHR

Ok, given you history of Medication Plan: Stop Celexa
adverse effects with zoloft. | —® immediately

would recommend stopping / Medication Plan: Hold Buspar
the celexa immediately. The / until further directed by the ER
Buspar can interact with the Instruction: Please go to the
celexa and cause whatis ~— nearest emergency

called serotonin syndrome. department for immediate
This can be quite serious. — medical attention.

(a) A relatively simple-to-chart example with

each sentence corresponding to an instruction.

Note synonym substitution of ibuprofen for

(b) A difficult-to-chart example with incomplete
information and multiple dialogue sentences
contributing to a single instruction.

motrin and the addition of timing to the gargling
instruction.

Figure 1: Example conversation segments corresponding to care plan and corresponding instructions.
Color represents the highest overlap between the sentence in the dialogue and the instruction. Arrows
represent semantic relationship between the dialogue sentence and instruction. Note that these
relationships between the dialog and the instructions are not available in the dataset.

In[Figure T| we show two examples. In each example, we present the (a) segment of the conversa-
tional dialog corresponding to provider messages discussing the care plan with the patient and (b)
corresponding care plan charted in the EHR. We can see that the instructions are written in a directive
format, using action verbs and often paraphrasings of the corresponding text in the dialogue. The
care plan does not always have all the medical concepts mentioned in the conversation. In the first
example, “serotonin syndrome" and “Celexa" are rare, but the care plan includes only the latter. We
need a model that is robust to rare medical concepts and can discern which knowledge needs to be
carried forward.

We tackle the problem of taking the relevant section in the conversations corresponding to the care
plan as input and automatically derive care plan instructions that the medical professionals can
approve. We do not assume access to 1-1 mappings between the sentences in the conversation to the
care plan instructions. However, we develop a method to derive a dataset of 1-1 mappings, albeit
noisy, which we use for model training.

Dataset construction. We use a dataset with 14K medical professional-patient encounters collected
on a virtual primary care platform. Each encounter has a text-based conversation between the medical
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Figure 2: Empirical concept marginal probabilities and utilization rates estimated from the dataset.

professional and the patient. We applied an in-house conversation discourse parser to extract onl
those dialogue turns from the medical professional’s corresponding to the care plan discussion%
We also have the associated care plans written from the patient’s electronic health record for that
encounter. On average, each encounter has 9 dialogue turns corresponding to care plans and 4 care
plan instructions.

We need a parallel corpus with pairs of dialogue turns and care plan instructions for our model.
Getting manual annotations for each encounter would be expensive as it requires expert knowledge.
Therefore, we automatically construct a paired dataset, albeit noisily, from the paired encounter
level care plan and provider dialog turns. We get sentence-level embeddings for every sentence in
each turn and instructions in the care plan and pair those with the highest cosine similarity (We
provide additional details in the Supplementary Material). At the end of this, we have 48,000
source-reference pairs, where the source is a sentence in the conversational dialog and reference is
the mapped instruction. We randomly sample 3000 pairs for testing, 1000 for validation, and the
remaining 44,000 pairs for training.

We use medical concepts from UMLS [Bodenreider| (2004) and in particular SNOMED-CT and
RXNorm ontologies. The synonyms are pooled from all ontologies in UMLS that map to the
corresponding concept in SNOMED-CT and RXNorm.

To identify the concepts, we use an in-house lookup-based concept recognizer. It uses a sliding
window strategy to find maximal matches of text corresponding to medical concepts and their
synonyms. It ignores stop words while doing the match. Finally, it has an agglomeration step that
leverages a concept hierarchy. If we have overlapping spans corresponding to two concepts where
one is a child of another (eg “lower abdominal pain” and “abdominal pain”) then only the more
specific concept is extracted. If two different concepts have a span overlap and are not hierarchically
related, then the concept linking is greedily selected with the concept on the left being given priority.

Identifying high utilization concepts. We limit Cy to only medical concepts and choose ¢ such
that it maps them to their SNOMED CT semantic types (which informs our choice of £). In our
case study this narrows down 758 unique medical concepts to their 19 semantic types. The marginal
probability p(c € y) for each semantic type c is shown in[Figure 2 while the utilization rates are
shown in [Figure 2b. Comparing them we can see that utilization rates are 10-100x larger than the
marginal probabilities. This suggests that all medical concepts are part of high utilization tokens
set (Cyy = Cye). It also means that many kinds of medical concepts that are present in the source
sequence do not get generated in the output sequence, which drastically hurts medical correctness.

