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ABSTRACT

Monocular Simultaneous Localization and Mapping (SLAM) remains a funda-
mental challenge in the robotics perception area, particularly in generating dense,
high-fidelity 3D scene reconstructions efficiently. While recent advances in neu-
ral radiance fields have shown promise, they often struggle with the computational
demands of real-time applications. 3D Gaussian Splatting has emerged as a pow-
erful alternative, enabling high-quality rendering at high frame rates. This paper
introduces a novel monocular SLAM system that leverages the strengths of 3D
Gaussian Splatting within a robust and efficient hierarchical optimization frame-
work. Our method decomposes the SLAM problem into three interconnected
levels: a lightweight frame-to-model tracking process, a joint optimization ad-
justment for refining a co-visible window of keyframes and associated Gaussians,
and a global optimization stage to ensure large-scale map consistency and cor-
rect for accumulated drift. This hierarchical strategy allows our system to achieve
a strong balance between tracking robustness and mapping accuracy without the
overhead of full, per-frame bundle adjustment. Besides, another innovative aspect
of our work is the integration of a local Newton-based diagonal Hessian opti-
mizer within our bundle adjustment stage. This nearly second-order method sig-
nificantly accelerates convergence and improves the accuracy of map point and
camera pose refinement, enabling a strong balance between tracking robustness
and mapping accuracy without the overhead of full, per-frame bundle adjustment.
We demonstrate through extensive evaluation on standard benchmark datasets that
our approach achieves competitive performance in camera tracking accuracy and
produces state-of-the-art, photorealistic 3D scene reconstructions at high speed,
marking a significant step forward for dense monocular SLAM systems.

1 INTRODUCTION

Simultaneous Localization and Mapping (SLAM) is a fundamental problem in robotics and com-
puter vision, enabling autonomous systems to build maps of unknown environments while simulta-
neously estimating their own position within those maps. Monocular SLAM, which relies solely on
a single camera, offers advantages in terms of cost, size, and ubiquity but introduces significant chal-
lenges, including scale ambiguity due to the absence of direct depth cues, susceptibility to drift over
large scales, and difficulties in handling dynamic scenes or low-texture areas. These issues make
it particularly demanding to achieve accurate, dense 3D reconstructions in real-time applications,
such as augmented reality, autonomous navigation, and mobile robotics. Early monocular SLAM
systems were predominantly feature-based, extracting and matching sparse keypoints to estimate
camera poses and build maps, as exemplified by ORB-SLAM Mur-Artal et al. (2015). These meth-
ods excel in robustness and efficiency but typically produce sparse point clouds, limiting their utility
for tasks requiring detailed scene understanding. Direct methods, such as Direct Sparse Odometry
(DSO) Engel et al. (2017), optimize photometric errors across pixels to enable semi-dense recon-
structions, yet they still struggle with photorealistic quality and computational overhead in dense
mapping scenarios. To overcome these limitations, recent research has shifted toward neural implicit
representations, which parameterize scenes continuously for high-fidelity rendering and reconstruc-
tion. Neural Radiance Fields (NeRF) Mildenhall et al. (2020) have revolutionized view synthesis
by modeling scenes as continuous functions that predict color and density at any 3D point, enabling
photorealistic novel view generation from sparse inputs. Integrating NeRF into monocular SLAM
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Figure 1: 3D reconstruction results on various scenes of different methods. Visual comparison
of 3D reconstruction methods across different datasets. We compare our method against outstanding
methods on challenging scenes. The first row shows results on the fr3/office sequence from TUM-
RGBD, featuring a desk with computer setup. The second row presents reconstruction of room2
from the Replica dataset, showing a shelf with decorative items. The third row displays another view
from the fr3/office sequence from TUM-RGB. Our method produces sharp textures and accurate
geometry while maintaining reconstruction stability and efficiency across different viewing angles.

