

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 CASCADIA: AN EFFICIENT CASCADE SERVING SYSTEM FOR LARGE LANGUAGE MODELS

Anonymous authors

Paper under double-blind review

ABSTRACT

Recent advances in large language models (LLMs) have intensified the need to deliver both rapid responses and high-quality outputs. More powerful models yield better results but incur higher inference latency, whereas smaller models are faster yet less capable. Recent work proposes balancing this latency-quality trade-off using model cascades, which route simpler queries to smaller models and more complex ones to larger models. However, enabling efficient cascade serving remains challenging. Current frameworks lack effective mechanisms for handling (i) the huge and varying resource demands of different LLMs, (ii) the inherent heterogeneity of LLM workloads, and (iii) the co-optimization of system deployment and routing strategy. Motivated by these observations, we introduce CASCADIA, a novel cascade serving framework designed explicitly to schedule request routing and deploy model cascades for fast, quality-preserving LLM serving. CASCADIA employs a bi-level optimization method: at the deployment level, it uses a mixed-integer linear program to select resource allocations and parallelism strategies based on LLM information and workload characteristics; at the routing level, it applies a Chebyshev-guided method to iteratively co-optimize the routing strategy and the system deployment produced by the deployment level. Our extensive evaluation on diverse workload traces and different model cascades (DeepSeek and the Llama series) demonstrates that CASCADIA significantly outperforms both single-model deployments and the state-of-the-art cascade serving baseline, achieving up to 4 \times (2.3 \times on average) tighter latency SLOs and up to 5 \times (2.4 \times on average) higher throughput while maintaining target answer quality.

1 INTRODUCTION

Large language models (LLMs) such as DeepSeek-R1 (Guo et al., 2025), OpenAI o3 (OpenAI, 2025), Claude (Anthropic, 2024), Gemini (Reid et al., 2024) and Llama-3 (Dubey et al., 2024) have demonstrated outstanding performance across a wide range of real-world applications (e.g., chatbots, healthcare and education) (Jeon & Lee, 2023; Peng et al., 2023; GitHub, 2024), largely influence human lives. However, serving LLMs can be costly (Jiang et al., 2024; 2025b; Miao et al., 2024b), since significant computational resources (e.g., GPUs) are required to meet certain service demands, such as meeting certain latency deadlines (i.e., SLO attainment—the proportion of requests served within a specified response-time target) and generation throughput. In this paper, we explore an alternative solution that strategically utilizes model cascades to better balance the response latency and quality trade-offs inherent in LLM serving.

Cascade model serving refers to a serving architecture where multiple models of varying sizes and capabilities are arranged in a sequential pipeline, creating a hierarchy of models that process requests with increasing levels of sophistication (Aggarwal et al., 2024; Chen et al.; Kossmann et al., 2024; Kolawole et al.; Lebovitz et al., 2023; Streeter, 2018). As shown in Figure 1, larger models typically provide higher response quality but also incur greater latency, which in turn leads to increased energy consumption and compute usage (Samsi et al., 2023). In this approach, incoming requests

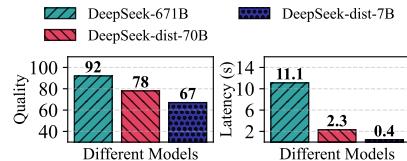


Figure 1: Average response quality and latencies of different DeepSeek models. Quality is judged by GPT-4o using the LLM-as-a-Judge framework (Zheng et al., 2023).

054 are initially handled by smaller, computationally efficient models that can rapidly process simpler
 055 requests. Only when these lightweight models determine that a request exceeds their capabilities or
 056 requires higher-quality responses does the system escalate the request to larger, more powerful models
 057 in the cascade. This progressive delegation mechanism enables service providers to optimize system
 058 performance by matching request complexity with appropriate model capacity, thereby significantly
 059 reducing computational costs while maintaining high-quality responses for complex request. Several
 060 recent studies have focused on optimizing LLM serving using model cascades (Chen et al.; Aggarwal
 061 et al., 2024; Kossmann et al., 2024; Gupta et al.; Narasimhan et al., 2024).

062 The cascade model serving architecture, which adaptively routes simpler and more complex requests
 063 to smaller and larger models, respectively, presents significant opportunities for optimizing the
 064 cost-efficiency of LLM serving. In this work, we focus specifically on the setting where service
 065 providers host and manage every model in the cascade themselves. However, effectively adapting this
 066 paradigm to LLM scenarios is much harder to implement than to propose, as we enumerate below:

- 067 • **Model heterogeneity.** LLMs require large amounts of compute and memory, and different models
 068 have varying resource demands for efficient serving (Duan et al., 2024). With a fixed resource pool,
 069 suboptimal allocation across models in the cascade can degrade overall serving efficiency.
- 070 • **Workload heterogeneity.** LLM workloads exhibit considerable heterogeneity (Sun et al., 2024;
 071 Zheng et al.; Zhao et al.). Models within the cascade often face incoming requests with varying
 072 characteristics (e.g., input/output lengths, arrival rates) and favor different deployment strategies
 073 (e.g., replication, parallel configuration), further adding complexity to optimal system deployment.
- 074 • **Cascade-aware load balancing.** The request routing strategy directly impacts the system load of
 075 each model in the cascade. For instance, if more requests are routed to a particular model, its load
 076 increases; the resource allocation and deployment strategy for that model should then be adjusted
 077 to balance loads across all models. Consequently, the deployment of multiple models must be
 078 co-optimized with the routing strategy to manage load across the cascade.

079 In order to overcome these challenges, we propose CASCADIA, a novel cascade serving system that
 080 is optimized for LLM characteristics and that co-optimizes the deployment of multiple models in the
 081 cascade together with the request routing strategy. Our contributions are as follows:

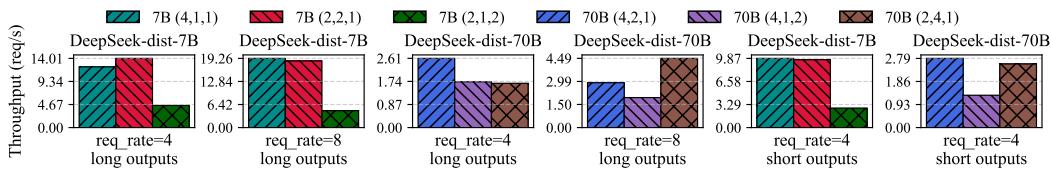
- 082 • **Contribution 1.** We formulate cascade serving—covering system deployment and request rout-
 083 ing—as a constrained optimization problem. To solve it, we propose a bi-level approach that jointly
 084 optimizes deployment and routing. The *deployment* level uses mixed-integer linear programming
 085 (MILP) to determine the optimal deployment plan given a routing strategy, while the *routing* level
 086 applies a Chebyshev-guided method to optimize routing, balancing latency and quality.
- 087 • **Contribution 2.** We implement CASCADIA, an efficient cascade serving system tailored to LLMs.
 088 CASCADIA enables an adaptive model cascade paradigm that allocates resources and routes requests
 089 across a hierarchy of model sizes (e.g., small, medium, and large), thereby balancing response
 090 latency and output quality. Within each cascade stage, CASCADIA supports various parallelism
 091 strategies (e.g., tensor and pipeline parallelism), which allows it to automatically select the optimal
 092 strategy based on model size, incoming workload, and routing decisions.
- 093 • **Contribution 3.** We empirically evaluate CASCADIA by comparing it to both single-model and
 094 existing cascade serving systems across a variety of scenarios, including diverse workload traces
 095 (e.g., coding and mathematics), different model cascades (DeepSeek and the Llama series), and
 096 multiple evaluation metrics (SLO attainment and throughput). The results show that, compared with
 097 state-of-the-art non-cascade and cascade solutions, CASCADIA achieves up to 4 \times lower latency
 098 deadlines (2.3 \times on average) and boosts system throughput by up to 5 \times (2.4 \times on average).

100 2 PRELIMINARY AND RELATED WORK

101 **LLM inference phases and workload heterogeneity.** There are two phases within LLM inference:
 102 *prefill* and *decoding*. During the prefill phase, the model processes the input prompt to compute
 103 the key-value (KV) cache and generates the first token in a single step. In contrast, the decoding
 104 phase uses the last generated token and the KV cache as inputs to generate subsequent tokens in a
 105 token-by-token manner. Generally, the prefill phase is compute-bound, while the decoding phase
 106 is memory-bound (Patel et al., 2024; Zhong et al., 2024; Agrawal et al., 2024). LLM inference
 107 workloads exhibit heterogeneity in input, output token lengths and request arrival rate, which is

108 called *workload heterogeneity*. For instance, conversation workloads (short input and long output
 109 lengths) typically require more memory resources to handle the memory-bound decoding phase,
 110 while coding workloads (long input and short output lengths) demand more compute resources to
 111 manage the compute-bound prefill phase. Therefore, appropriately allocating resources based on
 112 workload demands is critical for optimal performance (Zhao et al., 2024; Jiang et al., 2025a).

113 **Cascade model inference.** Current LLMs come in various sizes and configurations, offering a broad
 114 spectrum of choices. Effectively leveraging this diversity can balance trade-offs between response
 115 latency and quality during inference. Recent efforts propose cascade model inference to utilize models
 116 of differing complexities (Dekoninck et al., 2025; Narasimhan et al., 2025). In such architectures,
 117 an input prompt is processed through increasingly complex models, using threshold-based routing
 118 that stops computation once a cheaper model produces a confident enough answer. For instance,
 119 FrugalGPT (Chen et al.) employs a dynamic LLM cascade strategy that routes queries through
 120 progressively stronger models (e.g., GPT-3.5 → GPT-4) based on real-time difficulty estimation,
 121 optimizing cost-efficiency without sacrificing accuracy. Similarly, AutoMix (Aggarwal et al., 2024)
 122 uses intelligent layer-wise token routing to dynamically allocate computation based on input difficulty.
 123 CascadeServe (Kossmann et al., 2024) automates and optimizes end-to-end inference with cascades,
 124 adjusting model deployment and request routing based on real-time system loads. However, existing
 125 systems overlook key LLM-specific workload characteristics and neglect the importance of co-
 126 optimizing system deployment with request routing (i.e., system-algorithm co-design).



