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ABSTRACT

Low-rank adaptation methods are a popular approach for parameter-efficient fine-
tuning of large-scale neural networks. However, selecting the optimal rank for each
layer remains a challenging problem that significantly affects both performance
and efficiency. In this paper, we introduce a novel bilevel optimization strategy
that simultaneously trains both matrix and tensor low-rank adapters, dynamically
selecting the optimal rank for each layer. Our method avoids the use of implicit
differentiation in the computation of the hypergradient, and integrates a stochastic
away-step variant of the Frank-Wolfe algorithm, eliminating the need for projection
and providing identifiability guarantees of the optimal rank structure. This results
in a highly efficient and cost-effective training scheme that adaptively allocates
the parameter budget across the network layers. On top of a detailed theoretical
analysis of the method, we provide different numerical experiments showcasing its
effectiveness.

1 INTRODUCTION

Parameter-efficient fine-tuning methods have become essential for adapting large-scale pre-trained
models to various downstream tasks without incurring prohibitive computational costs. Low-rank
adaptation (LoRA) methods, which involve the addition of low-rank matrices to the existing weights
of neural networks, have emerged as a popular solution due to their efficiency and simplicity.
These methods keep the main model weights frozen, significantly reducing the number of trainable
parameters and making the fine-tuning process more resource-efficient.

However, a persistent challenge in this area is the selection of the optimal rank for each low-rank
adapter, which is crucial for balancing performance and efficiency. Traditional LoRA methods often
rely on a static rank configuration across all layers, leading to suboptimal results. Recent approaches
such as DyLoRA (Valipour et al., 2023) and AdaLoRA (Zhang et al., 2023) have attempted to address
this by dynamically adapting the rank during training, but they still require considerable heuristic
tuning or involve expensive steps that can limit their applicability and generalizability.

In this paper, we propose dEBORA (Efficient Bilevel Optimization-based low-Rank Adaptation), a
novel approach that leverages bilevel optimization to simultaneously train matrix and tensor low-
rank adapters while dynamically selecting the optimal rank for each layer. Unlike previous bilevel
optimization-based methods for low-rank adaptation (Qiang et al., 2024), dEBORA eliminates the
need for implicit differentiation in the computation of the hypergradient, thereby hugely simplifying
the resources required by the optimization process. The upper-level rank-adaptation step is performed
by means of a stochastic away-step variant of the Frank-Wolfe algorithm, which not only removes
the need for costly projection steps but also provides identifiability guarantees of the optimal rank
structure.

We provide a detailed theoretical analysis of our method, establishing its convergence properties and
optimality guarantees. Additionally, we conduct extensive numerical experiments across a range
of benchmarks, including natural language understanding and generation tasks, to demonstrate the
effectiveness of dEBORA. Our results show that dEBORA outperforms existing low-rank adaptation
methods in both efficiency and performance, particularly in settings with stringent parameter budgets.

Our method addresses the key limitations of existing low-rank adaptation techniques in several
ways. First, by dynamically adjusting the rank for each layer during training, dEBORA ensures

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

an adaptive allocation of the parameter budget across the network, thereby improving both com-
putational efficiency and model performance. Second, the use of bilevel optimization provides a
principled framework for handling the interaction between the model parameters and the adaptation
budget hyperparameters, resulting in a more robust and theoretically grounded approach to low-rank
adaptation.

The rest of this paper is organized as follows: Section 2 reviews related work on parameter-efficient
fine-tuning and low-rank adaptation methods. Section 3 presents the proposed bilevel optimization
framework and the dynamic rank adaptation mechanism, while Section 4 the specific structure of the
problem is used to create an efficient closed-form approximation for the hypergradient. Section 5 and
Section 6, introduce the stochastic version of the away-step Frank-Wolfe algorithm for solving the
upper-level problem, along with its theoretical properties. Section 7 details the experimental setup
and results. Finally, Section 8 concludes the paper and discusses potential future directions.

2 RELATED WORK

Parameter-Efficient Fine-Tuning. Large-scale pre-trained models have demonstrated significant
improvements across numerous tasks. However, fine-tuning these models for specific downstream
tasks often involves updating millions, if not billions, of parameters, leading to substantial computa-
tional and memory overhead. This has motivated the development of parameter-efficient fine-tuning
(PEFT) techniques, which aim to reduce the number of trainable parameters while maintaining or
even enhancing the performance of the model.

One of the seminal works in this area is Low-Rank Adaptation (LoRA) (Hu et al., 2021), which
introduces low-rank incremental matrices to the frozen pre-trained weights, significantly reducing
the trainable parameters. Inspired by recent findings in e.g. (Li et al., 2018) and (Aghajanyan et al.,
2021), which suggest that pre-trained models possess a low intrinsic dimension, LoRA leverages this
property to achieve efficient adaptation without compromising performance.

Several variants of LoRA have been proposed to further improve its efficiency and adaptability.
DyLoRA (Valipour et al., 2023) dynamically adjusts the ranks of the low-rank matrices during
training based on the importance of learned representations, while QLoRA (Dettmers et al., 2024)
introduces quantization techniques to reduce the memory footprint of LoRA, making fine-tuning
accessible on hardware with even more limited resources. Another extension is LoraHub (Huang
et al., 2023), which facilitates the modular composition of multiple LoRA modules across different
tasks, enhancing the cross-task generalization capability of fine-tuned models.

Similar to our approach, AdaLoRA (Zhang et al., 2023) takes this a step further by adaptively
allocating the parameter budget based on the importance of different modules within the model.
By parameterizing the low-rank updates using a singular value decomposition (SVD) framework,
AdaLoRA iteratively prunes less significant singular values, thus optimizing the allocation of the
limited parameter budget across the network.

BiLoRA (Qiang et al., 2024) employs a bi-level optimization framework, where the learning of
pseudo singular values and vectors is decoupled and assigned to different levels of the optimization
hierarchy. This separation mitigates the risk of overfitting by allowing each component to be optimized
independently on separate subsets of the training data. This approach is inspired by differentiable
architecture search (DARTS) (Liu et al., 2019), where the architecture and weights are optimized on
different datasets, preventing overfitting to any particular training set. Unlike the proposed dEBORA,
BiLoRA computes the hypergradients “directly” using implicit differentiation, resulting in high
computational demand.

Low-Rank Methods for Pre-Training. Low-rank methods have also been successfully applied
during the pre-training and training phases of neural networks, capitalizing on the observation that
large models often possess a low intrinsic dimensionality. Techniques like Pufferfish (Wang et al.,
2021), intrinsic dimension reduction (Aghajanyan et al., 2020), and DLRT (Schotthöfer et al., 2022)
reduce the number of parameters during training, potentially improving both model efficiency and
generalization. Recent developments such as (Zangrando et al., 2024) use Riemmanian optimization
to explore the parameter space, dynamically adapting the rank during training and ensuring model
accuracy and substantial memory reduction, even with initially incorrect rank estimates. ReLoRA
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(Lialin et al., 2023) introduces a method for training large models efficiently by applying multiple
low-rank updates, achieving significant memory savings while maintaining performance. GaLore
(Zhao et al., 2024) is based on projecting the gradients onto a low-rank subspace, allowing for
memory reductions without sacrificing model accuracy.

