
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

WEBCANVAS : BENCHMARKING WEB AGENTS
IN ONLINE ENVIRONMENTS

Anonymous authors
Paper under double-blind review

ABSTRACT

For web agents to be practically useful, they must adapt to the continuously evolv-
ing web environment characterized by frequent updates to user interfaces and
content. However, most existing benchmarks only capture the static aspects of the
web. To bridge this gap, we introduce WebCanvas, an innovative online evalua-
tion framework for web agents that effectively addresses the dynamic nature of web
interactions. WebCanvas contains three main components to facilitate realistic
assessments: (1) A novel evaluation metric which reliably capture critical inter-
mediate actions or states necessary for task completions while disregarding noise
caused by insignificant events or changed web-elements. (2) A benchmark dataset
called Mind2Web-Live, a refined version of original Mind2Web static dataset
containing 542 tasks with 2439 intermediate evaluation states; (3) Lightweight
and generalizable annotation tools and maintenance pipelines that enables the
community to collect and maintain the high-quality, up-to-date dataset. Building
on WebCanvas, we open-source a baseline agent framework with extensible mod-
ules for reasoning, providing a foundation for the community to conduct online
inference and evaluations. Our best-performing agent achieves a task success rate
of 23.1% and a task completion rate of 48.8% on the Mind2Web-Live test set.
Additionally, we analyze the performance discrepancies across various websites,
domains, and experimental environments. We encourage the community to con-
tribute further insights on online agent evaluation, thereby advancing this field of
research.

1 INTRODUCTION

The enhanced reasoning capabilities of foundational models (Ouyang et al., 2022; Achiam et al., 2023;
Touvron et al., 2023a;b; Liu et al., 2024a; Bai et al., 2023) demonstrate the potential for autonomous
agents performing on navigation and information retrieval tasks in real-time within web environment,
thereby augmenting the human workforce (Shi et al., 2017; Nakano et al., 2021). However, the
journey towards autonomous web agents delivering accurate, robust, fast, and cost-effective outcomes
to end-users remains fraught with challenges. These include the inherent scarcity of data, the lack
of knowledge and reasoning abilities of high-level actions on certain websites, and the absence
of accurate and effective process feedback during execution, among others (Gür et al., 2023; Gur
et al., 2024). We posit that a significant barrier to realizing the value of web agents is the lack of
an easy-to-use platform for the community to drive effort towards real-time data gathering and web
agent online benchmarking. This belief is grounded in following observations.

Digital agents require environmental observations and feedback for context. Thus, dynamic, real-
world environments are essential for agent evaluation and data collection. The Internet itself emerges
as the most extensive arena for the assessment of agents, offering an unparalleled complexity for
environmental interaction (Liu et al., 2018; Zhou et al., 2023). However, the rapid evolution of the
web environment introduces significant data distribution shifts over time. Figure 2 summarizes three
prevalent patterns of changes in web tasks over time. For example, the Mind2Web dataset (Deng
et al., 2024), which archives web-based interactions as static HTML snapshots and was released one
year ago, shows that more than half tasks(50.5%) changed to some extent in their corresponding
live websites one year later. This shift may potentially create discrepancies between the offline
and online development and evaluation of real-world web agents. In addition, the accumulated
knowledge and training data of static websites leads to the saturation of existing benchmarks, making

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Operation Step Score

Score: 1

Action

URL

ElementAgent Web Browser

Click: button

Observation

Task Score

Completion Rate

Task Success Rate

Efficiency Score

Human Alignment

Agent’s Workflow

Annotation

1. Instruction

“Find top-rated upcoming adventure
movies on Rotten Tomatoes”

2. Web Browser

3. Workflow 4. Key Nodes

i. Go to Rotten Tomatoes
ii. Click “Coming soon to theater”
iii. ...

i. URL include match
ii. URL exact match
iii. ...

Platform

“Go to Airbnb and find a private
 room in New York for 2 adults”

“Find Dota 2 game and
add all DLC to cart on steam”

“Check out the most recent
 open issues on Gitlab”

Mind2WebMind2Web

Channel BChannel B

Channel AChannel A

Annotation

1. Instruction

“Find top-rated upcoming adventure
movies on Rotten Tomatoes”

2. Web Browser

3. Workflow 4. Key Nodes

i. Go to Rotten Tomatoes
ii. Click “Coming soon to theater”
iii. ...

i. URL include match
ii. URL exact match
iii. ...

Platform

“Go to Airbnb and find a private
 room in New York for 2 adults”

“Find Dota 2 game and
add all DLC to cart on steam”

“Check out the most recent
 open issues on Gitlab”

Mind2Web

Channel B

Channel A

“Find top-rated upcoming adventure movies on Rotten Tomatoes”
Instruction:

Path A

Goto: rottentomatoes.com

Click: Coming soon to theaters

Web page:

Movies Coming Soon

Genre: Adventure

Sort: Most Popular

Reached key nodes: 3

Path B

Goto: google.com

Search: upcoming movies on RT

Web page:

Movies Coming Soon

Sort: Most Popular

Genre: Adventure

Reached key nodes: 3

Step 1

2

Step 1

3

4

5

2

3

4

5

FinishFinish

Figure 1: WebCanvas framework. The left side depicts the annotation process addressing each
task, while the right side demonstrates the evaluation process during inference time, which involves
collection of predicted actions, URLs, and elements targeted for interaction in online web environment,
allowing for dynamic assessment. The framework accounts for the non-uniqueness of paths in online
web interactions, with “Trophies” representing step scores earned upon successfully reaching each
key node. Data maintenance pipeline of WebCanvas is detailed in §4.2.

it increasingly difficult to compare models and reasoning frameworks fairly and rigorously. We
found the MindAct model trained in 2023 outperformed closely-held models like GPT-3.5 (Ouyang
et al., 2022) and GPT-4 (Achiam et al., 2023) in Mind2Web static test set, but lagged behind in 2024
online evaluations (§5.1). Although previous works have attempted to evaluate the performance of
web agents in online environments through human assessments (Zheng et al., 2024; He et al., 2024),
achieving an objective, quantitative, and reproducible evaluation remains challenging.

To bridge this gap, we introduce WebCanvas, a dynamic and real-time framework designed for
online evaluation of web agents with three key features. (1) Progress-aware evaluation with key
node annotation. Existing evaluation metrics that focuses on action prediction accuracy (Deng
et al., 2024; Zheng et al., 2024) can falsely penalize valid alternative solutions while outcome-based
evaluation (Zhou et al., 2023; Koh et al., 2024; Mialon et al., 2023) requires fully reproducible
standalone web environments. To address this gap, we introduce a novel concept termed “key
nodes” – essential milestones that any task process must traverse, irrespective of the path taken. A
comparative illustration of key nodes with these existing methods is provided in Figure 3. Key node
annotation allows for a detailed, continuous analysis of agent behaviors, thereby enhancing insight
into their decision-making strengths and weaknesses. (2) Collaborative platform for community-
driven annotations. WebCanvas supports recording and annotation of web-based tasks and their
corresponding key node evaluation through an advanced recording browser plugin with transparent
data access. Furthermore, we have open-sourced an agent reasoning framework that enhances the
integration and customization of various agent modules for online web tasks. This initiative provided
guidelines and toolkits for the community to effectively scale data for online evaluation within
real-world settings in their own scenario. (3) Cost-effective maintenance to sustain evaluation
validity. Online environment is continuously evolving, making maintaining data validity a challenge.
To address this, WebCanvas employs an efficient maintenance strategy with scheduled monitoring
and automated alerts that quickly identify action sequences and key nodes validity. When data
shifts occur, our test report with error messages guide data owner through quick and effective data
corrections. This approach allows us to dynamically adjust our evaluation sets in response to real-time
changes in web content with acceptable cost.

Based on WebCanvas framework, we create Mind2Web-Live dataset for the community. This
dataset contains 542 tasks sampled from Mind2Web (Deng et al., 2024), and we annotate each task
with key node verification. Extensive comparisons show that GPT-4 with memory and ReAct (Yao
et al., 2023) reasoning achieved the best task success rate of 23.1%. In addition, our online evaluation
reveals discrepancies with offline settings, demonstrating that models which perform competitively

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

404 Error

Before After

UI

Changes

Workflow

Changes

Task

Expired

1 year1 year

Step 1 Step 2 Step 3Step 1 Step 2 Step 3 Step 1 Step 2Step 1 Step 21 year1 year

1 year1 year

Figure 2: The left side illustrates three typical types of web task evolution over time. We further
annotate and classify the status of 200 sampled tasks from Mind2Web training set between May 2023
and May 2024, showing more than half underwent changes to some extent within just one year: 21%
experienced UI redesigns, 16% had workflow modifications, and 13.5% became completely expired.

in static offline evaluations do not necessarily maintain their competency in dynamic online envi-
ronments. We further analyze the impact of various factors specific to online evaluation, such as
IP location variability, and suggest maintaining a consistent setup within our framework to ensure
reliable results. Finally, we investigate the use of key node annotations as a form of intermediate
reward for in-context reasoning. Our findings suggest that web agents can benefit from human-
provided reward signal, whereas even advanced models exhibit inaccuracies when generating such
intermediate progress indicators without any reference. These inaccuracies subsequently impair
execution performance.

2 PROBLEM FORMULATION OF INTERACTIVE WEB-BASED TASK

The real-world web environment can be formulated as: (S,A, T ,O) with state space S , action space
A(Table 10), deterministic transition function T : S ×A −→ S and a state observation space O(§5).
Given a task instruction i, current observation ot ∈ O and the action history a1:t−1, an agent issues an
action at ∈ A. Consequently, after the execution of the action, the environment transitions to a new
state st+1 ∈ S , and the corresponding observation updates to ot+1 ∈ O. To measure the completion
of tasks, we have defined key nodes and evaluation metrics, which are elaborated in §3.1 and §3.2.