127 Figure 2: Benchmarked performance of different parallelism strategies across different workloads and model
 128 sizes. Long and short outputs represent two different workloads with average output sequence length to be 512
 129 and 1024; the three-element array represents the DP, TP, and PP degrees.

130 **Limitations of existing cascade serving systems.** We summarize the limitations of existing cascade
 131 serving systems: **(i)** Ineffective resource allocation for different model types within a cascade.
 132 Different model types have distinct memory and computation resource needs. For example, DeepSeek-
 133 671B typically requires more allocated resources than DeepSeek-dist-70B due to its larger memory
 134 and computational demands. Current systems ignore the importance of adjusting resource allocation
 135 according to the needs of different model types, leading to unbalanced system loads. **(ii)** Inadequate
 136 adaptation of parallelism strategies to varying workloads and model sizes. The optimal parallelism
 137 strategies vary across different workloads (e.g., different input and output request sequence lengths
 138 and request arrival rates) and model sizes. As shown in Figure 2, choosing the optimal parallelism
 139 strategy can achieve up to 3× higher system throughput. Current systems do not optimize parallelism
 140 strategies according to specific workload and model size, resulting in degraded overall system
 141 performance. **(iii)** Insufficient co-optimization between system deployment and routing strategy. The
 142 routing strategy decides the request portion processed by each model type within a cascade, which in
 143 turn determines the system loads for different model types. Existing systems neglect to adapt system
 144 deployment configurations based on routing outcomes, resulting in suboptimal resource usage. To
 145 address these challenges, a cascade serving system tailored for LLMs is necessary. Such a system
 146 must optimize end-to-end performance and ensure stringent SLO adherence.

3 SCHEDULING ALGORITHM IN CASCADIA

3.1 PROBLEM FORMULATION

157 To optimize the cascade serving system under different LLM workloads and user-specific requirements
 158 (e.g., system response quality requirements), the scheduling algorithm should determine two essential
 159 components: **(i)** *The model deployment plan*, which specifies the resource allocations and parallelism
 160 strategies for multiple model types (e.g., small, medium, large) within the cascade to minimize
 161 the system response latency (e.g., p95 latency—the response time threshold below which 95% of
 all requests complete); and **(ii)** *the routing strategy*, which balances the trade-off between system

162 response latency and quality to decide the appropriate model path for each incoming request. We
 163 term a solution addressing these two components as a *cascade plan*.
 164

165 Note that the routing strategy determines the
 166 request distribution over different model types,
 167 which in turn dictates the optimal model deploy-
 168 ment plan, while the model deployment plan de-
 169 fines the system response latency that feeds back
 170 into the routing decision. Given the interdepen-
 171 dent and exponentially large search space, de-
 172 termining the optimal cascade plan is an NP-
 173 hard problem. To solve this problem, we adopt
 174 a bi-level optimization method that enables sys-
 175 tem-algorithm co-design, which is shown in Al-
 176 gorithm 1, and can be summarized as:

- 177 • **MILP-based deployment solver:** Given the
 178 routing strategy, the deployment solver (§3.2)
 179 employs an mixed-integer linear programming
 180 (MILP) formulation to capture system resource
 181 constraints and compute the optimal deployment
 182 plan that minimizes system response latency.
- 183 • **Chebyshev-guided routing solver:** Based on
 184 the system response latency generated from the deployment solver and the user-specific quality
 185 requirement, the routing solver (§3.3) applies a Chebyshev-guided method to find the optimal
 186 routing strategy that optimizes system response latency with respect to the quality requirement.

3.2 MILP-BASED DEPLOYMENT SOLVER

188 As shown in Algorithm 1, the routing strategy (obtained from routing solver) determines how many
 189 requests should be routed to each model in the cascade, thus determining the workload distribution
 190 among models. Given the **workload distribution** and **resource limit**, the deployment solver aims
 191 to determine the optimal **deployment plan**, which includes the resource allocation and parallelism
 192 strategies for models within cascades. An example deployment plan is shown in Figure 3.

193 Assume a total of N GPUs serve a model cascade with C model types, $\{c_1, c_2, \dots, c_C\}$, where c_i de-
 194 notes the i -th model type. The incoming workload information is denoted as $\mathcal{W} = \{w_1, w_2, \dots, w_C\}$,
 195 where each w_i includes the distributions of input/output sequence lengths and the request arrival rate
 196 for the i -th model type. We use $\mathcal{F} = \{f_1, f_2, \dots, f_C\}$ to denote the number of GPUs allocated per
 197 model, the total allocation must not exceed the resource limit, i.e., $\sum_{i=1}^C f_i \leq N$. Given this setup,
 198 our deployment solver (i) determines the parallelism strategy for each specific resource allocation f_i ,
 199 and (ii) uses an MILP to optimize the overall resource allocation \mathcal{F} .

200 **Parallelism strategy search.** Given the work-
 201 load information w_i and a specific resource al-
 202 location f_i , this optimization determines the op-
 203 timal parallelism strategy and computes the cor-
 204 responding system response latency l_i for the
 205 model type i . CASCADIA provides three forms
 206 of parallelism: data parallelism (i.e., model re-
 207 plication, DP) (Li et al., 2023), tensor model par-
 208 allelism (TP) (Shoeybi et al., 2019), and pipeline
 209 parallelism (PP) (Huang et al., 2019). Denoting the degrees of data, tensor, and pipeline parallelism
 210 for the model type by dp_i , tp_i , and pp_i , any feasible parallelism strategy must satisfy the following
 211 resource constraint: $(\sum_{j=1}^{dp_i} tp_{i,j} \times pp_{i,j}) \leq f_i$, i.e., one model type can be replicate into multiple
 212 replicas, each replica can have varied tensor and pipeline parallelism degrees, as shown in Figure 3,
 213 the summation of different parallelism degrees should be less or equal than the total number of GPUs
 214 assigned. Based on the workload information w_i and the resource allocation f_i , we iterate over all

Algorithm 1: Bi-level Scheduling Workflow

Require: θ_0 : initial routing strategy; θ : routing strat-
 egic; q_{\min} : quality requirement; $\tilde{\mathcal{I}}$: subsampled
 input workload; \mathcal{W} : workload distribution; Q :
 system response quality; N : resource limit; \mathcal{D} :
 deployment plan; L : system response latency;
 J : latency-quality score; K : consecutive stable
 iterations to break
 Ensure: final routing strategy θ and deployment \mathcal{D}
 1: $\theta \leftarrow \theta_0$ /* θ_0 detailed in §3.3 */
 2: **while** true **do**
 3: $(\mathcal{W}, Q) \leftarrow$ derived ¹ from $(\theta, \tilde{\mathcal{I}})$
 4: /* Optimize deployment (§3.2) */
 5: $(\mathcal{D}, L) \leftarrow$ DeploymentSolver(\mathcal{W}, N)
 6: /* Optimize routing strategy (§3.3) */
 7: $(\theta, J) \leftarrow$ RoutingSolver(L, Q, q_{\min})
 8: /* Terminate upon convergence */
 9: **if** J is stable for K iters **then**
 10: **break**
 11: **return** (θ, \mathcal{D})

186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215

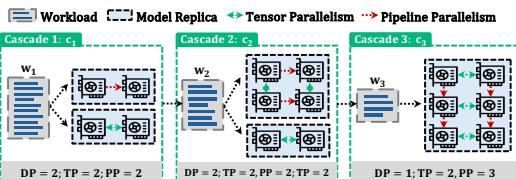


Figure 3: Illustration of a model deployment plan.

¹Given θ and $\tilde{\mathcal{I}}$, \mathcal{W} is derived by aggregating per-model routed requests (including arrival rates and sequence statistics), while Q is derived by aggregating quality scores of accepted outputs across all models (Chen et al.).

216 feasible parallelism combinations to select the strategy that minimizes the response latency l_i for the
 217 model type i . The latency l_i is computed using the simulator $\text{Sim}(\cdot)$ as $l_i = \text{Sim}(w_i, f_i)$ ². Note
 218 that the parallelism strategy optimization can be precomputed for all possible resource allocations f
 219 to provide latency lookup tables for the MILP formulation.

220 **MILP formulation for resource allocation optimization.** Our MILP problem formulation aims
 221 to minimize the maximum system response latency among all model types in the cascade. Let L
 222 denote the maximum latency across all model types. We discretize the GPU allocations into candidate
 223 values $f \in \{1, 2, \dots, N\}$. For each model type i and candidate allocation f , we use the precomputed
 224 latency table from the parallelism strategy optimization to obtain $l_i(f)$. We then introduce binary
 225 assignment variables $x_{i,f}$, where $x_{i,f} = 1$ if model type i is assigned f GPUs and $x_{i,f} = 0$ otherwise,
 226 for all $i \in \{1, \dots, C\}$ and feasible f . The constraints of our MILP include: **(i)** For each model type
 227 i , exactly one GPU allocation f must be selected, i.e., $\sum_{f=1}^N x_{i,f} = 1, \forall i = 1, \dots, C$; **(ii)** the total
 228 number of GPUs assigned across all model types should be equal to the available GPUs N , i.e.,
 229 $\sum_{i=1}^C \sum_{f=1}^N f x_{i,f} = N$; and **(iii)** the maximum latency L must be at least as large as the latency
 230 $l_i(f)$ corresponding to each selected allocation, i.e., $L \geq \sum_{f=1}^N l_i(f) x_{i,f}, \forall i = 1, \dots, C$. We
 231 explicitly enforce variable domains and integrality constraints as follows: $x_{i,f} \in \{0, 1\}, \forall i, f$ and
 232 $L \geq 0$. If certain GPU allocations f are infeasible for specific model types—such as when the total
 233 memory of the allocated f GPUs is less than the minimum memory required by the model type—we
 234 explicitly set $x_{i,f} = 0$ for these allocation pairs. Our objective is to minimize the maximum system
 235 response latency L , which serves as the input for the routing layer optimization.

236

3.3 CHEBYSHEV-GUIDED ROUTING SOLVER

237

238 As shown in Algorithm 1, the deployment plan (obtained from the deployment solver) determines the
 239 system response latency. Given the **system response latency** and **quality requirement**, the routing
 240 solver aims to optimize the **routing strategy** (i.e., co-optimize system latency and quality).