%A manuscript describing this parser is currently submitted for publication and a reference will be added to
the camera-ready version of this paper.
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4 EXPERIMENTAL SETUP

We follow the standard practice (Ott et al.,2018]) of training our sequence-to-sequence models using
FairSeq framework (Ott et al.|[2019). We use byte-pair encoding implemented in the fastBPE package
(Sennrich et al., 2016). We use a transformer architecture for our model and train models on our data
from scratc

Model architecture We use the transformer_iwslt_de_en architecture in FairSeq for
experiments. It consists of 6 encoder and decoder layers with 4 self-attention heads followed by
feed-forward transformations. Both encoder and decoder use embeddings of size 512 while the
input and output embeddings are not shared. Both the encoder and decoder use learned positional
embedding. We early-stop training based on the validation performance. Evaluation is done on the
test set.

Training We use Adam optimizer (Kingma and Ba, [2015)) with 5; = 0.9 and B2 = 0.98. We use
the inverse square root learning scheduler with 4,000 warm-up steps. We use the initial learning
rate of 5 x 1074, dropout rate of 0.3 (Srivastava et al., |2014)) , and weight decay with its rate set
to 10~4. We use label smoothing with 0.1 of probability smoothed uniformly during training. We
modify the training objective [Equation 6|by adding oversmoothing loss (Kulikov et al.,[2021) with a
coefficient of 0.9 and unlikelihood loss (Welleck et al.| 2019) with a coefficient of 0.5. All training
was performed on VMs with single V100 GPUs, we estimate 200 GPU hours as the total amount
required for the completion of this work.

Early stopping We use early stopping for model selection based on the value of the objective
function computed on the validation set. We evaluate the model on the development set every 2K
updates (~4K tokens per update). We stop training when the objective has not improved over more
than 5 consecutive validation runs. It takes approximately 75K updates to an early stop.

Decoding We use beam search implementation from FairSeq. We decode using the beam size of 5.
WEe set the lower- and upper-bound of a generated output to be, respectively, 0 and 1.2 - ||x|| + 10.
We do not use either length normalization or length penalty since we apply oversmoothing loss.

Lexically constrained decoding baseline Apart from using the unregularized version of the model
as a baseline, we compare the proposed approach with the lexically constrained decoding approach
(Post and Vilar, 2018)). We stick to the LexicallyConstrainedBeamSearch implementation
of the Dynamic Beam Allocation (DBA) algorithm that ensures the presence of provided tokens in
the generated output. DBA implements an optimized version of the Grid Beam Search (Hokamp and
Liu, [2017). DBA is training-agnostic and is used only during generation. We apply DBA for the
baseline model. Given the non-uniform distribution of utilization rates, for each source we leave only
medical concepts ¢ with r;4(c) > 7 for some threshold 7. We report results for 7 = 0.6, which we
select by running an extensive grid search.

5 RESULTS

5.1 EFFECT OF KNOWLEDGE INJECTION DURING TRAINING ON MODEL’S UTILIZATION RATE

We evaluate whether the knowledge injection through regularization has the desired
effect of improving model estimate of the utilization rate, r4. Because the test set is too small to
effectively estimate per-concept utilization rate, we instead compute it for semantic types. In[Figure 3|
we use semantic relative error ( Equation 7) to compare models trained with o € {0, 0.25,0.5,0.75, 1}
that either use unweighted loss /,, (which uplifts all medical concepts equally, “Unweighted") or a
weighted loss [, with the ¢ being identity (“Concept weighted”) or mapping concepts to semantic
types (“Semantic weighted”). In addition, as a baseline we also compare an unregularized model that
uses DBA for generation (“DBA”). For a detailed breakdown of relative errors for each combination
see the Supplementary Material.

3Informally, we also tried a pre-trained BART (Lewis et al.,[2019) but the results were worse.
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Definition 5.1 (Semantic relative error) Relative error for semantic type s computed from 7 esti-
mated from model derived output sequences and r4 estimated from reference sequences. cs is any
concept for which ¢(c) = s holds and the value of e, in not dependent on the choice of cs.

_ IFgles) = rolesll
s = (N
rg(cs)
1.0 1.0 S
. . ‘ e a=0 . - DBA
0.8 1 o 4 c a=025 0.8 1 « + Unweighted
C a=0.5 o Concept
g el ° N + a=075] £ weighted
o . - 49 . Semantic
> . . ° . > weighted
E 0.4+ » . ® E
g , g # N
02 -:/\\;,\;l“ : B~ NG
T o e ,
1073 1072 107t 1073 1072 10!

Frequency of the semantic type Frequency of the semantic type

(a) Relative error in the utilization rate for each  (b) Relative error in the utilization rate for each
regularizer strength «v. Note that « = 0 means model (and best « for that model).
there is no regularization.