3 WEBCANVAS : AN ONLINE EVALUATION FRAMEWORK FOR WEB AGENTS

3.1 DEFINITION OF KEY NODES

The concept of “key nodes” is one of the pivotal ideas in our work. Key nodes refer to indispensable
steps in the process of completing specific web tasks, meaning that regardless of the path taken to
accomplish a task, these steps are required. These may involve navigation to certain webpages or
the performance of specific actions on web pages, such as filling out forms or clicking buttons. This
design philosophy not only reflects the dynamic nature of the web environment but also captures the
diversity of paths present in real-world web pages.

As illustrated in Figure 1, consider the task of “Find top-rated upcoming adventure movies on Rotten
Tomatoes” as an example. Users might start directly at the Rotten Tomatoes homepage or use a
search engine to navigate straight to the “New Movies Coming Soon” page of the Rotten Tomatoes.
Moreover, when filtering the movies, users might choose to first apply a filter for the “adventure”
genre and then sort by popularity, or alternatively, sort by popularity before applying the genre
filter. Despite the availability of different paths to achieve the goal, entering the specific page and
performing the genre and popularity sorting are essential steps in accomplishing the task. Therefore,
these three steps are identified as “key nodes”.

In the dynamic and noisy real-world web environment, identifying these key nodes is challenging due
to the potential changes in page content and UI updates, which could render element selector paths
obsolete. Therefore, we preferred to use URL state as identifiers for key nodes rather than element
interaction, which enhanced the Benchmark’s robustness against layout changes. Only element class

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Reference Workflow

Agent’s Workflow

Another Workflow

Reference-based Evaluation Outcome-based Evaluation

Key Node based Evaluation

Reference
Agent’s

Finished
Unfinished

Key Node Key NodeKey Node Key Node

Figure 3: Comparison of different evaluation methods.

methods are considered for key nodes that cannot be represented by URLs. The detailed judgment
method is described in Appendix C. By defining key nodes, WebCanvas is able to dynamically
assess the execution capabilities of web agents in real-world web environments, offering a practical
and flexible evaluation method for the development of web agents.

3.2 EVALUATION METRICS

The evaluation metrics of WebCanvas comprised of two main components: step score and task
score. The step score evaluates the agent’s performance with regard to each key node, defining three
types of evaluation targets along with three evaluation functions at each step. The task score includes
two functions to assess the task’s completeness and overall execution efficiency.

Step Score Inspired by previous works (Zhou et al., 2023; Koh et al., 2024), we introduced three
evaluation targets in calculating step score, allowing us to examine from different aspects: URL,
Element Path, and Element Value. We implemented three match functions for these targets: Exact
Match, Include Match, and Semantic Match. Each key node is associated with an evaluation
function, which comprises an evaluation target and a match function. One step score is awarded when
the agent successfully reaches a key node and passes the associated evaluation function verification.
Table 1 shows a list of applicable evaluation functions and their introductions for reference. Some
examples are shown in Table 7. We use Completion Rate to represent the MICRO average of Step
Scores.

Table 1: Overview of evaluation functions. “E” is short for Web Element.

Match Function Description URL E. Path E. Value

Exact Match
Precise matching, such as URL parameters
or form fields. ✓ ✓ ✓

Include Match
Evaluates if output includes the reference,
ideal for keyword detection. ✓ ✗ ✓

Semantic Match
Uses LLM for complex content reasoning
tasks, like product identification. ✓ ✗ ✓

Task Score Task performance is evaluated using two main metrics: the Task Success Rate and
the Efficiency Score. The Task Success Rate is determined by the proportion of tasks in the test
set that are completed successfully, where a task is considered complete if all designated key nodes
are achieved. The Efficiency Score is calculated using the formula ES = L

P . L represents the total
number of steps the agent took to complete the task, and P is the cumulative step score obtained by
the agent upon completing the task.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

4 MIND2WEB-LIVE: A REAL-TIME ONLINE BENCHMARK FOR WEB AGENTS

4.1 DATASET CONSTRUCTION

To develop a real-world online benchmark for web agents, we introduce Mind2Web-Live, which is
derived from tasks present in the Mind2Web (Deng et al., 2024) dataset. We employed WebCanvas
framework as a guidance for the sampling and re-annotation of these tasks. Consequently, we
selectively excluded all tasks that contained time-sensitive descriptions, such as those involving
specific dates or times. We randomly sampled 601 tasks from the training set and included all 179
tasks from the cross-task test set, which were then re-annotated in a real-world online environment.

The annotation process presented multiple challenges. Notably, due to updates in website content
and operational changes, we discovered 96 tasks that were no longer applicable and subsequently
removed them from the dataset. Additionally, 142 tasks were discarded due to ambiguous task
definitions, log-in requirements or the difficulty in clearly defining key nodes. To enhance the clarity
and reliability of task execution, we revised the instructions for 51 tasks.

For human trajectory and key node annotation, we developed and made public a browser plugin and
an annotation platform. After a rigorous annotation and review process, described in Appendix A,
542 high-quality tasks were established for the Mind2Web-Live dataset, including 438 of the training
set and 104 of the test set. As shown in Table 2, Mind2Web-Live encompasses 2439 key nodes and
4550 detailed annotation steps. The tasks in the dataset cover a wide range of webpage types and
operations, designed to comprehensively evaluate the performance of web agents in a dynamic and
variable online environment. The distribution of the evaluation function is illustrated in Figure 5.

4.2 DATASET MAINTENANCE

Maintenance

Task A Task B

Auto run Human test

2. Bug Feedback

1. Find Invalid Workflows

3. Fix & Re-annotate

Workflow failed

Key Nodes
cracks

Fix
workflow

Task
unworkable

New path
emerges

Add new
workflow

Delete
workflow

Workflow failed

Figure 4: System of
maintenance

We pay special attention to the dynamic nature of the benchmark to adapt
to the constantly changing web environment. We recognize that updates
and changes to website content, such as UI updates, database changes, or
website close-down, are inevitable as time progresses. Such changes may
lead to the obsolescence of previously defined tasks or key nodes.

We are thus committed to process a regular data maintenance schedule
every two months, as shown in Figure 4. We first developed a community-
driven platform where dataset users can visualize details of each task
and report any issues through a bug-reporting feature. In addition to
community supervision, we leveraged the data stored during the annotation
stage to ensure a stable playback of these recorded human trajectories, with
any invalidities in the workflows or key nodes being promptly reported.
Appendix H provides an example of a report. Suspicious tasks are re-
annotated during our reviews to ensure that each task accurately reflects
the current web environment.

Over the past two months, we reviewed 104 tasks in the Mind2Web-Live test set. During this review,
we found that 5 tasks had underwent key nodes degradation. The four authors took responsibility for
the maintenance work, with each spending less than an hour per maintenance cycle, making this an
acceptable cost. For invalid workflows, we updated both the trajectories and the key nodes, a process
that usually takes about 5 minutes due to our previous annotation experience. For invalid key nodes,
we only needed to update the key node functions with around 2 minutes.

5 EXPERIMENT

Inspired by previous work (Yao et al., 2023; Zhou et al., 2023; Zheng et al., 2024), we built a
universal baseline agent framework that consists four key modules: Planning, Observation, Memory
and Reward. This framework is engineered to be plug and play, operating in real-world online web
environments, serving as a foundation for the community to benchmark with rather than introducing
new innovations. Detailed implementation is provided in the Appendix E.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Table 2: Data distribution

Statistic Number

Total selected tasks 780
- Expired Tasks 96
- Unable to annotate 142
- Mind2Web-Live 542

- training set 438
- test set 104

Annotate steps 4550
Avg. steps 8.39 / task
Eval functions 2439
Avg. Eval functions 4.5 / task

319

1292
117

170

28

513

URL exact(319)

URL include(1292)

URL semantic(117)

Value exact(170)

Value include(0)

Value semantic(28)

Path exact(513)

Figure 5: Evaluation Function distribution

Table 3: Comparison of web agent performance in online and offline evaluations. We randomly
sampled 40 instances from the Mind2Web-Live test set. These were then tested in both online and
offline settings. GPT-3.5 denotes gpt-3.5-turbo-0125, and GPT-4 denotes gpt-4-0125-preview. ‘Task
SR(0)’ and ‘Task SR(1)’ denote the Task Success Rates with zero tolerance and tolerance for error at
one step (or key node), respectively.

Model Offline Online
Step

SR(%)
Task

SR(0)(%)
Task

SR(1)(%)
Completion

Rate(%)
Task

SR(0)(%)
Task

SR(1)(%)

MindAct 44.3 10.0 25.0 25.5 7.50 12.5
GPT-3.5 15.5 2.50 7.50 35.4 10.0 17.5
GPT-4 28.4 5.00 22.5 41.1 10.0 25.0

5.1 DISCREPANCY BETWEEN OFFLINE EVALUATION AND ONLINE GENERALIZATION

The settings of evaluation on offline datasets that reflect real-world intents, such as Mind2Web (Deng
et al., 2024), are inherently different from WebCanvas framework. Nevertheless, we managed
to study the qualitative discrepancy between offline evaluation and online generalization. During
online inference, we attempted to reproduce the original prompt of the MindAct model, which was
trained and evaluated on the offline dataset, as proposed in the Mind2Web paper. It is important to
note that the evaluation metrics used in offline evaluation differ from those proposed in our online
evaluation framework. The Step Success Rate in offline testing assesses the accuracy of single-step
action prediction, and for the entire task dimension, a positive reward is given only when all single-
step actions are correctly predicted, which is not the case in online evaluation, as we evaluate the
intermediate state, not the referenced action.