241

242 **Thresholds tuning and request routing.** We adopt the
 243 threshold-based cascade routing workflow consistent with prior
 244 works (Aggarwal et al., 2024; Chen et al.) (Figure 4). Initially,
 245 every incoming request is sent to the first (smallest) model
 246 type c_1 in the cascade. A judger then evaluates the quality of
 247 the output responses from model types c_1 to c_{C-1} , and a set
 248 of thresholds $\mathcal{H} = \{h_1, h_2, \dots, h_{C-1}\}$ is defined to decide
 249 whether the requests at each model type should be accepted or
 250 forwarded to the next model type. In this framework, the rout-
 251 ing strategy θ is directly determined by the thresholds \mathcal{H} , i.e.,
 252 $\theta = \theta(\mathcal{H})$. Each routing strategy θ is associated with a system
 253 response latency $L(\theta)$ (determined by the deployment solver
 254 optimization) and quality $Q(\theta)$ (determined by the judger³).
 255 Our routing solver uses a Chebyshev-guided method to optimize the routing strategy. We initialize
 256 the routing strategy θ_0 as proportional routing, where the i -th model receives $1/i$ of requests.

257

258 **Chebyshev-guided optimization for routing strategy.** Given the routing strategy θ and user-
 259 specified quality requirement q_{\min} , we employ the Chebyshev-guided method (Steuer & Choo, 1983)
 260 to minimize the system response latency $L(\theta)$ with respect to q_{\min} . First, we define a utopia point
 261 z_1^* (all requests processed by the largest model c_C) and nadir point z_2^* (all requests processed by the
 262 smallest model c_1) representing the best and worst achievable system response quality. Then, for
 263 a given quality requirement q_{\min} , we minimize the system response subject to meeting the
 264 quality requirement by solving the single-objective penalty problem:

265

$$\arg \min_{\theta} J(\theta) = \arg \min_{\theta} [L(\theta) + \mu \max\{0, (q_{\min} - Q(\theta))/(z_1^* - z_2^*)\}]$$

266

²We use the ETH EASL Scratchpad simulator (ETH-EASL, 2025) to estimate system p95 latency from workload and resource allocation. We show detailed simulator design (e.g., simulator inputs, batching strategy, queuing mechanism, parallelism strategy modeling) and evaluation in Appendix B.

267

³Analogous to (Chen et al.), we estimate $Q(\theta)$ by profiling a subsample of the input workload across all cascade models to obtain per-model quality score distributions. During scheduling, given any threshold vector \mathcal{H} and the quality score distributions, we can determine which model’s response would be accepted for each request under routing policy $\theta(\mathcal{H})$, then aggregate these final model scores to compute the overall system quality $Q(\theta)$.

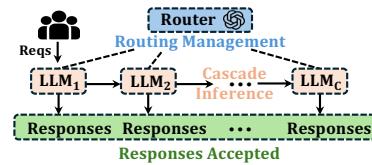


Figure 4: Threshold-based cascade routing workflow. The router determines whether a request is accepted or forwarded to the next model type based on predefined thresholds.

270 where $J(\theta)$ represents the latency-quality score, $\mu > 0$ is a penalty weight that enforces the quality
 271 constraint (for sufficiently large μ , any minimizer of $J(\theta)$ satisfies $Q(\theta) \geq q_{\min}$), and z_1^* and z_2^*
 272 are used to normalize the quality shortfall so the penalty is dimensionless and well-conditioned
 273 across workloads. Note that our routing solver can also optimize system response quality under a
 274 user-specified latency requirement using a similar procedure, as detailed in Appendix C.

275 **Illustrative example for Chebyshev-guided optimization.** Assume the utopia and nadir points z_1^*
 276 and z_2^* equal 0.95 and 0.75. The user-specific quality requirement q_{\min} is 0.90 and the penalty weight
 277 μ is 100. Consider a strategy θ_1 with p95 latency $L(\theta_1) = 11.0$ s and overall quality $Q(\theta_1) = 0.88$.
 278 The normalized shortfall from the requirement is $(0.90 - 0.88)/(0.95 - 0.75) = 0.02/0.20 = 0.10$,
 279 yielding $J(\theta_1) = 11.0 + 100 \times 0.10 = 21.0$. Consider another strategy θ_2 with latency $L(\theta_2) = 11.4$
 280 s and quality $Q(\theta_2) = 0.91$, which results in $J(\theta_2) = 11.4$. Strategy θ_2 is preferable under this setting
 281 due to its significantly lower objective value. Additionally, a higher-quality strategy θ_3 with latency
 282 $L(\theta_3) = 12.2$ s and quality $Q(\theta_3) = 0.93$ yields $J(\theta_3) = 12.2$. Although both θ_2 and θ_3 satisfy
 283 the quality requirement q_{\min} , strategy θ_2 is preferable since it achieves lower latency while meeting
 284 the constraint. This example demonstrates how the Chebyshev-guided method effectively penalizes
 285 infeasible solutions while optimizing system response latency.

286 **Putting them together.** In our bi-level optimization framework, the routing solver (i.e., Chebyshev-
 287 guided optimization) iteratively searches for the next θ , invokes deployment solver (i.e., MILP
 288 optimization) to obtain the minimized system response latency $L(\theta)$, and then minimizes the objective
 289 function (i.e., $\arg \min_{\theta} J(\theta)$). Finally, an optimal routing strategy θ is selected that guarantees a
 290 minimal system response latency while fulfilling the quality requirement.

291 **Impact of LLM workloads on optimal cascade plan selection.** The characteristics of incoming
 292 LLM workloads strongly influence the selection of cascade plans. This influence stems from two
 293 key factors: **(i)** Request input/output length and arrival rate affect system response latency—longer
 294 sequences or higher loads increase compute demand, necessitating plan adjustments to balance
 295 latency and quality; **(ii)** Request complexity impacts system response quality—complex requests
 296 or difficult queries require larger models, necessitating plan adjustments to maintain quality while
 297 managing latency. Therefore, our bi-level optimization framework considers both system performance
 298 (e.g., deployment solver) and algorithmic behavior (e.g., routing solver), enabling efficient, adaptive
 299 optimization across different incoming LLM workloads. Additionally, our framework incorporates a
 300 re-scheduling mechanism to handle online fluctuating workloads, as detailed and tested in §4.4.

301 The complete mathematical formulation for our bi-level optimization is provided in Appendix D.

303 4 EVALUATION

305 4.1 EXPERIMENTAL SETUP

307 **Environments.** Our experiments are conducted on 4 GPU servers, where each server is equipped
 308 with 8 NVIDIA H100-80GB GPUs. Within each server, the GPUs are connected via NVLink with a
 309 bandwidth of 400GB/s, and the servers are connected via Inifiband with a bandwidth of 200GB/s.

310 **Model cascade construction.** We construct a model cascade using the DeepSeek series models for
 311 CASCADIA, which are representative and popular open-source transformer models. Specifically, we
 312 use DeepSeek-dist-7B, DeepSeek-dist-70B (distilled version), and DeepSeek-671B AWQ with INT4
 313 quantized weights (Lin et al., 2024) as three model types within our system. We employ a GPT-4o
 314 (LLM-as-a-Judge) (Zheng et al., 2023) as the judge mentioned in §3.3, which assesses the output
 315 responses of each model type within the cascade and assigns scores between 0 and 100. The judging
 316 overhead⁴ is included in our experiments.

317 **Baselines.** We compare CASCADIA with two baselines:

- 318 • **Compare with stand-alone LLMs served by SGLang.** We compare CASCADIA against stand-
 319 alone LLMs that are directly served on SGLang (Zheng et al., 2024) under various response

321 ⁴The judge takes a Q&A pair as input and outputs quality grades (1–2 tokens), resulting in significantly
 322 lower latency and cost than full request inference (on average 0.27s for a single judge). We benchmark the judge
 323 overhead in Appendix H. We also demonstrate sensitivity experiments when replacing GPT-4o with weaker
 324 judges (e.g., GPT-4o-mini and Llama3.1-70B) in Appendix K.

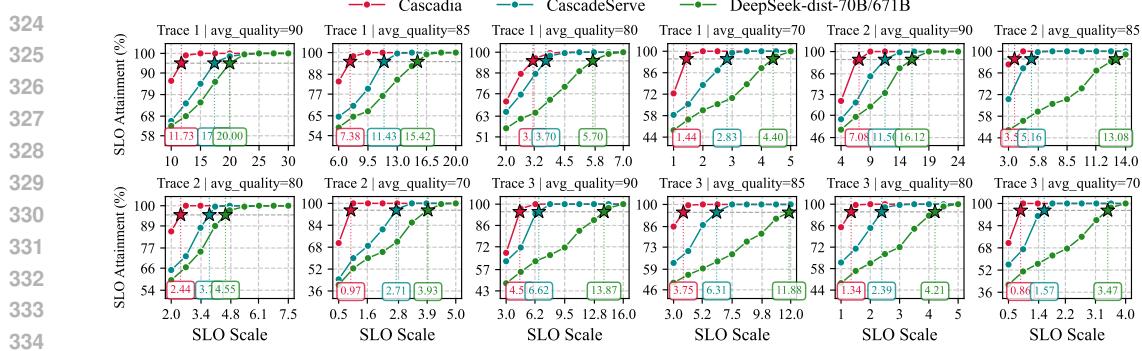


Figure 5: End-to-end SLO attainment results evaluating CASCADIA against two baseline systems. Each row corresponds to a particular LLM workload trace, and each column corresponds to a specific quality requirement. The stars indicate the 95% SLO attainment for each system.

quality constraints (e.g., 90, 85, 80, 70) to demonstrate the effectiveness of LLM serving with model cascades. For quality requirement of 90 and 85, we choose stand-alone DeepSeek-671B for comparison, and for quality requirement of 80 and 70, we choose stand-alone DeepSeek-dist-70B for comparison. For fair comparison, we tune the parallelism strategy using our MILP algorithm mentioned in §3.2 for each of the stand-alone model and report the best values in all experiments.

- **Compare with cascade model serving system CascadeServe (Kossmann et al., 2024).** We compare CASCADIA against an existing cascade model serving system CascadeServe. It chooses model cascade deployment plan based on system load (e.g., request arrival rate), enables model replication on hardware and adaptively dispatches incoming requests. We tune the parallelism and request routing strategies for CascadeServe based on the real-time system load and report the best values in all experiments.