Bilevel Optimization in Deep Learning. Bilevel optimization, with its origins in classical optimiza-
tion theory (Colson et al., 2007), has gained traction in machine learning for a variety of applications,
including hyperparameter optimization (Franceschi et al., 2018), meta-learning (Finn et al., 2017),
and neural architecture search (Liu et al., 2019). The core challenge in bilevel optimization lies in the
computation of the hypergradient, which captures the dependence of the upper-level objective on the
lower-level variables. This often scales the complexity of first-order optimization methods to that of
second-order ones, making it computationally prohibitive for large-scale problems.

To address this challenge, numerous techniques have been proposed to approximate the hypergradient
efficiently. Backpropagation through time (BPTT) (Franceschi et al., 2017) is one such approach,
along with methods that use efficient inverse Hessian approximations (Lorraine et al., 2020) and
approximate implicit differentiation (AID) techniques (Grazzi et al., 2020). These methods have
made bilevel optimization feasible for high-dimensional problems, albeit with trade-offs in terms of
computational accuracy and convergence speed.

Our work introduces a novel bilevel optimization strategy for parameter-efficient fine-tuning, specifi-
cally tailored for low-rank adaptation. By avoiding implicit differentiation and integrating a stochastic
away-step variant of the Frank-Wolfe algorithm, our approach eliminates the need for costly gradient
propagations and offers a more scalable solution. This framework allows for adaptive rank selection
across network layers, providing a robust and efficient mechanism for fine-tuning.

3 LOW-RANK ADAPTATION VIA BILEVEL OPTIMIZATION

In this section, we introduce the bilevel optimization framework for fine-tuning low-rank adapters in
tensor format, which provides a parameter-efficient adaptation strategy for large pre-trained models.

Consider the adaptation of pre-trained model weights W0 ∈ Rn×n through a low-rank update
Ψ = USV ⊤, where U, V ∈ Rn×r are the low-rank basis matrices, S is a diagonal matrix containing
the singular values si, and r is the rank of the adaptation. This low-rank formulation can be
equivalently expressed as

Ψ = USV ⊤ =

r∑
i=1

si ui ⊗ vi,

where ui and vi denote the i-th columns of U and V , respectively, and ⊗ refers to the outer product
of tensors.The rank r directly controls the number of trainable parameters, making this formulation
particularly suitable for rank-adaptive parameter-efficient fine-tuning (Zhang et al., 2023).

This low-rank adaptation naturally extends to tensor-based models using the CP (canonical polyadic)
decomposition. For a layer weight tensor with d modes, W0 ∈ Rn1×···×nd , the low-rank adaptation
is defined as

W0 +Ψ(B, s), Ψ(B, s) =
r∑

i=1

si u
(1)
i ⊗ · · · ⊗ u

(d)
i ,

where B = (U (1), . . . , U (d)) represents the collection of low-rank matrices U (i) ∈ Rni×r, u(j)
i

denotes the i-th column of the j-th basis matrix, and s = (s1, . . . , sr) ≥ 0 is a vector of nonnegative
parameters representing a form of tensor singular values. In this setting, the entire low-rank adaptation
is compactly represented by the basis matrices B and the vector of scaling factors s.

To fine-tune Ψ(B, s) while simultaneously minimizing the rank r, we introduce a bilevel optimization
strategy. Given a fine-tuning loss function ℓ(B, s; x, y) and a dataset split into two parts D1 and D2,
we consider objective functions for the two data sets

fi(B, s) =
1

|Di|
∑

(x,y)∈Di

ℓ(B, s;x, y), i = 1, 2.
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The fine-tuning process is then formulated as the following bilevel optimization problem:
(upper-level) min

s∈Rr:s≥0,∥s∥1≤τ
f1(B∗(s), s)

(lower-level) s.t. B∗(s) ∈ argmin
B∈V⊆Rn1×r×···×Rnd×r

f2(B, s),
(1)

where τ > 0 is a regularization parameter that controls the sparsity of the singular values. The bilevel
nature of this problem arises from the fact that the optimal basis matrices B∗(s) for a given s are
determined by minimizing a second objective function, f2(B, s). Moreover, given the nature of the
parameterization Ψ, none of the objective functions is in general convex, even if ℓ is.

A critical aspect of solving bilevel optimization problems is computing the hypergradient, which
captures how changes in the upper-level parameters s affect the lower-level solution B∗(s). By the
chain rule, the hypergradient of the upper-level objective f1(B∗(s), s) is given by:

d

ds
f1(B∗(s), s) = ∂Bf1(B∗(s), s) ∂sB∗(s) + ∂sf1(B∗(s), s). (2)

The key computational challenge lies in determining ∂sB∗(s), which represents how the optimal
basis B∗(s) changes with s. Using first-order stationarity conditions, this dependency is governed by
the implicit gradient system:

∂2
Bf2(B∗(s), s) ∂sB∗(s) = −∂s∂Bf2(B∗(s), s). (3)

Solving this linear system is necessary to compute the implicit gradient in Equation (2).

Given the computational complexity of solving the implicit gradient system exactly, we explore
efficient approximation techniques that exploit the structure of the problem. As discussed in Section 2,
various methods, such as inverse Hessian approximation and conjugate gradient techniques, have been
proposed in the literature. In the following section, we introduce a new closed-form approximation
that leverages the tensor structure of the problem to significantly reduce computational overhead
while maintaining accuracy.

For the sake of simplicity, we decided to limit the theoretical discussion to the Euclidean case.
However, everything transfers with minor adjustments to the Riemannian setting by interpreting all
the derivatives through their Riemannian counterpart. A similar derivation is done for example in (Li
& Ma, 2024) and the computations in our case would be similar to those presented there. In particular,
if we have Riemannian manifold only in the lower-level problem (the case we considered in our
experiments), the stationarity condition should be interpreted as ∂Bf2|B∗(s),s = 0 where ∂Bf2|B∗(s),s

is now the differential restricted to the tangent space TB∗(s)V to the manifold V at the point B∗(s)
(with V either the Steifel or the oblique manifold in our case). The implicit gradient equation (3) is
derived in the same way by interpreting the Hessian as the Riemannian Hessian on V .

4 EFFICIENT HYPERGRADIENT APPROXIMATION

As discussed in the previous section, the primary challenge in solving the bilevel optimization
problem in Equation (1) lies in the fact that first-order methods require second-order information,
particularly the calculation of the implicit derivative, which is obtained as the solution to Equation (3).
While this can be computationally intensive, structured numerical approximations of the Hessian
∂2
Bf

∗
2 (such as diagonal or low-rank approximations) have been employed in prior work (Zhang

et al., 2022; Lorraine et al., 2020) to simplify the hypergradient computation. Nonetheless, these
approaches come with computational overhead.

In our setting, we exploit the specific parameterization structure of the problem to derive an efficient
closed-form approximation for the hypergradient. This leads to a computationally tractable solution
without fully solving the implicit gradient system. The following theorem formalizes this result. For
brevity, we will use a superscript ·∗ to denote the evaluation of variables and functions on the optimal
pair (B∗(s), s), solution to the lower-level problem.
Theorem 4.1 (Hypergradient Approximation). Denote by L2(Ψ(B, s)) := f2(B, s) as a function of
Ψ. In the setting of Section 3, assume that the gradient is locally approximately constant. That is,
there exists constants K ≥ 0 such that

∥∇2L2(Ψ(B∗(s), s))∥ ≤ K, ∀ s : ∥s∥1 ≤ τ.