5.2 MAIN RESULT

In our experiments, we observed significant discrepancies between offline and online testing. The
results, as detailed in Table 3, show that the model trained on the Mind2Web training set struggles
to generalize to the online environment a year later. The comparative performance of MindAct-
Large (Deng et al., 2024), GPT-3.5, and GPT-4 in the online environment was opposite to that
in offline testing. We further analyzed why such differences occur. Specifically, through human
annotation of 100 evaluation steps of GPT-4, we noted that approximately 30% of its actions were
reasonable, indicating that these models are possibly capable of generating valid paths under the
prompt, albeit penalized by the offline reference-based evaluation method. We also discovered that
the MindAct model, when reasoning in an online environment, frequently encountered difficulties
in recovering from erroneous states. When entering web pages less relevant to the task goal, the
MindAct model had a high probability of outputting null actions, causing the task to terminate.

Furthermore, comparative performance of different models in Table 4 indicates that GPT-4 outper-
forms other models in both effectiveness and efficiency in web agent tasks within a live environment,
with Qwen being the best-performing open-source model. However, there remains considerable room
for future enhancements across all models. These results underscore the need for models that can
better generalize to dynamic, real-world web environments.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 4: Performance of different models without the reward module on the Mind2Web-Live test
set, sorted by Completion Rate from highest to lowest. Qualitative analysis of agent performance in
online environment are illustrated in Appendix G.

Model Completion Rate (%) Task SR (%) Efficiency Score
GPT-4-0125-preview 48.8 23.1 2.47
Claude-3-Sonnet-20240620 47.9 22.1 2.92
GPT-4o-2024-05-13 47.6 22.1 2.88
Gemini-1.5-Pro 44.6 22.1 4.48
GPT-4-turbo-2024-04-09 44.3 21.2 2.78
Claude-3-Sonnet-20240229 43.9 20.2 3.34
Qwen1.5-110B-Chat 43.9 20.2 4.02
GPT-4o-mini-2024-07-18 42.9 21.2 2.97
DeepSeek-V2 41.2 18.3 4.44
Qwen2-72B-Instruct 40.9 15.4 4.60
Claude-3-Opus-20240229 40.3 14.4 3.52
GPT-3.5-turbo-0125 40.2 16.3 3.03
Mixtral-8x22B 37.2 17.3 4.80
Qwen1.5-72B-Chat 35.6 15.4 4.29
Gemini-Pro 35.3 13.5 4.69
Claude-3-Haiku-20240307 33.4 16.3 4.27
Qwen1.5-7B-Chat 24.5 10.6 8.34

6 ANALYSIS

6.1 FACTORS INFLUENCING AGENT PERFORMANCE

In this section, we delve into the factors influencing agent performance across a range of web tasks.
Through a series of experiments, we assessed the impact of task complexity, website dynamics,
task domain, key node distribution in the dataset, and the experimental setup—including system
specifications, browser engine, and IP location.

Our findings reveal that increased task complexity directly correlates with diminished agent per-
formance. The domain of the task also significantly affects performance, with agents handling
entertainment-related tasks more adeptly than those involving shopping or travel. This variation sug-
gests LLMs’ capacity of semantic understanding and reasoning differs across domains and websites.
Moreover, the experimental environment plays a crucial role in agent performance. We recommend
experimenting on a Windows platform using Chrome or Firefox browser engines, preferably on
servers located in the United States. Statistics and experiment results are detailed in Appendix F.2.

6.2 NECESSITY OF KEY NODE EVALUATION IN LIVE ENVIRONMENTS

Previous agent evaluation methods primarily focus on two aspects: reference-based evaluation (Deng
et al., 2024; Zheng et al., 2024) and outcome-based evaluation (Zhou et al., 2023; Koh et al., 2024;
Mialon et al., 2023). However, these methods falter when applied to the unpredictable nature of live
web tasks. To address the inherent variability in task completion paths within an online evaluation
framework, we employed Sankey diagrams to visualize the trajectories of our web agent and human
demonstrations on tasks where our agent successfully navigated all designated key nodes in Figure
10 within §F.2.

We further annotate Mind2Web-Live test set to identify whether the final key node is a sufficient
condition for task completion. It turns out only 46 out of 104 tasks met this criterion. This finding
starkly illustrates that solely evaluating the final state or outcome is inadequate for web environments
that are not fully reproducible. As shown in Figure 3, key node based evaluation enhances explainabil-
ity of agent performance, prevents illegal shortcuts taken and facilitates the modeling of structured
in-progress rewards, valuable for both in-context reasoning experiments and future reinforcement
learning training.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 5: Performance of different models with reward module, based on a random sample of 130
tasks from the Mind2Web-Live dataset. “(+)” indicates the inclusion of a reward module with
human-labeled reward. Bold numbers represent the best values across different planning models.
Model notation follows Table 3, except for gpt-4-vision-preview(GPT-4V). Human Alignment score
represents agents’ alignment with human decision on task completion, while the larger indicates
better alignment, detailed in Appendix D.

Planning Model Reward Model Completion
Rate (%)

Task Success
Rate (%)

Efficiency
Score

Human
Alignment

GPT-3.5 / 34.6 13.8 5.25 /
GPT-4 / 46.9 16.9 3.77 /

GPT-4 GPT-3.5 43.5 16.2 3.24 0.445
GPT-4 GPT-4 42.1 13.8 3.07 0.430

GPT-3.5 GPT-4 36.6 10.8 3.73 0.385
GPT-4 GPT-4V 42.4 8.5 3.42 0.419

GPT-3.5 GPT-4(+) 43.6 13.8 3.28 0.452
GPT-4 GPT-4(+) 52.3 12.3 3.27 0.506
GPT-4 GPT-4V(+) 51.3 12.3 2.71 0.502

6.3 PLANNING WITH HUMAN-LABELED REWARD

Reward modeling for agent tasks is crucial in both in-context reasoning and reinforcement learn-
ing (Shinn et al., 2024; Bai et al., 2024). Previous research has proven that LLMs can generate high
quality reward signal to enhance reasoning performance across various agent tasks (Shinn et al., 2024;
Pan et al., 2024). However, recent research adopting an un-tuned foundation model for self-reward
prediction shows that their effectiveness is not consistent in specific domains (Olausson et al., 2023;
Shinn et al., 2024). Our preliminary experiments indicate that agent performance do not benefit from
a self-reward module in the online web environment. This is attributed to several factors, such as
overconfidence in task completion assessments and the long-term impact of poor-quality reward
signals accumulated in agent memory. Thus it raises a natural question - Does the quality of the
reward signal hinder the self-reward module’s effectiveness in online web environments? In our
study, we introduced a reward module with human-labeled reward. The experimental results on
Mind2Web-Live, which confirm our hypothesis, are detailed in Table 5.

From the original data, we extracted post-action URLs, action types, CSS selector paths, and key
nodes functions as metadata for our golden reference synthesis. We then employed a carefully
designed prompt available in Appendix K, using GPT-4 to generate a structured linguistic guidance
for task progress estimation for each task. This guidance includes the overall goal of the task and
task completion criteria, specifically highlighting all key nodes for the task to be considered fully
completed. We then integrate the content of the current task’s golden reference with the original
design of history and current observation for reward reasoning. From comprehensive experiments,
we find that the integration of a reward module does not enhance agent performance and may even
lead to a decline in Task Success Rate and Task Completion Rate. This finding aligns with findings
in (Shinn et al., 2024) about the effect of self-reflection modules in web agent tasks. However, we
find the Completion Rate improves in both GPT-3.5 and GPT-4 experiments with the integration of a
reward module with human-labeled reward, despite the reward module triggering premature stops.
These findings point out the importance of better reward modeling in web agent reasoning.

7 RELATED WORKS

Agent Benchmarks Early researches (Shi et al., 2017) (Liu et al., 2018) provided relatively simple
simulations and assessment methods for web navigation tasks. However, with the rise of Large
Language Models, these methods have become inadequate for assessing agents’ capability. Recent
studies have chosen to construct realistic simulated environments (Yao et al., 2022; Zhou et al.,
2023; Koh et al., 2024; Drouin et al., 2024), use offline saved datasets (Deng et al., 2024; Lu et al.,

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 6: Case study of previous benchmarks

Benchmark Real-world
Intents

Dynamic
Environment

Keep
Updated

Intermediate
Env. State

Easy to
Scale

Disk
Usage

MiniWoB++ (Liu et al., 2018) ✗ ✓ ✓ ✗ ✗ < 1GB
WebShop (Yao et al., 2022) ✗ ✓ ✗ ✗ ✗ ∼ 10GB

Mind2Web (Deng et al., 2024) ✓ ✗ ✗ ✗ ✗ ∼ 10GB
WebArena (Zhou et al., 2023) ✓ ✓ ✗ ✗ ✓ > 100GB
VWebArena (Koh et al., 2024) ✓ ✓ ✗ ✗ ✓ > 100GB

GAIA (Mialon et al., 2023) ✓ ✓ ✗ ✗ ✓ < 1GB
WEBLINX (Lu et al., 2024) ✓ ✗ ✗ ✓ ✗ < 1GB

OmniACT (Kapoor et al., 2024) ✓ ✗ ✗ ✓ ✗ < 1GB

WebCanvas ✓ ✓ ✓ ✓ ✓ < 1GB

2024), or select relatively stable answers to assess the capabilities of web agents (Mialon et al.,
2023). In terms of dynamic evaluation methods, many studies (Kiela et al., 2021; Ma et al., 2021;
Jain et al., 2024) have proposed their own solutions. Moreover, beyond network platforms, several
initiatives have also been undertaken on other platforms such as Android mobile devices, operating
systems, and databases (Rawles et al., 2024; Liu et al., 2024b; Xie et al., 2024). We perform a
more comprehensive case study on previous web agent benchmarks in Table 6, WebCanvas aims to
more comprehensively test agents’ capability in the real world through key nodes and corresponding
evaluation functions.