Traces. We follow prior work to generate workload traces based on real-world data (Jiang et al., 2024; Zhong et al., 2024). Our testing traces are subsampled from MT-Bench (Zheng et al., 2023), a multi-turn conversation benchmark that contains multiple types of LLM workloads (e.g., coding, mathematics and reasoning). Each of our subsampled traces have different workload characteristics and different complexities as mentioned in §3.3.

Evaluation metrics. Following previous evaluation setups (Li et al., 2023; Duan et al., 2024; Agrawal et al., 2024), we evaluate system performance based on SLO attainment and system throughput. The SLO is determined empirically based on the system’s average single-request processing latency, and we scale it to various multiples (SLO Scale in Figure 5) to assess performance under different levels of operational stringency. We focus on identifying the minimum SLO Scale at which the system achieves 95% SLO attainment.

4.2 END-TO-END EXPERIMENTAL RESULTS

End-to-end system performance. We evaluate the SLO attainment and throughput of CASCADIA across multiple traces and quality requirements, comparing it with two baselines. Results in Figure 5 and Figure 6 show that CASCADIA outperforms all baselines:

- CASCADIA achieves up to 4× and on average 2.8× lower latency deadlines, and up to 5× and on average 3× higher system throughput compared with stand-alone LLMs. For instance, when testing on trace 3 with an average quality requirement of 85, stand-alone DeepSeek-671B requires 11.88 SLO scales to achieve 95% attainment, while CASCADIA with different model types that uses smaller models to process simpler requests only requires 3.75 SLO scales.
- CASCADIA achieves up to 2.5× and on average 1.7× lower latency deadlines, and up to 3.3× and on average 1.7× higher throughput than CascadeServe. While CascadeServe optimizes model deployment and routing based on real-time load, it overlooks LLM-specific workload characteristics (e.g., input/output lengths) and request complexity, leading to sub-optimal parallelism and routing. For example, on trace 1 with an average quality requirement of 90, CascadeServe needs 17.3 SLO scales to reach 95% SLO attainment, whereas CASCADIA requires only 11.73.

System performance with different model cascades and serving optimizations. We further evaluate CASCADIA using a different model cascade by replacing the DeepSeek series with the

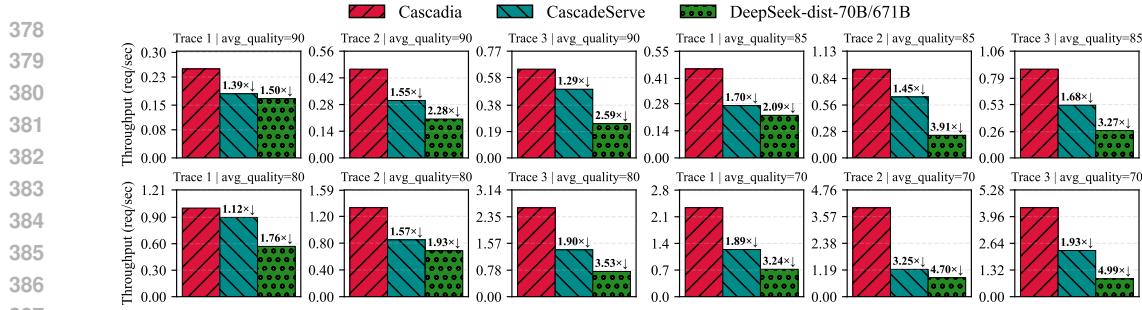


Figure 6: End-to-end throughput results evaluating CASCADIA against two baseline systems across different LLM workload traces and quality requirements.

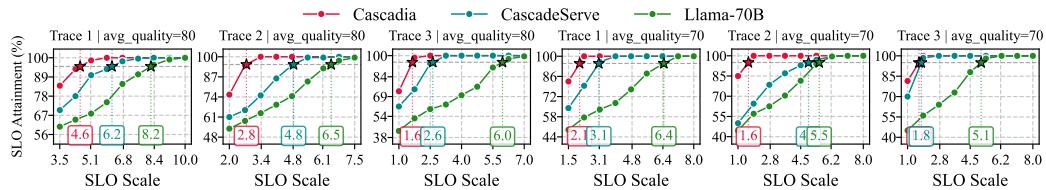


Figure 7: End-to-end SLO attainment results evaluating CASCADIA against two baselines using a Llama cascade (Llama3-8B; Llama3-70B) across LLM workload traces and quality requirements.

Llama series (Llama3-8B and Llama3-70B). As shown in Figure 7, CASCADIA outperforms baselines by up to $3.8\times$ and on average $2.6\times$, demonstrating strong performance across LLM cascades. We also compare CASCADIA with Sarathi-Serve (Agrawal et al., 2024), a serving system with chunked prefill optimizations. CASCADIA achieves $1.95\times$ higher performance ($1.64\times$ average), validating our approach against advanced systems with scheduling optimizations. Detailed results are in Appendix F.

Compare with RouteLLM. We added additional experiments comparing CASCADIA with RouteLLM, a LLM routing framework. CASCADIA achieves on average 21.3% lower SLO scale in achieving 95% SLO attainment and 18.8% higher throughput compared to RouteLLM. CASCADIA’s performance advantage stems from its system-algorithm co-design, as detailed in Appendix I.

Cost efficiency results. In addition to performance metrics, we conducted an analysis of cost efficiency comparing CASCADIA against baselines. Our results, detailed in Appendix L, demonstrate that CASCADIA significantly reduces operational expenditure. Specifically, CASCADIA achieves an average cost reduction of 20–39% compared to CascadeServe and a 33–61% reduction compared to stand-alone model serving, confirming its economic viability.

4.3 CASE STUDIES ON MODEL DEPLOYMENT PLANS AND ROUTING STRATEGIES

Case study on resource allocation and routing strategies.

We benchmarked the thresholds, processing ratios and allocated resources for different model types across different testing cases. For instance, when testing on trace 1 with an average quality requirement of 90, model types c_1 to c_3 process 100%, 94% and 50% of the total requests, and the assigned GPU numbers are 4, 8 and 20. When the quality requirement changes to 85, less requests are required to be processed by the largest model c_3 (from 50% to 21%), and less resources are allocated to c_3 accordingly (from 20 to 16). This algorithm and system co-optimization enables CASCADIA to adjust system resource allocation and request routing based on user requirements, ensuring balanced load across different model types to boost system performance. Additionally, when testing on trace 3 with an average quality requirement of 70, CASCADIA deploys a subset of model types (DeepSeek-dist-7B and -70B) to minimize the latencies required for requests processing. As shown in Figure 8, across different testing cases, CASCADIA always balances the loads among different model types to ensure optimized system performance. Table 2 in Appendix E demonstrates the thresholds, processing ratios and allocated resources for different model types across different testing cases.

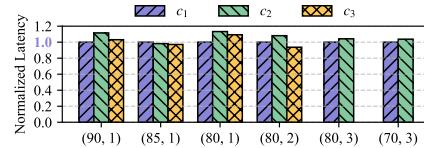


Figure 8: Benchmarked p95 latency of each model type within the cascade across different testing cases.

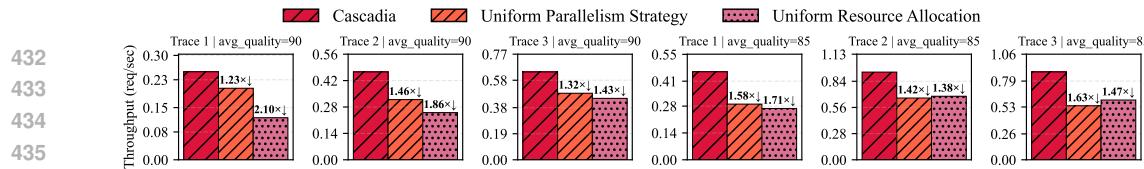


Figure 9: Ablation study on resource allocation and parallelism strategy.

Case study on parallelism strategies. We benchmarked the parallelism strategies for different model types across different testing cases. For example, when testing on trace 1 with an average quality requirement of 90, the optimal parallelism strategy s_2 for c_2 is (DP=2, TP=4). In this case, if we change the parallelism strategy to (DP=4, TP=2), the performance of this model type would drop by 33.7%. Additionally, when the quality requirement drops to 85, the optimal parallelism strategy s_2 for c_2 shifts to (DP=6, TP=2). This adjustment occurs because the change in quality requirements alters the LLM workloads, the request complexity routed and the resource allocated to c_2 . Consequently, s_2 is updated to optimize the single model type’s performance while balancing loads across all model types within the cascade. Table 3 in Appendix E presents the parallelism strategies for each model type within the cascade across different test cases.

Ablation study. We disable individual optimizations in CASCADIA to evaluate their impact, as shown in Figure 9: **(i)** Replacing our parallelism strategy optimization with a uniform parallelism strategy—tensor parallelism within each server and data parallelism across servers—reduces performance by up to 1.6 \times (1.4 \times on average). For example, DeepSeek-7B and DeepSeek-671B requires higher degrees of data and tensor parallelism to maximize throughput and parameter sharding; a uniform approach fails to accommodate these needs. **(ii)** Replacing our resource allocation optimization with uniform resource allocation reduces performance by up to 2.1 \times (1.7 \times on average). For instance, in trace 1 with an average quality requirement of 90, DeepSeek-671B was originally allocated 20 GPUs, but uniform allocation assigns only 12, causing load imbalance.

4.4 EFFECTIVENESS OF THE SCHEDULING ALGORITHM

Overall scheduling process. During scheduling, our Chebyshev-guided optimization (§3.3) explores different routing strategies to reduce response latency given a required quality. Simultaneously, our MILP-based optimization (§3.2) searches for resource allocations and parallelism strategies to balance load across model types and minimize latency. CASCADIA then selects the optimal plan—including thresholds, resource allocations, and parallelism strategies—based on quality requirements.

Scheduling algorithm runtime and scalability. Figure 10 shows the runtime performance of CASCADIA’s scheduling algorithm, evaluated on a 12-core CPU instance. In our setup (32 GPUs), scheduling completes within 20s. For larger clusters (e.g., 80 GPUs), it finishes within one minute. These results demonstrate the algorithm’s efficiency and scalability across test cases and cluster sizes. Moreover, the algorithm is highly parallelizable, as resource allocations, parallelism, and routing strategies are independent—allowing execution time to scale down with more CPU cores. [We added additional scheduling optimality analysis in Appendix J.](#)

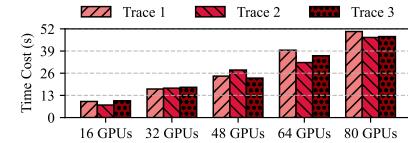


Figure 10: Algorithm running time when scaling from smaller clusters (e.g., 16 GPUs) to larger clusters (e.g., 80 GPUs).