Figure 3: Relative errors in the utilization rates for different semantic types plotted as a function
of the frequency of the semantic type. The trend-line and uncertainty are computed with a linearly
interpolated moving average window.

In|Figure 3p we present the relative error for different «v as a function of semantic type frequency in
the test set. For each point (a given semantic type and o) we take the lowest relative error among
{“Unweighted”, “Concept weighted”, and “Semantic weighted”}. The highest relative errors are
seen for oo = 0, which corresponds to no regularization. For other values of « the difference is not
statistically significant, although, for very rare semantic types, a = 0.25 appears to perform worse
than models with higher regularization strength. This shows that our external knowledge informed
regularization has a significant impact on a relative error, but the utilization rate estimate is not
sensitive to the exact weight of the regularization term.

In[Figure 3p we present relative error for different training procedures, {“Unweighted”, “Concept
weighted”, and “Semantic weighted”}, as well as a baseline of “DBA.” For each point (a given
semantic type and training procedure) we choose an « that gives the lowest relative error. We find
that “DBA" baseline, which is a constrained generation procedure applied to an unregularized model,
performs worse than any of the regularized models, although it does outperform the unregularized
model (o = 0 in[Figure 3p). While not significant, we also see that for rare semantic types “Semantic
weighted” seems to perform the best, which aligns with our expectation that the utilization rate is
hard to estimate for very rare concepts.

5.2 EFFECT OF KNOWLEDGE INJECTION DURING TRAINING ON MODEL’S UNCERTAINTY

We analyze the effect of utilization regularization on the model’s uncertainty at every timestep.
Uncertainty at timestep ¢ is defined as an entropy of model’s distribution on each timestep ¢ (here
Yy <t is the decoded sequence up to t-th timestep, y is an arbitrary token from the target vocabulary):

Hy(y<,x) ==Y _ p(yly<e, x)log p(yly<i,x) ®)
y
We consider the defined uncertainty on earlier timesteps, where the model’s distribution is closer to

marginal. As the proposed method pushes up the marginal probability of the medical concepts, we
claim that models’ uncertainty decreases with the regularization. Moreover, care plan instructions
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Figure 4: Entropy of the conditional distribution p(y|y <, x) with respect to different v values. Filled
regions denote the standard deviation across training runs according to

typically introduce crucial concepts at the beginning of an instruction. Thus, we claim that early
timesteps uncertainty matters for the precise decoding of instructions.

This is confirmed by We observe that uncertainty drops monotonically as the o weight
increases. In particular, uncertainty on early timesteps heavily drops as a result of utilization
minimization. Hence, the model becomes more confident in selecting principal concepts at the
beginning of an instruction. In contrast to the baseline, all regularized models’ uncertainty start
to increase for ¢ > 10. As fewer concepts appear in the instruction end, the marginal probability
maximization flattens the conditional distribution. However, the uncertainty does not degrade in
comparison to the baseline. Thus, the proposed regularization effectively improves the confidence of
the model on early timesteps.

5.3 RESULTS ON CARE PLAN INSTRUCTIONS TASK

« BERTScore Concept-F1 ~ GPT-2 Perplexity

Baseline 0.0 | 22.48 +o.66 57.43+3.73 5.53+0.04
DBA - 23.59+0.8 79.83+0.43 11.96+0.05
0.25 | 25.09+0.69 58.19+2.11 5.91+0.07
0.5 | 25.42+0.56 58.91+6.83 5.65+0.03
0.75 | 26.22+035 60.83+5.96 6.28+0.02
1.0 | 26.74+0.43 61.05+7.48 6.18+0.05
0.25 | 28.29+0.19 60.87+3.86 6.93+0.05
0.5 | 28.19+0.20 60.36+2.03 8.49+0.05
0.75 | 28.08=+0.15 64.09+1.85 7.9540.080
1.0 | 27.82+0.25 63.05+2.49 9.37+0.10
0.25 | 28.97+0.56 69.10+2.12 7.01+0.29
0.5 | 30.54+0.78 74.98+3.91 6.84+0.03
0.75 | 31.48+0.36 75.77+3.30 6.96+0.11
1.0 | 30.59+0.63 75.02+2.18 6.94+0.12

Unweighted (ours)

Concept weighted (ours)

Semantic weighted (ours)

Table 1: Automated metrics scores for different model setups. We report average score and standard
deviation over five random seeds. We highlight in bold the best average and all scores having
overlapped standard deviation intervals with the best score.

