
Position: Trustworthy AI Agents Require the Integration of
Large Language Models and Formal Methods

Yedi Zhang * 1 Yufan Cai * 1 Xinyue Zuo * 1 Xiaokun Luan * 2 Kailong Wang * 3 Zhe Hou 4 Yifan Zhang 1

Zhiyuan Wei 5 Meng Sun 2 Jun Sun 6 Jing Sun 7 Jin Song Dong 1

Abstract

Large Language Models (LLMs) have emerged
as a transformative AI paradigm, profoundly in-
fluencing broad aspects of daily life. Despite their
remarkable performance, LLMs exhibit a funda-
mental limitation: hallucination—the tendency
to produce misleading outputs that appear plausi-
ble. This inherent unreliability poses significant
risks, particularly in high-stakes domains where
trustworthiness is essential. On the other hand,
Formal Methods (FMs), which share foundations
with symbolic AI, provide mathematically rig-
orous techniques for modeling, specifying, rea-
soning, and verifying the correctness of systems.
These methods have been widely employed in
mission-critical domains such as aerospace, de-
fense, and cybersecurity. However, the broader
adoption of FMs remains constrained by signifi-
cant challenges, including steep learning curves,
limited scalability, and difficulties in adapting to
the dynamic requirements of daily applications.
To build trustworthy AI agents, we argue that
the integration of LLMs and FMs is necessary
to overcome the limitations of both paradigms.
LLMs offer adaptability and human-like reason-
ing but lack formal guarantees of correctness and
reliability. FMs provide rigor but need enhanced
accessibility and automation to support broader
adoption from LLMs.

*Equal contribution 1Department of Computer Science, Na-
tional University of Singapore, Singapore 2School of Mathemati-
cal Science, Peking University, China 3School of Cyber Science
and Engineering, Huazhong University of Science and Technology,
China 4School of Information and Communication Technology,
Griffith University, Australia 5Beijing Institute of Technology,
China 6School of Computing and Information Systems, Singapore
Management University, Singapore 7School of Computer Science,
University of Auckland, New Zealand. Correspondence to: Yedi
Zhang <yd.zhang@nus.edu.sg>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

1. Introduction
The rapid advancement of modern AI techniques, partic-
ularly in the realm of Large Language Models (LLMs)
like GPT (Achiam et al., 2023), Llama (Touvron et al.,
2023), Claude (Claude, 2024), Gemini (Gemini, 2024),
DeepSeek (DeepSeek-AI, 2025), etc., has marked a sig-
nificant evolution in human-level computational capabili-
ties. These models fundamentally reshape tasks across a
spectrum of applications, from natural language process-
ing to automated content generation. Trained on vast text
corpora, LLMs excel in generating responses that are con-
textually accurate and stylistically appropriate. However,
their applicability in safety-critical or knowledge-critical set-
tings remains limited due to their inherent reliability issues—
primarily, their propensity for generating outputs that, while
plausible, may be factually incorrect (Jacovi & Goldberg,
2020; Wiegreffe & Marasovic, 2020; Agarwal et al., 2024).
This limitation, known as “hallucination”, stems from the
probabilistic nature of learning-based AI, where the models
optimize for likelihood rather than truth or logical consis-
tency. Even worse, hallucination is mathematically proven
inevitable for LLMs (Xu et al., 2024).

In contrast, Formal Methods (FMs) have been established
as rigorous tools for verification and validation of critical
systems where failure is intolerable, such as aerospace (rele-
vant areas including avionics) (Dragomir et al., 2022; Liu
et al., 2019), autonomous driving (König et al., 2024; Alves
et al., 2021; Huang et al., 2022), and medical devices (Fre-
itas et al., 2020; Arcaini et al., 2018). These methods are
designed to ensure the correctness and safety of hardware
and software systems by performing rigorous mathematical
analysis. Despite the demonstrated benefits, the adoption of
FMs remains limited, primarily due to their significant com-
putational complexity and the specialized expertise required
for the implementation.

Although both computational paradigms encounter inherent
challenges of their own—namely, the unreliability stemming
from the statistical nature of LLMs and the high barrier and
complexity of FMs—recent studies have highlighted their
potential for mutual benefits (Wu et al., 2022; Pan et al.,
2023; He-Yueya et al., 2023; Zhou et al., 2024; Yang &

1

Position: Trustworthy AI Agents Require the Integration of Large Language Models and Formal Methods

Deng, 2019; Yang et al., 2024; Song et al., 2024; Cai et al.,
2025). Efforts to bridge these two paradigms aim to harness
their respective strengths, with the ultimate objective of de-
veloping a neural-symbolic AI that seamlessly integrates
LLMs and FMs into a unified solution. For instance, to en-
hance the reliability of LLMs, various approaches (Pan et al.,
2023; Ma et al., 2024b) have incorporated SMT solvers to
facilitate reasoning tasks guided by specification rules or
reasoning models derived from LLMs’ context. Conversely,
within the formal methods community, there is a growing
trend to leverage LLMs to enhance the functionality and us-
ability of automated verification (Wu et al., 2024; Wen et al.,
2024). Moreover, some existing research has also focused
on trustworthiness in general AI systems (Dalrymple et al.,
2024; Wing, 2021; Seshia et al., 2022; Zhang et al., 2024),
particularly in domains like robotics and cyber-physical sys-
tems, primarily using traditional FMs like model checking
and verification. They emphasize challenges such as world
modeling, specification design, and verifier implementation.

This paper advocates for the fusion of LLMs and FMs as
a necessary approach for building the next generation of
AI agents. Different from previous work on investigating an
unidirectional approach to apply FMs to general AI systems
or vice versa, we give a bidirectional integration, highlight-
ing how LLMs can enhance FMs to improve FMs’ efficiency
and adaptability, and how FMs can help certify LLM-driven
agents’ trustworthiness. Finally, by leveraging their comple-
mentary strengths, we propose a framework that enhances
reliability, ensures provable correctness, and mitigates risks
in AI-driven decision-making processes. Through case stud-
ies and conceptual explorations, we demonstrate how this
integration can bridge neural learning and symbolic reason-
ing, ultimately fostering more trustworthy AI systems.

2. Alternative Views
Relying Solely on Natural Language Reasoning. Natural
language reasoning (Yao et al., 2023) enables LLMs to
process and generate information in an intuitive, human-like
manner. However, it lacks rigorous correctness guarantees,
making it unreliable for high-stakes decision-making. While
statistical reasoning—areas where LLMs excel—can be
more efficient than strict formalism in certain domains, the
inherently learning-based nature, lacking rigorous reasoning,
can lead to hallucinations and logical errors.

Relying Solely on Expert Systems. Traditional expert
systems (Jackson, 1986) rely on fixed rule-based ontolo-
gies and usually operate under a closed-world assumption
(CWA), i.e., anything not explicitly stated as true is assumed
false. This rigid constraint is insufficient for open-ended,
real-world reasoning, where knowledge is incomplete and
context-dependent. Furthermore, expert systems struggle
to adapt to new information or make inferences beyond

their predefined rules, making them inadequate for complex,
evolving problem domains.

Instead of the rigid CWA, integrating open-world assump-
tion techniques with formal constraints enables greater rea-
soning flexibility. This approach accommodates incomplete
or evolving domain knowledge under uncertainty, thereby
enhancing adaptability, statistical analysis, and uncertainty
management—key strengths of modern AIs like LLMs.

Relying Solely on LLMs. LLMs, in their current form,
are not inherently trustworthy for critical applications such
as law, healthcare, and other safety-critical systems (Arm-
strong, 2023; Bellware & Masih, 2024; Choudhury &
Chaudhry, 2024). LLMs exhibit hallucinations, lack of
traceability, and non-deterministic behavior, rendering them
unsuitable for scenarios requiring strong guarantees in terms
of explainability, correctness, and security. While the in-
tegration of LLMs with Retrieval-Augmented Generation
(RAG) (Lewis et al., 2020; Guu et al., 2020) aims to mitigate
some of these limitations by providing access to external
knowledge sources, this approach does not inherently im-
prove reasoning capabilities (Chen et al., 2024b). Indeed,
RAG-enhanced models primarily enhance factual accuracy
by retrieving relevant documents but do not ensure logi-
cal coherence, consistency, or rigorous deductive reasoning.
These models often face challenges in executing deep rea-
soning, a capability that cannot be easily and effectively
achieved through mere fine-tuning (Liu et al., 2024).

Instead of rejecting formal reasoning outright, a more ef-
fective approach involves controlled augmentation, where
LLMs are integrated with formal methods tools, such as
proof-checkers and SMT solvers.

Relying Solely on FMs. Formal methods are mathemati-
cally rigorous methods that rely on manually defined specifi-
cations and inference rules for modeling, reasoning, and ver-
ifying the systems. However, their application in dynamic,
real-world environments presents several challenges (Kneu-
per, 1997; Batra, 2013). FMs often struggle with scalability
due to the computational demands of exhaustive state-space
exploration, making them impractical for large-scale sys-
tems. Additionally, not all system aspects can be fully for-
malized, particularly in unpredictable environments, leading
to gaps in formal analysis. The complexity and resource
intensity of developing formal specifications and conduct-
ing proofs further limit their widespread adoption in the
industry (Kaleeswaran et al., 2023).

A hybrid approach integrating adaptability, learning ability,
and natural language-based heuristics can provide a practical
middle ground. For instance, LLM-assisted theorem provers,
where LLMs support automated reasoning by generating
proofs or proposing logical constraints, can help bridge such
gaps by retaining the flexibility of LLMs while mitigating

2

Position: Trustworthy AI Agents Require the Integration of Large Language Models and Formal Methods

their weaknesses through formal guarantees.

3. LLM for FM: Verifying Intelligently
To achieve deep integration of LLMs and FMs for enhanc-
ing or certifying the trustworthiness of LLM agents, it is
crucial to improve the scalability and automation capabili-
ties of FMs, and LLMs offer promising solutions to these
challenges. Accordingly, this section explores how LLMs
can augment existing FMs by enabling the development
of intelligent agents capable of performing complex tasks
such as model checking and theorem proving. Indeed, FMs
currently face significant obstacles to widespread industrial
adoption, including the difficulty of formalizing require-
ment specifications, the limited scalability of algorithms
in large-scale systems, and the considerable manual effort
required for proof construction and validation. In contrast,
LLM agents bring adaptability and efficiency to traditional
formal verification processes, paving the way for more au-
tomated and effective formal methods. With their ability
to process and generate structured code and symbolic rep-
resentations, LLMs can serve as intelligent assistants in
automating tedious tasks within formal methods workflows.