Re-scheduling to adapt to online workload changes. As discussed in §3.3, LLM workload characteristics (e.g., distributions of input and output lengths, request rate and complexity) significantly affect the optimal model deployment plan and routing strategy. Thus, analogous to DistServe (Zhong et al., 2024), CASCADIA implement a re-scheduling mechanism to accommodate dynamic LLM workloads. Concretely, the system **(i)** subsample⁵ and record the real-time characteristics of the incoming LLM workloads (e.g., subsample 50 requests every 5 minutes and record the workload characteristics), **(ii)** upon

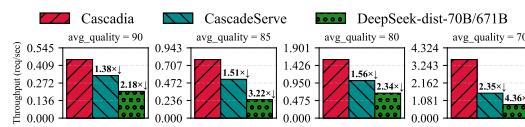


Figure 11: Throughput evaluation under fluctuating workloads.

⁵The query complexity is measured by subsampling 5% of incoming requests, routing them through all model types, and monitoring the quality score distributions from these sampled requests.

486 detecting a significant shift in workload characteristics (e.g., an increase in request arrival rate or
 487 request complexity), the scheduling algorithm is executed again, incorporating recent historical
 488 data to produce an updated deployment plan and routing strategy. We evaluated our system against
 489 baselines under online fluctuating workloads, where the workload transitions trace 1 → trace 2 →
 490 trace 3 with segment lengths of 8, 16, and 10 minutes, evaluated at different quality constraints.
 491 As shown in Figure 11, CASCADIA consistently outperforms baseline systems, achieving up to
 492 $4.4 \times$ improvement with an average of $2.2 \times$ better performance. **We further demonstrate the system**
 493 **latency results of CASCADIA in comparison with CascadeServe and stand-alone model serving on**
 494 **online fluctuating workloads (see Appendix G).** Despite incurring additional scheduling overhead,
 495 CASCADIA maintains superior throughput and end-to-end efficiency under fluctuating workloads by
 496 dynamically optimizing cascade plans based on real-time LLM workload characteristics.
 497

498 5 CONCLUSION

500 This paper proposes CASCADIA, a cascade serving system tailored for LLMs. Its core component is
 501 a scheduling algorithm that jointly optimizes resource allocation, parallelism, and routing within the
 502 cascade system. Extensive experiments on diverse workload traces and multiple model cascades show
 503 that this co-design substantially reduces request latency and boosts system throughput compared with
 504 both single-model and existing cascade baselines, while maintaining the target answer quality.
 505

506 REFERENCES

- 507 Pranjal Aggarwal, Aman Madaan, Ankit Anand, Srividya Pranavi Potharaju, Swaroop Mishra, Pei
 508 Zhou, Aditya Gupta, Dheeraj Rajagopal, Karthik Kappagantu, Yiming Yang, et al. Automix:
 509 Automatically mixing language models. *Advances in Neural Information Processing Systems*, 37:
 510 131000–131034, 2024.
- 511 Amey Agrawal, Nitin Kedia, Ashish Panwar, Jayashree Mohan, Nipun Kwatra, Bhargav Gulavani,
 512 Alexey Tumanov, and Ramachandran Ramjee. Taming {Throughput-Latency} tradeoff in {LLM}’
 513 inference with {Sarathi-Serve}. In *18th USENIX Symposium on Operating Systems Design and*
 514 *Implementation (OSDI 24)*, pp. 117–134, 2024.
- 515 Anthropic. The claude 3 model family: Opus, sonnet, haiku, 2024. URL https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf.
- 519 Lingjiao Chen, Matei Zaharia, and James Zou. Frugalgpt: How to use large language models while
 520 reducing cost and improving performance. *Transactions on Machine Learning Research*.
- 521 Jasper Dekoninck, Maximilian Baader, and Martin Vechev. A unified approach to routing and
 522 cascading for llms. In *Forty-second International Conference on Machine Learning*, 2025.
- 524 Jiangfei Duan, Runyu Lu, Haojie Duanmu, Xiuhong Li, Xingcheng Zhang, Dahua Lin, Ion Stoica,
 525 and Hao Zhang. Muxserve: flexible spatial-temporal multiplexing for multiple llm serving. In
 526 *Proceedings of the 41st International Conference on Machine Learning*, pp. 11905–11917, 2024.
- 527 Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
 528 Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
 529 *arXiv preprint arXiv:2407.21783*, 2024.
- 530 ETH-EASL. Scratchpad, 2025. URL <https://github.com/eth-easl/Scratchpad>.
- 532 GitHub. The world’s most widely adopted ai developer tool, 2024. URL <https://github.com/features/copilot>.
- 534 Daya Guo, Dejian Yang, Huawei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
 535 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
 536 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.
- 538 Neha Gupta, Harikrishna Narasimhan, Wittawat Jitkrittum, Ankit Singh Rawat, Aditya Krishna
 539 Menon, and Sanjiv Kumar. Language model cascades: Token-level uncertainty and beyond. In
 540 *The Twelfth International Conference on Learning Representations*.

- 540 Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Dehao Chen, Mia Chen, HyoukJoong
 541 Lee, Jiquan Ngiam, Quoc V Le, Yonghui Wu, et al. Gpipe: Efficient training of giant neural
 542 networks using pipeline parallelism. *Advances in neural information processing systems*, 32, 2019.
 543
- 544 Jaeho Jeon and Seonyong Lee. Large language models in education: A focus on the complementary
 545 relationship between human teachers and chatgpt. *Education and Information Technologies*, 28
 546 (12):15873–15892, 2023.
- 547 Youhe Jiang, Ran Yan, Xiaozhe Yao, Yang Zhou, Beidi Chen, and Binhang Yuan. Hexgen: generative
 548 inference of large language model over heterogeneous environment. In *Proceedings of the 41st*
 549 *International Conference on Machine Learning*, pp. 21946–21961, 2024.
- 550 Youhe Jiang, Fangcheng Fu, Xiaozhe Yao, Taiyi Wang, Bin Cui, Ana Klimovic, and Eiko Yoneki.
 551 Thunderserve: High-performance and cost-efficient llm serving in cloud environments. *arXiv*
 552 *preprint arXiv:2502.09334*, 2025a.
- 553 Youhe Jiang, Ran Yan, and Binhang Yuan. Hexgen-2: Disaggregated generative inference of llms in
 554 heterogeneous environment. *arXiv preprint arXiv:2502.07903*, 2025b.
- 555 Steven Kolawole, Don Dennis, Ameet Talwalkar, and Virginia Smith. Revisiting cascaded ensembles
 556 for efficient inference. In *Workshop on Efficient Systems for Foundation Models II@ ICML2024*.
- 557 Ferdi Kossmann, Ziniu Wu, Alex Turk, Nesime Tatbul, Lei Cao, and Samuel Madden. Cascadeserve:
 558 Unlocking model cascades for inference serving. *arXiv preprint arXiv:2406.14424*, 2024.
- 559 Luzian Lebovitz, Lukas Cavigelli, Michele Magno, and Lorenz K Muller. Efficient inference with
 560 model cascades. *Transactions on Machine Learning Research*, 2023.
- 561 Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative
 562 decoding. In *International Conference on Machine Learning*, pp. 19274–19286. PMLR, 2023.
- 563 Zhuohan Li, Lianmin Zheng, Yinmin Zhong, Vincent Liu, Ying Sheng, Xin Jin, Yanping Huang,
 564 Zhifeng Chen, Hao Zhang, Joseph E Gonzalez, et al. {AlpaServe}: Statistical multiplexing with
 565 model parallelism for deep learning serving. In *17th USENIX Symposium on Operating Systems
 566 Design and Implementation (OSDI 23)*, pp. 663–679, 2023.
- 567 Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan
 568 Xiao, Xingyu Dang, Chuang Gan, and Song Han. Awq: Activation-aware weight quantization for
 569 on-device llm compression and acceleration. *Proceedings of Machine Learning and Systems*, 6:
 570 87–100, 2024.
- 571 Xiaoxuan Liu, Lanxiang Hu, Peter Bailis, Alvin Cheung, Zhijie Deng, Ion Stoica, and Hao Zhang.
 572 Online speculative decoding. In *Forty-first International Conference on Machine Learning*.
- 573 Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao Cheng, Zeyu Wang, Zhengxin Zhang, Rae
 574 Ying Yee Wong, Alan Zhu, Lijie Yang, Xiaoxiang Shi, et al. Specinfer: Accelerating large
 575 language model serving with tree-based speculative inference and verification. In *Proceedings of
 576 the 29th ACM International Conference on Architectural Support for Programming Languages
 577 and Operating Systems, Volume 3*, pp. 932–949, 2024a.
- 578 Xupeng Miao, Chunan Shi, Jiangfei Duan, Xiaoli Xi, Dahua Lin, Bin Cui, and Zhihao Jia. Spot-
 579 serve: Serving generative large language models on preemptible instances. In *Proceedings of the
 580 29th ACM International Conference on Architectural Support for Programming Languages and
 581 Operating Systems, Volume 2*, pp. 1112–1127, 2024b.
- 582 Harikrishna Narasimhan, Wittawat Jitkrittum, Ankit Singh Rawat, Seungyeon Kim, Neha Gupta,
 583 Aditya Krishna Menon, and Sanjiv Kumar. Faster cascades via speculative decoding. *arXiv*
 584 *preprint arXiv:2405.19261*, 2024.
- 585 Harikrishna Narasimhan, Wittawat Jitkrittum, Ankit Singh Rawat, Seungyeon Kim, Neha Gupta,
 586 Aditya Krishna Menon, and Sanjiv Kumar. Faster cascades via speculative decoding. In *The
 587 Thirteenth International Conference on Learning Representations*, 2025.
- 588 OpenAI. Openai o3, 2025. URL <https://platform.openai.com/docs/models/o3>.

