
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

CASCADIA: AN EFFICIENT CASCADE SERVING SYS-
TEM FOR LARGE LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent advances in large language models (LLMs) have intensified the need to
deliver both rapid responses and high-quality outputs. More powerful models
yield better results but incur higher inference latency, whereas smaller models
are faster yet less capable. Recent work proposes balancing this latency–quality
trade-off using model cascades, which route simpler queries to smaller models and
more complex ones to larger models. However, enabling efficient cascade serving
remains challenging. Current frameworks lack effective mechanisms for handling
(i) the huge and varying resource demands of different LLMs, (ii) the inherent het-
erogeneity of LLM workloads, and (iii) the co-optimization of system deployment
and routing strategy. Motivated by these observations, we introduce CASCADIA, a
novel cascade serving framework designed explicitly to schedule request routing
and deploy model cascades for fast, quality-preserving LLM serving. CASCADIA
employs a bi-level optimization method: at the deployment level, it uses a mixed-
integer linear program to select resource allocations and parallelism strategies based
on LLM information and workload characteristics; at the routing level, it applies a
Chebyshev-guided method to iteratively co-optimize the routing strategy and the
system deployment produced by the deployment level. Our extensive evaluation on
diverse workload traces and different model cascades (DeepSeek and the Llama
series) demonstrates that CASCADIA significantly outperforms both single-model
deployments and the state-of-the-art cascade serving baseline, achieving up to 4×
(2.3× on average) tighter latency SLOs and up to 5× (2.4× on average) higher
throughput while maintaining target answer quality.

1 INTRODUCTION

Different Models
40
60
80

100

Q
ua

lit
y 92

78
67

Different Models
2
6

10
14

La
te

nc
y

(s
)

11.1

2.3 0.4

DeepSeek-671B
DeepSeek-dist-70B

DeepSeek-dist-7B

Figure 1: Average response quality and laten-
cies of different DeepSeek models. Quality is
judged by GPT-4o using the LLM-as-a-Judge
framework (Zheng et al., 2023).

Large language models (LLMs) such as DeepSeek-
R1 (Guo et al., 2025), OpenAI o3 (OpenAI, 2025),
Claude (Anthropic, 2024), Gemini (Reid et al., 2024) and
Llama-3 (Dubey et al., 2024) have demonstrated outstand-
ing performance across a wide range of real-world appli-
cations (e.g., chatbots, healthcare and education) (Jeon
& Lee, 2023; Peng et al., 2023; GitHub, 2024), largely
influence human lives. However, serving LLMs can be
costly (Jiang et al., 2024; 2025b; Miao et al., 2024b), since
significant computational resources (e.g., GPUs) are re-
quired to meet certain service demands, such as meeting
certain latency deadlines (i.e., SLO attainment—the proportion of requests served within a specified
response-time target) and generation throughput. In this paper, we explore an alternative solution
that strategically utilizes model cascades to better balance the response latency and quality trade-offs
inherent in LLM serving.

Cascade model serving refers to a serving architecture where multiple models of varying sizes and
capabilities are arranged in a sequential pipeline, creating a hierarchy of models that process requests
with increasing levels of sophistication (Aggarwal et al., 2024; Chen et al.; Kossmann et al., 2024;
Kolawole et al.; Lebovitz et al., 2023; Streeter, 2018). As shown in Figure 1, larger models typically
provide higher response quality but also incur greater latency, which in turn leads to increased
energy consumption and compute usage (Samsi et al., 2023). In this approach, incoming requests

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

are initially handled by smaller, computationally efficient models that can rapidly process simpler
requests. Only when these lightweight models determine that a request exceeds their capabilities or
requires higher-quality responses does the system escalate the request to larger, more powerful models
in the cascade. This progressive delegation mechanism enables service providers to optimize system
performance by matching request complexity with appropriate model capacity, thereby significantly
reducing computational costs while maintaining high-quality responses for complex request. Several
recent studies have focused on optimizing LLM serving using model cascades (Chen et al.; Aggarwal
et al., 2024; Kossmann et al., 2024; Gupta et al.; Narasimhan et al., 2024).

The cascade model serving architecture, which adaptively routes simpler and more complex requests
to smaller and larger models, respectively, presents significant opportunities for optimizing the
cost-efficiency of LLM serving. In this work, we focus specifically on the setting where service
providers host and manage every model in the cascade themselves. However, effectively adapting this
paradigm to LLM scenarios is much harder to implement than to propose, as we enumerate below:

• Model heterogeneity. LLMs require large amounts of compute and memory, and different models
have varying resource demands for efficient serving (Duan et al., 2024). With a fixed resource pool,
suboptimal allocation across models in the cascade can degrade overall serving efficiency.

• Workload heterogeneity. LLM workloads exhibit considerable heterogeneity (Sun et al., 2024;
Zheng et al.; Zhao et al.). Models within the cascade often face incoming requests with varying
characteristics (e.g., input/output lengths, arrival rates) and favor different deployment strategies
(e.g., replication, parallel configuration), further adding complexity to optimal system deployment.

• Cascade-aware load balancing. The request routing strategy directly impacts the system load of
each model in the cascade. For instance, if more requests are routed to a particular model, its load
increases; the resource allocation and deployment strategy for that model should then be adjusted
to balance loads across all models. Consequently, the deployment of multiple models must be
co-optimized with the routing strategy to manage load across the cascade.

In order to overcome these challenges, we propose CASCADIA, a novel cascade serving system that
is optimized for LLM characteristics and that co-optimizes the deployment of multiple models in the
cascade together with the request routing strategy. Our contributions are as follows:

• Contribution 1. We formulate cascade serving—covering system deployment and request rout-
ing—as a constrained optimization problem. To solve it, we propose a bi-level approach that jointly
optimizes deployment and routing. The deployment level uses mixed-integer linear programming
(MILP) to determine the optimal deployment plan given a routing strategy, while the routing level
applies a Chebyshev-guided method to optimize routing, balancing latency and quality.

• Contribution 2. We implement CASCADIA, an efficient cascade serving system tailored to LLMs.
CASCADIA enables an adaptive model cascade paradigm that allocates resources and routes requests
across a hierarchy of model sizes (e.g., small, medium, and large), thereby balancing response
latency and output quality. Within each cascade stage, CASCADIA supports various parallelism
strategies (e.g., tensor and pipeline parallelism), which allows it to automatically select the optimal
strategy based on model size, incoming workload, and routing decisions.

• Contribution 3. We empirically evaluate CASCADIA by comparing it to both single-model and
existing cascade serving systems across a variety of scenarios, including diverse workload traces
(e.g., coding and mathematics), different model cascades (DeepSeek and the Llama series), and
multiple evaluation metrics (SLO attainment and throughput). The results show that, compared with
state-of-the-art non-cascade and cascade solutions, CASCADIA achieves up to 4× lower latency
deadlines (2.3× on average) and boosts system throughput by up to 5× (2.4× on average).

2 PRELIMINARY AND RELATED WORK

LLM inference phases and workload heterogeneity. There are two phases within LLM inference:
prefill and decoding. During the prefill phase, the model processes the input prompt to compute
the key-value (KV) cache and generates the first token in a single step. In contrast, the decoding
phase uses the last generated token and the KV cache as inputs to generate subsequent tokens in a
token-by-token manner. Generally, the prefill phase is compute-bound, while the decoding phase
is memory-bound (Patel et al., 2024; Zhong et al., 2024; Agrawal et al., 2024). LLM inference
workloads exhibit heterogeneity in input, output token lengths and request arrival rate, which is

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

called workload heterogeneity. For instance, conversation workloads (short input and long output
lengths) typically require more memory resources to handle the memory-bound decoding phase,
while coding workloads (long input and short output lengths) demand more compute resources to
manage the compute-bound prefill phase. Therefore, appropriately allocating resources based on
workload demands is critical for optimal performance (Zhao et al., 2024; Jiang et al., 2025a).

Cascade model inference. Current LLMs come in various sizes and configurations, offering a broad
spectrum of choices. Effectively leveraging this diversity can balance trade-offs between response
latency and quality during inference. Recent efforts propose cascade model inference to utilize models
of differing complexities (Dekoninck et al., 2025; Narasimhan et al., 2025). In such architectures,
an input prompt is processed through increasingly complex models, using threshold-based routing
that stops computation once a cheaper model produces a confident enough answer. For instance,
FrugalGPT (Chen et al.) employs a dynamic LLM cascade strategy that routes queries through
progressively stronger models (e.g., GPT-3.5 → GPT-4) based on real-time difficulty estimation,
optimizing cost-efficiency without sacrificing accuracy. Similarly, AutoMix (Aggarwal et al., 2024)
uses intelligent layer-wise token routing to dynamically allocate computation based on input difficulty.
CascadeServe (Kossmann et al., 2024) automates and optimizes end-to-end inference with cascades,
adjusting model deployment and request routing based on real-time system loads. However, existing
systems overlook key LLM-specific workload characteristics and neglect the importance of co-
optimizing system deployment with request routing (i.e., system-algorithm co-design).

req_rate=4
long outputs

0.00
4.67
9.34

14.01

Th
ro

ug
hp

ut
 (r

eq
/s

)

DeepSeek-dist-7B

req_rate=8
long outputs

0.00
6.42

12.84
19.26

DeepSeek-dist-7B

req_rate=4
long outputs

0.00
0.87
1.74
2.61

DeepSeek-dist-70B

req_rate=8
long outputs

0.00
1.50
2.99
4.49

DeepSeek-dist-70B

req_rate=4
short outputs

0.00
3.29
6.58
9.87

DeepSeek-dist-7B

req_rate=4
short outputs

0.00
0.93
1.86
2.79

DeepSeek-dist-70B
7B (4,1,1) 7B (2,2,1) 7B (2,1,2) 70B (4,2,1) 70B (4,1,2) 70B (2,4,1)

Figure 2: Benchmarked performance of different parallelism strategies across different workloads and model
sizes. Long and short outputs represent two different workloads with average output sequence length to be 512
and 1024; the three-element array represents the DP, TP, and PP degrees.