frameworks, such as NeRF-SLAM Rosinol et al. (2023), has shown promise for dense mapping by
fusing geometric and photometric cues in real-time. However, NeRF-based approaches often incur
high computational costs and slow-speed due to the need for dense sampling and multi-layer per-
ceptron evaluations during optimization. Variants incorporating multi-modal sensors or semantic
priors have mitigated some issues, but challenges in convergence speed and handling monocular
depth ambiguity persist. Addressing these drawbacks, 3D Gaussian Splatting (3DGS) Kerbl et al.
(2023) has emerged as an explicit, efficient alternative to implicit representations like NeRF. By
representing scenes as collections of anisotropic 3D Gaussians optimized for radiance and opacity,
3DGS achieves high-quality rendering at frame rates orders of magnitude faster than NeRF, while
supporting differentiable rasterization for gradient-based optimization. This has spurred its adoption
in SLAM, with pioneering works like Gaussian Splatting SLAM Matsuki et al. (2024) demonstrat-
ing the first monocular implementation, yielding dense reconstructions with improved speed and
fidelity. Subsequent systems, such as SplatMAP Hu et al. (2025b) and UDGS-SLAM Mansour
et al. (2025), incorporated depth priors or semantic segmentation to enhance robustness in chal-
lenging environments. Extensions for dynamic scenes, like WildGS-SLAM Zheng et al. (2025),
further highlight 3DGS’s versatility by separating static and moving elements. Despite these ad-
vances, many existing 3DGS-based SLAM methods rely on per-frame optimizations or simplified
tracking, leading to trade-offs between accuracy, drift correction, and efficiency in large-scale sce-
narios. In this paper, we present a novel monocular SLAM system that harnesses the efficiency of 3D
Gaussian Splatting within a hierarchical optimization framework to achieve a balance of robustness,
accuracy, and speed. Our approach decomposes the SLAM pipeline into three levels: a lightweight
frame-to-model tracking stage for real-time pose estimation, a joint optimization adjustment that
refines co-visible keyframes and associated Gaussians, and a global optimization phase to mitigate
accumulated drift and ensure map consistency. This structure avoids the computational burden of
full per-frame adjustments while maintaining high-fidelity outputs. Furthermore, we introduce a
Newton-based diagonal Hessian optimizer in the bundle adjustment, approximating second-order
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information to accelerate convergence and enhance refinement precision. Extensive experiments on
benchmark datasets validate our system’s performance and high photorealistic reconstructions.

2 RELATED WORK

Visual Simultaneous Localization and Mapping (SLAM) has been extensively studied in robotics
and computer vision, with approaches broadly categorized into feature-based, direct, and more re-
cently, learning-based methods incorporating neural representations. In this section, we review key
developments in monocular SLAM, the role of neural radiance fields (NeRF) in dense reconstruc-
tion, and the emerging use of 3D Gaussian Splatting (3DGS) that directly motivates our work.

Traditional Monocular SLAM Early monocular SLAM systems prioritized efficiency and ro-
bustness by generating sparse or semi-dense reconstructions. Feature-based methods, exemplified
by the highly influential ORB-SLAM series Mur-Artal et al. (2015); Mur-Artal & Tardós (2017);
Campos et al. (2021), match sparse keypoints to estimate camera poses and build point cloud maps.
These systems achieve state-of-the-art accuracy in large-scale environments through robust bundle
adjustment and loop closure. However, their sparse map representation is insufficient for appli-
cations requiring photorealistic rendering or dense scene interaction. In contrast, direct methods
optimize photometric error directly on pixel intensities to enable denser mapping. Pioneers like
LSD-SLAM Engel et al. (2014) and Direct Sparse Odometry (DSO) Engel et al. (2017) demon-
strated that this approach could yield semi-dense depth maps and highly accurate odometry. Despite
these advances, direct methods remain sensitive to illumination changes and typically lack the high-
fidelity detail needed for truly photorealistic scene reconstruction.

Neural Radiance Fields in SLAM The introduction of Neural Radiance Fields (NeRF) Milden-
hall et al. (2020) marked a paradigm shift toward implicit neural representations for novel view
synthesis. By modeling scenes as continuous functions, NeRF achieves unprecedented photoreal-
ism but at a prohibitive computational cost. This has inspired a new class of SLAM systems focused
on dense, photorealistic mapping. Several systems, such as iMAP Sucar et al. (2021) and NICE-
SLAM Zhu et al. (2022), were among the first to integrate MLP-based implicit representations
into a real-time SLAM framework. Subsequent works like Orbeez-SLAM Chung et al. (2023) and
NeRF-SLAM Rosinol et al. (2023) further developed this concept for monocular inputs. While these
methods produce stunningly detailed scene reconstructions, they are fundamentally constrained by
the high computational overhead of per-frame MLP optimization and volumetric rendering.