- 594 Pratyush Patel, Esha Choukse, Chaojie Zhang, Aashaka Shah, Íñigo Goiri, Saeed Maleki, and Ricardo
 595 Bianchini. Splitwise: Efficient generative llm inference using phase splitting. In *2024 ACM/IEEE
 596 51st Annual International Symposium on Computer Architecture (ISCA)*, pp. 118–132. IEEE, 2024.
 597
- 598 Cheng Peng, Xi Yang, Aokun Chen, Kaleb E Smith, Nima PourNejatian, Anthony B Costa, Cheryl
 599 Martin, Mona G Flores, Ying Zhang, Tanja Magoc, et al. A study of generative large language
 600 model for medical research and healthcare. *NPJ digital medicine*, 6(1):210, 2023.
- 601 Haseena Rahmath P, Vishal Srivastava, Kuldeep Chaurasia, Roberto G Pacheco, and Rodrigo S Couto.
 602 Early-exit deep neural network-a comprehensive survey. *ACM Computing Surveys*, 57(3):1–37,
 603 2024.
- 604 Machel Reid, Nikolay Savinov, Denis Teplyashin, Dmitry Lepikhin, Timothy Lillicrap, Jean-baptiste
 605 Alayrac, Radu Soricut, Angeliki Lazaridou, Orhan Firat, Julian Schrittwieser, et al. Gemini
 606 1.5: Unlocking multimodal understanding across millions of tokens of context. *arXiv preprint
 607 arXiv:2403.05530*, 2024.
- 608 Siddharth Samsi, Dan Zhao, Joseph McDonald, Baolin Li, Adam Michaleas, Michael Jones, William
 609 Bergeron, Jeremy Kepner, Devesh Tiwari, and Vijay Gadepally. From words to watts: Benchmark-
 610 ing the energy costs of large language model inference. In *2023 IEEE High Performance Extreme
 611 Computing Conference (HPEC)*, pp. 1–9. IEEE, 2023.
- 612 Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan Catan-
 613 zaro. Megatron-lm: Training multi-billion parameter language models using model parallelism.
 614 *arXiv preprint arXiv:1909.08053*, 2019.
- 615 Ralph E Steuer and Eng-Ung Choo. An interactive weighted tchebycheff procedure for multiple
 616 objective programming. *Mathematical programming*, 26:326–344, 1983.
- 617 Matthew Streeter. Approximation algorithms for cascading prediction models. In *International
 618 conference on machine learning*, pp. 4752–4760. PMLR, 2018.
- 619 Biao Sun, Ziming Huang, Hanyu Zhao, Wencong Xiao, Xinyi Zhang, Yong Li, and Wei Lin. Llumnix:
 620 Dynamic scheduling for large language model serving. In *18th USENIX Symposium on Operating
 621 Systems Design and Implementation (OSDI 24)*, pp. 173–191, 2024.
- 622 Surat Teerapittayanon and Bradley McDanel. Branchynet: Fast inference via early exiting from
 623 deep neural networks. In *2016 23rd international conference on pattern recognition (ICPR)*, pp.
 624 2464–2469. IEEE, 2016.
- 625 Wenting Zhao, Xiang Ren, Jack Hessel, Claire Cardie, Yejin Choi, and Yuntian Deng. Wildchat:
 626 1m chatpt interaction logs in the wild. In *The Twelfth International Conference on Learning
 627 Representations*.
- 628 Yilong Zhao, Shuo Yang, Kan Zhu, Lianmin Zheng, Baris Kasikci, Yang Zhou, Jiarong Xing,
 629 and Ion Stoica. Blendserve: Optimizing offline inference for auto-regressive large models with
 630 resource-aware batching. *arXiv preprint arXiv:2411.16102*, 2024.
- 631 Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Tianle Li, Siyuan Zhuang, Zhanghao Wu, Yonghao
 632 Zhuang, Zhuohan Li, Zi Lin, Eric Xing, et al. Lmsys-chat-1m: A large-scale real-world llm
 633 conversation dataset. In *The Twelfth International Conference on Learning Representations*.
- 634 Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
 635 Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
 636 chatbot arena. *Advances in Neural Information Processing Systems*, 36:46595–46623, 2023.
- 637 Lianmin Zheng, Liangsheng Yin, Zhiqiang Xie, Chuyue Livia Sun, Jeff Huang, Cody Hao Yu, Shiyi
 638 Cao, Christos Kozyrakis, Ion Stoica, Joseph E Gonzalez, et al. Sqlang: Efficient execution of
 639 structured language model programs. *Advances in Neural Information Processing Systems*, 37:
 640 62557–62583, 2024.
- 641 Yinmin Zhong, Shengyu Liu, Junda Chen, Jianbo Hu, Yibo Zhu, Xuanzhe Liu, Xin Jin, and Hao
 642 Zhang. {DistServe}: Disaggregating prefill and decoding for goodput-optimized large language
 643 model serving. In *18th USENIX Symposium on Operating Systems Design and Implementation
 644 (OSDI 24)*, pp. 193–210, 2024.

648 Table 1: Simulator accuracy across parallelism configurations on Llama3-70B model under a workload with
 649 average input and output lengths of 1600 and 16. Errors are absolute percentage errors.

651 Config (DP,TP,PP)	652 Real (req/s)	653 Estimated (req/s)	654 Abs. % Error
(1, 4, 1)	0.21	0.219	4.29%
(1, 2, 2)	0.26	0.280	7.69%
(1, 1, 4)	0.27	0.287	6.30%
(2, 1, 2)	0.33	0.347	5.15%
(2, 2, 1)	0.40	0.408	2.00%
(2, 4, 1)	0.41	0.437	6.59%
(2, 2, 2)	0.55	0.559	1.64%

660 A EXTENDED RELATED WORK

661 **Parallelism strategies.** LLMs with huge memory and computational resource requirements typically
 662 rely on parallelization across multiple GPUs (Li et al., 2023). There are three prevalent forms of
 663 parallelism: data parallelism (DP, i.e., model replication), tensor parallelism (TP) (Shoeybi et al.,
 664 2019), and pipeline parallelism (PP) (Huang et al., 2019). DP replicates the model into multiple
 665 replicas, enabling parallel processing of requests. TP divides model weights and computationally
 666 intensive operations such as matrix multiplication across various GPUs, thereby splitting data scanning
 667 and computation to minimize LLM inference latency. PP divides the layers of a model into multiple
 668 stages. These stages are assigned to distinct GPUs for execution and they establish a pipeline. Only
 669 inter-layer activations are needed to be communicated between stages.

670 **Speculative decoding and early-exit in LLM inference.** Speculative decoding uses a lightweight
 671 draft model to generate token blocks, which a larger target model verifies—leveraging model het-
 672 erogeneity to reduce computation and latency (Leviathan et al., 2023; Miao et al., 2024a; Liu et al.).
 673 Similarly, early-exit networks add decision branches at intermediate layers, enabling inference to
 674 stop early when confidence is high—cascading computation within a single model (Teerapittayanon
 675 & McDanel, 2016; Rahmath P et al., 2024). In contrast, we focus firmly on cascade model inference.

678 B SIMULATOR DESIGN AND VALIDATION

679 Our simulator employs a round-robin strategy for request dispatching among multiple parallel models,
 680 and a first-come first-served strategy for per-model request processing. The single-GPU processing
 681 time is based on profiled characteristics like compute TFLOPS and memory bandwidth. The simulator
 682 also considers the phase-specific characteristics of LLMs. The prefill phase is compute-bound, so its
 683 batched processing capacity is determined by the sum of the individual latencies. In contrast, the
 684 decoding phase is memory-bound, and its batched processing capability is defined by a single latency
 685 value. This distinction has been validated in several studies (e.g., DistServe (Zhong et al., 2024),
 686 Splitwise (Patel et al., 2024)).

687 **Inputs of the simulator.** The simulator requires three fundamental inputs: (i) the distributions of
 688 input and output sequence lengths for each model type within the cascade; (ii) the request arrival rate
 689 corresponding to each model type within the cascade; and (iii) the resource allocation designated for
 690 each model type within the cascade.

691 **Example.** Consider a workload distribution \mathcal{W} that routes 100, 70, and 30 requests to model types 1,
 692 2, and 3 respectively within the cascade, with corresponding GPU allocations of 2, 4, and 2 units. In
 693 this configuration, we record the distributions of input and output sequence lengths for each subset of
 694 requests (100, 70, and 30 respectively) as input files to the simulator, configure the request arrival
 695 rates and resource allocations according to the specified parameters, and execute the simulation.
 696 Subsequently, the simulator undergoes iterative execution to identify the optimal parallelism strategy
 697 based on the provided input files, request arrival rates, and resource allocation constraints.

698 **Batching strategy in our simulator.** The simulator’s internal batching strategy is continuous
 699 batching, which iteratively batches request tokens to fully utilize the current resources. The GPU’s
 700 memory limit constrains the maximum batch size for continuous batching.

702 **Queuing mechanism.** Our simulator maintains an individual queue for each model. Once there
 703 is free memory on the GPU (one request has finished), the model will fetch the next request in the
 704 queue for processing.

705 **Different parallelism.** Tensor and pipeline parallelism both split the computation workload of a
 706 single model across multiple devices. For pipeline parallelism, the simulator models communication
 707 overhead by profiling the relationship between estimated communication volume and observed
 708 latency. For tensor parallelism, the simulator assumes that each operator’s computation cost ideally
 709 scales down by a factor of $1/N$ when split across N GPUs, and then adjusts this ideal cost using
 710 a speed-up coefficient $K(N)$ obtained from micro-benchmarks to account for communication and
 711 synchronization overhead. All profiling is performed offline before scheduling begins.

712 **Simulator evaluation.** We present the accuracy of our simulator with real-time experiments in Table 1.
 713 The table presents examples of our throughput estimation for the Llama3-70B model under a workload
 714 with average input and output lengths of 1600 and 16, respectively. The notation (1,2,2) indicates
 715 a DP degree of 1, TP degree of 2, and PP degree of 2. Although the estimations are not perfectly
 716 accurate, they are sufficiently reliable (with estimation errors within 2%–7%) for selecting optimal
 717 configurations.