Agent Frameworks In the area of reasoning frameworks, several studies have achieved notable
success in logical reasoning challenges (Wei et al., 2022; Yao et al., 2024; 2023; Shinn et al.,
2024; Sumers et al., 2024). Regarding web agent reasoning frameworks, many researches has been
conducted to enhance the capabilities of web agents (Nakano et al., 2021; Gur et al., 2024; Gür et al.,
2023; Kim et al., 2024; Lo et al., 2023; Lai et al., 2024). Some studies have introduced multi-modal
modules that integrate visual and semantic information, thereby enhancing the capabilities of agents
on web platforms (Zheng et al., 2024; Furuta et al., 2024; He et al., 2024).

8 DISCUSSION & LIMITATIONS

Developing a suitable evaluation framework is a fundamental component in the advancement of
autonomous web agents. This research addresses the challenge of live evaluation in a real-world
web environment. Among these are the need to define key nodes in a completely open environment,
unify the inference processes across different digital autonomous agents, and reduce the maintenance
costs associated with real-time data and evaluation functions. Through our efforts, we have made
significant strides toward establishing a robust and accurate online evaluation system for web agents.

However, the transition to live, dynamic evaluations in unpredictable online environments introduces
new complexities not present in controlled, offline settings. The unsolved challenges we encountered
in online evaluation of web agents include network instability, dynamic and complex task pathways,
and the limitations of static evaluation functions. These challenges highlight the necessity for ongoing
research and community efforts to refine and enhance evaluation frameworks for autonomous web
agents in complex, real-world environments. For more details, please refer to Appendix J.

9 CONCLUSION

In this work, we have pioneered the development of framework for online evaluation of web agents,
and investigated the challenges associated with online evaluation and the difficulties faced by current
web agent reasoning frameworks in online inference. Simultaneously, we have constructed toolkits
and a community-driven platform that empowers web agent researchers and developers to build
datasets and evaluate their web agent frameworks and models in an online environment while
collecting feedback on dataset design, data annotation quality, and data validity throughout the
process. We strongly encourage further work on online datasets, web agents, and evaluation function
designs. By fostering a collaborative and iterative value to dataset creation and evaluation, we eagerly
anticipate the continued growth of advancement of autonomous intelligence.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

ETHICS STATEMENT

In this work, all annotators for the Mind2Web-Live dataset were fully informed about the data
annotation tasks and compensated for their participation. We take full care of privacy and data
security, ensuring that no sensitive personal information was collected, and all tasks can be completed
without login.

REPRODUCIBILITY STATEMENT

We have taken significant measures to ensure the reproducibility of our results. The code used for the
experiments, as well as the Mind2Web-Live dataset, are available in the supplementary materials.
Additionally, comprehensive guidelines for setting up the environment and the parameters required to
run the experiments are included.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Hao Bai, Yifei Zhou, Mert Cemri, Jiayi Pan, Alane Suhr, Sergey Levine, and Aviral Kumar. Digirl:
Training in-the-wild device-control agents with autonomous reinforcement learning. arXiv preprint
arXiv:2406.11896, 2024.

Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang
Zhou, and Jingren Zhou. Qwen-vl: A frontier large vision-language model with versatile abilities.
arXiv preprint arXiv:2308.12966, 2023.

Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Sam Stevens, Boshi Wang, Huan Sun, and Yu Su.
Mind2web: Towards a generalist agent for the web. Advances in Neural Information Processing
Systems, 36, 2024.

Alexandre Drouin, Maxime Gasse, Massimo Caccia, Issam H Laradji, Manuel Del Verme, Tom
Marty, David Vazquez, Nicolas Chapados, and Alexandre Lacoste. Workarena: How capable are
web agents at solving common knowledge work tasks? In Forty-first International Conference on
Machine Learning, 2024.

Hiroki Furuta, Kuang-Huei Lee, Ofir Nachum, Yutaka Matsuo, Aleksandra Faust, Shixiang Shane
Gu, and Izzeddin Gur. Multimodal web navigation with instruction-finetuned foundation models.
In The Twelfth International Conference on Learning Representations, 2024. URL https:
//openreview.net/forum?id=efFmBWioSc.

Izzeddin Gür, Ofir Nachum, Yingjie Miao, Mustafa Safdari, Austin Huang, Aakanksha Chowdhery,
Sharan Narang, Noah Fiedel, and Aleksandra Faust. Understanding html with large language
models. In Findings of the Association for Computational Linguistics: EMNLP 2023, pp. 2803–
2821, 2023.

Izzeddin Gur, Hiroki Furuta, Austin V Huang, Mustafa Safdari, Yutaka Matsuo, Douglas Eck, and
Aleksandra Faust. A real-world webagent with planning, long context understanding, and program
synthesis. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=9JQtrumvg8.

Hongliang He, Wenlin Yao, Kaixin Ma, Wenhao Yu, Yong Dai, Hongming Zhang, Zhenzhong Lan,
and Dong Yu. WebVoyager: Building an end-to-end web agent with large multimodal models. In
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pp. 6864–6890, Bangkok, Thailand, August 2024. Association for Computational
Linguistics. doi: 10.18653/v1/2024.acl-long.371. URL https://aclanthology.org/
2024.acl-long.371.

10

https://openreview.net/forum?id=efFmBWioSc
https://openreview.net/forum?id=efFmBWioSc
https://openreview.net/forum?id=9JQtrumvg8
https://aclanthology.org/2024.acl-long.371
https://aclanthology.org/2024.acl-long.371

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free
evaluation of large language models for code. arXiv preprint arXiv:2403.07974, 2024.

Raghav Kapoor, Yash Parag Butala, Melisa Russak, Jing Yu Koh, Kiran Kamble, Waseem Alshikh,
and Ruslan Salakhutdinov. Omniact: A dataset and benchmark for enabling multimodal generalist
autonomous agents for desktop and web. arXiv preprint arXiv:2402.17553, 2024.

Douwe Kiela, Max Bartolo, Yixin Nie, Divyansh Kaushik, Atticus Geiger, Zhengxuan Wu, Bertie
Vidgen, Grusha Prasad, Amanpreet Singh, Pratik Ringshia, et al. Dynabench: Rethinking bench-
marking in nlp. In Proceedings of the 2021 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, pp. 4110–4124, 2021.

Geunwoo Kim, Pierre Baldi, and Stephen McAleer. Language models can solve computer tasks.
Advances in Neural Information Processing Systems, 36, 2024.

Jing Yu Koh, Robert Lo, Lawrence Jang, Vikram Duvvur, Ming Lim, Po-Yu Huang, Graham Neubig,
Shuyan Zhou, Russ Salakhutdinov, and Daniel Fried. Visualwebarena: Evaluating multimodal
agents on realistic visual web tasks. In Proceedings of the 62nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pp. 881–905, Bangkok, Thailand, August
2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.50. URL
https://aclanthology.org/2024.acl-long.50.

Hanyu Lai, Xiao Liu, Iat Long Iong, Shuntian Yao, Yuxuan Chen, Pengbo Shen, Hao Yu, Hanchen
Zhang, Xiaohan Zhang, Yuxiao Dong, et al. Autowebglm: Bootstrap and reinforce a large language
model-based web navigating agent. arXiv preprint arXiv:2404.03648, 2024.

Evan Zheran Liu, Kelvin Guu, Panupong Pasupat, and Percy Liang. Reinforcement learning on
web interfaces using workflow-guided exploration. In International Conference on Learning
Representations (ICLR), 2018.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. Advances in
neural information processing systems, 36, 2024a.

Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu Lei, Hanyu Lai, Yu Gu, Hangliang Ding,
Kaiwen Men, Kejuan Yang, Shudan Zhang, Xiang Deng, Aohan Zeng, Zhengxiao Du, Chenhui
Zhang, Sheng Shen, Tianjun Zhang, Yu Su, Huan Sun, Minlie Huang, Yuxiao Dong, and Jie Tang.
Agentbench: Evaluating LLMs as agents. In The Twelfth International Conference on Learning
Representations, 2024b. URL https://openreview.net/forum?id=zAdUB0aCTQ.

Robert Lo, Abishek Sridhar, Frank F Xu, Hao Zhu, and Shuyan Zhou. Hierarchical prompting
assists large language model on web navigation. In Findings of the Association for Computational
Linguistics: EMNLP 2023, pp. 10217–10244, 2023.

Xing Han Lu, Zdeněk Kasner, and Siva Reddy. WebLINX: Real-world website navigation with
multi-turn dialogue. In Forty-first International Conference on Machine Learning, 2024. URL
https://openreview.net/forum?id=mUSPhG4uDW.

Zhiyi Ma, Kawin Ethayarajh, Tristan Thrush, Somya Jain, Ledell Wu, Robin Jia, Christopher
Potts, Adina Williams, and Douwe Kiela. Dynaboard: An evaluation-as-a-service platform for
holistic next-generation benchmarking. Advances in Neural Information Processing Systems, 34:
10351–10367, 2021.

Grégoire Mialon, Clémentine Fourrier, Craig Swift, Thomas Wolf, Yann LeCun, and Thomas Scialom.
Gaia: a benchmark for general ai assistants. arXiv preprint arXiv:2311.12983, 2023.