Automated evaluation: The precise and complete concepts utilization directly affects the quality
of instruction. We first quantify the quality by calculating automatic metrics to judge the relevance,
fluency, and concept utilization rate in comparison to the reference instructions. We use BERTScore
(Zhang et al.l|2019) to estimate the similarity between reference and candidate, GPT-2 perplexity for
(Nguyen, 2021) to assess the coherence (fluency) of the candidate, and concept overlap (Joshi et al.,
2020) to measure the percentage of medical concepts used in both candidate in reference.

[Table T|presents the automatic evaluation results. The scores indicate that incorporating knowledge
correlates with relevance and concept overlap. We highlight three observations. First, the regulariza-
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tion is effective in terms of quality and concept overlap. We observe significant quality improvement
compared to both the baseline and DBA. Moreover, weighted versions of the model outperform the
unweighted setup. Thus, injecting more knowledge into the model, such as empirical utilization
weights, results in better quality. Second, the impact of the regularization hardly depends on the o
weight. Third, the GPT-2 perplexity degrades. This demonstrates that the regularization impacts
the model distribution, so the fluency of the model may deteriorate. This trade-off, however, has no
negative impact on the quality given the improved BERTScore. For qualitative results, please see the
Supplementary Material.

Medical experts evaluation: To get a more precise medical assessment, we conduct human evaluation
with medical experts. We randomly sample 100 dialogues from the test set and generate candidates
with each model setup setting o = 1.0. We ask five doctors to evaluate the relevance to the dialogue,
medical usability (if the generated instruction can be used in any care plan), and grammatical
correctness (fluency) on a scale from 1 to 5. Additionally, we ask assessors to indicate degenerate
generations, i.e., premature or repetitive sequences. Exact questions and interface screenshots can be
found in the Supplementary Material.

As shown in we claim that both weighted versions achieve significant improvement in
relevance and usability, which are target medical metrics. In contrast to the GPT-2 perplexity, medical
experts report equal fluency for all models but DBA. We explain this discrepancy with vocabulary
shift as GPT-2 is not trained on a healthcare corpus. Finally, utilization rate regularization does not
affect the number of degenerate outputs. Hence, the proposed solution effectively induces knowledge
in the model distribution without corrupting generated text correctness. This is not true for DBA,
which struggles from a lack of coherence and degenerate outputs while producing more relevant and
usable instructions.

‘Relevance Usability Fluency  Degeneracies, %

Baseline 2.50+0.12 3.18+027 4174014  0.10-+0.01
DBA 3.36+0.15 3.35+016 3.91+018 0.21+0.05
Unweighted (ours) 3.56=+0.12 3.21+028 4.26+008 0.10+0.02

Concept weighted (ours) | 3.79+006  3.72+005 4.37+0.16 0.12+0.02
Semantic weighted (ours) | 3.78+0.14  3.99+0.19 4.42+013 0.12+0.012

Table 2: Evaluation using medical experts. Fluency, Usability, and Relevance are scored on a scale
from 1 to 5. We also report the percentage of premature or repetitive outputs (Degeneracies). We
report average score and standard deviation of experts’ scores. We highlight in bold the best average
and all scores having overlapped standard deviation intervals with the best score.

6 CONCLUSION

In this work, we tackle the problem of under-generation of rare but important tokens in sequence-to-
sequence models. We show that external knowledge can be effectively injected into the sequence-
to-sequence models and mitigate the problem of lexical precision. We characterize the problem by
identifying a set of low-frequency but important concepts and defining their utilization rate, which
estimates the probability of a concept that is present in the source to be also present in the reference.
We confirm that modern well-trained sequence-to-sequence models suffer from under-estimating
utilization rates, and propose a way to directly maximize it during training. We design a differentiable
proxy based on the marginal entropy and propose a regularized training objective. Since some
concepts may be omitted from the reference, we extend the approach by applying weights, which
restrict the regularization impact of low-utilized concepts or their semantic types.

We perform a case study in automatic care plan generation from medical dialogues. We experiment
with a custom internal dataset and observe the effectiveness of the approach. We also compare a
previous approach for external knowledge injection — dynamic beam allocation (DBA). First, we
find that regularization improves the model’s utilization rate by pushing it closer to the empirical
values observed in reference sequences. Second, regularization reduces the model’s uncertainty at
early timesteps: exactly where concepts are typically introduced. Third, we observed a significant (in
terms of standard deviations) quality improvement. More specifically, we did a human evaluation
of relevance, concept overlap, medical usability, and fluency using five medical experts. The
results revealed the enhanced relevance and usability of generated instructions while, unlike DBA,
maintaining high fluency and low degeneracy.
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