3.1. LLM for Autoformalization

Autoformalization is the process of automatically translating
natural language-based specifications or informal represen-
tations into formal specifications or proofs. This complex
task demands a deep understanding of both informal and
formal languages, along with the ability to generate ac-
curate, machine-readable formal representations. Recent
research has demonstrated the effectiveness of LLMs in
various auto-formalization scenarios, including neural the-
orem proving (Jiang et al., 2023), temporal logic genera-
tion (Murphy et al., 2024), and program specification gen-
eration based on source code (Ma et al., 2024a). In this
section, we show the role of LLM agents in facilitating
proof auto-formalization.

Informal proofs, commonly found in textbooks, research
papers, online forums, or even generated by LLMs, often
omit details that humans consider trivial or self-evident.
However, to ensure rigorous verification by theorem provers,
they need to be translated into formal proofs that adhere to a
specific syntax, where all the details are explicitly provided.
We provide one motivating example in Appendix A.

To address this, we propose using auto-formalization agents
equipped with enhanced capabilities for symbolic reasoning.
More specifically, auto-formalization agents break down the
process into manageable steps: (i) generating proof outlines,
(ii) filling intermediate steps using external tools, and (iii)
integrating and refining proofs. To elaborate, the agent first
constructs a high-level proof outline, capturing the main

steps of the informal proof while leaving placeholders for
missing intermediate steps. This outline aligns with the
informal proof structure and serves as a blueprint for the
subsequent formalization process. The agent delegates the
task to external tools like computer algebra systems for the
missing details, especially those involving symbolic reason-
ing or algebraic manipulations. These tools can perform
accurate transformations on the mathematical expressions,
ensuring the correctness of the derived intermediate steps.
Once the intermediate steps are derived, the agent integrates
them into the proof outline, filling in the placeholders and
completing the formalization. If the agent still encounters
gaps in specific steps, it iteratively refines the proof by revis-
iting the informal proof and consulting external tools. In this
way, the auto-formalization agents can leverage the strong
symbolic reasoning capabilities of external tools to fill in
the missing details in the informal proofs, thus bridging the
gap between informal and formal proofs and specifications.

3.2. LLM for Model Checking

Model checking is a formal verification technique that sys-
tematically explores the state space of a system to determine
whether it satisfies specified properties, such as safety and
liveness. It is particularly effective for finite-state systems,
providing automated detection of logical errors like dead-
locks or critical system property violations. However, tra-
ditional model checking faces great limitations, including
scalability challenges for large systems and the complexity
involved in system modeling and property formalization.

In this section, we illustrate how an LLM-enhanced model
checking agent can address the aforementioned limitations
by leveraging the strengths of LLMs. By integrating LLMs,
such a model checking agent can accept system descriptions
in natural language from users, generate corresponding for-
mal models using the LLM, and iteratively refine these
models based on feedback from the model checker. This
synergy not only streamlines the model checking process
but also enhances its accessibility for users without deep
expertise in formal verification.

We demonstrate this insight through a model checking agent
framework built around a widely adopted model checker,
Process Analysis Toolkit (PAT) (Sun et al., 2008; Liu et al.,
2011). PAT is a formal verification tool designed for mod-
eling, simulating, and verifying concurrent and real-time
systems. It supports the verification of key properties such
as deadlock-freeness, reachability, and refinement, address-
ing critical correctness and reliability concerns in system
design. Widely applied in domains such as automotive and
aerospace, resource optimization, and complex system anal-
ysis, PAT provides a robust and well-established foundation
for the development of a model checking agent.

Example. In car system development, preventing key lock-

3

Position: Trustworthy AI Agents Require the Integration of Large Language Models and Formal Methods

in is essential for user convenience, avoiding costly lock-
smith services and severe delays. To ensure such incidents
do not occur, the system must maintain logical consistency
across operations.

We first prompt an LLM (gpt-4o-2024-08-06) to generate
a formal model directly from a detailed description. While
the model follows learned syntax rules and demonstrates
planning capabilities, it contains a critical logic flaw: it
allows the key to be locked inside the car. This issue stems
from the hallucination of GPT-4o, incorrectly assuming that
placing the key in a locked car is valid.

For example, the following transition allows the action
leavekey to occur when the key is held by owner i and
owner i is actually near the car:

[key == i && owner[i] == near]leavekey{key = incar;}

However, the action lacks a necessary condition: the car
door must be open. By omitting this constraint, the model
permits an invalid state where the key is left inside a locked
vehicle. Consequently, the resulting system design deviates
from the intended behavior, compromising its reliability.

To address this issue, we use PAT to formally verify the
generated system. PAT detects an error trace, a sequence of
operations that lead to the key being locked inside, revealing
logical flaws in the key and door logic. By analyzing this
trace, the LLM identifies the flaw and corrects it by imposing
stricter restrictions on when the key can be left inside. It
also defines clear conditions for locking the door, ensuring
alignment with the intended system behavior.

[key == i && owner[i] == near && door == open]
leavekey{key = incar;}

[(owner[i] == near && key == i) || owner[i] == in]
lockdoor.i{door = lock;}

The refined model, incorporating PAT’s feedback, ensures
the key can never be locked inside the car and passes for-
mal verification. This example demonstrates the powerful
synergy between formal verification and LLM-driven de-
velopment: LLMs streamline system development, while
PAT ensures rigor by detecting and correcting logical in-
consistencies. Together, they enable a robust, user-friendly
approach to formal system development, ensuring that criti-
cal requirements are met with precision.

Prototype. To implement the PAT model checking agent,
we design a custom pipeline that integrates LLMs with for-
mal verification tools to support automated code generation,
refinement, and validation. This setup enables iterative inter-
action between components while preserving precise control
over each stage of the pipeline.

Figure 1. PAT agent prototype.

Figure 1 illustrates the PAT agent prototype, which follows
a structured workflow. The process begins with the user pro-
viding a natural language description of a system, including
its desired behaviors and properties, such as a mutual exclu-
sion protocol and its expected safety and liveness conditions
or behaviors.

An LLM with strong reasoning capabilities then processes
the input to generate a structured implementation plan. This
step defines an action space, employs a search model to
identify feasible actions, and the LLM organizes them into a
logical breakdown of the system. The plan includes precise
mappings of logical steps, such as variable definitions, state
transitions, and system properties, forming the foundation
for NL-to-code translation.

Following the structured plan, a specialized LLM trained in
syntax and logic generates the code and assertions needed
to implement the system. Rather than generating code from
scratch, the model treats this as an NL-to-code translation
task, filling in details based on the structured plan. This
approach enhances precision by breaking down code gen-
eration into distinct planning and translation steps, making
the process more manageable.

The generated code and assertions are submitted to an auto-
mated verification tool, specifically PAT, to identify issues
such as syntax errors and logical inconsistencies. If veri-
fication fails, a refined prompt is created by incorporating
PAT feedback and comparing the implementation with the
ideal automata outlined during planning. This iterative re-
finement continues until all properties are satisfied, enabling
an automated yet rigorous approach to system development
that enhances efficiency while ensuring correctness.

Unlike typical LLM applications that can tolerate ambigu-
ity or loose semantics, our model checking agent enforces
strict formal guarantees by ensuring that all generated out-

4

Position: Trustworthy AI Agents Require the Integration of Large Language Models and Formal Methods

puts are provably correct through formal verification. The
framework utilizes the strengths of LLMs, such as natural
language understanding and code synthesis, within a rigor-
ously structured setting that incorporates iterative correct-
ness checking and refinement. By providing a user-friendly
interface, the agent empowers users without formal methods
expertise to generate verified system models, promoting the
broader adoption of trustworthy and verifiable AI tools in
system development.

Generalization. Since PAT is a low-resource formal lan-
guage with limited training data, enabling LLMs to gener-
ate PAT models automatically presents a significant chal-
lenge. The strong performance of our framework on
PAT therefore demonstrates its potential generalizability to
other formal methods tools, such as Alloy Analyzer (Jack-
son, 2000), PRISM (Kwiatkowska et al., 2002), and UP-
PAAL (Behrmann et al., 2004). Its modular architecture
allows the planning LLM to adapt to tool-specific semantics,
while the Code Translation LLM generates corresponding
formal code and assertions. By tailoring feedback and refine-
ment loops to each tool, the framework supports seamless
integration of LLM-driven development with a wide range
of formal verification workflows.

3.3. LLM for Theorem Proving

Among all formal analysis techniques, theorem proving
stands out for its capability to handle large state spaces,
abstract specifications, and highly intricate systems. Un-
like model checking, which is primarily designed for finite
models and faces challenges with state space explosion, the-
orem proving excels in leveraging mathematical reasoning
to establish properties that hold universally. This capabil-
ity has been successfully demonstrated in critical systems,
such as CompCert (Leroy, 2009), a formally verified C
compiler that guarantees the correctness of compiled code,
and seL4 (Klein et al., 2009), a microkernel with rigorous
proofs of memory safety, functional correctness, and secu-
rity properties. In this section, we explore how LLMs can
enhance premise selection and proof generation for theorem
proving and then illustrate the agent with one example in
Appendix A.

3.3.1. PREMISE SELECTION

Retrieving relevant facts from a large collection of lem-
mas is a critical task in theorem proving, a process known
as premise selection. This task is typically done manu-
ally by explicitly specifying the used lemmas in the proof
scripts, which often requires trial and error and deep do-
main knowledge, making it time-consuming and error-prone.
Some powerful automation techniques in interactive theo-
rem provers (ITPs) also need premise selection to first filter
out irrelevant lemmas from the large search space. For exam-

ple, Sledgehammer (Böhme & Nipkow, 2010), an effective
tool for Isabelle/HOL (Paulson, 1994), collects relevant
facts from the background theories and sends them to ex-
ternal automatic theorem provers (ATPs) and SMT solvers
to find proofs. This process involves premise selection to
identify the most relevant lemmas that can help in proving
the current goal, and Sledgehammer usually selects about
1,000 lemmas out of tens of thousands of available premises.
Some heuristics (Meng & Paulson, 2009) and machine learn-
ing techniques (Kühlwein et al., 2013) like naive Bayes are
used in Sledgehammer for relevant fact selection. Recent
works (Mikuła et al., 2024; Yang et al., 2024) proposed
using transformer models to learn the relevance of lemmas
for premise selection, which improved the success rate of
Sledgehammer.