4
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Additionally, assume that the following bilinear operator is uniformly invertible and bounded:

∥(∂ΨL∗
2∂

2
BΨ

∗)−1∥ = sup
∥B∥2=1

∥(∂ΨL∗
2∂

2
BΨ

∗)−1[B, ·]∥ ≤ β.

Then, for d = 2 (the matrix case), we derive the following closed-form, Hessian-free solution for the
approximate hypergradient:

G(s) := ∂sf
∗
1 − diag

[
U∗(1),⊤∂U(1)f∗

1 + U∗(2),⊤∂U(2)f∗
1

]
⊙ s−1,

where ⊙ refers to the Hadamard product (entrywise).

Moreover, the numerical solution obtained by neglecting the Hessian satisfies the following error
bound for d = 2: ∥∥∥∥G(s)− d

ds
f1(B∗(s), s)

∥∥∥∥ ≲ Kβ.

For d > 2 (tensor case), a tridiagonal approximation of ∂2
BΨ

∗ leads to the following closed-form
approximation:

G(s) := ∂sf
∗
1 − diag

[
d∑

i=1

U∗(i),⊤∂U(i)f∗
1

]
⊙ s−1,

with the corresponding error bound:∥∥∥∥G(s)− d

ds
f1(B∗(s), s)

∥∥∥∥ ≲ Kβ +

d∑
i=1

∑
|j−i|≥2

∥∂2
U(i),U(j)Ψ

∗∥.

We provide a detailed proof of this theorem in Appendix B. We would like moreover to remark
that, if the constraint V on the basis B is compact and f2 is twice continuously differentiable, then
automatically the first assumption in Theorem 4.1 is satisfied for Weierstrass theorem. This will
naturally hold if we impose orthogonal or orthonormal constraints on the basis, as we will discuss in
Section 7.

Given the approximation error in Theorem 4.1, it is important to modify the constraint in the upper-
level problem to ∥s∥1 ≤ τ + rε = τ̃ and s ≥ ε entrywise, where ε > 0 is a small constant to prevent
numerical instability due to division by s. This adjustment ensures that the approximation remains
well-behaved, particularly in cases where the singular values si become small. More precisely, one
can consider the perturbed L1 simplex:

S := {s ∈ Rr | s ≥ ε, ∥s∥1 ≤ τ̃},

which is still convex and thus amenable to projection-free methods, motivating our choice of stochastic
Frank-Wolfe for the upper-level problem in the next Section 5.

5 OPTIMIZATION WITH STOCHASTIC AWAY-STEP FRANK–WOLFE

Our goal is to minimize an objective function defined as the finite sum of a set of functions. The
main challenge here lies in the high computational cost: calculating the objective value or its
gradient requires aggregating information across all functions in the set, which is substantially more
expensive than evaluating these quantities for a single function or a bunch of them. This is especially
problematic when the set of functions is large, as each computation scales with the number of
functions, quickly making optimization infeasible in practice. This is the main reason why Stochastic
Gradient-like methods fit better than Batch Gradient-like ones when dealing with Machine/Deep
Learning applications.

In order to solve the bilevel optimization problem in Equation (1), we hence proceed as follows:
first, we compute an approximate solution to the lower-level problem using a standard stochastic
gradient-based method; then we compute a stochastic approximation G̃(s) of G(s) by sampling
a minibatch of data to represent the loss f1; finally we use the G̃(s) to update the solver for the
upper-level problem.

5
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The hypergradient approximation G(s) obtained in Theorem 4.1 can be efficiently computed using
automatic differentiation. Specifically, to calculate G(s), we first approximate the optimal basis
B∗(s) for a fixed s by optimizing for a finite number of steps, then we compute the partial derivative
∂sf2(B∗(s), s), leveraging the fact that automatic differentiation can efficiently compute ∂Bf

∗
1 in

a single backpropagation step. By exploiting the structure of the parameterization, this method
bypasses the need for full Hessian evaluations and allows for scalable fine-tuning even in large-scale
settings.

As the upper level is a constrained optimization problem with convex simplex constraints, we
approach it with a stochastic version of the away-step Frank-Wolfe algorithm. This allows us to
employ a projection-free approach, which reduces the cost of the upper-level solver and allows us
to obtain important theoretical guarantees of convergence to a sparse structure in a finite number of
steps (See Section 6). At each iteration sn, the main steps of the Frank-Wolfe algorithm (Guélat &
Marcotte, 1986; Beck & Shtern, 2017; Bomze et al., 2020) are as follows:

Frank-Wolfe direction Compute a search direction hn that minimizes a linear local approximation
of the upper-level loss function as:

hn = zn − sn where zn = argmin
s∈S

G̃(sn)
⊤s

Note that, as S is a sparse simplex, the variable zn can be computed in an efficient way by
simply looking at the entries of G̃(sn). See Appendix C.

Convergence criterion Stop if −G̃(sn)
⊤hn ≤ p̃

Away-step direction Compute a search direction bn that maximizes a linear local approximation of
the upper-level loss function as:

bn = sn − yn, where yn = arg max
s∈Cn

G̃(sn)
⊤s,

with Cn = {s ∈ S : suppε(s) = suppε(sn)} and suppε(s) = {i : si > ε}. Note that this
problem can be solved efficiently as for the FW direction computation by sweeping through
the entries of G̃(sn). See Appendix C.

Steepest direction Set dn = hn if −G̃(sn)
⊤hn ≥ −G̃(sn)

⊤bn. Set dn = bn, otherwise.
Line search Choose αmax

n = 1 if dn = hn. Otherwise, choose αmax
n as the largest α such that

sn + αdn ∈ S. Then choose αn ∈ (0, αmax
n ] using a line search.

Update variables Update the current iterate as sn+1 = sn + αndn. If n ≥ n0 then truncate sn+1

by removing the entries that are smaller than ε and remove the corresponding columns from
U and V , effectively reducing the rank of the problem.

The resulting low-rank adaptation scheme is summarized in Algorithms 1 and 2. In the next section,
we will see that the proposed algorithm converges in expectation with a sublinear rate (see Theorem 6.2
for further details) and it is also able to identify the surface containing a stationary point once it
gets close enough to it (see Theorem 6.5 for further details). Identifying the surface containing a
solution is of paramount importance in our framework since it allows us to shrink the dimension of
the problem under analysis and eventually apply more sophisticated solution techniques in the end.
In Appendix G we provide a detailed per-iteration cost analysis of dEBORA, together with the real
GPU consumption compared with (Zhang et al., 2023).

6 THEORETICAL PROPERTIES OF THE STOCHASTIC AWAY-STEP
FRANK-WOLFE ALGORITHM

In this section, we propose a convergence analysis of the fine-tuning strategy. In order to simplify the
notation, we let f(s) = f1(B∗(s), s) where B∗(s) is a solution to the lower-level problem. We hence
consider, in place of Problem (1), the following optimization problem:

min
s∈S

f(s) , (4)

and denote with ∆ the diameter of S. Moreover, we assume the stochastic approximation G̃ of the
hypergradient ∇f is available, such that the following assumption is satisfied. 1

1We have a biased stochastic estimate of the original hypergradient, so E[G̃] ̸= E[∇f ].