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu, Long Ouyang, Christina Kim, Christopher
Hesse, Shantanu Jain, Vineet Kosaraju, William Saunders, et al. Webgpt: Browser-assisted
question-answering with human feedback. arXiv preprint arXiv:2112.09332, 2021.

Theo X Olausson, Jeevana Priya Inala, Chenglong Wang, Jianfeng Gao, and Armando Solar-Lezama.
Is self-repair a silver bullet for code generation? In The Twelfth International Conference on
Learning Representations, 2023.

11

https://aclanthology.org/2024.acl-long.50
https://openreview.net/forum?id=zAdUB0aCTQ
https://openreview.net/forum?id=mUSPhG4uDW

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in neural information processing systems, 35:27730–
27744, 2022.

Jiayi Pan, Yichi Zhang, Nicholas Tomlin, Yifei Zhou, Sergey Levine, and Alane Suhr. Autonomous
evaluation and refinement of digital agents. In First Conference on Language Modeling, 2024.
URL https://openreview.net/forum?id=NPAQ6FKSmK.

Christopher Rawles, Alice Li, Daniel Rodriguez, Oriana Riva, and Timothy Lillicrap. An-
droidinthewild: A large-scale dataset for android device control. Advances in Neural Information
Processing Systems, 36, 2024.

Tianlin Shi, Andrej Karpathy, Linxi Fan, Jonathan Hernandez, and Percy Liang. World of bits: An
open-domain platform for web-based agents. In International Conference on Machine Learning,
pp. 3135–3144. PMLR, 2017.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
Language agents with verbal reinforcement learning. Advances in Neural Information Processing
Systems, 36, 2024.

Theodore Sumers, Shunyu Yao, Karthik Narasimhan, and Thomas Griffiths. Cognitive architectures
for language agents. Transactions on Machine Learning Research, 2024. ISSN 2835-8856. URL
https://openreview.net/forum?id=1i6ZCvflQJ. Survey Certification.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023b.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan Li, Siheng Zhao, Ruisheng Cao, Toh Jing
Hua, Zhoujun Cheng, Dongchan Shin, Fangyu Lei, et al. Osworld: Benchmarking multimodal
agents for open-ended tasks in real computer environments. arXiv preprint arXiv:2404.07972,
2024.

S. Yao, J. Zhao, D. Yu, N. Du, I. Shafran, K. Narasimhan, , and Y. Cao. React: Synergizing reasoning
and acting in language models. In International Conference on Learning Representations (ICLR),
2023.

Shunyu Yao, Howard Chen, John Yang, and Karthik Narasimhan. Webshop: Towards scalable
real-world web interaction with grounded language agents. Advances in Neural Information
Processing Systems, 35:20744–20757, 2022.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
Tree of thoughts: Deliberate problem solving with large language models. Advances in Neural
Information Processing Systems, 36, 2024.

Boyuan Zheng, Boyu Gou, Jihyung Kil, Huan Sun, and Yu Su. GPT-4v(ision) is a generalist web
agent, if grounded. In Forty-first International Conference on Machine Learning, 2024. URL
https://openreview.net/forum?id=piecKJ2DlB.

Shuyan Zhou, Frank F Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
Tianyue Ou, Yonatan Bisk, Daniel Fried, et al. Webarena: A realistic web environment for building
autonomous agents. In NeurIPS 2023 Foundation Models for Decision Making Workshop, 2023.

12

https://openreview.net/forum?id=NPAQ6FKSmK
https://openreview.net/forum?id=1i6ZCvflQJ
https://openreview.net/forum?id=piecKJ2DlB

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A DATA COLLECTION DETAILS

A.1 RECORDING PROCESS

In the construction of Mind2Web-Live, the quality and reliability of the data are paramount. To
this end, we have employed an efficient tool(Figure 6) for recording browser operations. The tool
precisely captures browser interaction from the users, covering a wide range of activities such as
clicks and input actions. The recorded details include the type of operation, execution parameters,
target element’s selector path, element content, and its coordinates on the webpage. Moreover, the
tool accompany each step with a webpage screenshot, not only facilitating process replication but
also providing a visual reference for workflow validation and review(Figure 18, 19). This approach
enables us to comprehensively record all the steps required to complete specific tasks, forming the
foundation of Mind2Web-Live. Upon completion of the data recording, we meticulously annotated
the key nodes of each process along with their corresponding Evaluation Functions.

A.2 ANNOTATION PROCESS

In our study, the annotation process plays a pivotal role in ensuring data quality and task validity. To
ensure the accuracy and consistency of data annotations, we assembled an annotation team comprised
of several authors of this paper and five senior undergraduate students majoring in Computer Science.
Not only do the members of the annotation team possess a solid background in Computer Science, but
they also received specialized training to ensure consistency in their understanding and identification
abilities in annotating key nodes. Prior to beginning the formal annotation process, all annotators
were rigorously trained over a period of two weeks, which included trial annotations that were
subsequently not included in the final dataset.

During the annotation phase, we employed a comprehensive reward mechanism. Each annotator was
compensated based on the number of tasks they completed, with additional bonuses awarded for
high-quality annotations to encourage precise and consistent results. This combined reward system
not only bolstered work enthusiasm but also enhanced the overall quality of the annotation work,
laying a solid foundation for the construction of an efficient web agent benchmark.

To guarantee the quality of annotations, we instituted a variety of strategies. Each task was annotated
independently by one annotator, followed by individual reviews by two other members to verify the
accuracy of the key nodes. Throughout the annotation process, we regularly organized discussion
sessions for the annotation team to share their experiences and challenges encountered, thereby
improving the overall efficiency and quality of the team’s annotations.

（A） （B）

Figure 6: An illustration of the Annotate Tool being used to annotate two distinct tasks: (A) “Find
parking in California city for Limos which also offers free wi-fi in yelp”, and (B) “Find Dota 2 game
and add all DLC to cart in steam”.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Table 7: Example annotations of the Evaluation Functions

State Title Annotation Details

Locate a large store in
Washington that has kids’ and
maternity products in uniqlo

Evaluation Function: Element value semantic match

Instructions: Decide Whether is searching
for Washington D.C.

Find parking in California city
for Limos which also offers
free wi-fi in yelp

Evaluation Function: URL include match

Param: attrs
Value: WiFi.free

Find Dota 2 game and add all
DLC to cart in steam

Evaluation Function: Element path exact match

Selector: //*[@id="dlc_purchase_action"]
/div[2]/a/span

A.3 TASK DISTRIBUTION AND DOMAIN COVERAGE

See Table 8.

Table 8: Task Distribution and Domain Coverage

Domain Subdomain Mind2Web-Live Test Mind2Web-Live Train

Entertainment

Sports 9 32
Event 5 20
Game 3 24
Movie 9 30
Music 5 18
General 3 28

Shopping

Auto 7 33
Department 6 8
Digital 6 15
Fashion 3 15
Speciality 13 44

Travel

General 0 11
Airlines 5 18
Car rental 1 11
Ground 9 28
Hotel 3 12
Restaurant 6 31
Other 11 60

Total 104 438

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

B COMPARISON OF THE MIND2WEB-LIVE AND MIND2WEB DATASETS

Table 9: Comparison of the Mind2Web-Live and Mind2Web Datasets. “Ele.” indicates “Element”,
“Op.” indicates “Option” and “SR” indicates “success rate”.

Attributes Mind2Web-Live Mind2Web

Dataset Size 542 2350
Evaluation Environment Real-world Online Offline

Evaluation State Key Nodes Each Step
Target Element Element, URL Element, Option

Evaluation Metrics Step Score & Task Score Step(Ele., Op.) SR & Task SR
Avg. Steps 8.39 / task 7.3 / task

C HOW TO DEFINE EVALUATION FUNCTIONS

For input operations on the page First, determine whether it is a necessary condition for task
completion. If it is a necessary condition, then judge whether the execution result can be reflected
by the change of the URL. If so, simply take the state after execution as the key node and select the
evaluation function as URL exactly/included/semantic match.

If it cannot be reflected by changes in the URL, it needs to be defined as a key node based on click
or input operations. Select element path exactly match or element value exactly/included/semantic
match for input operations (to determine whether the content of the input element matches).

For click operations on the page Firstly, determine whether it is a necessary condition for
completing the task. If it is a necessary condition, then judge whether the execution result can be
reflected by the change of the URL. If so, simply take the state after execution as the key node and
select the match rule as URL exactly/included/semantic match.

If it cannot be reflected by the change of URL, each click operation should be defined as a key node,
and the match can be selected as element element path exactly match or element value match.

Figure 7: Guidance on how to define an evaluation function for a key node.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

D ADDITIONAL EVALUATION METRICS

Human Alignment Score The Human Alignment Score(HAS) assesses how well an agent’s
workflow aligns with human behavior. It’s crucial for agents not just to be efficient, but to operate
in ways that resemble human actions. The evaluation of this aspect is conducted by contrasting
the agent’s task completion signal with the ground truth annotations provided by humans, to gauge
the level of consistency. An agent that accurately issues a completion signal upon task completion
is deemed to exhibit a high degree of alignment with human behavior, thus earning a full score of
one point. Conversely, a delay in issuing the completion signal upon task completion results in a
deduction of 0.05 points from the full score as a penalty for decision latency. In instances where
an agent stops its operation before accomplishing all the task objectives, the score is determined by
the ratio of the step score attained to the maximum step score achievable for that task. Furthermore,
if a task is not fully completed and the system forcibly terminates the process due to reaching the
maximum step limit, the score awarded is 0.8 times the proportion of the step score attained. The
specific algorithm is shown in the formula, where P represents achieved step scores, Pmax denotes
the max step scores of the task.