Our insight is that LLM agents can further improve the
premise selection process by leveraging their code under-
standing capabilities. Premise selection fundamentally dif-
fers from other tasks like code retrieval. LLMs, with their
strong code comprehension capabilities, offer a way to ad-
dress this gap. They can infer the meaning of a lemma from
its name, definition, and contextual information, mimicking
the reasoning process of a human expert. For instance, a
human expert can intuitively assess whether a given lemma
is likely to be helpful for a particular proof goal. However,
the sheer number of lemmas in large proof libraries makes
it impossible for experts to evaluate and rank all possible
candidates manually. By contrast, LLM agents can effi-
ciently scale this process. We can first collect definitions
and contextual information of lemmas and ask LLM agents
to generate semantic descriptions in natural language for
each lemma, forming a knowledge base for premise selec-
tion. Then, given a proof goal, LLM agents comprehend the
goal and generate a semantic representation, which is used
to query the knowledge base for relevant lemmas.

3.3.2. PROOF GENERATION

Proof step generation is the central task in theorem proving,
where the objective is to predict one or more proof steps
to construct a valid proof for a given theorem. Many pi-
oneering works on LLM-based proof generation (Polu &
Sutskever, 2020; Polu et al., 2023; Han et al., 2022) ap-
proach this problem as a language modeling task and train
LLMs on large-scale proof corpora to predict the next proof
step. Various techniques have been developed to improve
the quality of generated proofs. For instance, learning to
invoke ATPs to discharge subgoals (Jiang et al., 2022), re-
pairing failed proof steps by querying LLMs with the error
message (First et al., 2023), and predicting auxiliary con-
structions to simplify proofs (Trinh et al., 2024) have all
demonstrated significant potential.

However, real-world application scenarios present chal-

5

Position: Trustworthy AI Agents Require the Integration of Large Language Models and Formal Methods

lenges that go beyond these methods. Human experts, for
instance, do not solely rely on immediate proof context or
predefined strategies. Instead, they first have a high-level
proof plan in mind and need to consult the definitions of
important concepts or theorems during the proof process fre-
quently. Additionally, experts often employ a trial-and-error
approach, iteratively refining their methods to construct a
valid proof. This highlights a limitation of current LLMs
when used as standalone tools: while they excel at pro-
ducing plausible proof steps, they lack broader strategic
reasoning and adaptability. This gap makes it difficult for
LLMs to consistently surpass human performance in proof
generation tasks.

To address these limitations, our insight is to propose a
shift toward LLM agents that more closely emulate human
experts in their proof strategies. In contrast to standalone
LLMs, these agents integrate multiple capabilities, allowing
them to reason, adapt, and interact during the proof genera-
tion process. This distinction can be articulated through the
following two key features:

Feature 1. Explicit Proof Intentions. A defining feature
of LLM agents is their ability to generate both proof steps
and explicit proof intentions—statements that explain the
reasoning or goals underlying each step. This additional
layer of information is critical for improving both automated
and human-driven refinement. When a proof step fails, the
agent can use the intention, along with error feedback, to
attempt a proof repair. Even if the repair is unsuccessful,
the intention provides valuable insights for human users,
streamlining their efforts to identify and resolve the issue.

Feature 2. Dynamic Retrieval of Relevant Knowledge.
LLM agents go beyond the immediate context by incorporat-
ing mechanisms to retrieve definitions, lemmas, or related
theorems from knowledge bases. This mimics how human
experts consult reference materials during the proof pro-
cess but with significantly greater efficiency and scale. By
dynamically identifying and incorporating relevant informa-
tion, the agent can address gaps in its internal knowledge,
enabling it to construct proofs that require broad or special-
ized domain understanding.

3.4. Trade-offs: LLM-augmented and Conventional
FMs

The trade-off between LLM-augmented FMs and traditional
FMs primarily lies in the balance between adaptability/-
expressiveness and precision/rigor. FM-only systems are
distinguished by their high precision, offering exact for-
mal specifications, rigorous proofs, and logically sound
reasoning, thereby ensuring strong guarantees of correct-
ness. However, these systems often struggle with flexibility
and expressiveness when confronted with ambiguous, in-
complete, or imprecisely defined real-world problems. In

contrast, LLM-augmented FM systems introduce greater
adaptability and expressive power, enabling more flexible
handling of complex and informal inputs. However, this
comes at the potential cost of consistency and precision in
generated outputs, which may require manual verification
to ensure correctness. Importantly, we argue that human
involvement in validating formal specifications remains an
unavoidable aspect even in purely FM-based systems. The
integration of LLMs does not introduce fundamentally new
challenges but rather shifts the focus of effort—reducing
the burden of manual model specification construction and
enhancing automation—while preserving the core objective
of ensuring correctness, rigor, and robust system design.

4. FM for LLM: Towards Reliability
In this section, we illustrate how FMs can enhance the re-
liability of LLMs. Specifically, we explore this integration
direction from three perspectives: (i) trustworthy LLMs
with symbolic solvers, (ii) LLM Testing based on logical
reasoning, and (iii) LLM behavior analysis. We argue that
these FM-based techniques make AI systems reliably secure,
paving the way for developing trustworthy AI systems.

4.1. SMT Solvers for LLM

Satisfiability Modulo Theories (SMT) solvers are special-
ized tools designed to determine the satisfiability of logical
formulas defined over some theories, such as arithmetic,
bit-vectors, and arrays. They play a pivotal role in formal
verification, program analysis, and automated reasoning,
serving as essential components to ensure the correctness
and reliability of complex software systems.

Recent studies (Deng et al., 2024; Pan et al., 2023; Wang
et al., 2024; Ye et al., 2024) have explored the integration
of SMT solvers to enhance the accuracy and reliability of
LLMs in logic reasoning tasks. These solver-powered LLM
agents operate by translating task descriptions into formal
specifications, delegating reasoning tasks to specialized ex-
pert tools for precise analysis, and subsequently converting
the outputs back into natural language.

We have identified three main challenges within this re-
search line. Firstly, while LLMs are capable of generating
logical constraints or SMT formulas, they often produce
suboptimal or overly verbose constraints, which can place
an additional computational burden on the solver. Secondly,
the outputs of LLMs lack guarantees of correctness or logi-
cal consistency, potentially introducing subtle inaccuracies
or ambiguities in the generated SMT constraints. It can
lead to invalid results or solutions that are challenging to
interpret. Lastly, LLMs often lack domain-specific knowl-
edge and may struggle to generate outputs that conform to
the precise formal syntax required by SMT solvers. Conse-

6

Position: Trustworthy AI Agents Require the Integration of Large Language Models and Formal Methods

quently, they may generate formulas that are semantically
sensible but syntactically invalid formulas, rendering them
unprocessable by the solvers.

We present our insights and proposed strategies to address
the three key challenges outlined above.

Strategy 1. Multiple LLMs Debating. To address the
challenge of LLMs generating suboptimal or overly verbose
constraints, a potential strategy is leveraging multiple LLMs
in a collaborative or adversarial framework to critique, vali-
date, and refine each other’s outputs. In this approach, the
system employs one or more LLMs to generate SMT code
from natural language inputs, while other LLMs function as
“critics”, evaluating the generated code for logical consis-
tency, syntactic correctness, and alignment with the problem
description. By incorporating feedback loops among these
models, the system can iteratively refine the outputs and
reduce ambiguity inherent in natural language inputs.

Strategy 2. Test Generation. Test cases will be automati-
cally generated to validate the correctness and consistency of
the LLM-generated SMT code against the expected behav-
ior. Fuzzing techniques may also be employed to generate
adversarial inputs for testing. Additionally, mutation-based
approaches can be applied to both the SMT code and the
natural language descriptions, with two LLMs comparing
the resulting solutions. The strategy helps check the con-
sistency between the natural language description and the
SMT code produced by the LLMs.

Strategy 3. Self-correction. Feedback from tests, critics,
or the solver itself can be leveraged to iteratively refine
the SMT code. Errors identified via solvers can be cate-
gorized into syntax issues (e.g., invalid SMT-LIB syntax),
semantic misalignments (e.g., logical inconsistencies), or
performance bottlenecks (e.g., slow or incomplete solver
responses). Based on this feedback, an LLM can be em-
ployed to debug and regenerate problematic parts of the
constraints, ensuring that the refinements are both targeted
and context-aware. This iterative refinement process, cou-
pled with validation through re-testing, facilitates the con-
vergence of LLM-generated SMT codes toward correctness
and rigorousness. An example is given in Appendix A.

4.2. Logical Reasoning for LLM Testing

LLM Testing (Zhong et al., 2024; Hendrycks et al., 2021;
Huang et al., 2023; Zhou et al., 2023) is primarily focused
on establishing a comprehensive benchmark to evaluate the
overall performance of the models, ensuring that they fulfill
specific assessment criteria, such as accuracy, coherence,
fairness, and safety, in alignment with their intended appli-
cations. An emerging research focus in this area is testing
hallucinations in LLMs, with recent studies proposing vari-
ous methods for their detection, evaluation, and mitigation.

A common and straightforward method is to create compre-
hensive benchmarks specifically designed to assess LLM
performance. However, these methods, which often rely
on simplistic or semi-automated techniques such as string
matching, manual validation, or cross-verification using
another LLM, have significant shortcomings in automati-
cally and effectively testing Fact-conflicting hallucinations
(FCH) (Li et al., 2024). This is largely due to the lack of
dedicated ground truth datasets and specific testing frame-
works. We contend that unlike other types of hallucinations,
which can be identified through checks for semantic con-
sistency, FCH requires the verification of content’s factual
accuracy against external, authoritative knowledge sources
or databases. Hence, it is crucial to automatically construct
and update factual benchmarks, and automatically validate
the LLM outputs based on that.

To this end, we propose to apply logical reasoning to de-
sign a reasoning-based test case generation method aimed at
developing an extensive and extensible FCH testing frame-
work. Such a testing framework leverages factual knowl-
edge reasoning combined with metamorphic testing princi-
ples to ensure a robust FCH evaluation of LLM.