Limitations of existing cascade serving systems. We summarize the limitations of existing cascade
serving systems: (i) Ineffective resource allocation for different model types within a cascade.
Different model types have distinct memory and computation resource needs. For example, DeepSeek-
671B typically requires more allocated resources than DeepSeek-dist-70B due to its larger memory
and computational demands. Current systems ignore the importance of adjusting resource allocation
according to the needs of different model types, leading to unbalanced system loads. (ii) Inadequate
adaptation of parallelism strategies to varying workloads and model sizes. The optimal parallelism
strategies vary across different workloads (e.g., different input and output request sequence lengths
and request arrival rates) and model sizes. As shown in Figure 2, choosing the optimal parallelism
strategy can achieve up to 3× higher system throughput. Current systems do not optimize parallelism
strategies according to specific workload and model size, resulting in degraded overall system
performance. (iii) Insufficient co-optimization between system deployment and routing strategy. The
routing strategy decides the request portion processed by each model type within a cascade, which in
turn determines the system loads for different model types. Existing systems neglect to adapt system
deployment configurations based on routing outcomes, resulting in suboptimal resource usage. To
address these challenges, a cascade serving system tailored for LLMs is necessary. Such a system
must optimize end-to-end performance and ensure stringent SLO adherence.

3 SCHEDULING ALGORITHM IN CASCADIA

3.1 PROBLEM FORMULATION

To optimize the cascade serving system under different LLM workloads and user-specific requirements
(e.g., system response quality requirements), the scheduling algorithm should determine two essential
components: (i) The model deployment plan, which specifies the resource allocations and parallelism
strategies for multiple model types (e.g., small, medium, large) within the cascade to minimize
the system response latency (e.g., p95 latency—the response time threshold below which 95% of
all requests complete); and (ii) the routing strategy, which balances the trade-off between system

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

response latency and quality to decide the appropriate model path for each incoming request. We
term a solution addressing these two components as a cascade plan.

Algorithm 1: Bi-level Scheduling Workflow
Require: θ0: initial routing strategy; θ: routing strat-

egy; qmin: quality requirement; Ĩ: subsampled
input workload; W: workload distribution; Q:
system response quality; N : resource limit; D:
deployment plan; L: system response latency;
J : latency-quality score; K: consecutive stable
iterations to break

Ensure: final routing strategy θ and deployment D
1: θ ← θ0 /* θ0 detailed in §3.3 */
2: while true do
3: (W, Q)← derived 1 from (θ, Ĩ)
4: /* Optimize deployment (§3.2) */
5: (D, L)← DeploymentSolver(W, N)
6: /* Optimize routing strategy (§3.3) */
7: (θ, J)← RoutingSolver(L, Q, qmin)
8: /* Terminate upon convergence */
9: if J is stable for K iters then

10: break
11: return (θ, D)

Note that the routing strategy determines the
request distribution over different model types,
which in turn dictates the optimal model deploy-
ment plan, while the model deployment plan de-
fines the system response latency that feeds back
into the routing decision. Given the interdepen-
dent and exponentially large search space, de-
termining the optimal cascade plan is an NP-
hard problem. To solve this problem, we adopt
a bi-level optimization method that enables sys-
tem–algorithm co-design, which is shown in Al-
gorithm 1, and can be summarized as:

• MILP-based deployment solver: Given the
routing strategy, the deployment solver (§3.2)
employs an mixed-integer linear programming
(MILP) formulation to capture system resource
constraints and compute the optimal deployment
plan that minimizes system response latency.

• Chebyshev-guided routing solver: Based on
the system response latency generated from the deployment solver and the user-specific quality
requirement, the routing solver (§3.3) applies a Chebyshev-guided method to find the optimal
routing strategy that optimizes system response latency with respect to the quality requirement.

3.2 MILP-BASED DEPLOYMENT SOLVER

As shown in Algorithm 1, the routing strategy (obtained from routing solver) determines how many
requests should be routed to each model in the cascade, thus determining the workload distribution
among models. Given the workload distribution and resource limit, the deployment solver aims
to determine the optimal deployment plan, which includes the resource allocation and parallelism
strategies for models within cascades. An example deployment plan is shown in Figure 3.

Assume a total of N GPUs serve a model cascade with C model types, {c1, c2, . . . , cC}, where ci de-
notes the i-th model type. The incoming workload information is denoted as W = {w1, w2, . . . , wC},
where each wi includes the distributions of input/output sequence lengths and the request arrival rate
for the i-th model type. We use F = {f1, f2, . . . , fC} to denote the number of GPUs allocated per
model, the total allocation must not exceed the resource limit, i.e.,

∑C
i=1 fi ≤ N . Given this setup,

our deployment solver (i) determines the parallelism strategy for each specific resource allocation fi,
and (ii) uses an MILP to optimize the overall resource allocation F .

Model Replica Pipeline ParallelismTensor ParallelismWorkload

𝐰𝟏 𝐰𝟐 𝐰𝟑

𝐃𝐏 = 𝟐; 𝐓𝐏 = 𝟐; 𝐏𝐏 = 𝟐 𝐃𝐏 = 𝟐;𝐓𝐏 = 𝟐, 𝐏𝐏 = 𝟐;𝐓𝐏 = 𝟐 𝐃𝐏 = 𝟏; 𝐓𝐏 = 𝟐, 𝐏𝐏 = 𝟑

𝐂𝐚𝐬𝐜𝐚𝐝𝐞	𝟏:	𝐜𝟏 𝐂𝐚𝐬𝐜𝐚𝐝𝐞	𝟐:	𝐜𝟐 𝐂𝐚𝐬𝐜𝐚𝐝𝐞	𝟑:	𝐜𝟑

Figure 3: Illustration of a model deployment plan.

Parallelism strategy search. Given the work-
load information wi and a specific resource al-
location fi, this optimization determines the op-
timal parallelism strategy and computes the cor-
responding system response latency li for the
model type i. CASCADIA provides three forms
of parallelism: data parallelism (i.e., model repli-
cation, DP) (Li et al., 2023), tensor model paral-
lelism (TP) (Shoeybi et al., 2019), and pipeline
parallelism (PP) (Huang et al., 2019). Denoting the degrees of data, tensor, and pipeline parallelism
for the model type by dp, tp, and pp, any feasible parallelism strategy must satisfy the following
resource constraint: (

∑dpi

j=1 tpi,j × ppi,j) ≤ fi, i.e., one model type can be replicate into multiple
replicas, each replica can have varied tensor and pipeline parallelism degrees, as shown in Figure 3,
the summation of different parallelism degrees should be less or equal than the total number of GPUs
assigned. Based on the workload information wi and the resource allocation fi, we iterate over all

1Given θ and Ĩ,W is derived by aggregating per-model routed requests (including arrival rates and sequence
statistics), while Q is derived by aggregating quality scores of accepted outputs across all models (Chen et al.).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

feasible parallelism combinations to select the strategy that minimizes the response latency li for the
model type i. The latency li is computed using the simulator Sim(·) as li = Sim(wi, fi)

2. Note
that the parallelism strategy optimization can be precomputed for all possible resource allocations f
to provide latency lookup tables for the MILP formulation.

MILP formulation for resource allocation optimization. Our MILP problem formulation aims
to minimize the maximum system response latency among all model types in the cascade. Let L
denote the maximum latency across all model types. We discretize the GPU allocations into candidate
values f ∈ {1, 2, . . . , N}. For each model type i and candidate allocation f , we use the precomputed
latency table from the parallelism strategy optimization to obtain li(f). We then introduce binary
assignment variables xi,f , where xi,f = 1 if model type i is assigned f GPUs and xi,f = 0 otherwise,
for all i ∈ {1, . . . , C} and feasible f . The constraints of our MILP include: (i) For each model type
i, exactly one GPU allocation f must be selected, i.e.,

∑N
f=1 xi,f = 1, ∀ i = 1, . . . , C; (ii) the total

number of GPUs assigned across all model types should be equal to the available GPUs N , i.e.,∑C
i=1

∑N
f=1 f xi,f = N ; and (iii) the maximum latency L must be at least as large as the latency

li(f) corresponding to each selected allocation, i.e., L ≥
∑N

f=1 li(f)xi,f , ∀ i = 1, . . . , C. We
explicitly enforce variable domains and integrality constraints as follows: xi,f ∈ {0, 1},∀ i, f and
L ≥ 0. If certain GPU allocations f are infeasible for specific model types—such as when the total
memory of the allocated f GPUs is less than the minimum memory required by the model type—we
explicitly set xi,f = 0 for these allocation pairs. Our objective is to minimize the maximum system
response latency L, which serves as the input for the routing layer optimization.

3.3 CHEBYSHEV-GUIDED ROUTING SOLVER

As shown in Algorithm 1, the deployment plan (obtained from the deployment solver) determines the
system response latency. Given the system response latency and quality requirement, the routing
solver aims to optimize the routing strategy (i.e., co-optimize system latency and quality).