HAS =

1 if task is completed with completion signal
0.95 if task is completed without completion signal

P
Pmax

if task is incomplete but completion signal
0.8× P

Pmax
if task is incomplete and is terminated

(1)

E EXPERIMENTAL SETTINGS

E.1 AGENT FRAMEWORK

Planning Integrates past action history, current observations, and task instruction to plan future
actions and determine operational values based on the ReAct (Yao et al., 2023) reasoning framework.
It can be formally expressed as: Planning(h1:t,ot, i) −→ (zt,at), where h1:t represents history
information until time t, ot is the observation at time t, i is the task instruction, while the outputs zt
and at are the thought and action at time t respectively.

Observation Processes the current webpage’s source code and screenshots, producing an accessi-
bility tree (Zhou et al., 2023) and visual observations as ot. In our planning model, we solely focus
on textual observations, as visual images involve various grounding mechanisms which could detract
from the main focus of our paper. We plan to address this aspect in future research.

Memory Responsible for storing the task instruction and tracking the agent’s operational his-
tory, including thoughts and actions history across states. It can be formally expressed as
h1:t = (z1:t,a1:t, r1:t) within the framework, where r1:t denotes the history of reward signal
if presents.

Reward Utilizes a self-reflection structure (Shinn et al., 2024), providing a series of reward signal,
including a verbal reflection and signal on whether the task is completed. This can be formalized as
Reward(h1:t, i,ot+1) → rt.

Observation Planning

Memory

ActionBrowser

Reward

Figure 8: Agent framework

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

E.2 ACTION SPACE

Table 10: Action space

Action Operation value

Goto Value
Google Search Value

Click Target id
Hover Target id

Fill Form Target id, value
Fill Search Target id, value

Select Target id, value
Switch Tab Target id
Go Back /

E.3 ADDITIONAL EXPERIMENT SETTINGS

Dataset Sampling Our main experiments were conducted on the Mind2Web-Live test set to avoid
data contamination. For experiments involving self-reward, we sampled 130 cases from the complete
Mind2Web-Live dataset, ensuring a broad representation free from any dataset-specific biases.

Parameters & Computational Resources The foundation models used across our experiments
were standardized with a maximum token of 500 and a temperature setting of 0.7. Computational
resources were provided by AWS EC2. While most experiments were conducted on standard compute
instances, experiments involving the MindAct model utilized two T4 GPUs to accommodate the
model’s computational demands. In addition to using APIs provided by the model developers, our
model inference services also incorporated Mixtral-8x22B inference services from Together.ai1. For
the stopping criteria, in experiments with a reward module, we employ reward module to determine
whether a process has been completed, otherwise we set a maximum reasoning step length of 1.5
times the annotated task length. Prompts of our experiment can be found in Appendix K.

E.4 OBSERVATION SPACE

Accessibility Tree We employ an accessibility tree-based approach to extract the fundamental
textual feature representation from the web environment. The accessibility tree serves as an abstract
representation of the structure of a web page, detailing the characteristics of each element within
the page. However, the accessibility tree contains a significant amount of redundant information,
necessitating the use of a stringent set of filtering criteria to select interactive elements. These
filtering criteria include the element’s tag, visibility, usability, as well as textual or image content.
Concurrently with the construction of the accessibility tree, we annotate each filtered interactive
element, providing information such as element ID, tag, and content. For example, ([1] input ‘search’,
etc.). This annotation method facilitates the precise generation of corresponding CSS selector paths
during subsequent LLM prediction and execution phases, thereby accurately locating the required
elements.

Screenshot We capture screenshots of the current web page to obtain its visual representation and
provide this visual context to visual language models, such as GPT-4V. This input method mimics
human visual perception, allowing the model to gather the most comprehensive information from the
web page. Compared to relying solely on the accessibility tree, using screenshots enhances the ability
to identify the layout, appearance, and positioning of web elements more effectively. Additionally, it
captures interactive elements and other crucial page information that the accessibility tree might miss.
To balance inference costs and recognition effectiveness, the original resolution of the screenshots is
set to 1080 × 720, though users can define the screenshot resolution according to their specific needs
in practical applications.

1https://api.together.xyz/models

17

https://api.together.xyz/models

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

F MORE RESULTS OF EXPERIMENTS

F.1 ADDITIONAL MAIN RESULTS

F.1.1 RESULTS ON MIND2WEB-LIVE TRAINING SET

See Table 11.

Table 11: Performance of different models on Mind2Web-Live training set without reward module.
As for the model, we experiment with gpt-3.5-turbo-0125 (GPT-3.5), gpt-4-0125-preview (GPT-4).

Model Completion Rate (%) Task SR (%) Efficiency Score

GPT-3.5 34.6 13.8 5.25
GPT-4 46.9 20.1 3.77

Gemini-Pro 31.3 9.23 6.50
DeepSeek-V2 31.8 12.4 5.55
Mixtral-8x22B 29.7 9.44 6.52

F.1.2 ABLATION STUDY

See Table 12.

Table 12: Ablation study on memory and ReAct reasoning architecture (Yao et al., 2023). Results
show interesting findings that less capable models like GPT3.5 and Mistral-8x22B do not benefit from
memory and advanced reasoning architecture in online web tasks. We encourage more comprehensive
evaluation of these modules in web agent framework in future research.

Model Memory ReAct Completion Rate Task SR Efficiency Score

GPT-3.5 ✓ ✓ 40.2% 16.5% 3.03
GPT-4 ✓ ✓ 48.8% 23.1% 2.47

Mixtral-8x22B ✓ ✓ 37.2% 17.3% 4.80

GPT-3.5 ✗ ✓ 43.5%(↑ 3.3%) 19.2%(↑ 2.7%) 3.12(↓ 0.09)
GPT-3.5 ✓ ✗ 42.5%(↑ 2.3%) 22.1%(↑ 5.6%) 2.98(↑ 0.05)

Mixtral-8x22B ✗ ✓ 42.3%(↑ 5.1%) 17.3%(–) 4.39(↑ 0.41)
Mixtral-8x22B ✓ ✗ 42.5%(↑ 5.3%) 19.2%(↑ 1.9%) 4.40(↑ 0.40)

GPT4 ✗ ✓ 48.6%(↓ 0.2%) 20.9%(↓ 2.2%) 2.70(↓ 0.23)
GPT4 ✓ ✗ 46.6%(↓ 2.2%) 22.1%(↓ 1.0%) 2.67(↓ 0.20)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

F.2 ADDITIONAL ANALYSIS

See Table 13, Figure 9, Figure 10, Figure 11, Figure 12, Figure 13, Figure 14.

Table 13: Experiment on IP Regions and devices. It presents the results of experiments conducted
using the GPT-3.5 planning model across different IP regions, systems and devices. We recommend
experimenting on a Windows server using Chrome or Firefox browser engines, preferably on servers
located in the United States or Singapore.

Planning
Model IP Region System Browser Completion

Rate
Task

Success Rate
Efficiency

Score

GPT-3.5 United States Windows Chrome 40.2% 16.5% 3.03
GPT-3.5 United States Windows Firefox 42.1% 20.2% 2.79
GPT-3.5 United States Linux Chrome 36.5% 15.4% 3.33
GPT-3.5 United Kingdom Windows Chrome 23.6% 8.65% 7.78
GPT-3.5 Singapore Windows Chrome 42.3% 21.2% 2.95

Figure 9: The relationship between task complexity and task difficulty. The “step count” refers to
the length of the action sequence in the annotated data, which, along with the number of key nodes,
serves as a reference for task complexity.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Sankey diagram with annotation data

Sankey diagram with Agent’s success task data

Figure 10: Sankey diagram comparing human demonstration trajectories(A) and agent’s trajecto-
ries(B). We randomly sampled 50 success tasks from GPT-4 based agent on the Mind2Web-Live
training and testing set to analyze the discrepancy between these trajectories.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Figure 11: Heatmap of evaluation function counts over annotation steps for the Mind2Web-Live test
set. It shows logarithmically transformed counts over various steps. White represents a count of 0,
blue indicates smaller counts, and red indicates larger counts. The logarithmic scale helps to evenly
distribute the color intensity for better visualization.

Figure 12: Heatmap of evaluation function accuracy over annotation steps for the Mind2Web-Live
test set. The experimental data is derived from GPT-4’s performance on the test sets. The heatmap
displays logarithmically transformed accuracy of evaluation functions across different steps. Blue
indicates lower accuracy, while red indicates higher accuracy.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Figure 13: Completion Rate of different website tasks. Due to the large number of websites and the
limited number of tasks in the test set, the experimental data is derived from GPT-4’s performance
on both the training and test sets. We encourage the community to collaborate in gathering data on
online web agent execution across specific websites and tasks.

Figure 14: Task Success Rate of different website tasks. Due to the large number of websites and the
limited number of tasks in the test set, the experimental data is derived from GPT-4’s performance on
both the training and test sets.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

G QUALITATIVE ANALYSIS OF EXPERIMENTS

In this section, we conducted a qualitative analysis of error cases in our experimental results. Typical
errors include: local optima, premature termination of tasks, and information loss during inference.