4.2.1. FACTUAL KNOWLEDGE EXTRACTION

This process focuses on extracting essential factual informa-
tion from input knowledge data in the form of fact triples,
which are then suitable for logical reasoning. Existing
knowledge databases (Bollacker et al., 2007; Auer et al.,
2007; Suchanek et al., 2007; Miller, 1995) serve as valuable
resources due to their extensive repositories of structured
data derived from documents and web pages. This struc-
tured data forms the foundation for constructing and enrich-
ing factual knowledge, providing a robust basis for the test
case framework.

The extraction process typically involves structuring facts as
three-element predicates, nm (s, o), where “s” (stands for
subject) and “o” (stands for object) are entities, and “nm”
denotes the predicate. This divide-and-conquer strategy
extracts facts category by category, effectively organizing
information across various domains. The extraction process
iterates through predefined categories of entities and rela-
tions, employing a database querying function to retrieve all
relevant fact triples for a given entity and predicate combina-
tion. This ensures comprehensive and systematic extraction
of factual knowledge, creating a well-structured dataset for
reasoning and testing.

4.2.2. LOGICAL REASONING

This step focuses on deriving enriched information from
previously extracted factual knowledge by employing log-
ical reasoning techniques. The approach utilizes a logical
programming-based processor to automatically generate

7

Position: Trustworthy AI Agents Require the Integration of Large Language Models and Formal Methods

new fact triples by applying predefined inference rules, tak-
ing one or more input triples and producing derived outputs.

In particular, to introduce variability in the generation of
test cases, reasoning rules, commonly utilized in existing
literature (Zhou et al., 2019; Liang et al., 2022; Abboud
et al., 2020) for knowledge reasoning, are typically adopted,
including negation, symmetric, inverse, transitive and com-
posite. These rules provide a systematic framework for
generating new factual knowledge, ensuring diverse and
comprehensive test case preparation. The system applies all
relevant reasoning rules exhaustively to the appropriate fact
triples, enabling the automated enrichment of the knowledge
base for further testing purposes.

4.2.3. BENCHMARK CONSTRUCTION

This process consists of two key steps: (i) generating
question-answer (Q&A) pairs and (ii) creating prompts from
derived triples, which together can significantly reduce man-
ual effort in test oracle generation.

The question generation step uses entity-relation mappings
to populate predefined Q&A templates, aligning relation
types with corresponding question structures based on the
grammatical and semantic characteristics of predicates. For
predicates with unique characteristics, customized templates
are employed to generate valid Q&A pairs. To enhance nat-
ural language formulation, LLM can be used to refine the
Q&A structures. Answers are derived directly from fac-
tual triples, with true/false judgments determined by the
data. Mutated templates, leveraging synonyms or antonyms,
diversify questions with opposite semantics, yielding com-
plementary answers. Then, prompts are designed in the
second step to instruct LLMs to provide explicit judgments
(e.g., yes/no/I don’t know) and outline their reasoning in
standardized formats. LLM analysts can utilize predefined
instructions to ensure clarity and enable LLMs to deliver
assessable and logically consistent responses. This method
maximizes the model’s reasoning capabilities within the
structured framework of prompts and cues.

4.2.4. RESPONSE EVALUATION.

This step aims to enhance the factual evaluation in LLM out-
puts by identifying discrepancies between LLM responses
and the verified ground truth in Q&A pairs. The key in-
sight lies in constructing a similarity-based metamorphic
testing and oracles to evaluate consistency by comparing
the semantic structures of the response and ground truth,
focusing on node similarity (fact correctness) and edge sim-
ilarity (reasoning correctness). Responses are categorized
into four classes: correct responses (both nodes and edges
are similar), hallucinations from erroneous inference (nodes
are similar, edges are not), hallucinations from erroneous
knowledge (edges are similar, nodes are not), and overlaps

with both issues (both nodes and edges are dissimilar).

4.3. Rigorous LLM Behavior Analysis

While LLM testing techniques can effectively provide broad
assessments and reveal edge cases that may provoke un-
expected responses, they are limited in their capability to
give rigorous guarantees on LLM behaviors. LLM ver-
ification, on the other hand, serves as a complementary
mechanism. However, as LLMs grow more complex and
tasks become increasingly sophisticated, traditional neural
network verifiers lose relevance due to their limitations in
accommodating diverse model architectures and their focus
on single-application scenarios. Indeed, formal verification
of LLMs poses intrinsic challenges due to three key factors:

Factor 1. Non-Deterministic Responses. Responses from
LLMs are non-deterministic, meaning their outputs may
vary even with the same input. This inherent variability
presents substantial challenges to providing deterministic
guarantees regarding their behavior.

Factor 2. High Input Dimensions. The high dimension-
ality of inputs in LLMs leads to exponential growth in the
number of input tokens, rendering exhaustive verification
across an infinite input space highly impractical.

Factor 3. Lack of Formal Specification. While formal
specifications are rigorous, they often lack the expressive
capability of natural language, which makes it extremely
difficult to precisely capture the nuanced and complex lan-
guage behaviors expected from LLMs. Hence, we propose
that a specialized verification paradigm tailored specifically
for LLMs should be considered to ensure reliable and rigor-
ous certification for long-term applications.

Given these challenges, we argue that monitoring might
serve as a viable long-term solution for reliable LLM be-
havior analysis. Positioned between testing and verification,
monitoring of formalized properties at runtime enables rig-
orous certification of system behavior with minimal com-
putation overhead by examining execution traces against
predefined properties. This approach has already inspired
several efforts to monitor LLM responses at runtime (Cohen
et al., 2023; Manakul et al., 2023; Besta et al., 2024; Chen
et al., 2024a). However, the specifications used in these
methods remain ambiguous and informal. For example, they
define the properties of low hallucination based on the sta-
bility of LLM outputs. More recently, an approach (Cheng
et al., 2024) has been introduced to monitor the conditional
fairness properties of LLM responses. The specifications
in (Cheng et al., 2024) are informed by linear temporal logic
and its bounded metric interval temporal logic variant, re-
flecting a shift toward formal methods for more precise and
dependable monitoring of LLM behavior.

Despite these advancements, challenges remain in extending

8

Position: Trustworthy AI Agents Require the Integration of Large Language Models and Formal Methods

such formal monitoring techniques to a broader spectrum of
properties, including but not limited to robustness, factual
consistency, adherence to ethical guidelines, and sensitivity
to adversarial prompts. Real-world applications of LLMs
often involve nuanced, context-dependent interactions that
demand adaptive and scalable monitoring solutions. Future
research should focus on integrating diverse monitoring ap-
proaches, incorporating statistical and formal analysis tech-
niques with data-driven approaches to enhance adaptability,
and leveraging real-time anomaly detection to enhance the
comprehensiveness and practicality of LLM behavior moni-
toring in varied deployment scenarios, ultimately fostering
greater trustworthiness and accountability in AI systems.

4.4. Trade-offs: FM-augmented and LLM-only Systems

A key advantage of hybrid LLM-FM systems lies in their
ability to combine the generative flexibility of LLMs with
the precision, rigor, and correctness guarantees provided by
formal methods. However, these benefits come at a cost:
increased system complexity and challenges in achieving
seamless integration, particularly due to mismatches in rep-
resentational languages and reasoning paradigms. Moreover,
hybrid approaches may still be limited by the expressive
capabilities of the underlying formal frameworks. Conse-
quently, we argue that such integrations are most beneficial
in downstream tasks where correctness, logical consistency,
and verifiability are essential. However, for domains that
prioritize creativity and expressive freedom over strict cor-
rectness, such as creative writing, LLM-only systems may
remain the more suitable choice, given their emphasis on
generative fluency and contextual adaptability.

5. Unifying Multiple FMs and LLMs
This section highlights the synergistic collaboration among
multiple LLM and FM agents. By integrating the adaptabil-
ity and expressiveness of LLMs with the rigorous formal
guarantees of FMs, the hybrid approach enables the gen-
eration of reliable, verifiable, and logically sound system
behaviors. The pipeline given in Figure 2 demonstrates
how multiple FMs and LLMs are integrated to produce
trustworthy actions. The process initiates with user-defined
specifications or requirements, typically expressed in natu-
ral language. These inputs are first processed by an LLM
specialized in auto-formalization, which translates informal
natural language descriptions into structured formal repre-
sentations. The resulting artifacts are then subjected to rig-
orous analysis through a pipeline of FM-based components,
ensuring logical consistency and correctness with respect to
the specified requirements. This hybrid workflow comprises
the following six stages: (i) Auto-formalization enables
LLMs to interpret natural language requirements and trans-
late them into formal specifications; (ii) Model checking

Specification / User Requirement

Section 3.1 Autoformalization

Section 3.2 Model Checking

Section 3.3 Theorem Proving

Section 4.1 SMT Solving for LLMs

Section 4.2 LLM Testing

Section 4.3 LLM Monitoring

Trustworthy Action

LLM

Action

LLMAgent

Figure 2. The framework of multiple LLM-FM agents.

verifies that the formalized specifications satisfy logical
constraints, invariants, and safety properties; (iii) Theo-
rem proving provides formal proof guarantees for critical
properties by constructing machine-checkable proofs; (iv)
SMT solving allows LLMs to generate formal encodings
and leverage domain-specific SMT solvers to check logical
satisfiability and uncover inconsistencies; (v) LLM test-
ing complements formal analysis by identifying edge cases
or emergent behaviors not covered by proofs; (vi) LLM
monitoring monitors runtime behavior to ensure observed
executions conform to expected outcomes and system-level
specifications.

Across these stages, LLMs serve as intelligent intermedi-
aries, integrating results, interpreting verification outcomes,
and iteratively refining the system outputs. Moreover, the
LLM agent adapts dynamically, modifying intermediate rep-
resentations or generated actions in response to feedback
from the verification pipeline; consequently, the final result
manifests as a trustworthy action, aligning with the original
user intent and satisfying formal correctness guarantees. By
unifying multiple LLMs and FMs, the framework leverages
their complementary strengths to enable systems that are not
only adaptable and intelligent but also robust, interpretable,
and trustworthy. More examples are given in Appendix A.

6. Conclusion
This paper advocates for the integration of Large Language
Models and Formal Methods as a necessary approach to
building trustworthy AI agents. Through case studies and
conceptual explorations, we illustrate how this integration
can address the inherent limitations of both paradigms. This
fusion lays the foundation for bridging neural learning and
symbolic reasoning, ensuring AI agents are both powerful
and verifiably trustworthy.