…𝐋𝐋𝐌𝟏 𝐋𝐋𝐌𝟐 𝐋𝐋𝐌𝐂

𝐑𝐞𝐬𝐩𝐨𝐧𝐬𝐞𝐬 𝐑𝐞𝐬𝐩𝐨𝐧𝐬𝐞𝐬 𝐑𝐞𝐬𝐩𝐨𝐧𝐬𝐞𝐬

𝐑𝐨𝐮𝐭𝐞𝐫

𝐑𝐞𝐪𝐬

…

𝐑𝐨𝐮𝐭𝐢𝐧𝐠	𝐌𝐚𝐧𝐚𝐠𝐞𝐦𝐞𝐧𝐭

𝐑𝐞𝐬𝐩𝐨𝐧𝐬𝐞𝐬	𝐀𝐜𝐜𝐞𝐩𝐭𝐞𝐝

𝐂𝐚𝐬𝐜𝐚𝐝𝐞
𝐈𝐧𝐟𝐞𝐫𝐞𝐧𝐜𝐞

Figure 4: Threshold-based cascade
routing workflow. The router deter-
mines whether a request is accepted or
forwarded to the next model type based
on predefined thresholds.

Thresholds tuning and request routing. We adopt the
threshold-based cascade routing workflow consistent with prior
works (Aggarwal et al., 2024; Chen et al.) (Figure 4). Initially,
every incoming request is sent to the first (smallest) model
type c1 in the cascade. A judger then evaluates the quality of
the output responses from model types c1 to cC−1, and a set
of thresholds H = {h1, h2, . . . , hC−1} is defined to decide
whether the requests at each model type should be accepted or
forwarded to the next model type. In this framework, the rout-
ing strategy θ is directly determined by the thresholds H, i.e.,
θ = θ(H). Each routing strategy θ is associated with a system
response latency L(θ) (determined by the deployment solver
optimization) and quality Q(θ) (determined by the judger 3).
Our routing solver uses a Chebyshev-guided method to optimize the routing strategy. We initialize
the routing strategy θ0 as proportional routing, where the i-th model receives 1/i of requests.

Chebyshev-guided optimization for routing strategy. Given the routing strategy θ and user-
specified quality requirement qmin, we employ the Chebyshev-guided method (Steuer & Choo, 1983)
to minimize the system response latency L(θ) with respect to qmin. First, we define a utopia point
z∗1 (all requests processed by the largest model cC) and nadir point z∗2 (all requests processed by the
smallest model c1) representing the best and worst achievable system response quality. Then, for
a given quality requirement qmin, we minimize the system response latency subject to meeting the
quality requirement by solving the single-objective penalty problem:

argmin
θ

J(θ) = argmin
θ

[L(θ) + µmax{0, (qmin −Q(θ))/(z∗1 − z∗2)}]

2We use the ETH EASL Scratchpad simulator (ETH-EASL, 2025) to estimate system p95 latency from
workload and resource allocation. We show detailed simulator design (e.g., simulator inputs, batching strategy,
queuing mechanism, parallelism strategy modeling) and evaluation in Appendix B.

3Analogous to (Chen et al.), we estimate Q(θ) by profiling a subsample of the input workload across all
cascade models to obtain per-model quality score distributions. During scheduling, given any threshold vectorH
and the quality score distributions, we can determine which model’s response would be accepted for each request
under routing policy θ(H), then aggregate these final model scores to compute the overall system quality Q(θ).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

where J(θ) represents the latency-quality score, µ > 0 is a penalty weight that enforces the quality
constraint (for sufficiently large µ, any minimizer of J(θ) satisfies Q(θ) ≥ qmin), and z∗1 and z∗2
are used to normalize the quality shortfall so the penalty is dimensionless and well-conditioned
across workloads. Note that our routing solver can also optimize system response quality under a
user-specified latency requirement using a similar procedure, as detailed in Appendix C.

Illustrative example for Chebyshev-guided optimization. Assume the utopia and nadir points z∗1
and z∗2 equal 0.95 and 0.75. The user-specific quality requirement qmin is 0.90 and the penalty weight
µ is 100. Consider a strategy θ1 with p95 latency L(θ1) = 11.0 s and overall quality Q(θ1) = 0.88.
The normalized shortfall from the requirement is (0.90− 0.88)/(0.95− 0.75) = 0.02/0.20 = 0.10,
yielding J(θ1) = 11.0 + 100× 0.10 = 21.0. Consider another strategy θ2 with latency L(θ2) = 11.4
s and quality Q(θ2) = 0.91, which results in J(θ2) = 11.4. Strategy θ2 is preferable under this setting
due to its significantly lower objective value. Additionally, a higher-quality strategy θ3 with latency
L(θ3) = 12.2 s and quality Q(θ3) = 0.93 yields J(θ3) = 12.2. Although both θ2 and θ3 satisfy
the quality requirement qmin, strategy θ2 is preferable since it achieves lower latency while meeting
the constraint. This example demonstrates how the Chebyshev-guided method effectively penalizes
infeasible solutions while optimizing system response latency.

Putting them together. In our bi-level optimization framework, the routing solver (i.e., Chebyshev-
guided optimization) iteratively searches for the next θ, invokes deployment solver (i.e., MILP
optimization) to obtain the minimized system response latency L(θ), and then minimizes the objective
function (i.e., argminθ J(θ)). Finally, an optimal routing strategy θ is selected that guarantees a
minimal system response latency while fulfilling the quality requirement.

Impact of LLM workloads on optimal cascade plan selection. The characteristics of incoming
LLM workloads strongly influence the selection of cascade plans. This influence stems from two
key factors: (i) Request input/output length and arrival rate affect system response latency—longer
sequences or higher loads increase compute demand, necessitating plan adjustments to balance
latency and quality; (ii) Request complexity impacts system response quality—complex requests
or difficult queries require larger models, necessitating plan adjustments to maintain quality while
managing latency. Therefore, our bi-level optimization framework considers both system performance
(e.g., deployment solver) and algorithmic behavior (e.g., routing solver), enabling efficient, adaptive
optimization across different incoming LLM workloads. Additionally, our framework incorporates a
re-scheduling mechanism to handle online fluctuating workloads, as detailed and tested in §4.4.

The complete mathematical formulation for our bi-level optimization is provided in Appendix D.

4 EVALUATION

4.1 EXPERIMENTAL SETUP

Environments. Our experiments are conducted on 4 GPU servers, where each server is equipped
with 8 NVIDIA H100-80GB GPUs. Within each server, the GPUs are connected via NVLink with a
bandwidth of 400GB/s, and the servers are connected via Inifiband with a bandwidth of 200GB/s.

Model cascade construction. We construct a model cascade using the DeepSeek series models for
CASCADIA, which are representative and popular open-source transformer models. Specifically, we
use DeepSeek-dist-7B, DeepSeek-dist-70B (distilled version), and DeepSeek-671B AWQ with INT4
quantized weights (Lin et al., 2024) as three model types within our system. We employ a GPT-4o
(LLM-as-a-Judge) (Zheng et al., 2023) as the judger mentioned in §3.3, which assesses the output
responses of each model type within the cascade and assigns scores between 0 and 100. The judging
overhead 4 is included in our experiments.

Baselines. We compare CASCADIA with two baselines:

• Compare with stand-alone LLMs served by SGLang. We compare CASCADIA against stand-
alone LLMs that are directly served on SGLang (Zheng et al., 2024) under various response

4The judger takes a Q&A pair as input and outputs quality grades (1–2 tokens), resulting in significantly
lower latency and cost than full request inference (on average 0.27s for a single judge). We benchmark the judge
overhead in Appendix H. We also demonstrate sensitivity experiments when replacing GPT-4o with weaker
judgers (e.g., GPT-4o-mini and Llama3.1-70B) in Appendix K.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

10 15 20 25 30

58
68
79
90

100

SL
O

 A
tta

in
m

en
t (

%
)

11.73 17.3920.00

Trace 1 | avg_quality=90

6.0 9.5 13.0 16.5 20.0

54
65
77
88

100

7.38 11.43 15.42

Trace 1 | avg_quality=85

2.0 3.2 4.5 5.8 7.0
51
63
76
88

100

3.153.70 5.70

Trace 1 | avg_quality=80

1 2 3 4 5
44
58
72
86

100

1.44 2.83 4.40

Trace 1 | avg_quality=70

4 9 14 19 24
46
60
73
86

100

7.08 11.5016.12

Trace 2 | avg_quality=90

3.0 5.8 8.5 11.2 14.0
44
58
72
86

100

3.575.16 13.08

Trace 2 | avg_quality=85

2.0 3.4 4.8 6.1 7.5
SLO Scale

54
66
77
89

100

SL
O

 A
tta

in
m

en
t (

%
)

2.44 3.794.55

Trace 2 | avg_quality=80

0.5 1.6 2.8 3.9 5.0
SLO Scale

36
52
68
84

100

0.97 2.71 3.93

Trace 2 | avg_quality=70

3.0 6.2 9.5 12.8 16.0
SLO Scale

43
57
72
86

100

4.516.62 13.87

Trace 3 | avg_quality=90

3.0 5.2 7.5 9.8 12.0
SLO Scale

46
59
73
86

100

3.75 6.31 11.88

Trace 3 | avg_quality=85

1 2 3 4 5
SLO Scale

44
58
72
86

100

1.34 2.39 4.21

Trace 3 | avg_quality=80

0.5 1.4 2.2 3.1 4.0
SLO Scale

36
52
68
84

100

0.86 1.57 3.47

Trace 3 | avg_quality=70

Cascadia CascadeServe DeepSeek-dist-70B/671B

Figure 5: End-to-end SLO attainment results evaluating CASCADIA against two baseline systems. Each row
corresponds to a particular LLM workload trace, and each column corresponds to a specific quality requirement.
The stars indicate the 95% SLO attainment for each system.

quality constraints (e.g., 90, 85, 80, 70) to demonstrate the effectiveness of LLM serving with
model cascades. For quality requirement of 90 and 85, we choose stand-alone DeepSeek-671B for
comparison, and for quality reqirement of 80 and 70, we choose stand-alone DeepSeek-dist-70B
for comparison. For fair comparison, we tune the parallelism strategy using our MILP algorithm
mentioned in §3.2 for each of the stand-alone model and report the best values in all experiments.