3D Gaussian Splatting in SLAM To overcome the performance bottlenecks of NeRF, 3D Gaus-
sian Splatting (3DGS) Kerbl et al. (2023) was introduced. By representing a scene with a set of ex-
plicit, optimizable 3D Gaussians, 3DGS facilitates high-quality, photorealistic rendering at real-time
frame rates via a differentiable rasterization pipeline. This breakthrough has spurred rapid develop-
ment in the SLAM community. Several recent works have started to build monocular SLAM systems
using 3DGS. Gaussian Splatting SLAM Matsuki et al. (2024), one of the pioneering efforts, demon-
strates the potential of this representation but employs a simplistic tracking and densification strategy
that struggles to scale. Others like SplatMAP Hu et al. (2025b) improve on this with more integrated
frameworks, introducing SLAM-informed adaptive densification and geometry-guided optimization
for enhanced reconstruction quality. Recent extensions, such as WildGS-SLAM Zheng et al. (2025)
and Dy3DGS-SLAM Zhou et al. (2025), further enhance robustness by handling dynamic environ-
ments through uncertainty-aware mapping and fused dynamic masks, respectively. For efficiency,
MGSO Hu et al. (2025a) integrates photometric SLAM with 3DGS for real-time performance on
resource-limited hardware, while MemGS Bai et al. (2025) focuses on memory optimization by
merging redundant Gaussians in voxel space. SplaTAM Keetha et al. (2024) (extended from RGB-
D) also inspires monocular variants. However, a common theme in these early systems is a reliance
on either simplified frame-to-model tracking or a full, costly optimization for every new frame. This
leads to a difficult trade-off: either tracking robustness is compromised, or real-time performance is
sacrificed. For instance, many of these methods use a standard first-order optimizer for both tracking
and mapping, which can be slow to converge and less accurate for refining geometry.

Existing 3DGS-SLAM systems have not yet established a robust, multi-level optimization strategy
that balances real-time tracking, accurate local map refinement, and large-scale consistency. Our
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approach is distinct in its introduction of a hierarchical framework that decouples these tasks, and
crucially, integrates a nearly second-order Newton-based optimizer Lan et al. (2025) for the joint
optimization adjustment stage. This combination provides a more principled solution to achieving
both high accuracy and efficiency without the overhead of full per-frame optimization.

3 METHOD

Our monocular SLAM system leverages 3D Gaussian Splatting (3DGS) for real-time, photorealis-
tic scene reconstruction with robust tracking and drift-resilient mapping. It employs a hierarchical
framework: a lightweight frontend for pose-only tracking using Adam, and a backend mapping stage
where a joint optimizer, as the core engine, refines keyframe poses (via Adam) and Gaussian param-
eters (via a novel Stochastic Local Newton (SLN) optimizer), supported by differentiable rendering
and loss computation. An optional global consistency pass corrects drift. The SLN optimizer accel-
erates Gaussian refinement using a diagonal Hessian approximation, improving convergence over
first-order methods Hu et al. (2025a); Anonymous (2025). Evaluated on TUM RGB-D Sturm et al.
(2012), our system advances efficiency and acceptable precision over prior 3DGS SLAM approaches
Matsuki et al. (2024); Ye et al. (2025); Zhou et al. (2025).

Figure 2: Overview of our hierarchical 3D Gaussian Splatting SLAM system. The pipeline consists
of three main stages. The Frontend performs lightweight frame-to-model tracking using a pose-
only Adam optimizer. When keyframe criteria are met, it triggers the Backend, which performs
mapping. The core of the backend is a Joint Optimization stage that uses a hybrid optimizer—Adam
for poses and our SLN for Gaussians—to refine a local window of the map. Finally, an optional
Global Optimization stage performs pose-graph optimization to ensure large-scale consistency.