G.1 LOCAL OPTIMA

In our online environment experiments, a task may involve multiple constraints or requirements.
Web pages often contain numerous clickable links, and frequently feature interactable elements
with similar or even identical names. Due to a lack of prior knowledge about the web domain
associated with current task and confusion caused by similar elements, the planning module’s local
decision-making for the current web state is not always accurate. Moreover, our web agent lacks
proactive thinking to revert to an intermediate state within a limited number of steps, thus stuck in a
local optima of the task. This is one of the main reasons for the low task success rate. As shown in
the first line in Table 14, in the task “Check the rating and user reviews for the game ‘Deathloop’ on
IGN”, the web agent ended up at the review article page for ‘Deathloop’ on IGN due to incorrect
path selection from the Google search results, rather than the expected page for ratings and user
reviews. In other cases, when actions like filling out forms are required, the greedy nature of LLMs
leads them to input more task-relevant information than necessary. This results in a narrower range
of information that can be extracted from the webpage, as shown in the second line in Table 14.
Meanwhile, the limitations of browser automation tools currently prevent the complete restoration of
a web page to its state before action execution. Memory management of web agents also could not
eliminate the effect of past incorrect trajectories. These all highlight the challenges of autonomous
agent reasoning.

G.2 PREMATURE TERMINATION OF TASKS

In the experiments, we also discovered that the web agent sometimes only partially completes tasks.
This typically indicates that web agent sometimes prematurely judges itself as having finished the
task. The reasons for premature termination are varied. For instance, the agent might hallucinate
during inference (such as simplifying a task of reaching a page and filling out content to just reaching
the page), leading it to self-judge the task as complete after only finishing intermediate steps and not
continuing further. In other instances, it may have the right thought process in earlier steps, but fails
to deliver the correct action input or effectively execute the action on the page, yet in subsequent
steps, it “reads” this thought and mistakenly believes the action has been executed. Lastly, when it is
difficult to continue along the current path, the agent might lower its standards for task completion
and erroneously judge the task as complete, thus terminating the task prematurely. As shown in the
third line in Table 14, in the task “Track the status of a rebate for Monty Lue, house number 4847, zip
code 10019 in Menards”, the web agent reached the “Track Your Rebate” page but did not continue
to complete the form, instead prematurely deciding the task was complete and ending the task.

G.3 INFORMATION LOSS IN OBSERVATION

The relationships between web elements are varied and complex. Often, the essential information of
an element is not contained within the element itself but is instead found within its child elements,
parent, or even sibling elements. For instance, a button tag might not always contain useful attributes;
sometimes, they are empty or irrelevant. Based on our understanding of the DOM tree on the web,
we map information from specific elements (like span) to interactive elements such as buttons. Due
to the diversity of these mapping relationships, our framework currently only considers mapping
valuable information from certain special elements to their parent elements, recursively iterating until
an interactive element is identified, as shown in Figure 15. If this recursive search fails to find an
interactive element or reaches the recursion limit, the element is discarded, as illustrated in Figure
16. Given the complexity of webpage elements, our initial implementations focus predominantly on
parent-child mapping relationships. Future work will delve deeper into inter-element mappings to
ensure the accuracy and correctness of element mappings.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Table 14: Case study of failure trajectories.

State Task Instruction Agent’s Thought

Check the rating and user reviews
for the game “Deathloop” in ign

To view the full review and user comments for ‘Deathloop’ on
IGN, I need to click on the IGN review link provided in the
search results.

Find a Ricky Kej track to listen
and share which has been added in
the last year and is between 2 to 10
minutes in soundcloud

To find a Ricky Kej track that was added in the last year and
is between 2 to 10 minutes long on SoundCloud, I need to
utilize the search and filter features. Since the accessibility
tree does not directly show track durations or upload dates, the
best approach is to use the search function to narrow down the
tracks specifically by Ricky Kej added in the last year and are
between 2 to 10 minutes long.

Track the status of a rebate for
Monty Lue, house number 4847,
zip code 10019 in menards

After navigating through various steps and overcoming chal-
lenges related to the website’s interaction model, we’ve success-
fully reached the point where the ’Track Your Rebate’ form is
ready for Monty Lue’s information. The task is marked as ’fin-
ished’ because the user has been guided to the correct section
for submission, aligning with the goal of tracking the rebate
status.

Figure 15: Example on parent-child element mapping strategy

Figure 16: Example on failure case of parent-child element mapping strategy

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

H DATA VALIDITY TEST REPORT

See Figure 17.

Figure 17: Data validity test report

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

I EXAMPLES OF MORE ANNOTATED SAMPLES

Link type

Open Application

Unknown

Public link

Action rule Click Edit

Matching rule AutoRestore Match Edit

Reward

Click

Add a description

Action rule Type playstation 5 digital edition Edit

Matching rule AutoRestore Match Edit

Input playstation 5 digital edition

Add a description

Action rule Press Enter Edit

Matching rule AutoRestore Match Edit

Press Enter

Add a description

Action rule Press Enter Edit

Matching rule AutoRestore Match Edit

Press playstation 5 digital edition

Add a description

Action rule Click Edit

Matching rule AutoRestore Match Edit

Reward

End

Add a description

AI mode Preview Playback Settings SaveGo to gamestop and find Playstation 5 digital edition

Figure 18: Example on the annotated interface and evaluation function for the task “Go to gamestop
and find PlayStation 5 digital edition”

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Link type

Open Application

Unknown

Public link

Action rule Click Edit

Matching rule AutoRestore Match Edit

Reward

Click Store Locator

Add a description

Action rule Click Edit

Matching rule AutoRestore Match Edit

Reward

Click

Add a description

Action rule Type Edit

Matching rule AutoRestore Match Edit

Input String,TX

Add a description

Action rule Click Edit

Matching rule AutoRestore Match Edit

Reward

Click

Add a description

Action rule Click Edit

Matching rule AutoRestore Match Edit

Reward

Click Spring

Add a description

AI mode Preview Playback Settings SaveLocate a store in spring, Texas in kohls

Figure 19: Example on the annotated interface and evaluation function for the task “Locate a store in
spring, Texas in kohls”

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

J LIMITATIONS & FUTURE WORKS

The unsolved challenges we encountered in online evaluation of web agents include:

1. Network Instability: The variability in network conditions can lead to discrepancies between
the results obtained from online real-time evaluations and those from closed environments. For
instance, issues such as CAPTCHAs, network outages, or inconsistencies across different IPs can
influence outcomes. However, in other words, WebCanvas allows for the generation of detailed
execution logs, enabling precise documentation of a web agent’s performance under specific network
and website conditions. This feature is crucial for understanding real-world agent behavior, including
potential issues like being blocked or triggering anti-automation mechanisms.

2. Complex Task Pathways: The diversity of potential execution paths for a given task may not
be completely identified by human annotators. This oversight can lead to a misalignment between
the defined key nodes and the essential components of task completion, inadvertently penalizing
correct processes. A model-based evaluation approach could mitigate some of these issues, but it
also introduces dependency on the model’s capabilities, which may result in unstable evaluation
outcomes.

3. Static Evaluation Functions: The current static nature of our evaluation functions does not
accommodate changes in task instructions based on environmental variables such as time, location,
or weather conditions. For example, a task might involve booking a flight to Hawaii next month if
the weather is favorable. Ideally, the evaluation module would dynamically adjust its criteria for
success based on ongoing feedback and environmental data, necessitating a logic or code-based
reward system that can respond to these changes.

In conclusion, while we have addressed several key challenges associated with online evaluations,
many unresolved issues persist. These challenges underscore the need for ongoing research and
community efforts to refine and enhance the evaluation frameworks for autonomous web agents in
complex, real-world environments. We encourage the community to continue exploring these avenues
to improve both the reliability and validity of web agent assessments.

K PROMPTS OF PLANNING AND REWARD MODULE

Planning Prompt

You are an assistant to help navigate and operate the web page to
achieve certain goals. Answer the following questions as best as
you can.
There are key information you will get:
Key Information:

- Previous trace: all thoughts, actions and reflections you
have made historically.

- Accessibility tree: characteristic expression of the current
web page.

Introduction to Accessibility Tree:
The accessibility tree is a tree-like data structure that
describes the relationships between elements on a web page and
provides accessibility information for each element (such as

text, links, form elements, etc.).
- **Accessibility Tree Example**:

Here is an example of an accessibility tree:
‘‘‘
current web tab name is ’Google’

[40] link ’About’
[41] link ’Store’

[186] link ’Gmail’
[187] link ’Images’
[163] textarea ’Search’

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

[236] button ’See more’
’’’

In this example, each row represents the characteristic
representation of a web page element. It has three attributes:
’[40]’ for the element’s element_id, ’link’ indicates the element
is a link, and ’About’ for the content of the element.
Note: The above element provided is purely for illustrative
purposes and should NEVER be used directly in your output!

You should always consider previous and subsequent steps and what
to do.
Thought Space:

- What action do you think is needed now to complete the task?
- What’s the reason of taking that action?

You have access to the following tools(helpful to interact with web
page):

Execution Action Space:
- goto: useful for when you need visit a new link or a website,
it will open a new tab.

- fill_form: useful for when you need to fill out a form or
input something from accessibility tree. Input should be a
string.

- google_search: useful for when you need to use google to
search something.

- click: useful for when you need to click a button/link from
accessibility tree.

- select_option: useful for when you need to select a drop-down
box value. When you get (select and option) tags from the

accessibility tree, you need to select the serial number(
element_id) corresponding to the select tag, not the option,
and select the most likely content corresponding to the option
as Input.

- go_back: useful when you find the current web page encounter
some network error or you think the last step is not helpful.

You also need to provide an effective description of the current
execution action.

A proper description contains:
- What website it is;
- Which action you choose;
- REMEMBER DO NOT LEAVE THE DESCRIPTION EMPTY!

You have to follow the instructions or notes:
Important Notes:

- Under the following conditions, you are restricted to using
the ‘google_search’ or ‘goto’ tools exclusively:

1. In the initial step of a process or when there’s no
preceding interaction history (i.e., the previous trace is
empty).

2. In situations where the accessibility tree is absent or
not provided.

- Your action should not be the same as last step’s action.
- The ‘element_id’ should be an integer accurately representing
the element’s ID in the accessibility tree.