9

Position: Trustworthy AI Agents Require the Integration of Large Language Models and Formal Methods

Acknowledgements
This study was supported by the Ministry of Education,
Singapore under its Academic Research Fund Tier 3
(MOET32020-0003), the Ministry of Education, Singa-
pore under its Academic Research Fund Tier 3 (Award ID:
MOET32020-0004), the National Key R&D Program of
China under Grant 2022YFB2702200, and the NSFC under
Grant 62172019.

References
Abboud, R., Ceylan, I., Lukasiewicz, T., and Salvatori, T.

Boxe: A box embedding model for knowledge base com-
pletion. Advances in Neural Information Processing Sys-
tems, 33:9649–9661, 2020.

Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I.,
Aleman, F. L., Almeida, D., Altenschmidt, J., Altman, S.,
Anadkat, S., et al. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774, 2023.

Agarwal, C., Tanneru, S. H., and Lakkaraju, H. Faith-
fulness vs. plausibility: On the (un) reliability of ex-
planations from large language models. arXiv preprint
arXiv:2402.04614, 2024.

Alves, G. V., Dennis, L., and Fisher, M. A double-level
model checking approach for an agent-based autonomous
vehicle and road junction regulations. Journal of Sensor
and Actuator Networks, 10(3):41, 2021.

Arcaini, P., Bonfanti, S., Gargantini, A., Mashkoor, A., and
Riccobene, E. Integrating formal methods into medical
software development: The asm approach. Science of
Computer Programming, 158:148–167, 2018.

Armstrong, K. Chatgpt: Us lawyer admits using ai
for case research. https://www.bbc.com/news/
world-us-canada-65735769, 2023.

Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak,
R., and Ives, Z. Dbpedia: A nucleus for a web of open
data. In Aberer, K., Choi, K.-S., Noy, N., Allemang, D.,
Lee, K.-I., Nixon, L., Golbeck, J., Mika, P., Maynard,
D., Mizoguchi, R., Schreiber, G., and Cudré-Mauroux,
P. (eds.), The Semantic Web, pp. 722–735, Berlin, Hei-
delberg, 2007. Springer Berlin Heidelberg. ISBN 978-3-
540-76298-0.

Batra, M. Formal methods: Benefits, challenges and fu-
ture direction. Journal of Global Research in Computer
Science, 4(5):21–25, 2013.

Behrmann, G., David, A., and Larsen, K. G. A tutorial
on uppaal. Formal methods for the design of real-time
systems, pp. 200–236, 2004.

Bellware, K. and Masih, N. Her teenage son killed himself
after talking to a chatbot. now she’s suing. https:
//www.washingtonpost.com/nation/2024/
10/24/character-ai-lawsuit-suicide/,
2024.

Besta, M., Paleari, L., Kubicek, A., Nyczyk, P., Gersten-
berger, R., Iff, P., Lehmann, T., Niewiadomski, H.,
and Hoefler, T. Checkembed: Effective verification
of llm solutions to open-ended tasks. arXiv preprint
arXiv:2406.02524, 2024.

Böhme, S. and Nipkow, T. Sledgehammer: Judgement day.
In Giesl, J. and Hähnle, R. (eds.), Automated Reasoning,
pp. 107–121, Berlin, Heidelberg, 2010. Springer Berlin
Heidelberg. ISBN 978-3-642-14203-1.

Bollacker, K., Cook, R., and Tufts, P. Freebase: A shared
database of structured general human knowledge. In
Proceedings of the 22nd National Conference on Artificial
Intelligence - Volume 2, AAAI’07, pp. 1962–1963. AAAI
Press, 2007. ISBN 9781577353232.

Cai, Y., Hou, Z., Sanan, D., Luan, X., Lin, Y., Sun, J.,
and Dong, J. S. Automated program refinement: Guide
and verify code large language model with refinement
calculus. Proc. ACM Program. Lang., 9(POPL), January
2025. doi: 10.1145/3704905. URL https://doi.
org/10.1145/3704905.

Chen, J., Kim, G., Sriram, A., Durrett, G., and Choi, E.
Complex claim verification with evidence retrieved in the
wild. In Proceedings of the 2024 Conference of the North
American Chapter of the Association for Computational
Linguistics: Human Language Technologies (Volume 1:
Long Papers), pp. 3569–3587, 2024a.

Chen, J., Lin, H., Han, X., and Sun, L. Benchmarking large
language models in retrieval-augmented generation. In
Wooldridge, M. J., Dy, J. G., and Natarajan, S. (eds.),
Thirty-Eighth AAAI Conference on Artificial Intelligence,
AAAI 2024, Thirty-Sixth Conference on Innovative Appli-
cations of Artificial Intelligence, IAAI 2024, Fourteenth
Symposium on Educational Advances in Artificial Intel-
ligence, EAAI 2014, February 20-27, 2024, Vancouver,
Canada, pp. 17754–17762. AAAI Press, 2024b.

Cheng, C.-H., Wu, C., Ruess, H., Zhao, X., and Bensalem, S.
Formal specification, assessment, and enforcement of fair-
ness for generative ais. arXiv preprint arXiv:2404.16663,
2024.

Choudhury, A. and Chaudhry, Z. Large language models
and user trust: Consequence of self-referential learning
loop and the deskilling of health care professionals. J
Med Internet Res, 26, Apr 2024.

10

https://www.bbc.com/news/world-us-canada-65735769
https://www.bbc.com/news/world-us-canada-65735769
https://www.washingtonpost.com/nation/2024/10/24/character-ai-lawsuit-suicide/
https://www.washingtonpost.com/nation/2024/10/24/character-ai-lawsuit-suicide/
https://www.washingtonpost.com/nation/2024/10/24/character-ai-lawsuit-suicide/
https://doi.org/10.1145/3704905
https://doi.org/10.1145/3704905

Position: Trustworthy AI Agents Require the Integration of Large Language Models and Formal Methods

Claude, T. The claude 3 model family: Opus, sonnet, haiku.
2024. URL https://api.semanticscholar.
org/CorpusID:268232499.

Cohen, R., Hamri, M., Geva, M., and Globerson, A. LM vs
LM: Detecting factual errors via cross examination. In
Bouamor, H., Pino, J., and Bali, K. (eds.), Proceedings
of the 2023 Conference on Empirical Methods in Natural
Language Processing, 2023.

Dalrymple, D., Skalse, J., Bengio, Y., Russell, S., Tegmark,
M., Seshia, S., Omohundro, S., Szegedy, C., Goldhaber,
B., Ammann, N., et al. Towards guaranteed safe ai: A
framework for ensuring robust and reliable ai systems.
arXiv preprint arXiv:2405.06624, 2024.

de Moura, L. and Bjørner, N. Z3: An efficient smt solver.
In Ramakrishnan, C. R. and Rehof, J. (eds.), Tools and
Algorithms for the Construction and Analysis of Systems,
pp. 337–340, Berlin, Heidelberg, 2008. Springer Berlin
Heidelberg. ISBN 978-3-540-78800-3.

DeepSeek-AI. Deepseek-r1: Incentivizing reasoning ca-
pability in llms via reinforcement learning, 2025. URL
https://arxiv.org/abs/2501.12948.

Deng, S., Dong, H., and Si, X. Enhancing and evaluat-
ing logical reasoning abilities of large language mod-
els. In ICLR 2024 Workshop on Secure and Trust-
worthy Large Language Models, 2024. URL https:
//openreview.net/forum?id=xw06d8NQAd.

Dragomir, I., Redondo, C., Jorge, T., Gouveia, L., Ober,
I., Kolesnikov, I., Bozga, M., and Perrotin, M. Model-
checking of space systems designed with taste/sdl. In Pro-
ceedings of the 25th International Conference on Model
Driven Engineering Languages and Systems: Companion
Proceedings, pp. 237–246, 2022.

First, E., Rabe, M., Ringer, T., and Brun, Y. Baldur: Whole-
proof generation and repair with large language models.
In The 31st ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Soft-
ware Engineering, pp. 1229–1241, 2023.

Freitas, L., Scott III, W. E., and Degenaar, P. Medicine-
by-wire: Practical considerations on formal techniques
for dependable medical systems. Science of Computer
Programming, 200:102545, 2020.

Gemini, T. Gemini: A family of highly capable multi-
modal models, 2024. URL https://arxiv.org/
abs/2312.11805.

Guu, K., Lee, K., Tung, Z., Pasupat, P., and Chang, M.
Retrieval augmented language model pre-training. In
International conference on machine learning, pp. 3929–
3938. PMLR, 2020.

Han, J. M., Rute, J., Wu, Y., Ayers, E., and Polu, S. Proof ar-
tifact co-training for theorem proving with language mod-
els. In International Conference on Learning Represen-
tations, 2022. URL https://openreview.net/
forum?id=rpxJc9j04U.

He-Yueya, J., Poesia, G., Wang, R. E., and Goodman,
N. D. Solving math word problems by combining lan-
guage models with symbolic solvers. arXiv preprint
arXiv:2304.09102, 2023.

Hendrycks, D., Burns, C., Basart, S., Zou, A., Mazeika, M.,
Song, D., and Steinhardt, J. Measuring massive multitask
language understanding. In 9th International Conference
on Learning Representations, ICLR 2021, Virtual Event,
Austria, May 3-7, 2021, 2021.

Huang, Y., Bai, Y., Zhu, Z., Zhang, J., Zhang, J., Su, T., Liu,
J., Lv, C., Zhang, Y., Lei, J., Fu, Y., Sun, M., and He,
J. C-eval: A multi-level multi-discipline chinese evalu-
ation suite for foundation models. In Oh, A., Naumann,
T., Globerson, A., Saenko, K., Hardt, M., and Levine,
S. (eds.), Advances in Neural Information Processing
Systems 36: Annual Conference on Neural Information
Processing Systems 2023, NeurIPS 2023, New Orleans,
LA, USA, December 10 - 16, 2023, 2023.

Huang, Z., Li, B., Du, D., and Li, Q. A model checking
based approach to detect safety-critical adversarial exam-
ples on autonomous driving systems. In International
Colloquium on Theoretical Aspects of Computing, pp.
238–254. Springer, 2022.