3.1 SCENE REPRESENTATION AND RENDERING

Our scene representation A.1 builds upon the foundational work of 3D Gaussian Splatting (3DGS)
introduced by Kerbl et al. Kerbl et al. (2023). In our system, the scene is modeled as a collection
of anisotropic 3D Gaussians G = {gi}Ni=1, where each Gaussian gi encapsulates geometric and
appearance attributes. Specifically, it includes a mean position µi ∈ R3, a covariance matrix Σi ∈
R3×3 parameterized by scale si ∈ R3 and rotation quaternion qi ∈ R4, view-dependent color via
spherical harmonics (SH) coefficients ai, and opacity αi ∈ [0, 1]. To support SLAM operations, we
augment each Gaussian with bookkeeping information: observation counts nobs,i, maximum screen-
space radii maxradii2D,i, and covisibility identifiers. The renderer, projects these Gaussians into the
camera frame using the camera pose Tj ∈ SE(3), parameterized by a Lie algebra twist ξj ∈ R6. It
computes per-pixel weights, colors, and transmittances via alpha-blending in depth order, producing
rendered colors, depths, gradients with respect to Gaussian parameters and poses, and masks.
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3.2 PHOTOMETRIC OPTIMIZATION

In our system, photometric optimization A.2 minimizes the discrepancy between observed pixel
intensities and those rendered from the 3D Gaussian map, enabling precise refinement of camera
poses and scene parameters. This approach leverages a robust loss function that combines absolute
residuals with structural similarity, augmented by regularization terms to maintain Gaussian stability.

3.3 FRONTEND: FRAME-TO-MODEL TRACKING

The frontend handles real-time pose estimation by aligning each incoming frame against the fixed
Gaussian map through pose-only optimization. This stage A.3 uses Adam to update the camera
twist parameters based on photometric gradients, ensuring efficient tracking. Keyframes are selected
adaptively based on motion and covisibility criteria to trigger backend mapping, packaging the frame
data and visible Gaussians for further refinement.

3.4 BACKEND: MAPPING STAGE

In our system, the backend mapping stage A.4 refines the poses of selected keyframes and the
associated Gaussian map through a joint optimizer, which acts as the core engine for maintaining
map accuracy. The workflow involves differentiable rendering of covisible views, computation of the
photometric loss, and backpropagation of gradients to update parameters. For a covisible windowW
of size N , views are rendered via a customized function, the loss L(Θ) is evaluated using joint loss,
and gradients are computed for optimization. Poses are updated using Adam, while Gaussians are
refined with our SLN optimizer, followed by updates to bookkeeping attributes. This stage ensures
efficient local refinement without full per-frame adjustments.

3.5 STOCHASTIC LOCAL NEWTON (SLN) OPTIMIZER

Figure 3: The blue curve repre-
sents the optimized camera trajec-
tory as selected keyframe poses.

In our system, the Stochastic Local Newton (SLN) optimizer
is applied to refine Gaussian parameters such as positions, co-
variances, colors, and opacities. This method approximates
a diagonal Hessian to enable near-second-order updates, ac-
celerating convergence and acceptable accuracy compared to
first-order optimizers. By incorporating a damped precon-
ditioner and clamping mechanisms, SLN ensures stable and
efficient optimization, particularly beneficial for handling the
stochastic nature of photometric gradients in SLAM. Rotations
are updated using the exponential map for Lie group consis-
tency Anonymous (2025); Hu et al. (2025a). Detailed equa-
tions for the gradient, Hessian approximation, and parameter
updates are provided in Appendix A.5.

3.6 MAP MAINTENANCE

In our system, map maintenance ensures the Gaussian representation remains efficient and accurate
by dynamically adjusting the density and pruning unnecessary elements. Densification is triggered
for Gaussians that exceed size or gradient energy thresholds, promoting detailed reconstruction in
high-variance areas. Pruning removes under-observed or low-contributing Gaussians to reduce re-
dundancy and computational load. Periodic opacity resets for non-visible Gaussians prevent ac-
cumulation of artifacts, while support for dynamic objects is achieved through pixel-level masks,
extending prior techniques for handling motion in scenes Zhou et al. (2025). These operations are
performed post-optimization to maintain a compact yet expressive map. Detailed criteria for densi-
fication and pruning are outlined in Appendix A.6.