6
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Algorithm 1 dEBORA: Efficient Bilevel Optimization-based low-Rank Adaptation
1: Input: Choose τ, ε > 0, precision p̃ > 0, and truncation step n0. Initialize adapters B and

s0 ∈ S
2: For n = 0, 1, . . .

3: Compute G̃(sn) stochastic estimation of the hypergradient as in Algorithm 2
4: hn = FW-direction(G̃(sn), τ, ε);
5: If Convergence-criterion(G̃(sn), hn, p̃) then STOP
6: bn = Away-step-direction(G̃(sn), sn, τ, ε)
7: dn = Steepest-direction{hn, bn}
8: αn = Linesearch(sn, dn)
9: Set sn+1 = sn + αndn

10: If n ≥ n0 then truncate sn+1 by removing entries smaller than ε and reduce rank accordingly
11: End for

Algorithm 2 Stochastic approximation of the hypergradient G̃(s)

1: Given s ∈ S
2: Compute an approximation B∗(s) to argminB f2(B, s)
3: Sample a data minibatch and define f̃1 as the estimation of f1 on it
4: Compute ∂Bf̃1(B∗, s) and ∂sf̃1(B∗, s)

5: Assemble G̃(s) := ∂sf̃1(B∗, s)− diag[B∗,⊤∂Bf̃1(B∗, s)]⊙ s−1

Assumption 6.1. Let us denote e(s, s̄) = (∇f(s̄)− G̃(s̄))⊤(s− s̄). We assume that for any s̄ ∈ S,
there exist χ ≥ 0 such that

E
[
e(s, s̄)2

]
≤ χ2 ∀ s ∈ S. (5)

Remark 6.4 will discuss how the proposed analysis transfers to the chosen biased approximation G̃(s)
from Algorithm 2. Notice that, by Jensen and Holder inequalities respectively, if Assumption 6.1
holds, we have the following

|E[e(s, s̄)]| ≤ E[|e(s, s̄)|] ≤ E[(e(s, s̄))2]1/2 ≤ χ. (6)

Note moreover that, in the stochastic optimization literature, it is standard to quantify the accuracy
of the stochastic first-order oracle assuming bounded variance of the stochastic gradient estimates

(Braun et al., 2022): for every s ∈ S, there exists σ̄2 > 0 such that E
[∥∥∥∇f(s)− G̃(s)

∥∥∥2] ≤ σ̄2. It

is easy to see that this assumption on the gradient estimates implies Assumption 6.1. Indeed, we
have:

E
[
e(s, s̄)2

]
≤ E

[∥∥∥∇f(s̄)− G̃(s̄)
∥∥∥2 ∥s− s̄∥2

]
≤ E

[∥∥∥∇f(s̄)− G̃(s̄)
∥∥∥2] ∥s− s̄∥2 ≤ σ̄2∆2.

Let us define gn = −∇f(sn)
⊤hn, g̃n = −G̃(sn)

⊤hn and gFW
n = −∇f(sn)

⊤hFW
n ,

with hFW
n ∈ argmins∈S{∇f(sn)

⊤(s − sn)} − sn the Frank-Wolfe direction obtained using
the exact gradient. Since S is a convex set, a point s∗ ∈ S is said to be stationary for the upper-level
problem in (1) when ∇f(s∗)⊤(s− s∗) ≥ 0 for all s ∈ S. Then, gFW

n is an optimality measure,
i.e., gFW

n = 0 if and only if sn ∈ S is a stationary point. Now we show that Assumption 6.1 is
satisfied with a sufficiently small χ if the stepsize αn is generated with a suitable line search. Thus,
Algorithm 1 converges in expectation to a stationary point at a sublinear rate on non-convex objectives
with a Lipschitz continuous gradient. The constant in the convergence rate depends on the quality
of the gradient estimate (the more precise the estimate, the smaller the constant). The proof can be
found in Appendix D.
Theorem 6.2. Let {sn} be a sequence generated by Algorithm 1 applied to f on S, where ∇f is
Lipschitz continuous with constant M , G̃ satisfies Assumption 6.1 with

χ ≤ η

2 + 2η
p̃, 0 ≤ η <

1

3
, (7)
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and the step size αn satisfies

αn ≥ ᾱn = min

(
αmax
n ,

g̃n
M∆2

)
, (8)

f(sn)− f(sn + αndn) ≥ ρᾱng̃n, (9)
with some fixed ρ s.t.

0 < ρ ≤ (1− 3η)∆2M

2(1− η)2gFW
0

. (10)

Then for every T ∈ N,

E [g∗T ] ≤

√
2∆2M(f(s0)− f∗)

Tρ(1− η)2
, (11)

where g∗T = min
0≤n≤T−1

gFW
n and f∗ = mins∈S f(s).

Equations (8) and (9) can be satisfied with suitable line searches/stepsize rules (see, e.g., (Bomze
et al., 2020; 2021; Rinaldi & Zeffiro, 2022)). In particular, Lemma 6.3 below shows that this is the
case for the fixed step size αn = ᾱn, and the modified Armijo line search rule which sets

αn = δj , (12)

where j is the smallest non-negative integer such that

f(sn)− f(sn + αndn) ≥ γαng̃n, (13)

with γ ∈ (0, 1/2) and δ ∈ (0, 1) being two fixed parameters. The proof can be found in Appendix E.
Lemma 6.3. Let Assumption 6.1 hold with

χ ≤ η

2 + 2η
p̃, 0 ≤ η <

1

3
. (14)

and let ᾱn being defined as in Equation (8). At iteration n, if αn is determined by

• the fixed step size rule
αn = ᾱn,

then Equation (8) holds and Equation (9) is satisfied with

0 < ρ ≤ min

(
(1− 3η)∆2M

2(1− η)2gFW
0

,
1− η

2(1 + η)

)
.

• the Armijo line search described in Equations (12) and (13), then

αn ≥ min{1, 2δ(1− γ − η)}ᾱn,

and Equations (8) and (9) hold.
Remark 6.4. It is easy to see that Assumption 6.1 holds with a χ that satisfies Equations (7) and (14)
when the batch size chosen to build the approximate stochastic hypergradient G̃(s) is large enough.
We also observe that it is possible to decompose χ in Equation (6) as a first term completely depending
on the norm of the Hessian, and a second term controlled totally by the stochastic part. In particular,
one would decompose the error as

e(s, s̄) = (∇f(s)−G(s))⊤(s− s̄) + (G(s)− G̃(s))⊤(s− s̄),

where G(s) is again the closed form estimate of the hypergradient presented in Theorem 4.1, and
G̃(s) its stochastic counterpart where the objective function is evaluated on a data batch. Under
the hypothesis that the constant β in Theorem 4.1 works across different batches, by using Cauchy-
Schwarz and the triangular inequality we get

E[|e(s, s̄)|] ≤ Kβ∆+ E[|(G(s)− G̃(s))⊤(s− s̄)|] ≤ Kβ∆+ χ̄,

where now we define χ̄ as an upper bound of the third term. In particular, this allows to get potentially
sharper bounds when estimating the minimal batch size needed to satisfy Equations (7) and (14).
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Table 1: DeBERTaV3-base fine-tuning on GLUE benchmark.
Method # Params MNLI SST-2 CoLA QQP QNLI RTE MRPC STS-B