Huet, G., Kahn, G., and Paulin-Mohring, C. The coq proof
assistant a tutorial. Rapport Technique, 178, 1997.

Jackson, D. Automating first-order relational logic. In Pro-
ceedings of the 8th ACM SIGSOFT international sympo-
sium on Foundations of software engineering: twenty-first
century applications, pp. 130–139, 2000.

Jackson, P. Introduction to expert systems. 1986.

Jacovi, A. and Goldberg, Y. Towards faithfully interpretable
nlp systems: How should we define and evaluate faith-
fulness? In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pp. 4198–
4205, 2020.

Jiang, A. Q., Li, W., Tworkowski, S., Czechowski, K.,
Odrzygóźdź, T., Miłoś, P., Wu, Y., and Jamnik, M. Thor:
Wielding hammers to integrate language models and auto-
mated theorem provers. Advances in Neural Information
Processing Systems, 35:8360–8373, 2022.

Jiang, A. Q., Welleck, S., Zhou, J. P., Lacroix, T., Liu, J., Li,
W., Jamnik, M., Lample, G., and Wu, Y. Draft, sketch,
and prove: Guiding formal theorem provers with informal

11

https://api.semanticscholar.org/CorpusID:268232499
https://api.semanticscholar.org/CorpusID:268232499
https://arxiv.org/abs/2501.12948
https://openreview.net/forum?id=xw06d8NQAd
https://openreview.net/forum?id=xw06d8NQAd
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2312.11805
https://openreview.net/forum?id=rpxJc9j04U
https://openreview.net/forum?id=rpxJc9j04U

Position: Trustworthy AI Agents Require the Integration of Large Language Models and Formal Methods

proofs. In The Eleventh International Conference on
Learning Representations, ICLR 2023, Kigali, Rwanda,
May 1-5, 2023, 2023.

Kaleeswaran, A. P., Nordmann, A., Vogel, T., and Grunske,
L. A user study for evaluation of formal verification
results and their explanation at bosch. Empirical Software
Engineering, 28(5):125, 2023.

Klein, G., Elphinstone, K., Heiser, G., Andronick, J., Cock,
D., Derrin, P., Elkaduwe, D., Engelhardt, K., Kolanski,
R., Norrish, M., Sewell, T., Tuch, H., and Winwood, S.
sel4: formal verification of an os kernel. In Proceed-
ings of the ACM SIGOPS 22nd Symposium on Operating
Systems Principles, SOSP ’09, pp. 207–220, New York,
NY, USA, 2009. Association for Computing Machinery.
ISBN 9781605587523. doi: 10.1145/1629575.1629596.

Kneuper, R. Limits of formal methods. Formal Aspects of
Computing, 9(4):379–394, 1997.

König, L., Heinzemann, C., Griggio, A., Klauck, M.,
Cimatti, A., Henze, F., Tonetta, S., Küperkoch, S., Fass-
bender, D., and Hanselmann, M. Towards safe au-
tonomous driving: Model checking a behavior planner
during development. In International Conference on
Tools and Algorithms for the Construction and Analysis
of Systems, pp. 44–65. Springer, 2024.

Kühlwein, D., Blanchette, J. C., Kaliszyk, C., and Urban, J.
Mash: Machine learning for sledgehammer. In Blazy, S.,
Paulin-Mohring, C., and Pichardie, D. (eds.), Interactive
Theorem Proving, pp. 35–50, Berlin, Heidelberg, 2013.
Springer Berlin Heidelberg. ISBN 978-3-642-39634-2.

Kwiatkowska, M., Norman, G., and Parker, D. Prism: Prob-
abilistic symbolic model checker. In International Con-
ference on Modelling Techniques and Tools for Computer
Performance Evaluation, pp. 200–204. Springer, 2002.

Leroy, X. Formal verification of a realistic compiler. Com-
mun. ACM, 52(7):107–115, July 2009. ISSN 0001-0782.
doi: 10.1145/1538788.1538814.

Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin, V.,
Goyal, N., Küttler, H., Lewis, M., Yih, W.-t., Rocktäschel,
T., et al. Retrieval-augmented generation for knowledge-
intensive nlp tasks. Advances in Neural Information Pro-
cessing Systems, 33:9459–9474, 2020.

Li, N., Li, Y., Liu, Y., Shi, L., Wang, K., and Wang, H.
Drowzee: Metamorphic testing for fact-conflicting hal-
lucination detection in large language models. Proc.
ACM Program. Lang., 8(OOPSLA2), October 2024.
doi: 10.1145/3689776. URL https://doi.org/10.
1145/3689776.

Liang, K., Meng, L., Liu, M., Liu, Y., Tu, W., Wang, S.,
Zhou, S., Liu, X., and Sun, F. Reasoning over different
types of knowledge graphs: Static, temporal and multi-
modal. arXiv preprint arXiv:2212.05767, 2022.

Liu, J., Li, T., Ding, Z., Qian, Y., Sun, H., and He, J. Aadl+:
a simulation-based methodology for cyber-physical sys-
tems. Frontiers of Computer Science, 13:516–538, 2019.

Liu, J., Lin, J., and Liu, Y. How much can rag help the
reasoning of llm? arXiv preprint arXiv:2410.02338,
2024.

Liu, Y., Sun, J., and Dong, J. S. PAT 3: An extensible
architecture for building multi-domain model checkers.
In Dohi, T. and Cukic, B. (eds.), IEEE 22nd International
Symposium on Software Reliability Engineering, ISSRE
2011, Hiroshima, Japan, November 29 - December 2,
2011, pp. 190–199. IEEE Computer Society, 2011. doi:
10.1109/ISSRE.2011.19. URL https://doi.org/
10.1109/ISSRE.2011.19.

Ma, L., Liu, S., Li, Y., Xie, X., and Bu, L. Specgen: Au-
tomated generation of formal program specifications via
large language models, 2024a. URL https://arxiv.
org/abs/2401.08807.

Ma, Y., Gou, Z., Hao, J., Xu, R., Wang, S., Pan, L., Yang,
Y., Cao, Y., and Sun, A. Sciagent: Tool-augmented lan-
guage models for scientific reasoning. In Al-Onaizan, Y.,
Bansal, M., and Chen, Y. (eds.), Proceedings of the 2024
Conference on Empirical Methods in Natural Language
Processing, EMNLP 2024, Miami, FL, USA, November
12-16, 2024, pp. 15701–15736. Association for Computa-
tional Linguistics, 2024b.

Manakul, P., Liusie, A., and Gales, M. Selfcheckgpt: Zero-
resource black-box hallucination detection for genera-
tive large language models. In Proceedings of the 2023
Conference on Empirical Methods in Natural Language
Processing, pp. 9004–9017, 2023.

Meng, J. and Paulson, L. C. Lightweight relevance filtering
for machine-generated resolution problems. Journal of
Applied Logic, 7(1):41–57, 2009. ISSN 1570-8683. doi:
10.1016/j.jal.2007.07.004. Special Issue: Empirically
Successful Computerized Reasoning.

Mikuła, M., Tworkowski, S., Antoniak, S., Piotrowski, B.,
Jiang, A. Q., Zhou, J. P., Szegedy, C., Kuciński, Ł.,
Miłoś, P., and Wu, Y. Magnushammer: A transformer-
based approach to premise selection. In The Twelfth
International Conference on Learning Representations,
2024. URL https://openreview.net/forum?
id=oYjPk8mqAV.

12

https://doi.org/10.1145/3689776
https://doi.org/10.1145/3689776
https://doi.org/10.1109/ISSRE.2011.19
https://doi.org/10.1109/ISSRE.2011.19
https://arxiv.org/abs/2401.08807
https://arxiv.org/abs/2401.08807
https://openreview.net/forum?id=oYjPk8mqAV
https://openreview.net/forum?id=oYjPk8mqAV

Position: Trustworthy AI Agents Require the Integration of Large Language Models and Formal Methods

Miller, G. A. Wordnet: A lexical database for english.
Commun. ACM, 38(11):39–41, nov 1995. ISSN 0001-
0782. doi: 10.1145/219717.219748. URL https://
doi.org/10.1145/219717.219748.

Murphy, W., Holzer, N., Koenig, N., Cui, L., Rothkopf,
R., Qiao, F., and Santolucito, M. Guiding llm temporal
logic generation with explicit separation of data and con-
trol, 2024. URL https://arxiv.org/abs/2406.
07400.

Pan, L., Albalak, A., Wang, X., and Wang, W. Logic-
lm: Empowering large language models with symbolic
solvers for faithful logical reasoning. In Findings of
the Association for Computational Linguistics: EMNLP
2023, pp. 3806–3824, 2023.

Paulson, L. C. Isabelle: A generic theorem prover. Springer,
1994.

Polu, S. and Sutskever, I. Generative language modeling for
automated theorem proving. CoRR, 2020. URL https:
//arxiv.org/abs/2009.03393.

Polu, S., Han, J. M., Zheng, K., Baksys, M., Babuschkin, I.,
and Sutskever, I. Formal mathematics statement curricu-
lum learning. In The Eleventh International Conference
on Learning Representations, 2023. URL https://
openreview.net/forum?id=-P7G-8dmSh4.

Seshia, S. A., Sadigh, D., and Sastry, S. S. Toward veri-
fied artificial intelligence. Commun. ACM, 65(7):46–55,
June 2022. ISSN 0001-0782. doi: 10.1145/3503914.
URL https://doi-org.libproxy1.nus.edu.
sg/10.1145/3503914.

Song, P., Yang, K., and Anandkumar, A. Towards large
language models as copilots for theorem proving in lean.
arXiv preprint arXiv:2404.12534, 2024.

Suchanek, F. M., Kasneci, G., and Weikum, G. Yago: A
core of semantic knowledge. In Proceedings of the 16th
International Conference on World Wide Web, WWW ’07,
pp. 697–706, New York, NY, USA, 2007. Association for
Computing Machinery. ISBN 9781595936547. doi: 10.
1145/1242572.1242667. URL https://doi.org/
10.1145/1242572.1242667.

Sun, J., Liu, Y., and Dong, J. S. Model checking csp re-
visited: Introducing a process analysis toolkit. In Inter-
national symposium on leveraging applications of for-
mal methods, verification and validation, pp. 307–322.
Springer, 2008.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux,
M., Lacroix, T., Rozière, B., Goyal, N., Hambro, E.,
Azhar, F., Rodriguez, A., Joulin, A., Grave, E., and

Lample, G. Llama: Open and efficient foundation lan-
guage models. CoRR, abs/2302.13971, 2023. doi: 10.
48550/arxiv.2302.13971. URL https://doi.org/
10.48550/arXiv.2302.13971.