719 C ROUTING SOLVER IN LATENCY-CONSTRAINED CASE

721 The routing solver can also optimize system response quality under a user-specified latency budget
 722 by solving

$$723 \arg \min_{\theta} \left[-Q(\theta) + \nu \frac{\max\{0, L(\theta) - L_{\max}\}}{z_{\text{lat}, \max}^* - z_{\text{lat}, \min}^*} \right],$$

726 where $z_{\text{lat}, \min}^*$ and $z_{\text{lat}, \max}^*$ are the best (minimum) and worst (maximum) achievable latencies,
 727 L_{\max} is the allowable latency budget, and $\nu > 0$ scales the penalty. The same routing–deployment
 728 alternation, deployment solver, and convergence procedure are reused unchanged.

730 D COMPLETE BI-LEVEL OPTIMIZATION FORMULATION

732 **Problem setup and notation.** We consider a cascade with C model types/stages indexed by
 733 $\{1, \dots, C\}$ and labeled $\mathcal{C} = \{c_1, \dots, c_C\}$, where c_i denotes the i -th model type. The routing
 734 strategy is denoted by θ , parameterized by thresholds $\mathcal{H} = \{h_1, \dots, h_{C-1}\}$, with Θ the feasible
 735 set of routing strategies. The GPU resource allocation is $\mathcal{F} = \{f_1, \dots, f_C\}$, where $f_i \in \mathbb{Z}_+$ is
 736 the number of GPUs assigned to model type i , subject to a total budget $N \in \mathbb{Z}_+$. The parallelism
 737 plan is $\mathcal{S} = \{\text{DP}_i, \text{TP}_{ij}, \text{PP}_{ij}\}_{i,j}$, where DP_i denotes the number of data-parallel replicas and,
 738 for each replica j , TP_{ij} and PP_{ij} denote its tensor- and pipeline-parallel degrees. Given routing θ
 739 and deployment $(\mathcal{F}, \mathcal{S})$, the estimated p95 latency is $L(\theta, \mathcal{F}, \mathcal{S})$, and the system quality is $Q(\theta; \tilde{\mathcal{I}})$
 740 estimated by a judger using a subsampled workload $\tilde{\mathcal{I}}$. For Chebyshev-style normalization of quality,
 741 we use quality anchors z_1^* (utopia/best achievable quality, e.g., all requests at c_C) and z_2^* (nadir/worst
 742 credible quality, e.g., all requests at c_1). A user-specified quality requirement is q_{\min} , and $\mu > 0$ is a
 743 penalty weight.

744 **Bi-level formulation.** The routing is optimized by a single scalar objective that penalizes quality
 745 shortfall, normalized by the utopia–nadir range, while the deployment is optimized under the GPU
 746 budget and parallelism feasibility:

$$747 \theta \in \arg \min_{\theta' \in \Theta} \left[L(\theta', \mathcal{F}^*, \mathcal{S}^*) + \mu \max \left\{ 0, \frac{q_{\min} - Q(\theta'; \tilde{\mathcal{I}})}{z_1^* - z_2^*} \right\} \right],$$

$$751 (\mathcal{F}^*, \mathcal{S}^*) \in \arg \min_{\mathcal{F}, \mathcal{S}} L(\theta', \mathcal{F}, \mathcal{S}) \quad \text{s.t.} \quad \sum_{i=1}^C f_i \leq N, \quad \sum_{j=1}^{\text{DP}_i} \text{TP}_{ij} \text{PP}_{ij} = f_i \quad (i=1, \dots, C),$$

$$753 f_i, \text{DP}_i, \text{TP}_{ij}, \text{PP}_{ij} \in \mathbb{Z}_+.$$

755 **Tractability and solution strategy.** Because the problem couples routing, resource allocation,
 756 parallelism, heterogeneous LLM workloads, and user-specific quality requirements, a monolithic

solve is intractable. We therefore adopt a bi-level strategy: The deployment problem is solved as a MILP with latency values obtained from resource allocation and parallelism strategy optimization; the routing solver solves the Chebyshev-guided penalty problem. The two phases are executed iteratively, with the routing solver updating θ and the deployment solver resolving $(\mathcal{F}^*, \mathcal{S}^*)$ accordingly, and termination declared once the routing objective stabilizes under a prescribed horizon.

Interpretation. The bi-level problem decomposes into **routing** and **deployment** subproblems that are solved iteratively.

Deployment solver (deployment under resource/feasibility constraints). For a fixed routing θ' , the deployment solver selects the latency-optimal deployment by choosing GPU allocations and parallelism plans subject to the budget and structural constraints:

$$(\mathcal{F}^*, \mathcal{S}^*) \in \arg \min_{\mathcal{F}, \mathcal{S}} L(\theta', \mathcal{F}, \mathcal{S}) \quad \text{s.t.} \quad \sum_{i=1}^C f_i \leq N, \quad \sum_{j=1}^{\text{DP}_i} \text{TP}_{ij} \text{PP}_{ij} = f_i \quad (i=1, \dots, C),$$

$$f_i, \text{DP}_i, \text{TP}_{ij}, \text{PP}_{ij} \in \mathbb{Z}_+.$$

This solver captures both hardware limits (GPU budget N) and parallelism feasibility.

Routing solver (routing, Chebyshev-guided optimization). Given the current deployment $(\mathcal{F}^*, \mathcal{S}^*)$, the routing solver updates the routing strategy (i.e., θ) by minimizing a single scalar objective that balances latency and a normalized quality shortfall:

$$\theta \in \arg \min_{\theta' \in \Theta} \left[L(\theta', \mathcal{F}^*, \mathcal{S}^*) + \mu \max \left\{ 0, \frac{q_{\min} - Q(\theta'; \mathcal{I})}{z_1^* - z_2^*} \right\} \right].$$

Here, $(z_1^* - z_2^*)^{-1}$ provides Chebyshev (utopia–nadir) normalization for scale stability, and $\mu > 0$ sets the severity of penalizing $Q(\theta') < q_{\min}$. For sufficiently large μ (when the target is feasible), any minimizer is quality-compliant and the routing objective effectively reduces to minimizing latency among feasible routings.

Coupling and procedure. The routing solver’s θ determines the workload distribution seen by each model type within the cascade (and hence the optimal deployment plan for the deployment solver), while the deployment solver’s $(\mathcal{F}^*, \mathcal{S}^*)$ determines the latency used by the routing objective (and hence the optimal routing strategy for the routing solver). Alternating updates continue until the routing objective stabilizes under a prescribed termination horizon (e.g., best-so-far objective unchanged for K consecutive iterations).

E CASE STUDIES ON MODEL DEPLOYMENT PLANS AND ROUTING STRATEGIES

Case study on resource allocation and routing strategies. Table 2 demonstrates the case study of thresholds, processing ratios and allocated resources for different model types across different testing cases.

Table 2: Case study of the thresholds (h_1, h_2) , processing ratios (p_1, p_2, p_3) , and allocated resources (f_1, f_2, f_3) for each model type within the cascade across different testing cases. (90, 1) denotes testing on Trace 1 with an average quality requirement of 90.

	h_1	h_2	p_1	p_2	p_3	f_1	f_2	f_3
(90, 1)	99	91	100%	94%	50%	4	8	20
(85, 1)	74	64	100%	62%	21%	4	12	16
(80, 1)	69	25	100%	54%	11%	6	14	12
(80, 2)	61	18	100%	31%	3%	8	16	8
(80, 3)	32	0	100%	23%	0%	18	14	0
(70, 3)	10	0	100%	5%	0%	24	8	0

Case study on parallelism strategies. Table 3 presents a case study on parallelism strategies for each model type within the cascade across different test cases.

810 Table 3: Case study of the parallelism strategies for each model type within the cascade (s_1, s_2, s_3) across
 811 different testing cases.

Parallelism Strategies	
(90, 1)	$s_1: (DP=4, s_2: (DP=2, TP=4), s_3: (TP=4, PP=3), (TP=8)$
(85, 1)	$s_1: (DP=2, TP=2), s_2: (DP=6, TP=2), s_3: (DP=2, TP=8)$
(80, 1)	$s_1: (DP=6), s_2: (DP=5, TP=2), (TP=4), s_3: (TP=4, PP=3)$
(80, 2)	$s_1: (DP=6), (TP=2), s_2: (DP=8, TP=2), s_3: (TP=8)$
(80, 3)	$s_1: (DP=10), (DP=4, TP=2), s_2: (DP=2, TP=4), (DP=3, TP=2), s_3: -$
(70, 3)	$s_1: (DP=16), (DP=4, TP=2), s_2: (DP=4, TP=2), s_3: -$

819 Table 4: End-to-end throughput results evaluating CASCADIA against Sarathi-Serve.
 820

Trace	Ours	Sarathi-Serve	Speedup	%Improvement
Trace 1	0.2529 req/s	0.1913 req/s	1.322	+32.20%
Trace 2	0.4659 req/s	0.2385 req/s	1.953	+95.35%
Trace 3	0.6406 req/s	0.3977 req/s	1.611	+61.08%

826 F COMPARISON WITH SARATHI-SERVE

827 We evaluated Sarathi-Serve under the same experimental setup as SGLang, as described in §4.1, using
 828 traces 1–3 with an average quality requirement of 90. We used Sarathi-Serve’s vLLM implementation
 829 (its most efficient variant) and tuned the chunk size to be optimal for each case. As shown in Table 4,
 830 our system achieves up to $1.95 \times$ higher throughput and averages a $1.64 \times$ speedup across traces.
 831

835 G LATENCY RESULTS ON FLUCTUATING WORKLOADS

837 **Quantification of re-scheduling overheads.** The re-scheduling overhead consists of two components:
 838 (i) Algorithm runtime ($\sim 10\text{-}20$ s, as shown in Figure 10), and (ii) model reconfiguration overhead
 839 ($\sim 2\text{-}20$ s).

- 840 • **Re-scheduling impact on online serving.** During rescheduling, requests continue to be
 841 processed using the current deployment configuration, so there is no service interruption.
- 843 • **Reconfiguration impact on online serving.** Deployment plans typically have overlapping
 844 configurations between transitions (i.e., some model replicas retain the same deployment
 845 configuration), so these unchanged replicas can continue processing requests during re-
 846 configuration. To further reduce the service interruption time, for replicas that do require
 847 reconfiguration, we perform **rolling updates**—reconfiguring them one at a time while others
 848 continue serving requests.