(Acc) (Acc) (Mcc) (Acc/F1) (Acc) (Acc) (Acc) (Corr)

Full FT 184M 89.90 95.63 69.19 92.40/89.80 94.03 83.75 89.46 91.60

HAdapter 1.22M 90.13 95.53 68.64 89.27 94.11 84.48 89.95 91.48
PAdapter 1.18M 90.33 95.61 68.77 89.40 94.29 85.20 89.46 91.54
LoRA r = 8 1.33M 90.29 95.29 68.57 90.62/90.61 93.91 85.5 89.75 89.10
AdaLoRA 1.27M 90.44 95.64 68.76 90.59/90.65 94.11 86.00 89.44 91.41

dEBORA τ = 16 0.4M 90.01 95.29 68.72 91.88/89.20 93.42 83.75 90.16 90.84
dEBORA (Oblique) τ = 16 1.03M 90.0 94.83 69.15 88.62/85.09 87.33 83.03 91.42 91.24
dEBORA (Stiefel) τ = 16 0.8M 89.79 95.65 68.39 89.74/86.58 93.83 84.12 91.18 91.54

We now report a local identification result related to the Algorithm 1. More specifically, we state that
our method successfully identifies the manifold containing a stationary point once it is sufficiently
close to it. As we already noticed, guarantees of identification of this manifold in a finite number of
steps is of critical importance within our framework, as it facilitates the reduction of the problem
dimensionality and ultimately enables the application of more sophisticated solution techniques in
the final stages. In other words, once the optimal face of the simplex is found, we are guaranteed that
optimization can be continued just there without any repercussion, potentially drastically reducing
the number of parameters.
The proof of this result can be found in Appendix F. To ease the analysis, we first introduce some
useful theoretical tools and notations. We define the face of S exposed by ∇f(s), with s ∈ S, as

Fe(∇f(s)) = argmin
z∈ S

∇f(s)⊤z,

and the minimal face of S containing s ∈ S as F(s). We let λv(s) = ∇f(s)⊤(v − s), v, s ∈ S and
notice that for a stationary point s∗ of Problem (4) it holds λv(s

∗) ≥ 0 ∀v ∈ V, where V is the set
of extreme points in S. Furthermore, we define the value

λMIN
v (s∗) = min

v∈V +(S)
λv(s

∗), (15)

with V +(S) = {v ∈ V : λv(s
∗) > 0}. Finally, we indicate with BΓ(x) the ball with radius Γ(x) > 0

centered in x. We have:
Theorem 6.5. Let {sn} be a sequence generated by Algorithm 1. Let s∗ ∈ S be a stationary point of
Problem (4) s.t.

• λMIN
v (s∗)− 2χ > 0,

• Fe(∇f(s∗)) = F(s∗), that is strict complementarity holds in s∗.

Then, there exists Γ(s∗) > 0 s.t. if sn ∈ BΓ(s∗) ∩ F(s∗) then sn+1 ∈ F(s∗). Furthermore if the
level set L(f(sn)) is such that L(f(sn)) ⊆ BΓ(s∗) then sn+1 ∈ BΓ(s∗) ∩ F(s∗).

7 EXPERIMENTAL EVALUATION

In this section, we present numerical experiments to showcase the effectiveness of the proposed
bilevel optimization method for fine-tuning low-rank adapters. For fair comparison, the validation
set was not used in any of the two losses during training. To create the two loss functions f1, f2, we
randomly partitioned the dataset into equally sized subsets, using one partition for the upper-level
loss and the other for the lower-level loss. All experiments were run on a 80GB NVIDIA A100 GPU.

7.1 GLUE BENCHMARK

In our first experiment, we fine-tuned DeBERTaV3 (He et al., 2023) on the GLUE benchmark (Wang
et al., 2019), comparing the proposed approach with state-of-the-art methods for fine-tuning large
language models (LLMs). These include AdaLoRA (Zhang et al., 2023), LoRA (Hu et al., 2022),
Pfeiffer adapter (Pfeiffer et al., 2021), Houlsby adapter (Houlsby et al., 2019), and full fine-tuning.
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Table 2: Fine-tuning performance on tensor layers. Left: ResNet50 fine-tuning on CIFAR-10. Right:
Fine-tuning of Dreambooth Stable Diffusion. First rank refers to the LoRA rank of the UNet layers,
the second refers to the text encoder. In the parameter count, M stands for million and K for thousands.
Initial ranks for AdaLoRA are 8 for each layer.

Method Val. Accuracy (%) # Params

LoRA (r = 16) 89.66 1.17M
LoRA (r = 8) 87.5 588K
LoRA (r = 2) 70.03 147K
AdaLoRA 93.28 316K
AdaLoRA 90.97 79K

dEBORA τ = 8 93.74 64K
dEBORA (Oblique) τ = 16 85.65 66K
dEBORA (Stiefel) τ = 16 85.83 72K

Method Loss # Params

LoRA (r = 2, r = 8) 0.245 3.4M
LoRA (r = 4, r = 8) 0.247 5.5M
LoRA (r = 10, r = 8) 0.241 11.3M
AdaLoRA 0.245 4.7M
AdaLoRA 0.247 1.78M

dEBORA τ = 16 0.262 0.4M
dEBORA (Oblique) τ = 16 0.231 0.4M
dEBORA (Stiefel) τ = 16 0.252 0.4M

As in (Zhang et al., 2023), the adapters were applied to each attention layer, including the query, key,
value matrices, and feed-forward layers. Results are presented in Table 1.
Additionally, we tested our approach in both unconstrained and constrained settings by forcing the
basis matrices to have columns of unitary norm (Oblique) or orthonormal columns (Stiefel). As
both these constraints form a manifold with an explicit retraction, we compute B∗ by performing
first-order stochastic Riemannian optimization Sato (2021) at the lower level. Given the product
nature of the constraints and the relatively small starting rank, retractions in these cases remained
computationally affordable.

7.2 FINE-TUNING OF HIGHER-ORDER TENSOR LAYERS (d > 2)

In this experiment, we evaluate our bilevel optimizer on fine-tuning higher-order tensor layers. We
tested ResNet50 (He et al., 2015) on CIFAR-10 (Krizhevsky & Hinton, 2009) and Stable Diffusion
(Rombach et al., 2021), with results reported in Table 2 (left) and Table 2 (right), respectively.

For ResNet50, we applied adapters to each convolutional layer while retraining the final fully
connected layer with an appropriately sized one. All methods used the same training settings: a
constant learning rate of 5× 10−1, weight decay of 1× 10−3, LoRA α = 32, and no dropout. We
note that the original LoRA implementation (Hu et al., 2022) for convolutional layers uses matrix
factorization of the weight tensor, scaling the number of parameters as O(r(F + Ck2)). In contrast,
our CP-like factorization scales more efficiently as O(r(2k + C + F )), where F is the number of
output features, C is the number of input channels, and k is the kernel size. This more efficient
representation is reflected in the total number of trainable parameters reported in Table 2 (left).
Despite using fewer parameters, our approach competes well with the baselines, particularly in the
unconstrained setting, which is computationally less challenging due to the absence of retractions.