• Compare with cascade model serving system CascadeServe (Kossmann et al., 2024). We
compare CASCADIA against an existing cascade model serving system CascadeServe. It chooses
model cascade deployment plan based on system load (e.g., request arrival rate), enables model
replication on hardware and adaptively dispatches incoming requests. We tune the parallelism and
request routing strategies for CascadeServe based on the real-time system load and report the best
values in all experiments.

Traces. We follow prior work to generate workload traces based on real-world data (Jiang et al.,
2024; Zhong et al., 2024). Our testing traces are subsampled from MT-Bench (Zheng et al., 2023),
a multi-turn conversation benchmark that contains multiple types of LLM workloads (e.g., coding,
mathematics and reasoning). Each of our subsampled traces have different workload characteristics
and different complexities as mentioned in §3.3.

Evaluation metrics. Following previous evaluation setups (Li et al., 2023; Duan et al., 2024; Agrawal
et al., 2024), we evaluate system performance based on SLO attainment and system throughput. The
SLO is determined empirically based on the system’s average single-request processing latency, and
we scale it to various multiples (SLO Scale in Figure 5) to assess performance under different levels
of operational stringency. We focus on identifying the minimum SLO Scale at which the system
achieves 95% SLO attainment.

4.2 END-TO-END EXPERIMENTAL RESULTS

End-to-end system performance. We evaluate the SLO attainment and throughput of CASCADIA
across multiple traces and quality requirements, comparing it with two baselines. Results in Figure 5
and Figure 6 show that CASCADIA outperforms all baselines:

• CASCADIA achieves up to 4× and on average 2.8× lower latency deadlines, and up to 5× and
on average 3× higher system throughput compared with stand-alone LLMs. For instance, when
testing on trace 3 with an average quality requirement of 85, stand-alone DeepSeek-671B requires
11.88 SLO scales to achieve 95% attainment, while CASCADIA with different model types that
uses smaller models to process simpler requests only requires 3.75 SLO scales.

• CASCADIA achieves up to 2.5× and on average 1.7× lower latency deadlines, and up to 3.3×
and on average 1.7× higher throughput than CascadeServe. While CascadeServe optimizes model
deployment and routing based on real-time load, it overlooks LLM-specific workload characteristics
(e.g., input/output lengths) and request complexity, leading to sub-optimal parallelism and routing.
For example, on trace 1 with an average quality requirement of 90, CascadeServe needs 17.3 SLO
scales to reach 95% SLO attainment, whereas CASCADIA requires only 11.73.

System performance with different model cascades and serving optimizations. We further
evaluate CASCADIA using a different model cascade by replacing the DeepSeek series with the

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0.00

0.08

0.15

0.23

0.30

Th
ro

ug
hp

ut
 (r

eq
/s

ec
)

1.39× 1.50×

Trace 1 | avg_quality=90

0.00

0.14

0.28

0.42

0.56

1.55×
2.28×

Trace 2 | avg_quality=90

0.00

0.19

0.38

0.58

0.77

1.29×

2.59×

Trace 3 | avg_quality=90

0.00

0.14

0.28

0.41

0.55

1.70×
2.09×

Trace 1 | avg_quality=85

0.00

0.28

0.56

0.84

1.13

1.45×

3.91×

Trace 2 | avg_quality=85

0.00

0.26

0.53

0.79

1.06

1.68×

3.27×

Trace 3 | avg_quality=85

0.00

0.30

0.60

0.90

1.21

Th
ro

ug
hp

ut
 (r

eq
/s

ec
)

1.12×

1.76×

Trace 1 | avg_quality=80

0.00

0.40

0.80

1.20

1.59

1.57×
1.93×

Trace 2 | avg_quality=80

0.00

0.78

1.57

2.35

3.14

1.90×

3.53×

Trace 3 | avg_quality=80

0.0

0.7

1.4

2.1

2.8

1.89×

3.24×

Trace 1 | avg_quality=70

0.00

1.19

2.38

3.57

4.76

3.25×
4.70×

Trace 2 | avg_quality=70

0.00

1.32

2.64

3.96

5.28

1.93×

4.99×

Trace 3 | avg_quality=70

Cascadia CascadeServe DeepSeek-dist-70B/671B

Figure 6: End-to-end throughput results evaluating CASCADIA against two baseline systems across different
LLM workload traces and quality requirements.

3.5 5.1 6.8 8.4 10.0
SLO Scale

56
67
78
89

100

4.6 6.2 8.2

Trace 1 | avg_quality=80

2.0 3.4 4.8 6.1 7.5
SLO Scale

48
61
74
87

100

2.8 4.8 6.5

Trace 2 | avg_quality=80

1.0 2.5 4.0 5.5 7.0
SLO Scale

38
54
69
84

100

1.6 2.6 6.0

Trace 3 | avg_quality=80

1.5 3.1 4.8 6.4 8.0
SLO Scale

44
58
72
86

100

2.13.1 6.4

Trace 1 | avg_quality=70

1.0 2.8 4.5 6.2 8.0
SLO Scale

40
55
70
85

100

1.6 4.95.5

Trace 2 | avg_quality=70

1.0 2.8 4.5 6.2 8.0
SLO Scale

40
55
70
85

100

1.61.8 5.1

Trace 3 | avg_quality=70

SL
O

 A
tta

in
m

en
t (

%
)

Cascadia CascadeServe Llama-70B

Figure 7: End-to-end SLO attainment results evaluating CASCADIA against two baselines using a Llama cascade
(Llama3-8B; Llama3-70B) across LLM workload traces and quality requirements.

Llama series (Llama3-8B and Llama3-70B). As shown in Figure 7, CASCADIA outperforms baselines
by up to 3.8× and on average 2.6×, demonstrating strong performance across LLM cascades. We
also compare CASCADIA with Sarathi-Serve (Agrawal et al., 2024), a serving system with chunked
prefill optimizations. CASCADIA achieves 1.95× higher performance (1.64× average), validating our
approach against advanced systems with scheduling optimizations. Detailed results are in Appendix F.

Compare with RouteLLM. We added additional experiments comparing CASCADIA with
RouteLLM, a LLM routing framework. CASCADIA achieves on average 21.3% lower SLO scale in
achieving 95% SLO attainment and 18.8% higher throughput compared to RouteLLM. CASCADIA’s
performance advantage stems from its system-algorithm co-design, as detailed in Appendix I.

Cost efficiency results. In addition to performance metrics, we conducted an analysis of cost
efficiency comparing CASCADIA against baselines. Our results, detailed in Appendix L, demonstrate
that CASCADIA significantly reduces operational expenditure. Specifically, CASCADIA achieves an
average cost reduction of 20–39% compared to CascadeServe and a 33–61% reduction compared to
stand-alone model serving, confirming its economic viability.

4.3 CASE STUDIES ON MODEL DEPLOYMENT PLANS AND ROUTING STRATEGIES

(90, 1) (85, 1) (80, 1) (80, 2) (80, 3) (70, 3)
0.0
0.2
0.4
0.6
0.8
1.0
1.2

N
or

m
al

iz
ed

 L
at

en
cy

c1 c2 c3

Figure 8: Benchmarked p95 latency of each
model type within the cascade across differ-
ent testing cases.

Case study on resource allocation and routing strate-
gies. We benchmarked the thresholds, processing ratios
and allocated resources for different model types across
different testing cases. For instance, when testing on trace
1 with an average quality requirement of 90, model types
c1 to c3 process 100%, 94% and 50% of the total requests,
and the assigned GPU numbers are 4, 8 and 20. When
the quality requirement changes to 85, less requests are
required to be processed by the largest model c3 (from
50% to 21%), and less resources are allocated to c3 accordingly (from 20 to 16). This algorithm
and system co-optimization enables CASCADIA to adjust system resource allocation and request
routing based on user requirements, ensuring balanced load across different model types to boost
system performance. Additionally, when testing on trace 3 with an average quality requirement of 70,
CASCADIA deploys a subset of model types (DeepSeek-dist-7B and -70B) to minimize the latencies
required for requests processing. As shown in Figure 8, across different testing cases, CASCADIA
always balances the loads among different model types to ensure optimized system performance.
Table 2 in Appendix E demonstrates the thresholds, processing ratios and allocated resources for
different model types across different testing cases.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0.00

0.08

0.15

0.23

0.30

Th
ro

ug
hp

ut
 (r

eq
/s

ec
)

1.23×

2.10×

Trace 1 | avg_quality=90

0.00

0.14

0.28

0.42

0.56

1.46×
1.86×

Trace 2 | avg_quality=90

0.00

0.19

0.38

0.58

0.77

1.32× 1.43×

Trace 3 | avg_quality=90

0.00

0.14

0.28

0.41

0.55

1.58× 1.71×

Trace 1 | avg_quality=85

0.00

0.28

0.56

0.84

1.13

1.42× 1.38×

Trace 2 | avg_quality=85

0.00

0.26

0.53

0.79

1.06

1.63× 1.47×

Trace 3 | avg_quality=85

Cascadia Uniform Parallelism Strategy Uniform Resource Allocation

Figure 9: Ablation study on resource allocation and parallelism strategy.

Case study on parallelism strategies. We benchmarked the parallelism strategies for different model
types across different testing cases. For example, when testing on trace 1 with an average quality
requirement of 90, the optimal parallelism strategy s2 for c2 is (DP=2, TP=4). In this case, if we
change the parallelism strategy to (DP=4, TP=2), the performance of this model type would drop by
33.7%. Additionally, when the quality requirement drops to 85, the optimal parallelism strategy s2 for
c2 shifts to (DP=6, TP=2). This adjustment occurs because the change in quality requirements alters
the LLM workloads, the request complexity routed and the resource allocated to c2. Consequently,
s2 is updated to optimize the single model type’s performance while balancing loads across all model
types within the cascade. Table 3 in Appendix E presents the parallelism strategies for each model
type within the cascade across different test cases.