849 **Re-scheduling impact on baseline methods.** Note that CascadeServe also incurs similar reconfig-
 850 uration overhead, while single-model baselines exhibit consistently poor performance due to lack of
 851 cascade optimization.

852 We further demonstrate the latency results of CASCADIA compared to CascadeServe and single-model
 853 deployment in our fluctuating workload experiments (Figure 11) with average quality requirement of
 854 90. CASCADIA achieves 34% and 45% reduction in SLO scale for achieving 95% SLO attainment
 855 compared to CascadeServe and single-model deployment.

857 Table 5: Benchmarked SLO Scale for 95% SLO Attainment (Avg. Quality ≥ 90).
 858

Deployment Strategy	SLO Scale	Reduction vs. CASCADIA
CASCADIA	8.99	—
CascadeServe	13.55	34%
Single-Model Deployment	16.37	45%

864 **H BENCHMARK GPT-4O OVERHEAD**
865866
867 We conducted additional experiments on H100 GPUs to benchmark single-request GPT-4o judging
868 vs. processing latency on MT-Bench using Llama cascades (Llama3-8B → Llama3-70B). The results
869 demonstrate that the average single-request processing latency for the small (approximately 3.05s)
870 and large model (approximately 7.35s) is approximately 5.21s. In contrast, the single-request GPT-4o
871 judging latency is only approximately 0.27s, as judging is prefill-bound with minimal output (1
872 token). This overhead is negligible compared to overall inference cost, and is already included in all
873 experimental results (§4) reported in our paper.
874875
876 **I COMPARE WITH ROUTEMLM**
877878
879 We conducted additional experiments comparing CASCADIA against RouteLLM with BERT-based
880 router on Llama cascades (Llama3-8B → Llama3-70B) following the setup in Section 4.1 with
881 average quality requirement of 80 on Traces 1 and 2. For fair comparison, we tune the deployment
882 for each model for RouteLLM. Results show that CASCADIA achieves on average 21.3% lower SLO
883 scale in achieving 95% SLO attainment (4.6, 2.8 vs. 5.8, 3.6) and 18.8% higher throughput (2.2, 3.5
884 vs. 1.9, 2.9) compared to RouteLLM.885 CASCADIA’s performance advantage stems from its system-algorithm co-design (§3): While
886 RouteLLM focuses solely on routing optimization and fails to consider how system-side optimiza-
887 tion (e.g., resource allocation, parallelism) impacts routing decisions and latency-quality trade-offs,
888 CASCADIA jointly optimizes both aspects for better end-to-end performance.
889
890
891892 **J SCHEDULING OPTIMALITY**
893894
895 Due to the NP-hardness of the problem and the mutual dependencies between deployment and routing,
896 providing theoretical optimality guarantees is intractable. However, we can empirically validate our
897 approach against exhaustive search, which enumerates all feasible resource allocations, parallelism
898 strategies, and routing thresholds, serving as an empirical optimum. Specifically, we conducted
899 additional experiments comparing our bi-level optimization against exhaustive search on Llama
900 cascades (Llama3-8B → Llama3-70B) following the setup in Section 4.1. To make exhaustive search
901 computationally feasible, we applied the same deployment constraints from Section 3.2. Results show
902 that our approach achieves near-optimal performance with only 2-6% gap compared to exhaustive
903 search, while reducing search time from ≥ 5 minutes to 20 seconds—a $\geq 15\times$ speedup. Notably,
904 exhaustive search time grows exponentially with cluster size, making our bi-level approach (grows
905 linearly) essential for practical deployment at scale.906 While theoretical optimality is intractable, our method provides strong empirical performance with
907 practical efficiency, making it suitable for real-world deployment scenarios where search overhead
908 matters.
909
910911 **K SENSITIVITY EXPERIMENTS WITH WEAKER JUDGES**
912913
914 We conducted additional experiments to evaluate robustness by replacing GPT-4o with weaker judges
915 (GPT-4o-mini and Llama3.1-70B), following the same experimental setup as Figure 7 (Llama cascade,
916 Trace 1, quality requirement $q_{\min} = 80$).
917

918 K.1 EXPERIMENTAL RESULTS ANALYSIS
919

920 GPT-4o-mini and Llama3.1-70B assign scores that are on average **9.4%** and **8.6%** lower than GPT-4o
921 for the same responses, exhibiting higher variance in quality assessment. This scoring bias causes
922 the system to route **11.1%** and **9.4%** more requests to the larger model compared to using GPT-4o.
923 Nevertheless, Cascadia adaptively adjusts the deployment, allocating more resources to the larger
924 model. As a result, meeting the same q_{\min} requires only **6.8%** and **5.5%** increase in system latency,
925 respectively. Importantly, the system continues to satisfy the quality requirement and avoids collapse
926 into over-routing, demonstrating that Cascadia is robust to weaker or noisier judges.
927

928 Table 6: Sensitivity to judge quality: Performance change compared to GPT-4o baseline.
929

Judge	Avg Score Deviation from GPT-4o	Routing to Larger Model Increase	System Latency Increase to meet q_{\min}
GPT-4o (baseline)	0%	0%	0%
GPT-4o-mini	-9.4%	+11.1%	+6.8%
Llama3.1-70B	-8.6%	+9.4%	+5.5%

934
935 K.2 JUDGE-AGNOSTIC FRAMEWORK
936
937

938 Our framework is **judge-agnostic**: any model capable of pairwise comparison or quality scoring can
939 be used as the judge, including open-source models (e.g., Llama-based judges).
940

941 L COST EFFICIENCY RESULTS
942

943 We provide a cost-efficiency analysis comparing CASCADIA against baselines. Following the
944 experimental setup in Figure 6 with an average quality requirement of 90 ($q_{\text{avg}} = 90$), we compute
945 the cost per request based on GPU pricing (NVIDIA H100: \$2.67/hour). Results demonstrate that
946 CASCADIA achieves **20–39%** cost reduction compared to CascadeServe and **33–61%** reduction
947 compared to stand-alone serving.
948

949 Table 7: Cost per request (USD/req) comparison (Avg. Quality $q_{\text{avg}} = 90$, H100 GPU pricing).
950

Deployment Strategy	Trace 1	Trace 2	Trace 3
Stand-Alone Serving	0.15 \$/req	0.26 \$/req	0.31 \$/req
CascadeServe	0.14 \$/req	0.18 \$/req	0.15 \$/req
CASCADIA (Ours)	0.10 \$/req	0.11 \$/req	0.12 \$/req

951 M DISCUSSION OF INTEGRATING PREFIX CACHING
952

953 **Additional experiments with enabling prefix caching.** In our experiments on MT-Bench (Trace
954 1, avg_quality=80) with the Llama cascade (Llama3-8B → Llama3-70B), enabling prefix caching
955 changed the SLO scale required to achieve 95% SLO attainment from **4.6** to **4.5** (~2% system latency
956 decrease, within measurement noise) and did not affect the relative gaps between CASCADIA and
957 the baselines or the resulting scheduling decisions. Similarly, CascadeServe’s SLO scale stayed the
958 same, and stand-alone model serving changed from **8.2** to **8.1**.
959

960 This minor impact is reasonable due to MT-Bench’s workload characteristics. MT-Bench is **decoding-heavy**,
961 so even perfect prefix reuse would have limited impact on overall latency dominated by the
962 decoding phase.
963

964 **Prefix caching impact on scheduling decision.** In serving scenarios where many different requests
965 share a long, identical prefix, enabling prefix caching reduces absolute p95 latencies for all systems.
966

972 However, the relative performance gains of CASCADIA over the baselines and the resulting optimal
 973 scheduling decisions remain largely unchanged, since prefix caching **benefits all model replicas**
 974 **uniformly** across the cluster.

975 **How to incorporate prefix caching in our scheduling algorithm.** To incorporate prefix caching
 976 into our cost estimation, we can model it as a prefill reduction:

$$978 \text{effective_prefill_tokens} \approx (1 - \text{hit_rate}) \times \text{original_prefill_tokens} \quad (1)$$

979 where `hit_rate` is obtained from profiling a representative subsample of the input workloads. We note
 980 that prefix caching is an orthogonal optimization technique—the bi-level scheduling methodology
 981 remains applicable and would operate on cache-adjusted latency profiles.

985 N FINE-TUNED BERT FOR CASCADING

987 We conducted two experiments to evaluate BERT-based judging:

- 989 **1. Realistic fine-tuning scenario.** We fine-tuned a BERT model using 70% of our experimental
 990 traces as training data and evaluated on the remaining 30% (unseen test set). The BERT
 991 judger was trained on request inputs, outputs, and quality grades across different models. We
 992 compared CASCADIA (GPT-4o) against CASCADIA (BERT) on Llama cascades (Llama3-8B
 993 → Llama3-70B) following the setup in Section 4.1 with a quality requirement of 80. Results
 994 show that CASCADIA with the BERT judger exhibits large variance in quality assessment,
 995 leading to $\sim 8\%$ degradation in system quality (80 → 74) compared to CASCADIA (GPT-4o).
 996 This demonstrates that a less accurate judger fails to satisfy the quality requirement.
- 997 **2. Oracle fine-tuning scenario.** To isolate judging overhead from judging accuracy, we
 998 trained BERT on 100% of our experimental traces (including the test set), creating an oracle
 999 judger that perfectly replicates GPT-4o’s judgments with minimal overhead. Even in this
 1000 idealized scenario, CASCADIA (BERT-oracle) achieves **only <5%** better system latency
 1001 than CASCADIA (GPT-4o) due to faster judging time, demonstrating that judging overhead
 1002 is already negligible.

1003 **Why LLM-as-a-Judge over BERT-based routers.** We choose LLM-as-a-Judge for two key reasons:
 1004 (1) **Overhead:** As shown above, judging adds only $\sim 0.27\text{s}$ overhead, which is negligible compared to
 1005 inference savings from routing simple requests to smaller models. (2) **Generalization:** BERT-based
 1006 routers suffer from generalization problems when encountering diverse or out-of-distribution queries,
 1007 whereas LLM-as-a-Judge (Zheng et al., 2023) can evaluate response quality more robustly across
 1008 varied workloads and domains.

1009 O THE USE OF LLMs IN WRITING

1012 We used LLM, namely OPENAI-GPT5, to polish the writing of this manuscript. No other generative
 1013 AI functionality is used in the writing of this submission.

1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025