Trinh, T., Wu, Y. T., Le, Q., He, H., and Luong,
T. Solving Olympiad geometry without human
demonstrations. Nature, 625:476–482, 2024.
URL https://www.nature.com/articles/
s41586-023-06747-5.

Wang, C., Zhang, W., Su, Z., Xu, X., Xie, X., and Zhang,
X. When dataflow analysis meets large language models.
arXiv preprint arXiv:2402.10754, 2024.

Wen, C., Cao, J., Su, J., Xu, Z., Qin, S., He, M., Li, H.,
Cheung, S.-C., and Tian, C. Enchanting program speci-
fication synthesis by large language models using static
analysis and program verification. In International Con-
ference on Computer Aided Verification, pp. 302–328.
Springer, 2024.

Wiegreffe, S. and Marasovic, A. Teach me to explain: A
review of datasets for explainable natural language pro-
cessing. In Thirty-fifth Conference on Neural Informa-
tion Processing Systems Datasets and Benchmarks Track
(Round 1), 2020.

Wing, J. M. Trustworthy ai. Commun. ACM, 64(10):
64–71, September 2021. ISSN 0001-0782. doi: 10.1145/
3448248. URL https://doi-org.libproxy1.
nus.edu.sg/10.1145/3448248.

Wu, H., Barrett, C. W., and Narodytska, N. Lemur: In-
tegrating large language models in automated program
verification. In The Twelfth International Conference on
Learning Representations, ICLR 2024, Vienna, Austria,
May 7-11, 2024, 2024.

Wu, Y., Jiang, A. Q., Li, W., Rabe, M., Staats, C., Jam-
nik, M., and Szegedy, C. Autoformalization with large
language models. Advances in Neural Information Pro-
cessing Systems, 35:32353–32368, 2022.

Xu, Z., Jain, S., and Kankanhalli, M. Hallucination is
inevitable: An innate limitation of large language mod-
els, 2024. URL https://arxiv.org/abs/2401.
11817.

Yang, K. and Deng, J. Learning to prove theorems via inter-
acting with proof assistants. In International Conference
on Machine Learning, pp. 6984–6994. PMLR, 2019.

Yang, K., Swope, A., Gu, A., Chalamala, R., Song, P.,
Yu, S., Godil, S., Prenger, R. J., and Anandkumar, A.
Leandojo: Theorem proving with retrieval-augmented
language models. Advances in Neural Information Pro-
cessing Systems, 36, 2024.

13

https://doi.org/10.1145/219717.219748
https://doi.org/10.1145/219717.219748
https://arxiv.org/abs/2406.07400
https://arxiv.org/abs/2406.07400
https://arxiv.org/abs/2009.03393
https://arxiv.org/abs/2009.03393
https://openreview.net/forum?id=-P7G-8dmSh4
https://openreview.net/forum?id=-P7G-8dmSh4
https://doi-org.libproxy1.nus.edu.sg/10.1145/3503914
https://doi-org.libproxy1.nus.edu.sg/10.1145/3503914
https://doi.org/10.1145/1242572.1242667
https://doi.org/10.1145/1242572.1242667
https://doi.org/10.48550/arXiv.2302.13971
https://doi.org/10.48550/arXiv.2302.13971
https://www.nature.com/articles/s41586-023-06747-5
https://www.nature.com/articles/s41586-023-06747-5
https://doi-org.libproxy1.nus.edu.sg/10.1145/3448248
https://doi-org.libproxy1.nus.edu.sg/10.1145/3448248
https://arxiv.org/abs/2401.11817
https://arxiv.org/abs/2401.11817

Position: Trustworthy AI Agents Require the Integration of Large Language Models and Formal Methods

Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T., Cao, Y.,
and Narasimhan, K. Tree of thoughts: Deliberate problem
solving with large language models. Advances in Neural
Information Processing Systems, 36, 2023. ISSN 1049-
5258. Publisher Copyright: © 2023 Neural information
processing systems foundation. All rights reserved.; 37th
Conference on Neural Information Processing Systems,
NeurIPS 2023 ; Conference date: 10-12-2023 Through
16-12-2023.

Ye, X., Chen, Q., Dillig, I., and Durrett, G. Satlm:
Satisfiability-aided language models using declarative
prompting. Advances in Neural Information Processing
Systems, 36, 2024.

Zhang, Y., Chen, G., Song, F., Sun, J., and Dong, J. S.
Certified quantization strategy synthesis for neural net-
works. In International Symposium on Formal Methods,
pp. 343–362. Springer, 2024.

Zheng, K., Han, J. M., and Polu, S. minif2f: a cross-system
benchmark for formal olympiad-level mathematics. In
International Conference on Learning Representations,
2022. URL https://openreview.net/forum?
id=9ZPegFuFTFv.

Zhong, W., Cui, R., Guo, Y., Liang, Y., Lu, S., Wang, Y.,
Saied, A., Chen, W., and Duan, N. Agieval: A human-
centric benchmark for evaluating foundation models. In
Findings of the Association for Computational Linguis-
tics: NAACL 2024, pp. 2299–2314, 2024.

Zhou, J. P., Staats, C., Li, W., Szegedy, C., Weinberger,
K. Q., and Wu, Y. Don’t trust: Verify - grounding LLM
quantitative reasoning with autoformalization. In The
Twelfth International Conference on Learning Represen-
tations, ICLR 2024, Vienna, Austria, May 7-11, 2024,
2024.

Zhou, K., Zhu, Y., Chen, Z., Chen, W., Zhao, W. X., Chen,
X., Lin, Y., Wen, J.-R., and Han, J. Don’t make your
llm an evaluation benchmark cheater. arXiv preprint
arXiv:2311.01964, 2023.

Zhou, Z., Liu, S., Xu, G., and Zhang, W. On completing
sparse knowledge base with transitive relation embedding.
In Proceedings of the AAAI Conference on Artificial In-
telligence, volume 33, pp. 3125–3132, 2019.

14

https://openreview.net/forum?id=9ZPegFuFTFv
https://openreview.net/forum?id=9ZPegFuFTFv

Position: Trustworthy AI Agents Require the Integration of Large Language Models and Formal Methods

A. Appendix
A.1. Theorem Prover Agent

In this subsection, we describe the integration of an LLM agent with the Coq proof assistant. Coq is an interactive theorem
prover that allows for the expression of mathematical assertions, formal verification, and the construction of proofs within a
rigorous framework. By integrating Coq with an LLM agent, we aim to enhance the agent’s ability to assist in formal proofs,
reason about mathematical statements, and verify the correctness of solutions within the realm of formal logic.

Overview of Coq Theorem Prover Coq is a proof assistant based on constructive type theory, which supports both
functional programming and formal specification. Coq provides a framework for defining mathematical structures, functions,
and proofs, leveraging a powerful type system to ensure correctness. It allows users to interactively develop proofs, and
once a proof is verified, Coq guarantees its correctness by construction. Coq is widely used in formal verification, certified
software development, and mathematical proof exploration. Integrating Coq with an LLM agent enhances the accessibility
of formal proof construction and verification, allowing users to interact with formal methods in a more intuitive manner.
This integration enables non-experts to explore and validate mathematical proofs without needing extensive familiarity
with formal languages. Furthermore, the LLM agent can assist in automating proof steps, suggesting possible tactics, and
generating human-readable explanations.

In the future, more advanced natural language translation mechanisms can be developed to handle increasingly complex
theorems and mathematical domains. Additionally, the integration of other theorem provers with complementary strengths,
such as Isabelle/HOL or Lean, can further broaden the agent’s capabilities in formal reasoning and proof verification.

A.1.1. CASE STUDY ON LLMS WITH COQ

To illustrate our perspective, we illustrate our recent exploration of the interaction between LLMs and Coq. Coq (Huet
et al., 1997) is a classic proof assistant based on constructive type theory, supporting functional programming and formal
specification. The integration of Coq with an LLM agent involves several key steps:

Step 1. Natural Language Understanding. The LLM agent receives natural language input from the user, typically in the
form of a mathematical theorem, conjecture, or problem.

Step 2. Formalization of the Problem. The LLM agent translates the natural language problem into Coq’s formal language.
This includes defining types, propositions, and functions necessary for the formulation of the theorem.

Step 3. Proof Construction. The LLM agent collaborates with Coq to construct proofs, utilizing Coq’s interactive features
to propose proof steps that are subsequently verified or refined.

Step 4. Proof Verification and Feedback. Once the proof is constructed, Coq verifies its correctness. The LLM agent
translates the verified proof back into natural language, providing a comprehensible explanation of the result to the user.

Example Consider the following natural language query posed to the LLM agent:

“Prove that the sum of two even numbers is even.”

The LLM agent first translates this into a formal Coq language:

Theorem sum_of_even_numbers : forall n m : nat,
even n -> even m -> even (n + m).

The user needs to check the correctness of the coq code to guarantee consistency between the natural language and coq code.
Then, the LLM agent will search the related theorems and lemmas, and construct the proof as follows:

Proof.
intros n m Hn Hm.
unfold even in *.
destruct Hn as [k Hk].
destruct Hm as [l Hl].

15

Position: Trustworthy AI Agents Require the Integration of Large Language Models and Formal Methods

Problem: Let un a sequence defined by u0 = 0 and ∀n ≥ 0, un+1 = 2un + (n+ 1). Show that ∀n ≥ 0, un = 2n+1 − (n+ 2).

Informal Proof: The property is true for n = 0, since 20+1 − (0 + 2) = 0. By induction, assuming the property holds for n ≥ 0,
we have: un+1 = 2un + (n+ 1) = 2

(
2n+1 − (n+ 2)

)
+ n+ 1 = 2n+2 − (n+ 3), which shows the property holds for n+ 1.

Figure 3. An informal proof example that needs to be formalized.

exists (k + l).
rewrite Hk, Hl.
ring.

Qed.

Coq verifies this proof, and the LLM agent explains and responds in natural language:

“The proof shows that if two numbers are even, their sum is also even by using basic properties of addition and the
definition of even numbers.”