Ablation study. We disable individual optimizations in CASCADIA to evaluate their impact, as shown
in Figure 9: (i) Replacing our parallelism strategy optimization with a uniform parallelism strat-
egy—tensor parallelism within each server and data parallelism across servers—reduces performance
by up to 1.6× (1.4× on average). For example, DeepSeek-7B and DeepSeek-671B requires higher
degrees of data and tensor parallelism to maximize throughput and parameter sharding; a uniform
approach fails to accommodate these needs. (ii) Replacing our resource allocation optimization with
uniform resource allocation reduces performance by up to 2.1× (1.7× on average). For instance, in
trace 1 with an average quality requirement of 90, DeepSeek-671B was originally allocated 20 GPUs,
but uniform allocation assigns only 12, causing load imbalance.

4.4 EFFECTIVENESS OF THE SCHEDULING ALGORITHM

Overall scheduling process. During scheduling, our Chebyshev-guided optimization (§3.3) explores
different routing strategies to reduce response latency given a required quality. Simultaneously, our
MILP-based optimization (§3.2) searches for resource allocations and parallelism strategies to balance
load across model types and minimize latency. CASCADIA then selects the optimal plan—including
thresholds, resource allocations, and parallelism strategies—based on quality requirements.

16 GPUs 32 GPUs 48 GPUs 64 GPUs 80 GPUs
0

13
26
39
52

Ti
m

e
C

os
t (

s)

Trace 1 Trace 2 Trace 3

Figure 10: Algorithm running time when
scaling from smaller clusters (e.g., 16 GPUs)
to larger clusters (e.g., 80 GPUs).

Scheduling algorithm runtime and scalability. Fig-
ure 10 shows the runtime performance of CASCADIA’s
scheduling algorithm, evaluated on a 12-core CPU in-
stance. In our setup (32 GPUs), scheduling completes
within 20s. For larger clusters (e.g., 80 GPUs), it fin-
ishes within one minute. These results demonstrate the
algorithm’s efficiency and scalability across test cases and
cluster sizes. Moreover, the algorithm is highly paral-
lelizable, as resource allocations, parallelism, and routing
strategies are independent—allowing execution time to scale down with more CPU cores. We added
additional scheduling optimality analysis in Appendix J.

0.000
0.136
0.272
0.409
0.545

Th
ro

ug
hp

ut
 (r

eq
/s

ec
)

1.38×
2.18×

avg_quality = 90

0.000
0.236
0.472
0.707
0.943

1.51×

3.22×

avg_quality = 85

0.000
0.475
0.950
1.426
1.901

1.56×
2.34×

avg_quality = 80

0.000
1.081
2.162
3.243
4.324

2.35×
4.36×

avg_quality = 70
Cascadia CascadeServe DeepSeek-dist-70B/671B

Figure 11: Throughput evaluation under fluctuating
workloads.

Re-scheduling to adapt to online workload
changes. As discussed in §3.3, LLM workload
characteristics (e.g., distributions of input and
output lengths, request rate and complexity) sig-
nificantly affect the optimal model deployment
plan and routing strategy. Thus, analogous to
DistServe (Zhong et al., 2024), CASCADIA im-
plement a re-scheduling mechanism to accommodate dynamic LLM workloads. Concretely, the
system (i) subsample5 and record the real-time characteristics of the incoming LLM workloads
(e.g., subsample 50 requests every 5 minutes and record the workload characteristics), (ii) upon

5The query complexity is measured by subsampling 5% of incoming requests, routing them through all
model types, and monitoring the quality score distributions from these sampled requests.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

detecting a significant shift in workload characteristics (e.g., an increase in request arrival rate or
request complexity), the scheduling algorithm is executed again, incorporating recent historical
data to produce an updated deployment plan and routing strategy. We evaluated our system against
baselines under online fluctuating workloads, where the workload transitions trace 1 → trace 2 →
trace 3 with segment lengths of 8, 16, and 10 minutes, evaluated at different quality constraints.
As shown in Figure 11, CASCADIA consistently outperforms baseline systems, achieving up to
4.4× improvement with an average of 2.2× better performance. We further demonstrate the system
latency results of CASCADIA in comparison with CascadeServe and stand-alone model serving on
online fluctuating workloads (see Appendix G). Despite incurring additional scheduling overhead,
CASCADIA maintains superior throughput and end-to-end efficiency under fluctuating workloads by
dynamically optimizing cascade plans based on real-time LLM workload characteristics.

5 CONCLUSION

This paper proposes CASCADIA, a cascade serving system tailored for LLMs. Its core component is
a scheduling algorithm that jointly optimizes resource allocation, parallelism, and routing within the
cascade system. Extensive experiments on diverse workload traces and multiple model cascades show
that this co-design substantially reduces request latency and boosts system throughput compared with
both single-model and existing cascade baselines, while maintaining the target answer quality.

REFERENCES

Pranjal Aggarwal, Aman Madaan, Ankit Anand, Srividya Pranavi Potharaju, Swaroop Mishra, Pei
Zhou, Aditya Gupta, Dheeraj Rajagopal, Karthik Kappaganthu, Yiming Yang, et al. Automix:
Automatically mixing language models. Advances in Neural Information Processing Systems, 37:
131000–131034, 2024.

Amey Agrawal, Nitin Kedia, Ashish Panwar, Jayashree Mohan, Nipun Kwatra, Bhargav Gulavani,
Alexey Tumanov, and Ramachandran Ramjee. Taming {Throughput-Latency} tradeoff in {LLM}
inference with {Sarathi-Serve}. In 18th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 24), pp. 117–134, 2024.

Anthropic. The claude 3 model family: Opus, sonnet, haiku, 2024. URL https://www-cdn.
anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_
Card_Claude_3.pdf.

Lingjiao Chen, Matei Zaharia, and James Zou. Frugalgpt: How to use large language models while
reducing cost and improving performance. Transactions on Machine Learning Research.

Jasper Dekoninck, Maximilian Baader, and Martin Vechev. A unified approach to routing and
cascading for llms. In Forty-second International Conference on Machine Learning, 2025.

Jiangfei Duan, Runyu Lu, Haojie Duanmu, Xiuhong Li, Xingcheng Zhang, Dahua Lin, Ion Stoica,
and Hao Zhang. Muxserve: flexible spatial-temporal multiplexing for multiple llm serving. In
Proceedings of the 41st International Conference on Machine Learning, pp. 11905–11917, 2024.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

ETH-EASL. Scratchpad, 2025. URL https://github.com/eth-easl/Scratchpad.

GitHub. The world’s most widely adopted ai developer tool, 2024. URL https://github.com/
features/copilot.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Neha Gupta, Harikrishna Narasimhan, Wittawat Jitkrittum, Ankit Singh Rawat, Aditya Krishna
Menon, and Sanjiv Kumar. Language model cascades: Token-level uncertainty and beyond. In
The Twelfth International Conference on Learning Representations.

10

https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://github.com/eth-easl/Scratchpad
https://github.com/features/copilot
https://github.com/features/copilot

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Dehao Chen, Mia Chen, HyoukJoong
Lee, Jiquan Ngiam, Quoc V Le, Yonghui Wu, et al. Gpipe: Efficient training of giant neural
networks using pipeline parallelism. Advances in neural information processing systems, 32, 2019.

Jaeho Jeon and Seongyong Lee. Large language models in education: A focus on the complementary
relationship between human teachers and chatgpt. Education and Information Technologies, 28
(12):15873–15892, 2023.

Youhe Jiang, Ran Yan, Xiaozhe Yao, Yang Zhou, Beidi Chen, and Binhang Yuan. Hexgen: generative
inference of large language model over heterogeneous environment. In Proceedings of the 41st
International Conference on Machine Learning, pp. 21946–21961, 2024.

Youhe Jiang, Fangcheng Fu, Xiaozhe Yao, Taiyi Wang, Bin Cui, Ana Klimovic, and Eiko Yoneki.
Thunderserve: High-performance and cost-efficient llm serving in cloud environments. arXiv
preprint arXiv:2502.09334, 2025a.

Youhe Jiang, Ran Yan, and Binhang Yuan. Hexgen-2: Disaggregated generative inference of llms in
heterogeneous environment. arXiv preprint arXiv:2502.07903, 2025b.

Steven Kolawole, Don Dennis, Ameet Talwalkar, and Virginia Smith. Revisiting cascaded ensembles
for efficient inference. In Workshop on Efficient Systems for Foundation Models II@ ICML2024.

Ferdi Kossmann, Ziniu Wu, Alex Turk, Nesime Tatbul, Lei Cao, and Samuel Madden. Cascadeserve:
Unlocking model cascades for inference serving. arXiv preprint arXiv:2406.14424, 2024.

Luzian Lebovitz, Lukas Cavigelli, Michele Magno, and Lorenz K Muller. Efficient inference with
model cascades. Transactions on Machine Learning Research, 2023.

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative
decoding. In International Conference on Machine Learning, pp. 19274–19286. PMLR, 2023.

Zhuohan Li, Lianmin Zheng, Yinmin Zhong, Vincent Liu, Ying Sheng, Xin Jin, Yanping Huang,
Zhifeng Chen, Hao Zhang, Joseph E Gonzalez, et al. {AlpaServe}: Statistical multiplexing with
model parallelism for deep learning serving. In 17th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 23), pp. 663–679, 2023.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan
Xiao, Xingyu Dang, Chuang Gan, and Song Han. Awq: Activation-aware weight quantization for
on-device llm compression and acceleration. Proceedings of Machine Learning and Systems, 6:
87–100, 2024.

Xiaoxuan Liu, Lanxiang Hu, Peter Bailis, Alvin Cheung, Zhijie Deng, Ion Stoica, and Hao Zhang.
Online speculative decoding. In Forty-first International Conference on Machine Learning.

Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao Cheng, Zeyu Wang, Zhengxin Zhang, Rae
Ying Yee Wong, Alan Zhu, Lijie Yang, Xiaoxiang Shi, et al. Specinfer: Accelerating large
language model serving with tree-based speculative inference and verification. In Proceedings of
the 29th ACM International Conference on Architectural Support for Programming Languages
and Operating Systems, Volume 3, pp. 932–949, 2024a.

Xupeng Miao, Chunan Shi, Jiangfei Duan, Xiaoli Xi, Dahua Lin, Bin Cui, and Zhihao Jia. Spot-
serve: Serving generative large language models on preemptible instances. In Proceedings of the
29th ACM International Conference on Architectural Support for Programming Languages and
Operating Systems, Volume 2, pp. 1112–1127, 2024b.

Harikrishna Narasimhan, Wittawat Jitkrittum, Ankit Singh Rawat, Seungyeon Kim, Neha Gupta,
Aditya Krishna Menon, and Sanjiv Kumar. Faster cascades via speculative decoding. arXiv
preprint arXiv:2405.19261, 2024.

Harikrishna Narasimhan, Wittawat Jitkrittum, Ankit Singh Rawat, Seungyeon Kim, Neha Gupta,
Aditya Krishna Menon, and Sanjiv Kumar. Faster cascades via speculative decoding. In The
Thirteenth International Conference on Learning Representations, 2025.

OpenAI. Openai o3, 2025. URL https://platform.openai.com/docs/models/o3.

11

https://platform.openai.com/docs/models/o3

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Pratyush Patel, Esha Choukse, Chaojie Zhang, Aashaka Shah, Íñigo Goiri, Saeed Maleki, and Ricardo
Bianchini. Splitwise: Efficient generative llm inference using phase splitting. In 2024 ACM/IEEE
51st Annual International Symposium on Computer Architecture (ISCA), pp. 118–132. IEEE, 2024.

Cheng Peng, Xi Yang, Aokun Chen, Kaleb E Smith, Nima PourNejatian, Anthony B Costa, Cheryl
Martin, Mona G Flores, Ying Zhang, Tanja Magoc, et al. A study of generative large language
model for medical research and healthcare. NPJ digital medicine, 6(1):210, 2023.

Haseena Rahmath P, Vishal Srivastava, Kuldeep Chaurasia, Roberto G Pacheco, and Rodrigo S Couto.
Early-exit deep neural network-a comprehensive survey. ACM Computing Surveys, 57(3):1–37,
2024.

Machel Reid, Nikolay Savinov, Denis Teplyashin, Dmitry Lepikhin, Timothy Lillicrap, Jean-baptiste
Alayrac, Radu Soricut, Angeliki Lazaridou, Orhan Firat, Julian Schrittwieser, et al. Gemini
1.5: Unlocking multimodal understanding across millions of tokens of context. arXiv preprint
arXiv:2403.05530, 2024.

Siddharth Samsi, Dan Zhao, Joseph McDonald, Baolin Li, Adam Michaleas, Michael Jones, William
Bergeron, Jeremy Kepner, Devesh Tiwari, and Vijay Gadepally. From words to watts: Benchmark-
ing the energy costs of large language model inference. In 2023 IEEE High Performance Extreme
Computing Conference (HPEC), pp. 1–9. IEEE, 2023.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan Catan-
zaro. Megatron-lm: Training multi-billion parameter language models using model parallelism.
arXiv preprint arXiv:1909.08053, 2019.

Ralph E Steuer and Eng-Ung Choo. An interactive weighted tchebycheff procedure for multiple
objective programming. Mathematical programming, 26:326–344, 1983.

Matthew Streeter. Approximation algorithms for cascading prediction models. In International
conference on machine learning, pp. 4752–4760. PMLR, 2018.

Biao Sun, Ziming Huang, Hanyu Zhao, Wencong Xiao, Xinyi Zhang, Yong Li, and Wei Lin. Llumnix:
Dynamic scheduling for large language model serving. In 18th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 24), pp. 173–191, 2024.

Surat Teerapittayanon and Bradley McDanel. Branchynet: Fast inference via early exiting from
deep neural networks. In 2016 23rd international conference on pattern recognition (ICPR), pp.
2464–2469. IEEE, 2016.

Wenting Zhao, Xiang Ren, Jack Hessel, Claire Cardie, Yejin Choi, and Yuntian Deng. Wildchat:
1m chatgpt interaction logs in the wild. In The Twelfth International Conference on Learning
Representations.

Yilong Zhao, Shuo Yang, Kan Zhu, Lianmin Zheng, Baris Kasikci, Yang Zhou, Jiarong Xing,
and Ion Stoica. Blendserve: Optimizing offline inference for auto-regressive large models with
resource-aware batching. arXiv preprint arXiv:2411.16102, 2024.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Tianle Li, Siyuan Zhuang, Zhanghao Wu, Yonghao
Zhuang, Zhuohan Li, Zi Lin, Eric Xing, et al. Lmsys-chat-1m: A large-scale real-world llm
conversation dataset. In The Twelfth International Conference on Learning Representations.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
chatbot arena. Advances in Neural Information Processing Systems, 36:46595–46623, 2023.

Lianmin Zheng, Liangsheng Yin, Zhiqiang Xie, Chuyue Livia Sun, Jeff Huang, Cody Hao Yu, Shiyi
Cao, Christos Kozyrakis, Ion Stoica, Joseph E Gonzalez, et al. Sglang: Efficient execution of
structured language model programs. Advances in Neural Information Processing Systems, 37:
62557–62583, 2024.

Yinmin Zhong, Shengyu Liu, Junda Chen, Jianbo Hu, Yibo Zhu, Xuanzhe Liu, Xin Jin, and Hao
Zhang. {DistServe}: Disaggregating prefill and decoding for goodput-optimized large language
model serving. In 18th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 24), pp. 193–210, 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Table 1: Simulator accuracy across parallelism configurations on Llama3-70B model under a workload with
average input and output lengths of 1600 and 16. Errors are absolute percentage errors.

Config (DP,TP,PP) Real (req/s) Estimated (req/s) Abs. % Error
(1, 4, 1) 0.21 0.219 4.29%
(1, 2, 2) 0.26 0.280 7.69%
(1, 1, 4) 0.27 0.287 6.30%
(2, 1, 2) 0.33 0.347 5.15%
(2, 2, 1) 0.40 0.408 2.00%
(2, 4, 1) 0.41 0.437 6.59%
(2, 2, 2) 0.55 0.559 1.64%

A EXTENDED RELATED WORK

Parallelism strategies. LLMs with huge memory and computational resource requirements typically
rely on parallelization across multiple GPUs (Li et al., 2023). There are three prevalent forms of
parallelism: data parallelism (DP, i.e., model replication), tensor parallelism (TP) (Shoeybi et al.,
2019), and pipeline parallelism (PP) (Huang et al., 2019). DP replicates the model into multiple
replicas, enabling parallel processing of requests. TP divides model weights and computationally
intensive operations such as matrix multiplication across various GPUs, thereby splitting data scanning
and computation to minimize LLM inference latency. PP divides the layers of a model into multiple
stages. These stages are assigned to distinct GPUs for execution and they establish a pipeline. Only
inter-layer activations are needed to be communicated between stages.

Speculative decoding and early-exit in LLM inference. Speculative decoding uses a lightweight
draft model to generate token blocks, which a larger target model verifies—leveraging model het-
erogeneity to reduce computation and latency (Leviathan et al., 2023; Miao et al., 2024a; Liu et al.).
Similarly, early-exit networks add decision branches at intermediate layers, enabling inference to
stop early when confidence is high—cascading computation within a single model (Teerapittayanon
& McDanel, 2016; Rahmath P et al., 2024). In contrast, we focus firmly on cascade model inference.

B SIMULATOR DESIGN AND VALIDATION

Our simulator employs a round-robin strategy for request dispatching among multiple parallel models,
and a first-come first-served strategy for per-model request processing. The single-GPU processing
time is based on profiled characteristics like compute TFLOPS and memory bandwidth. The simulator
also considers the phase-specific characteristics of LLMs. The prefill phase is compute-bound, so its
batched processing capacity is determined by the sum of the individual latencies. In contrast, the
decoding phase is memory-bound, and its batched processing capability is defined by a single latency
value. This distinction has been validated in several studies (e.g., DistServe (Zhong et al., 2024),
Splitwise (Patel et al., 2024)).

Inputs of the simulator. The simulator requires three fundamental inputs: (i) the distributions of
input and output sequence lengths for each model type within the cascade; (ii) the request arrival rate
corresponding to each model type within the cascade; and (iii) the resource allocation designated for
each model type within the cascade.

Example. Consider a workload distribution W that routes 100, 70, and 30 requests to model types 1,
2, and 3 respectively within the cascade, with corresponding GPU allocations of 2, 4, and 2 units. In
this configuration, we record the distributions of input and output sequence lengths for each subset of
requests (100, 70, and 30 respectively) as input files to the simulator, configure the request arrival
rates and resource allocations according to the specified parameters, and execute the simulation.
Subsequently, the simulator undergoes iterative execution to identify the optimal parallelism strategy
based on the provided input files, request arrival rates, and resource allocation constraints.

Batching strategy in our simulator. The simulator’s internal batching strategy is continuous
batching, which iteratively batches request tokens to fully utilize the current resources. The GPU’s
memory limit constrains the maximum batch size for continuous batching.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Queuing mechanism. Our simulator maintains an individual queue for each model. Once there
is free memory on the GPU (one request has finished), the model will fetch the next request in the
queue for processing.