For the Stable Diffusion experiment, we inserted adapters into the convolutional layers of the UNet
and the linear layers of the text encoder. All models were trained under the same conditions as
in (Mangrulkar et al., 2022), and the results are reported in Table 2 (right). For AdaLoRA, we
implemented the same tensor-based convolutional adapter representation used in our method, which
led to higher compression compared to LoRA, which does not utilize tensor factorization. Even with
a similar parameterization, our method consistently outperforms the other baselines, achieving better
results with fewer effective parameters.

8 CONCLUSION

In this paper, we introduced a novel bilevel optimization framework for low-rank adaptation, providing
a parameter-efficient fine-tuning strategy for large-scale neural networks. Our approach leverages
a dynamic rank selection mechanism within a bilevel structure, enabling efficient adaptation while
minimizing the number of trainable parameters. A key contribution of our work is the theoretical
analysis of the proposed stochastic bilevel optimizer, where we established convergence guarantees.
Through a variety of experiments on the GLUE benchmark, ResNet50, and Stable Diffusion, we
demonstrated that our method consistently matches or outperforms existing state-of-the-art approaches
such as AdaLoRA and LoRA, while significantly reducing the parameter count.
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A APPENDIX

In the next sections, we will include the proofs of the results in the main text and a schematic
implementation of the training procedure.

B PROOF OF THEOREM 4.1

The hypergradient equation given in Equation (2) requires just to calculate ∂sB∗(s), i.e., a solution of
the implicit gradient Equation (3)

∂2
Bf

∗
2 ∂sB∗ + ∂s∂Bf

∗
2 = 0. (16)

Using the chain rule and the fact that f2(B, s) = L2(Ψ(B, s)), we have that

∂2
Bf

∗
2 = ∂B∂Bf

∗
2 = ∂B∂ΨL

∗
2∂BΨ

∗ = ∂2
ΨL

∗
2∂BΨ

∗∂BΨ
∗ + ∂ΨL

∗
2∂

2
BΨ

∗. (17)

In a similar manner, we have that

∂s∂Bf
∗
2 = ∂B∂ΨL

∗
2∂sΨ

∗ = ∂2
ΨL

∗
2∂BΨ

∗∂sΨ
∗ + ∂ΨL

∗
2∂B∂sΨ

∗. (18)

By plugging Equations (17) and (18) in equation Equation (16) we get the following:

(∂2
ΨL

∗
2∂BΨ

∗∂BΨ
∗ + ∂ΨL

∗
2∂

2
BΨ

∗)∂sB∗ + ∂2
ΨL

∗
2∂BΨ

∗∂sΨ
∗ + ∂ΨL

∗
2∂B∂sΨ

∗ = 0,

by suitably rearranging this expression, we have

∂2
ΨL

∗
2∂BΨ

∗(∂BΨ
∗∂sB∗ + ∂sΨ

∗) + ∂ΨL
∗
2(∂

2
BΨ

∗∂sB∗ + ∂s∂BΨ
∗) = 0. (19)
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Assuming for the moment that ∂2
ΨL

∗
2 ≡ 0, then the solution of Equation (19) is given by the solution

of
∂2
BΨ

∗∂sB∗ = −∂s∂BΨ
∗.

Since Ψ(B, s) is multilinear in the basis matrices B = (U (1), . . . , U (d)), the partial derivatives have
diagonal terms equal to zero, i.e. ∂2

U(i)Ψ
∗ = 0, we get the following system of equations

d∑
j=1,j ̸=i

∂2
U(i),U(j)Ψ

∗∂sU
(j) = −∂s∂U(i)Ψ∗, i = 1, . . . , d.

We hence just need to calculate

∂2
U(i),U(j)Ψ

∗ = ∂U(i),U(j)

r∑
k=1

skU
(1)ek ⊗ · · · ⊗ U (i)ek ⊗ . . . U (j)ek ⊗ · · · ⊗ U (d)ek.

For d ≥ 3, the last system cannot be solved in closed form, but given the symmetry of the Hessian one
could exploit the structure through the use of Krylov methods. For d = 2 instead, the last calculation
leads to the following equality:

sβ
∑
γ

∂sηU
(2)
γβ eα ⊗ eγ = −δβηeα ⊗ U (2)eβ .

By testing the last equation on the left by ei and on the right by ej we get:

sβδαi∂sηU
(2)
jβ = −δβηδαiU

(2)
jβ ,

that finally leads to

∂sηU
(2)
jβ = −δβηU

(2)
jβ s−1

β ,

∂sηU
(1)
jβ = −δβηU

(1)
jβ s−1

β .

We hence get the final hypergradient expression by means of Equation (2):

d

ds
f1(B∗(s), s) = ∂sf

∗
1 − diag[U (1)∗,⊤∂U(1)f∗

1 + U (2)∗,⊤∂U(2)f∗
1 ]

⊙
s−1.

We are just left to estimate the error between this approximate solution and the real hypergradient.
The structure of Equation (19) can be summarized by giving an error estimate for a linear system of
the form

A(Bx+ b) + C(Dx+ d) = 0,

A = ∂2
ΨL

∗
2, B = ∂BΨ

∗∂BΨ
∗,

C = ∂ΨL
∗
2, D = ∂2

BΨ
∗,

b = ∂sΨ
∗, d = ∂s∂BΨ

∗,

x = ∂sB∗.

Now let x∗ = −(AB + CD)−1(Ab − Cd) be the solution of the above linear system, and let
y∗ = −D−1d the solution of Dx+ d = 0, which exactly represents our approximation. Let us define
M = AB + CD and estimate the distance between the two solutions:

∥y∗ − x∗∥ = ∥
(
D−1 −M−1C

)
d+M−1Ab∥ ≤ ∥D−1 −M−1C∥∥d∥+ ∥M−1∥∥A∥∥b∥.

By using the fact that for two invertible linear operators P,Q, the identity (P + Q)−1 = P−1 −
P−1Q(P +Q)−1 holds, we get that

D−1 −M−1C = D−1 − ((CD)−1 − (CD)−1(AB)M−1)C = (CD)−1ABM−1C. (20)

By inserting Equation (20) in the last estimate we get

∥y∗ − x∗∥ ≤ ∥(CD)−1∥∥A∥∥BM−1C∥∥d∥+ ∥M−1∥∥A∥∥b∥ = α∥A∥,
α = ∥(CD)−1∥∥BM−1C∥∥d∥+ ∥M−1∥∥b∥,

14
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from which, by using the hypothesis on the uniform invertibility and boundedness of CD, and the
control on the Hessian norm, we get

∥M−1∥ ≤ ∥(CD)−1∥
1− ∥(CD)−1∥∥AB∥

≤ β

1−Kβ∥B∥
.

Finally, we get

∥y∗ − x∗∥ ≤
( β2

1−Kβ∥B∥
∥B∥∥C∥∥d∥+ β

1−Kβ∥B∥
∥b∥

)
∥A∥ ≲ βK,

where the omitted constant is bounded because the basis lies in a product of Stiefel manifolds, which
are compact, and thus all the terms in parenthesis can be bounded.
For the general tensor case d > 2, following the previous calculation, a tridiagonal approximation D̃
of D immediately leads to an error bound:

∥y∗ − x∗∥ ≲ βK + ∥D−1 − D̃−1∥ ≤ βK + ∥D−1∥∥D̃−1∥∥D − D̃∥.