A.2. An Motivating Example for Autoformalization

Specifically, Figure 3 gives a motivating example from the miniF2F benchmark (Zheng et al., 2022). The problem and
its human-written informal proof are given, and it demonstrates a concise and correct inductive proof. However, some
intermediate steps, particularly the algebraic manipulations, are omitted in the informal proof. Although the equation can be
easily verified by human experts, it is challenging for LLMs to infer the missing details and generate a correct formal proof
due to their limited symbolic reasoning capabilities. The following Isabelle/HOL proof snippet illustrates an attempt by
ChatGPT-3.5-turbo to formalize the given informal proof. While the model correctly identifies the required transformations,
it fails during the simplification of the term 2 ∗ (n+ 2)− (n+ 1), mistakenly reducing it to 2n+ 3 instead of n+ 3. This
example highlights the limitations of LLMs in handling detailed algebraic reasoning without explicit guidance.

lemma induction_seq_mul2pnp1_forn:
fixes n :: nat and u :: "nat ⇒ nat"
assumes h0 : "u 0 = 0"
and h1 : "

∧
(n::nat). u (n+1) = 2 * u n + (n+1)"

and h2 : "u n = 2 ^ (n+1) - (n+2)"
shows "u (n+1) = 2 ^ (n+2) - (n+3)"

proof -
have "u (n+1) = 2 * u n + (n+1)" using h1 by simp
also have "... = 2 * (2 ^ (n+1) - (n+2)) + (n+1)" using h2 by simp
also have "... = 2 * 2 ^ (n+1) - (2 * (n+2)) + (n+1)"
by (simp add: right_diff_distrib')

also have "... = 2 ^ (n+2) - (2 * (n+2) - (n+1))"
sledgehammer

(* an error in simplification *)
also have "... = 2 ˆ (n+2) - (2*n + 3)" by auto
also have "... = 2 ^ (n+2) - (n+3)" by auto
finally show ?thesis by blast

qed

A.3. Z3 Agent

To illustrate our perspective, we give our recent exploration of the interaction between LLMs and Z3 in Python.

Z3 (de Moura & Bjørner, 2008), a widely used SMT solver, accepts inputs in the form of simple-sorted formulas expressed
in first-order logic (FOL). These formulas can include symbols with predefined meanings, defined by the underlying theories
supported by the solver, and these theories encompass domains such as arithmetic, bit-vectors, arrays, etc., making Z3
particularly well-suited for reasoning about a wide range of logical constraints.

Example Consider a scenario where a user requests the LLM agent to solve a scheduling problem:

“Can you help plan a meeting for a team of three people—David, Emma, and Alex? David is free on Monday or
Tuesday, Emma is free on Tuesday or Wednesday, and Alex is free only on Tuesday or Thursday. Find a common
day when all three are available.”

16

Position: Trustworthy AI Agents Require the Integration of Large Language Models and Formal Methods

We now provide a detailed, step-by-step solution for this task:

Formalization of Constraints Given the above problem, the initial Z3 constraints in Python generated by the LLM are
given as follows:

Define days of the week
days = ["Monday", "Tuesday", "Wednesday", "Thursday"]
David_free = [Bool(f"David_free_{day}") for day in days]
Emma_free = [Bool(f"Emma_free_{day}") for day in days]
Alex_free = [Bool(f"Alex_free_{day}") for day in days]
Create a solver
solver = Solver()
Define constraints for each person's availability
solver.add(Or(David_free[0], David_free[1]))
solver.add(Or(Emma_free[1], Emma_free[2]))
solver.add(Or(Alex_free[1], Alex_free[3]))
Add constraints that ensure a common day for all three
common_day_constraints = [And(David_free[i],
Emma_free[i], Alex_free[i]) for i in range(len(days))]
solver.add(Or(common_day_constraints))

Self-correction If the Z3 code has issues (e.g., missing constraints or syntax errors) or generates inconsistent results with
the natural language description, the self-correction procedure will identify and correct them. In this example, the previous
Z3 code ignores the following constraints:

Constraints for David
solver.add(And(Not(David_free[2]), Not(David_free[3])))
Constraints for Emma
solver.add(And(Not(Emma_free[0]), Not(Emma_free[3])))
Constraints for Alex
solver.add(And(Not(Alex_free[0]), Not(Alex_free[2])))

Test Generation The agent mutates the constraints and tweaks the availability of each individual to create new conditions.
For example, the new mutated constraints are David will be free on Monday and Wednesday. Emma will be free on Tuesday
and Thursday. Alex will be free on Monday and Thursday. The updated Z3 code generated by the LLM is as follows:

Mutated constraints for David
solver.add(And(David_free[0], David_free[2]))
solver.add(And(Not(David_free[1]), Not(David_free[3])))
Mutated constraints for Emma
solver.add(And(Emma_free[1], Emma_free[3]))
solver.add(And(Not(Emma_free[0]), Not(Emma_free[2])))
Mutated constraints for Alex
solver.add(And(Alex_free[0], Alex_free[3]))
solver.add(And(Not(Alex_free[1]), Not(Alex_free[2])))

The agent systems will check the consistency between the results produced by Z3 and the reasoning derived from natural
language descriptions to further ensure the correctness of the Z3 codes.

Multiple LLM Debating Whenever it comes to a collision between the Z3 reasoning results and the natural language
reasoning results, the LLM debating will be activated to debate which part is correct. For example, after LLM-A generates
the initial constraints and gets the results of Z3 code. LLM-B will critique the constraints, identifying potential issues such
as missing exclusivity rules or improperly translated logic. LLM-C can suggest refinements, such as introducing mutual
exclusivity or expanding constraints to handle edge cases. The consensus will be the output with the highest confidence
score (e.g., most accurate or simplest) is selected for testing and execution.

Problem Solving The translated constraints are fed into the Z3 solver, which checks the satisfiability of the formula and
computes a solution if possible.

17

Position: Trustworthy AI Agents Require the Integration of Large Language Models and Formal Methods

Check for a solution
if solver.check() == sat:

model = solver.model()
common_days = [days[i] for i in range(len(days))
if model.evaluate(David_free[i])

and model.evaluate(Emma_free[i])
and model.evaluate(Alex_free[i])]

print(f"Common day(s) when everyone is free:
{common_days}")

else:
print("No common day when everyone is free.")

Solution Interpretation The LLM agent receives the solution from the Z3 solver and translates it back into natural
language for the user. The only day when all three are free is Tuesday. The output will be: Common day(s) when everyone
is free: [‘Tuesday’].

A.4. Program Verification Example

Program verification is the process of ensuring that a program conforms to a formally defined specification. It involves the
use of formal methods such as model checking, static analysis, and theorem proving to verify that the program behaves as
intended. This process often requires specifying preconditions, postconditions, invariants, and loop variants to formally
define the program’s behavior. Tools such as Dafny, Why3, Frama-C, and SPARK provide automated and semi-automated
support for verifying program properties.

The integration of program verification tools with an LLM agent has significant potential to make formal methods more
accessible to a wider audience. The LLM agent can bridge the gap between natural language descriptions of program
behavior and the formal specifications required for verification, thus enabling non-expert users to verify the correctness of
their code. Additionally, the LLM agent can assist in identifying and correcting verification failures by providing meaningful
explanations and suggesting potential fixes.

Future work may focus on enhancing the LLM agent’s ability to handle more complex verification tasks, such as concurrent
or distributed systems. Additionally, integrating multiple verification tools could provide more comprehensive verification
capabilities, covering a broader range of programming languages and paradigms.

A.4.1. LLM AGENT INTEGRATION

The integration of an LLM agent with program verification tools can be broken down into several stages:

1. Natural Language Specification: The LLM agent allows the user to describe program specifications in natural
language. This includes stating what the program is supposed to do (e.g., sorting a list, finding the maximum value)
and any specific requirements (e.g., ensuring the list is sorted in ascending order).

2. Translation to Formal Specifications: The LLM agent interprets the natural language specification and translates
it into formal specifications, such as preconditions, postconditions, and loop invariants, using a formal specification
language supported by the verification tool (e.g., ACSL for Frama-C, Boogie for Dafny).

3. Program Analysis and Verification: The program code and its formal specification are passed to a verification tool,
which attempts to prove that the code adheres to the specification. The verification tool may automatically generate
proofs, use SMT solvers, or require human-guided proof tactics.

4. Feedback and Explanation: Once verification is complete, the LLM agent presents the results to the user in natural
language, explaining whether the program meets the specification and highlighting any verification failures or issues
that need attention.

A.4.2. MOTIVATING EXAMPLE

To illustrate the distinction between formal specification and executable implementation, we consider the problem of
verifying whether a given array is a palindrome.

18

Position: Trustworthy AI Agents Require the Integration of Large Language Models and Formal Methods

Formal Specification We begin with a high-level, declarative specification of the palindrome property. This specification
captures the essential symmetry of palindromes using a pure function over immutable sequences:

function method IsPalindrome(a: seq<int>): bool
decreases a

{
forall i :: 0 <= i < |a| / 2 ==> a[i] == a[|a| - i - 1]

}

Listing 1. Specification: Palindrome predicate.

This ghost function expresses the intended property mathematically: for all positions i in the first half of the sequence, the
element at position i must equal the element at the symmetric position from the end. This abstract description is concise and
easy to reason about but cannot be executed on its own.

Verified Implementation To bridge the gap between high-level specification and executable code, we provide a concrete
implementation over mutable arrays. The implementation uses a two-pointer technique and includes loop invariants to
ensure correctness:

method CheckPalindrome(arr: array<int>) returns (res: bool)
requires arr != null
ensures res == IsPalindrome(arr[..])

{
var left := 0;
var right := arr.Length - 1;
while left < right

invariant 0 <= left <= right + 1 <= arr.Length
invariant res == true
invariant forall i :: 0 <= i < left ==> arr[i] == arr[arr.Length - i - 1]
invariant forall j :: right < j < arr.Length ==> arr[j] == arr[arr.Length - j - 1]

{
if arr[left] != arr[right] {

return false;
}
left := left + 1;
right := right - 1;

}
return true;

}

Listing 2. Implementation: Palindrome check with invariants.

The example demonstrates the complementary roles of specification and implementation: the former provides a clear and
mathematically grounded correctness criterion, while the latter ensures executable fidelity to that criterion through formal
verification. Such separation of concerns is central to the design of trustworthy, formally verified systems.

19