Different parallelism. Tensor and pipeline parallelism both split the computation workload of a
single model across multiple devices. For pipeline parallelism, the simulator models communication
overhead by profiling the relationship between estimated communication volume and observed
latency. For tensor parallelism, the simulator assumes that each operator’s computation cost ideally
scales down by a factor of 1/N when split across N GPUs, and then adjusts this ideal cost using
a speed-up coefficient K(N) obtained from micro-benchmarks to account for communication and
synchronization overhead. All profiling is performed offline before scheduling begins.

Simulator evaluation. We present the accuracy of our simulator with real-time experiments in Table 1.
The table presents examples of our throughput estimation for the Llama3-70B model under a workload
with average input and output lengths of 1600 and 16, respectively. The notation (1,2,2) indicates
a DP degree of 1, TP degree of 2, and PP degree of 2. Although the estimations are not perfectly
accurate, they are sufficiently reliable (with estimation errors within 2%–7%) for selecting optimal
configurations.

C ROUTING SOLVER IN LATENCY-CONSTRAINED CASE

The routing solver can also optimize system response quality under a user-specified latency budget
by solving

argmin
θ

[
−Q(θ) + ν

max{0, L(θ)− Lmax}
z⋆lat,max − z⋆lat,min

]
,

where z⋆lat,min and z⋆lat,max are the best (minimum) and worst (maximum) achievable latencies,
Lmax is the allowable latency budget, and ν > 0 scales the penalty. The same routing–deployment
alternation, deployment solver, and convergence procedure are reused unchanged.

D COMPLETE BI-LEVEL OPTIMIZATION FORMULATION

Problem setup and notation. We consider a cascade with C model types/stages indexed by
{1, . . . , C} and labeled C = {c1, . . . , cC}, where ci denotes the i-th model type. The routing
strategy is denoted by θ, parameterized by thresholds H = {h1, . . . , hC−1}, with Θ the feasible
set of routing strategies. The GPU resource allocation is F = {f1, . . . , fC}, where fi ∈ Z+ is
the number of GPUs assigned to model type i, subject to a total budget N ∈ Z+. The parallelism
plan is S = {DPi, TPij , PPij}i,j , where DPi denotes the number of data-parallel replicas and,
for each replica j, TPij and PPij denote its tensor- and pipeline-parallel degrees. Given routing θ

and deployment (F ,S), the estimated p95 latency is L(θ,F ,S), and the system quality is Q(θ; Ĩ)
estimated by a judger using a subsampled workload Ĩ . For Chebyshev-style normalization of quality,
we use quality anchors z⋆1 (utopia/best achievable quality, e.g., all requests at cC) and z⋆2 (nadir/worst
credible quality, e.g., all requests at c1). A user-specified quality requirement is qmin, and µ > 0 is a
penalty weight.

Bi-level formulation. The routing is optimized by a single scalar objective that penalizes quality
shortfall, normalized by the utopia–nadir range, while the deployment is optimized under the GPU
budget and parallelism feasibility:

θ ∈ argmin
θ′∈Θ

[
L
(
θ′, F⋆, S⋆

)
+ µ max

{
0,

qmin −Q(θ′; Ĩ)
z⋆1 − z⋆2

}]
,

(F⋆,S⋆) ∈ argmin
F,S

L(θ′,F ,S) s.t.
C∑
i=1

fi ≤ N,

DPi∑
j=1

TPijPPij = fi (i=1, . . . , C),

fi, DPi, TPij , PPij ∈ Z+.

Tractability and solution strategy. Because the problem couples routing, resource allocation,
parallelism, heterogeneous LLM workloads, and user-specific quality requirements, a monolithic

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

solve is intractable. We therefore adopt a bi-level strategy: The deployment problem is solved as a
MILP with latency values obtained from resource allocation and parallelism strategy optimization; the
routing solver solves the Chebyshev-guided penalty problem. The two phases are executed iteratively,
with the routing solver updating θ and the deployment solver resolving (F⋆,S⋆) accordingly, and
termination declared once the routing objective stabilizes under a prescribed horizon.

Interpretation. The bi-level problem decomposes into routing and deployment subproblems that
are solved iteratively.

Deployment solver (deployment under resource/feasibility constraints). For a fixed routing θ′,
the deployment solver selects the latency-optimal deployment by choosing GPU allocations and
parallelism plans subject to the budget and structural constraints:

(F⋆,S⋆) ∈ argmin
F,S

L(θ′,F ,S) s.t.
C∑
i=1

fi ≤ N,

DPi∑
j=1

TPijPPij = fi (i=1, . . . , C),

fi, DPi, TPij , PPij ∈ Z+.

This solver captures both hardware limits (GPU budget N) and parallelism feasibility.

Routing solver (routing, Chebyshev-guided optimization). Given the current deployment (F⋆,S⋆),
the routing solver updates the routing strategy (i.e., θ) by minimizing a single scalar objective that
balances latency and a normalized quality shortfall:

θ ∈ argmin
θ′∈Θ

[
L
(
θ′, F⋆, S⋆

)
+ µ max

{
0,

qmin −Q(θ′; Ĩ)
z⋆1 − z⋆2

}]
.

Here, (z⋆1−z⋆2)
−1 provides Chebyshev (utopia–nadir) normalization for scale stability, and µ > 0

sets the severity of penalizing Q(θ′) < qmin. For sufficiently large µ (when the target is feasible), any
minimizer is quality-compliant and the routing objective effectively reduces to minimizing latency
among feasible routings.

Coupling and procedure. The routing solver’s θ determines the workload distribution seen by
each model type within the cascade (and hence the optimal deployment plan for the deployment
solver), while the deployment solver’s (F⋆,S⋆) determines the latency used by the routing objective
(and hence the optimal routing strategy for the routing solver). Alternating updates continue until
the routing objective stabilizes under a prescribed termination horizon (e.g., best-so-far objective
unchanged for K consecutive iterations).

E CASE STUDIES ON MODEL DEPLOYMENT PLANS AND ROUTING
STRATEGIES

Case study on resource allocation and routing strategies. Table 2 demonstrates the case study of
thresholds, processing ratios and allocated resources for different model types across different testing
cases.

Table 2: Case study of the thresholds (h1, h2), processing ratios (p1, p2, p3), and allocated resources (f1, f2, f3)
for each model type within the cascade across different testing cases. (90, 1) denotes testing on Trace 1 with an
average quality requirement of 90.

h1 h2 p1 p2 p3 f1 f2 f3
(90, 1) 99 91 100% 94% 50% 4 8 20
(85, 1) 74 64 100% 62% 21% 4 12 16
(80, 1) 69 25 100% 54% 11% 6 14 12
(80, 2) 61 18 100% 31% 3% 8 16 8
(80, 3) 32 0 100% 23% 0% 18 14 0
(70, 3) 10 0 100% 5% 0% 24 8 0

Case study on parallelism strategies. Table 3 presents a case study on parallelism strategies for
each model type within the cascade across different test cases.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 3: Case study of the parallelism strategies for each model type within the cascade (s1, s2, s3) across
different testing cases.

Parallelism Strategies
(90, 1) s1: (DP=4), s2: (DP=2, TP=4), s3: (TP=4, PP=3), (TP=8)
(85, 1) s1: (DP=2, TP=2), s2: (DP=6, TP=2), s3: (DP=2, TP=8)
(80, 1) s1: (DP=6), s2: (DP=5, TP=2), (TP=4), s3: (TP=4, PP=3)
(80, 2) s1: (DP=6), (TP=2), s2: (DP=8, TP=2), s3: (TP=8)
(80, 3) s1: (DP=10), (DP=4, TP=2), s2: (DP=2, TP=4), (DP=3, TP=2), s3: -
(70, 3) s1: (DP=16), (DP=4, TP=2), s2: (DP=4, TP=2), s3: -

Table 4: End-to-end throughput results evaluating CASCADIA against Sarathi-Serve.

Trace Ours Sarathi-Serve Speedup %Improvement
Trace 1 0.2529 req/s 0.1913 req/s 1.322 +32.20%
Trace 2 0.4659 req/s 0.2385 req/s 1.953 +95.35%
Trace 3 0.6406 req/s 0.3977 req/s 1.611 +61.08%

F COMPARISON WITH SARATHI-SERVE

We evaluated Sarathi-Serve under the same experimental setup as SGLang, as described in §4.1, using
traces 1–3 with an average quality requirement of 90. We used Sarathi-Serve’s vLLM implementation
(its most efficient variant) and tuned the chunk size to be optimal for each case. As shown in Table 4,
our system achieves up to 1.95× higher throughput and averages a 1.64× speedup across traces.

G LATENCY RESULTS ON FLUCTUATING WORKLOADS

Quantification of re-scheduling overheads. The re-scheduling overhead consists of two components:
(i) Algorithm runtime (∼10-20s, as shown in Figure 10), and (ii) model reconfiguration overhead
(∼2-20s).

• Re-scheduling impact on online serving. During rescheduling, requests continue to be
processed using the current deployment configuration, so there is no service interruption.

• Reconfiguration impact on online serving. Deployment plans typically have overlapping
configurations between transitions (i.e., some model replicas retain the same deployment
configuration), so these unchanged replicas can continue processing requests during re-
configuration. To further reduce the service interruption time, for replicas that do require
reconfiguration, we perform rolling updates—reconfiguring them one at a time while others
continue serving requests.

Re-scheduling impact on baseline methods. Note that CascadeServe also incurs similar reconfigu-
ration overhead, while single-model baselines exhibit consistently poor performance due to lack of
cascade optimization.

We further demonstrate the latency results of CASCADIA compared to CascadeServe and single-model
deployment in our fluctuating workload experiments (Figure 11) with average quality requirement of
90. CASCADIA achieves 34% and 45% reduction in SLO scale for achieving 95% SLO attainment
compared to CascadeServe and single-model deployment.