By taking the difference ∥∥∥∥G(s)− d

ds
f∗
1 (s)

∥∥∥∥ ≤ ∥∂Bf∗
1 ∥∥x∗ − y∗∥,

and using the boundedness of ∥∂Bf∗
1 ∥, we get the desired result.

C ADDITIONAL DETAILS FOR SECTION 5

In this section, we report additional details on the computational cost of the Stochastic Away-Step
Frank–Wolfe algorithm presented in Section 5.
The optimization problems used to determine the Frank-Wolfe and Away-step directions can be
solved efficiently since we are concentrating on minimizing a function over the perturbed L1 simplex.
In the Frank-Wolfe step, we indeed minimize a linear function over a polytope S. We know, by means
of the fundamental theorem of linear programming, that one of the vertices of S is solution of such a
linear program (See,e.g., (Bertsekas, 2016)). Therefore we simply need to evaluate that function on
this finite set of elements, a task that can be performed at a linear cost. In particular,

G(sn)
⊤vi =

{
ε
∑r

j=1 G(sn)j if i = 0,

ε
∑r

j=1 G(sn)j + τG(sn)i otherwise.

with V = {v0, v1, . . . , vr} the set of vertices of our feasible set S.
Therefore, if G(sn)i > 0 ∀ i = 1, . . . , r then ı̂ = 0, otherwise we choose ı̂ ∈ argmini G(sn)i.
Similarly, in the Away step, we simply need to evaluate the function on the set of active vertices Sn

used to describe the iterate. Therefore, if 0 ∈ Sn and G(sn)j < 0 ∀ j ∈ Sn then ȷ̂ = 0, otherwise
we choose ȷ̂ ∈ argmaxj∈Sn

G(sn)j .

D PROOF OF THEOREM 6.2

We first notice that, using barycentric coordinates, Problem (4) can be written in the following form:

min f(s)

s.t. s = Aw

e⊤w = 1

w ≥ 0 ,

with A = [v0, v1, . . . , vr] ∈ Rr×(r+1). So given a feasible iterate sn ∈ Rr in Problem (4), we
can suitably define the non-negative weights w ∈ Rr+1 related to the barycentric coordinates and
define the set Sn = {j : wj > 0}, the set of indices related to the so-called active vertices, that
is the vertices with a positive weight wj in the barycentric coordinates. It is then easy to see that,
in this case, the linearized problem defined in the Away-step-direction procedure (Step 6 of our

15
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algorithm), simply reduces to select the vertex vȷ̂ that maximizes the scalar product G̃(sn)
⊤vȷ̂, with

ȷ̂ ∈ Sn = {j : wj > 0}.

The following chain of inequalities holds:

−∇f(sn)
⊤hFW

n ≥ −∇f(sn)
⊤hn ≥ −G̃(sn)

⊤hn − ϵ ≥ −G̃(sn)
⊤hFW

n − ϵ ≥ −∇f(sn)
⊤hFW

n − 2ϵ, (21)

where we used Equations (5) and (6) in the second and the last inequality with ϵ = χ + χ = 2χ,
while the first and the third inequality follow from the definition of hFW

n and hn.
In particular,using the definitions of g̃n, gn and gFW

n , from Equation (21) we can write

gFW
n ≥ g̃n − ϵ, (22)

g̃n ≥ gFW
n − ϵ, (23)

gn ≥ g̃n − ϵ. (24)

Using Equations (7) and (22), we also have

ϵ ≤ η(g̃n − ϵ) ≤ ηgFW
n . (25)

Now, let us distinguish three cases.

A) If ᾱn < αmax
n , from Equation (8) it follows that

g̃n
M∆2

< αmax
n and ᾱn =

g̃n
M∆2

. Let 1A

denote the indicator function for this case. We observe that, from Equations (23) and (25),
we have

g̃n ≥ (1− η)gFW
n . (26)

Using Equations (9) and (26), we can write

1A{f(sn)−f(sn+αndn)} ≥ 1A{ρᾱng̃n} ≥ 1A

{
ρg̃2n
M∆2

}
≥ 1A

{
ρ(1− η)2

M∆2
(gFW

n )
2
}
. (27)

As for Sn, by hypothesis, we have either dn = hn = vı̂ − sn or dn = bn = sn − vȷ̂ for
some ı̂, ȷ̂ ∈ [0 : r]. In particular, Sn+1 ⊆ Sn ∪ {ı̂} so that |Sn+1| ≤ |Sn|+ 1.

B) If αn = ᾱn = αmax
n and dn = hn, then ᾱn = αmax

n = 1. Let 1B denote the indicator
function for this case. By the standard descent lemma, we can write

1B{f(sn)− f(sn+1)} = 1B{f(sn)− f(sn + dn)} ≥

≥ 1B

{
gn − M

2
∥dn∥2

}
≥ 1B

{
gn − M∆2

2

}
.

Using Equation (24) and the fact that g̃n
M∆2 ≥ 1, we obtain

1B{f(sn)− f(sn+1)} ≥ 1B

{
g̃n − ϵ− M∆2

2

}
≥ 1B

{
g̃n
2

− ϵ

}
.

From Equations (23) and (25), we also have

g̃n
2

− ϵ ≥ gFW
n

2
− 3

2
ϵ ≥ gFW

n

2
− 3

2
ηgFW

n =
1− 3η

2
gFW
n .

Hence, we can write

1B{f(sn)− f(sn+1)} ≥ 1B

{
1− 3η

2
gFW
n

}
≥ 1B

{
ρ(1− η)2

M∆2
(gFW

n )
2
}
, (28)

where in the last inequality we used Equation (10).
Reasoning as in the case above we also have |Sn+1| ≤ |Sn|+ 1.

C) If αn = ᾱn = αmax
n and dn = bn = sn − vȷ̂ for ȷ̂ ∈ Sn. Then we have wi

n = 0 for
i ∈ [1 : r] \ Sn ∪ {ȷ̂} and wi

n+1 > 0 for i ∈ Sn \ {ȷ̂}. In particular, |Sn+1| = |Sn| − 1.

16
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Now, based on the three cases analyzed above, we partition the iterations {0, 1, . . . , T − 1} into three
subsets NA, NB , NC and defined as follows:

NA(T ) = {n < T : ᾱn < αmax
n },

NV (T ) = {n < T : ᾱn = αmax
n , dn = hn},

NC(T ) = {n < T : ᾱn = αmax
n , dn = bn}.

We have by induction on the recurrence relation proved for |Sn| that
|ST | − |S0| ≤ |NA(T )|+ |NB(T )| − |NC(T )| for every T ∈ N. (29)

Since NC(T ) = T − |NA(T )| − |NB(T )|, from Equation (29) we get

|NA(T )|+ |NB(T )| ≥
T + |ST | − |S0|

2
≥ T

2
, (30)

where we used |S0| = ℓ ≤ |ST |.