- AVOID using the provided example’s element_id as your output.
- The output JSON-formatted code block must be valid; otherwise
, it cannot be recognized.

Special Circumstances Guidelines:
- When performing a search on a website, if you find the search
results do not display sufficient content, consider

simplifying or modifying your search query. Reducing the

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

complexity of your search query or altering keywords may yield
more comprehensive results.

Please ensure the accuracy of your output, as we will execute
subsequent steps based on the ‘action’, ‘action_input’ and ‘
element_id’ you provide.

Output Requirements:
- Ensure your output strictly adheres to the JSON-formatted code
block outlined below:

‘‘‘
{

"thought": ACTUAL_THOUGHT
"action": ACTUAL_TOOLS,
"action_input": ACTUAL_INPUT,
"element_id": ACTUAL_ELEMENT_ID,
"description": ACTUAL_DESCRIPTION

}
’’’

- A VALID JSON-FORMATTED CODE BLOCK EXAMPLE AS FELLOWS:
‘‘‘
{

"thought": "In order to complete this task, I need to go to
the Google home page",

"action": "click",
"action_input": "button",
"element_id": "236",
"description": "Now I\’m on Google\’s main page. I\’m now
clicking the button with element_id [236] to see more
information."

}
’’’

Reward Prompt

You are an assistant to help navigate and operate the web page to
achieve certain task.
Your goal is to evaluate the previous series of traces(thoughts and
actions) and think about what key steps are needed to complete

the task in the future.
There are key information you will get:
Key Information:

- Previous trace: all thoughts, actions and reflections you
have made historically.

- Accessibility tree: characteristic expression of the current
web page.

- Screenshot: visual information of the current web page (may
include).

You also need to combine the previous trace to give the completion
status of the current task.
Status Of Task Completion

- doing: You have completed the intermediate steps of the
target task but not entirely finish the target task.

- finished: You are entirely certain about completing the
target task.

- loop: You find that the the last two steps of previous
actions are the same, it is determined that the process is
stuck in a local optimum solution.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

You will judge and score the task completion and reasonableness of
previous actions. The score ranges from 1-10, but the score you
give can only be selected from [1, 3, 7, 9, 10].
Judging and Scoring Criteria:

- score = 1: You find that the status of the task is stuck in a
loop by analyzing the previous trace.

- score = 3: You find that performing the previous trajectories
(thoughts and actions) is not likely helpful in completing
target task and you need to adjust the direction of your
planning and action or start over from beginning.

- score = 7: You find that performing the previous trajectories
(thoughts and actions) are helpful in completing the target
task.

- score = 9: You find that performing the previous trajectories
(thoughts and actions) are a very critical intermediate step
to complete this task.

- score = 10: You find that performing the previous
trajectories(thoughts and actions) have completed the task
perfectly.

You need to provide an effective evidence of scoring for the series
of the previous trace.
- Why do you give this score?
- What is the reason?

You also need to provide an effective description or summary of the
above requirements through key information and characteristics of
the current web page.

A proper description contains:
- What is the current completion status of the task? (IMPORTNAT
)

- REMEMBER DO NOT LEAVE THE DESCRIPTION EMPTY!

Output Requirements:
- Ensure your output strictly follows this format:

‘‘‘json
{

"status": "ACTUAL_STATUS",
"score": "ACTUAL_SCORE",
"reason": "ACTUAL_REASON",
"description": "ACTUAL_DESCRIPTION"

}
’’’

- A VALID JSON-FORMATTED CODE BLOCK EXAMPLE AS FELLOWS:
‘‘‘
{

"status": "doing",
"score": "3",
"reason": "You need to complete a search for camping tents
that can accommodate 2 people and sort the results in rei
by price from low to high. According to your previous
trajectory, you navigated to the rei official website and
clicked the 2-person button, which are correct actions.
But when you complete the final step of sorting prices,
you actually click on a link to a tent product. This is a
completely unreasonable action. So I give it 3 points."

"description": "According to the current web page
information, you can know that this is the homepage of a
tent product, which is not very consistent with the
purpose of the target task."

}
’’’

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

Reward Prompt - With Golden Reference

You are an assistant to help navigate and operate the web page to
achieve certain task.
Your goal is to evaluate the previous series of traces(thoughts and
actions) and think about what key steps are needed to complete

the task in the future.
There are key information you will get:
Key Information:

- Previous trace: all thoughts, actions and reflections you
have made historically.

- Current Webpage Information:
- Accessibility tree: characteristic expression of the
current web page.
- Screenshot: visual information of the current web page. (
may include)

- Reference Guide: detailed and step-by-step reference guide
for completing the target task, serving as a benchmark for
evaluating progress and strategizing the necessary actions.

Notes to Reference Guide:
- The Reference Guide plays a crucial role in aiding the
evaluation of the current Status of Task Completion. The ’
Completion Verification’ section within the Reference Guide is
instrumental in determining whether a task can be classified

as ’finished.’
- Furthermore, for a task to be considered fully completed, all
key conditions must be met as specified.

You also need to combine the previous trace to give the completion
status of the current task.
Status of Task Completion

- doing: You have completed the intermediate steps of the
target task but not entirely finish the target task.

- finished: You are entirely certain about completing the
target task.

- loop: You find that the the last two steps of previous
actions are the same, it is determined that the process is
stuck in a local optimum solution.

You will judge and score the task completion and reasonableness of
previous actions. The score ranges from 1-10, but the score you
give can only be selected from [1, 3, 7, 9, 10].
Judging and Scoring Criteria:

- score = 1: You find that the status of the task is stuck in a
loop by analyzing the previous trace.

- score = 3: You find that performing the previous trajectories
(thoughts and actions) is not likely helpful in completing
target task and you need to adjust the direction of your
planning and action or start over from beginning.

- score = 7: You find that performing the previous trajectories
(thoughts and actions) are helpful in completing the target
task.

- score = 9: You find that performing the previous trajectories
(thoughts and actions) are a very critical intermediate step
to complete this task.

- score = 10: You find that performing the previous
trajectories(thoughts and actions) have completed the task
perfectly.

You need to provide an effective evidence of scoring for the series
of the previous trace.
- Why do you give this score?

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

- What is the reason?

You also need to provide an effective description or summary of the
above requirements through key information and characteristics of
the current web page.

A proper description contains:
- What is the current completion status of the task? (IMPORTNAT
)

- REMEMBER DO NOT LEAVE THE DESCRIPTION EMPTY!

Output Requirements:
- Ensure your output strictly follows this format:

‘‘‘json
{

"status": "ACTUAL_STATUS",
"score": "ACTUAL_SCORE",
"reason": "ACTUAL_REASON",
"description": "ACTUAL_DESCRIPTION"

}
’’’

- A VALID JSON-FORMATTED CODE BLOCK EXAMPLE AS FELLOWS:
‘‘‘
{

"status": "doing",
"score": "3",
"reason": "You need to complete a search for camping tents
that can accommodate 2 people and sort the results in rei
by price from low to high. According to your previous
trajectory, you navigated to the rei official website and
clicked the 2-person button, which are correct actions.
But when you complete the final step of sorting prices,
you actually click on a link to a tent product. This is a
completely unreasonable action. So I give it 3 points."
"description": "According to the current web page
information, you can know that this is the homepage of a
tent product, which is not very consistent with the
purpose of the target task."

}
’’’

Semantic Match Prompt

Now you are an assistant to judge whether 2 elements are
semantically same. I’ll provide a judge rule and an answer.
If they are the same, you should return 1. If they are not related,
you should return 0.

If they are related but not identical, return a decimal (two
decimal places) between 0 and 1 of the degree of relevance you
think.
For example, the judge rule is: Decide whether the place is New
York. The score of "new york" and "New York" are both 1, "Brooklyn
" should be 0.
However, if the judge rule is: Decide whether the place is in New
York. The score of "new york" and "New York" and "Brooklyn" are
all 1.
Another example, the judge rule is: Decide whether I’m looking for
clothes. The score of "red Clothes" and "green jacket"should also
be 1.
However, if the judge rule is: Decide whether I’m looking for red
clothes. the score of "bright red Clothing" could be 0.85(red

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

include bright red but they are not the same), the score of "green
Clothes"should be 0.5(red is not green).

Remember, you should return a number with " and an explanation.
Like output: "1", (your explanation)

34

	Introduction
	Problem Formulation of Interactive Web-Based Task
	WebCanvas: An Online Evaluation Framework for Web Agents
	Definition of Key Nodes
	Evaluation Metrics

	Mind2Web-Live: a Real-time Online Benchmark for Web Agents
	Dataset Construction
	Dataset Maintenance

	Experiment
	Discrepancy between Offline Evaluation and Online Generalization
	Main Result

	Analysis
	Factors Influencing Agent Performance
	Necessity of Key Node Evaluation in Live Environments
	Planning with Human-Labeled Reward

	Related Works
	Discussion & Limitations
	Conclusion
	Data Collection Details
	Recording process
	Annotation process
	Task Distribution and Domain Coverage

	Comparison of the Mind2Web-Live and Mind2Web Datasets
	How to define evaluation functions
	Additional Evaluation Metrics
	Experimental Settings
	Agent Framework
	Action Space
	Additional Experiment Settings
	Observation Space

	More Results of Experiments
	Additional Main Results
	Results on Mind2Web-Live Training Set
	Ablation Study

	Additional Analysis

	Qualitative Analysis of Experiments
	Local Optima
	Premature Termination of Tasks
	Information Loss in Observation

	Data Validity Test Report
	Examples of More Annotated Samples
	Limitations & Future works
	Prompts of Planning and Reward Module