Table 5: Benchmarked SLO Scale for 95% SLO Attainment (Avg. Quality ≥ 90).

Deployment Strategy SLO Scale Reduction vs. CASCADIA
CASCADIA 8.99 —
CascadeServe 13.55 34%
Single-Model Deployment 16.37 45%

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

H BENCHMARK GPT-4O OVERHEAD

We conducted additional experiments on H100 GPUs to benchmark single-request GPT-4o judging
vs. processing latency on MT-Bench using Llama cascades (Llama3-8B → Llama3-70B). The results
demonstrate that the average single-request processing latency for the small (approximately 3.05s)
and large model (approximately 7.35s) is approximately 5.21s. In contrast, the single-request GPT-4o
judging latency is only approximately 0.27s, as judging is prefill-bound with minimal output (1
token). This overhead is negligible compared to overall inference cost, and is already included in all
experimental results (§4) reported in our paper.

I COMPARE WITH ROUTELLM

We conducted additional experiments comparing CASCADIA against RouteLLM with BERT-based
router on Llama cascades (Llama3-8B → Llama3-70B) following the setup in Section 4.1 with
average quality requirement of 80 on Traces 1 and 2. For fair comparison, we tune the deployment
for each model for RouteLLM. Results show that CASCADIA achieves on average 21.3% lower SLO
scale in achieving 95% SLO attainment (4.6, 2.8 vs. 5.8, 3.6) and 18.8% higher throughput (2.2, 3.5
vs. 1.9, 2.9) compared to RouteLLM.

CASCADIA’s performance advantage stems from its system-algorithm co-design (§3): While
RouteLLM focuses solely on routing optimization and fails to consider how system-side optimiza-
tion (e.g., resource allocation, parallelism) impacts routing decisions and latency-quality trade-offs,
CASCADIA jointly optimizes both aspects for better end-to-end performance.

J SCHEDULING OPTIMALITY

Due to the NP-hardness of the problem and the mutual dependencies between deployment and routing,
providing theoretical optimality guarantees is intractable. However, we can empirically validate our
approach against exhaustive search, which enumerates all feasible resource allocations, parallelism
strategies, and routing thresholds, serving as an empirical optimum. Specifically, we conducted
additional experiments comparing our bi-level optimization against exhaustive search on Llama
cascades (Llama3-8B → Llama3-70B) following the setup in Section 4.1. To make exhaustive search
computationally feasible, we applied the same deployment constraints from Section 3.2. Results show
that our approach achieves near-optimal performance with only 2-6% gap compared to exhaustive
search, while reducing search time from ≥5 minutes to 20 seconds—a ≥15× speedup. Notably,
exhaustive search time grows exponentially with cluster size, making our bi-level approach (grows
linearly) essential for practical deployment at scale.

While theoretical optimality is intractable, our method provides strong empirical performance with
practical efficiency, making it suitable for real-world deployment scenarios where search overhead
matters.

K SENSITIVITY EXPERIMENTS WITH WEAKER JUDGES

We conducted additional experiments to evaluate robustness by replacing GPT-4o with weaker judges
(GPT-4o-mini and Llama3.1-70B), following the same experimental setup as Figure 7 (Llama cascade,
Trace 1, quality requirement qmin = 80).

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

K.1 EXPERIMENTAL RESULTS ANALYSIS

GPT-4o-mini and Llama3.1-70B assign scores that are on average 9.4% and 8.6% lower than GPT-4o
for the same responses, exhibiting higher variance in quality assessment. This scoring bias causes
the system to route 11.1% and 9.4% more requests to the larger model compared to using GPT-4o.
Nevertheless, Cascadia adaptively adjusts the deployment, allocating more resources to the larger
model. As a result, meeting the same qmin requires only 6.8% and 5.5% increase in system latency,
respectively. Importantly, the system continues to satisfy the quality requirement and avoids collapse
into over-routing, demonstrating that Cascadia is robust to weaker or noisier judges.

Table 6: Sensitivity to judge quality: Performance change compared to GPT-4o baseline.

Judge Avg Score Deviation Routing to Larger Model System Latency Increase
from GPT-4o Increase to meet qmin

GPT-4o (baseline) 0% 0% 0%
GPT-4o-mini −9.4% +11.1% +6.8%
Llama3.1-70B −8.6% +9.4% +5.5%

K.2 JUDGE-AGNOSTIC FRAMEWORK

Our framework is judge-agnostic: any model capable of pairwise comparison or quality scoring can
be used as the judge, including open-source models (e.g., Llama-based judges).

L COST EFFICIENCY RESULTS

We provide a cost-efficiency analysis comparing CASCADIA against baselines. Following the
experimental setup in Figure 6 with an average quality requirement of 90 (qavg = 90), we compute
the cost per request based on GPU pricing (NVIDIA H100: $2.67/hour). Results demonstrate that
CASCADIA achieves 20–39% cost reduction compared to CascadeServe and 33–61% reduction
compared to stand-alone serving.

Table 7: Cost per request (USD/req) comparison (Avg. Quality qavg = 90, H100 GPU pricing).

Deployment Strategy Trace 1 Trace 2 Trace 3
Stand-Alone Serving 0.15 $/req 0.26 $/req 0.31 $/req
CascadeServe 0.14 $/req 0.18 $/req 0.15 $/req
CASCADIA (Ours) 0.10 $/req 0.11 $/req 0.12 $/req

M DISCUSSION OF INTEGRATING PREFIX CACHING

Additional experiments with enabling prefix caching. In our experiments on MT-Bench (Trace
1, avg_quality=80) with the Llama cascade (Llama3-8B → Llama3-70B), enabling prefix caching
changed the SLO scale required to achieve 95% SLO attainment from 4.6 to 4.5 (∼2% system latency
decrease, within measurement noise) and did not affect the relative gaps between CASCADIA and
the baselines or the resulting scheduling decisions. Similarly, CascadeServe’s SLO scale stayed the
same, and stand-alone model serving changed from 8.2 to 8.1.

This minor impact is reasonable due to MT-Bench’s workload characteristics. MT-Bench is decoding-
heavy, so even perfect prefix reuse would have limited impact on overall latency dominated by the
decoding phase.

Prefix caching impact on scheduling decision. In serving scenarios where many different requests
share a long, identical prefix, enabling prefix caching reduces absolute p95 latencies for all systems.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

However, the relative performance gains of CASCADIA over the baselines and the resulting optimal
scheduling decisions remain largely unchanged, since prefix caching benefits all model replicas
uniformly across the cluster.

How to incorporate prefix caching in our scheduling algorithm. To incorporate prefix caching
into our cost estimation, we can model it as a prefill reduction:

effective_prefill_tokens ≈ (1− hit_rate)× original_prefill_tokens (1)

where hit_rate is obtained from profiling a representative subsample of the input workloads. We note
that prefix caching is an orthogonal optimization technique—the bi-level scheduling methodology
remains applicable and would operate on cache-adjusted latency profiles.

N FINE-TUNED BERT FOR CASCADING

We conducted two experiments to evaluate BERT-based judging:

1. Realistic fine-tuning scenario. We fine-tuned a BERT model using 70% of our experimental
traces as training data and evaluated on the remaining 30% (unseen test set). The BERT
judger was trained on request inputs, outputs, and quality grades across different models. We
compared CASCADIA (GPT-4o) against CASCADIA (BERT) on Llama cascades (Llama3-8B
→ Llama3-70B) following the setup in Section 4.1 with a quality requirement of 80. Results
show that CASCADIA with the BERT judger exhibits large variance in quality assessment,
leading to ∼8% degradation in system quality (80 → 74) compared to CASCADIA (GPT-4o).
This demonstrates that a less accurate judger fails to satisfy the quality requirement.

2. Oracle fine-tuning scenario. To isolate judging overhead from judging accuracy, we
trained BERT on 100% of our experimental traces (including the test set), creating an oracle
judger that perfectly replicates GPT-4o’s judgments with minimal overhead. Even in this
idealized scenario, CASCADIA (BERT-oracle) achieves only <5% better system latency
than CASCADIA (GPT-4o) due to faster judging time, demonstrating that judging overhead
is already negligible.

Why LLM-as-a-Judge over BERT-based routers. We choose LLM-as-a-Judge for two key reasons:
(1) Overhead: As shown above, judging adds only ∼0.27s overhead, which is negligible compared to
inference savings from routing simple requests to smaller models. (2) Generalization: BERT-based
routers suffer from generalization problems when encountering diverse or out-of-distribution queries,
whereas LLM-as-a-Judge (Zheng et al., 2023) can evaluate response quality more robustly across
varied workloads and domains.

O THE USE OF LLMS IN WRITING

We used LLM, namely OPENAI-GPT5, to polish the writing of this manuscript. No other generative
AI functionality is used in the writing of this submission.

19

	Introduction
	Preliminary and Related Work
	Scheduling Algorithm in Cascadia
	Problem Formulation
	MILP-Based Deployment Solver
	Chebyshev-guided Routing Solver

	Evaluation
	Experimental Setup
	End-to-end Experimental Results
	Case studies on Model Deployment Plans and Routing Strategies
	Effectiveness of the Scheduling Algorithm

	Conclusion
	Extended Related Work
	Simulator Design and Validation
	Routing Solver in Latency-Constrained Case
	Complete Bi-level Optimization Formulation
	Case studies on Model Deployment Plans and Routing Strategies
	Comparison with Sarathi-Serve
	Latency Results on Fluctuating Workloads
	Benchmark GPT-4o Overhead
	Compare with RouteLLM
	Scheduling Optimality
	Sensitivity Experiments with Weaker Judges
	Experimental Results Analysis
	Judge-Agnostic Framework

	Cost Efficiency Results
	Discussion of Integrating Prefix Caching
	Fine-tuned BERT for Cascading
	The Use of LLMs in Writing