Considering just the good case, where we can have a bound on the decrease, using Equations (27)
and (28), we can write

En [f(sn)− f(sn+1)] = En [(1A + 1B){f(sn)− f(sn+1)}] ≥
ρ(1− η)2

M∆2
(gFW

n )
2
. (31)

Using Equation (31) and taking full expectations, we obtain

f(s0)− f∗ ≥
T−1∑
n=0

E [f(sn)− f(sn+1)]

≥
∑

NA(T )

E [f(sn)− f(sn+1)] +
∑

NB(T )

E [f(sn)− f(sn+1)]

≥ |NA(T )| min
n∈NA(T )

ρ(1− η)2

M∆2
E
[
(gFW

n )2
]
+ |NB(T )| min

n∈NB(T )

ρ(1− η)2

M∆2
E
[
(gFW

n )2
]

≥ |NA(T )| min
n∈NA(T )

ρ(1− η)2

M∆2
E
[
gFW
n

]2
+ |NB(T )| min

n∈NB(T )

ρ(1− η)2

M∆2
E
[
gFW
n

]2
≥ (|NA(T )|+ |NB(T )|)

ρ(1− η)2

M∆2
min

0≤n≤T−1
E
[
gFW
n

]2
≥ (|NA(T )|+ |NB(T )|)

ρ(1− η)2

M∆2
E [g∗T ]

2

≥ T

2

ρ(1− η)2

M∆2
E [g∗T ]

2
,

where the fourth inequality follows from Jensen’s formula, in the second-last inequality we use the
definition of g∗T and the last inequality is due to Equation (30).

Hence,

E [g∗T ] ≤

√
2∆2M(f(s0)− f∗)

Tρ(1− η)2
,

leading to the desired result.

E PROOF OF LEMMA 6.3

The proof partially follows the one in (Venturini et al., 2023). Reasoning as in the proof of Theo-
rem 6.2, we have that Equation (24) holds. By the standard descent lemma, we can write

f(sn)− f(sn + αdn) ≥ αgn − α2M∥dn∥2

2
≥ α(g̃n − ϵ)− α2M∆2

2
, ∀α ∈ R, (32)

where the last inequality follows from Equation (24).
At iteration n, if α is determined by:

17
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• α = ᾱn, then we can replace the stepsize in the right-hand side with g̃n
M∆2 in Equation (32),

obtaining

f(sn)− f(sn + ᾱndn) ≥
g̃n(g̃n − ϵ)

M∆2
− g̃2n

2M∆2
=

g̃2n
2M∆2

− g̃nϵ

M∆2
.

Using Equation (14), we obtain

f(sn)− f(sn + ᾱndn) ≥
g̃2n

2M∆2
− 1

M∆2
g̃2n

(
η

1 + η

)
=

1− η

2(1 + η)

g̃2n
M∆2

.

Thus, we have

f(sn)− f(sn + αndn) ≥ ρ
g̃2n

M∆2
≥ ρᾱng̃n.

• the Armijo line search, then

f(sn)− f(sn + αdn) ≥ γαg̃n ∀α ∈
[
0, 2

(1− γ)g̃n − ϵ

M∆2

]
.

Since αn is computed by Equations (12) and (13), we can write

αn ≥ min

(
1, 2δ

(1− γ)g̃n − ϵ

M∆2

)
≥ min

(
1, 2δ

(1− γ − η)g̃n
M∆2

)
≥ min(1, 2δ(1− γ − η))ᾱn,

where the second inequality follows from Equation (14).
We hence have

αn ≥ min

(
1, c

g̃n
M∆2

)
for some c > 0.

We now consider two cases: when c ≥ 1 then ᾱn is of course a lower bound for the step size
αn, and when c < 1 we can still recover Equation (8) by considering M̃ = M/c instead of
M as Lipschitz constant.

F PROOF OF THEOREM 6.5

By the stationarity of s∗ and by definition of exposed face, we can write

λv(s
∗) ≥ 0 ∀v ∈ V, (33)

λv(s
∗) = 0 iff v ∈ F(s∗). (34)

By continuity, we can choose

Γ(s∗) =
λMIN
v (s∗)− 2χ

2
> 0 s.t. (35)

λv(sn) > λv(s
∗)− Γ(s∗) ∀v ∈ V \ (V ∩ F(s∗)). (36)

Using Equations (5) and (6) and Equation (36), we can write

G̃(sn)
⊤(v − sn) + 2χ ≥ ∇f(sn)

⊤(v − sn) > λv(s
∗)− Γ(s∗). (37)

Therefore,

G̃(sn)
⊤(v − sn) ≥ λv(s

∗)− 2χ− λMIN
v (s∗)− 2χ

2
> 0 ∀v ∈ V \ (V ∩ F(s∗)),

where in the first inequality we used Equation (37) and in the second inequality we used Equation (34)
and the definitions of λMIN

v (s∗) in Equation (15) and Γ(s∗) in Equation (35).
The algorithm will then only choose a Frank-Wolfe or an away direction that guarantees the new
iterate sn+1 to stay in the face, so sn+1 ∈ F(s∗). If we further have that the level set L(f(sn)) is
such that L(f(sn)) ⊂ BΓ(s∗) then, considering the fact that the sequence {f(sn)} is non-increasing,
we can easily see that sn+1 ∈ BΓ(s∗) ∩ F(s∗).
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G PER-ITERATION COST OF DEBORA

We can give an upper bound on the number of arithmetic operations carried out at every dEBORA
iteration: each iteration indeed requires TmaxCr operations, where Cr is the cost of one lower-level
optimization step with rank r and Tmax is the maximal number of iterations for the lower-level
optimization step. Notice that Cr includes the cost of forward, backward and of the optimization
step. In particular, Cr is equal to the cost of performing one optimization step for (Zhang et al., 2023)
without rank adaptation. Moreover, we need to add the cost of calculating the hypergradient which
is O(Lrn2), where L is the number of layers in the neural network (assuming for simplicity layers
have square dimensions of dimension n).
Notice that when the correct face is identified, the cost of calculating the single iteration at the
lower-level Cr and the cost of the upper-level step decreases. Finally, we have a linear minimization
oracle cost of O(r), and an optional line search with cost O(1). Summing up, each iteration of the
method has a cost of O(TmaxCr +Lrn2) against a O(Cr) for (Hu et al., 2022) and a O(Cr +Lrn2)
for (Zhang et al., 2023) (including their cost of calculating the sensitivity metric for rank truncation).
While the single iteration of dEBORA is more expensive than the one in (Zhang et al., 2023) by
a factor Tmax (which can be predefined by the user as the maximal number of iterations for the
lower-level), in Figure 4 we report different GPU statistics during training on the MRPC task (GLUE
benchmark) showing that the effective computing time of dEBORA is competitive. As we can observe
from Figure 4, the effective memory consumption is lower together with the average GPU power
usage. Moreover, while the cost of single iteration is bigger, the effective time to same accuracy is
comparable.

0 200 400 600 800 1000
Time [s]

0.70

0.75

0.80

0.85

0.90

Ac
cu

ra
cy

GPU time vs accuracy
dEBORa
AdaLoRA

Figure 1: Time vs accuracy for
the MRPC task.
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Figure 2: GPU memory con-
sumption for the MRPC task.
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Figure 3: Energy consumption
on the MRPC task.

Figure 4: GPU statistics during training (A100 80GB).
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