3.7 GLOBAL CONSISTENCY

To mitigate accumulated drift in large-scale environments, our system incorporates a global con-
sistency stage using pose-graph optimization over covisible keyframes. Covisibility is quantified
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Figure 4: Hessian visualization for our Stochastic Local Newton optimizer. We analyze the
structure of the Hessian matrices to validate our diagonal approximation approach. The local Hes-
sian (left) displays the second derivatives of the loss function with respect to parameters of a single
Gaussian (pk for position, qk for rotation quaternion, sk for scale, ck for color coefficients, and σk
for opacity). This exhibits significant non-zero structure, particularly around the center, indicating
strong coupling within individual Gaussians’ parameters that benefits from second-order optimiza-
tion. In contrast, the global Hessian (right) shows minimal coupling between parameters across
different Gaussians, with most off-diagonal elements close to zero except for sparse structures. This
empirical analysis justifies our hybrid approach: using SLN with diagonal Hessian approximation
for efficient parameter updates while preserving convergence properties superior to first-order one.

by the overlap of observed Gaussian sets between keyframes, forming edges in the graph when ex-
ceeding a threshold. The optimization minimizes a weighted sum of relative pose errors, ensuring
long-term map coherence without frequent full adjustments. This approach complements the local
hierarchical refinements, providing robustness in extended sequences. The covisibility computation
and pose-graph error function are detailed in Appendix A.7.

4 EXPERIMENT

4.1 DATASETS

Datasets For our quantitative analysis, we evaluate our method on the TUM RGB-D dataset Sturm
et al. (2012) and the Replica dataset Straub et al. (2019). For qualitative results, we capture real-
world sequences with an OAK-D camera and validate our algorithm on fr2/xyz of TUM RGB-D
as well Sturm et al. (2012); these image sequences include challenging motions and other difficult
viewpoints that stress tracking and mapping, and are used to demonstrate robustness of our frontend
and the visual quality improvements from backend updates.

4.2 PLATFORM AND IMPLEMENTATION

We run our SLAM on a server equipped with two AMD EPYC 7H12 (Rome) CPUs—each with
64 physical cores (128 cores total, 256 hardware threads)—based on the Zen 2 microarchitecture
with AVX2 support, running at a 2.6 GHz base frequency (boost up to 3.3 GHz). The system uses
an NVIDIA A100 GPU for acceleration. As with 3DGS, time-critical rasterization and gradient
computation are implemented in CUDA, while the rest of the SLAM pipeline is implemented in
PyTorch. Details of hyperparameters are provided in the supplementary material.

4.3 EVALUATION METRICS

We evaluate the system along three complementary axes: trajectory accuracy, visual/map fidelity,
and computational/resource metrics. All quantitative measures are reported as mean ± standard
deviation over repeated runs (when applicable).

Trajectory accuracy Let {Ti}Ni=1 be ground-truth camera poses and {T̂i}Ni=1 the estimated poses.
We first align the estimated trajectory to ground truth via a similarity (Umeyama) or rigid body
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Figure 5: Visualization of 3D Gaussian rendering process of our algorithm Our hierarchical
system enables stochastic local Newton optimization reconstruction of the TUM-RGBD fr3/office
scene from monocular input. The reconstruction process of gaussian (red boxes) and corresponding
zoomed views demonstrate preservation of small objects and textures including product packaging
(top), arrangement of bottles (middle), and desktop items (bottom). These details are maintained
despite challenging lighting conditions and the inherent scale ambiguity of monocular input, show-
casing the robustness of our Gaussian parameter optimization approach.

transform (R∗, t∗) computed on translations. Then we report ”Absolute Trajectory Error” (ATE,
translational RMSE) as a standard metric for SLAM accuracy Sturm et al. (2012).

Visual / map fidelity We quantify how well the learned Gaussian map reproduces held-out views
using renderer-based image metrics including: Peak Signal-to-Noise Ratio (PSNR) Hore & Ziou
(2010), Structural Similarity Index (SSIM) Wang et al. (2004), and Learned Perceptual Image Patch
Similarity (LPIPS) Zhang et al. (2018). We also report map compactness/coverage metrics to assess
the efficiency of the Gaussian representation. All rendering-based metrics are computed using the
same renderer to ensure consistent forward modelling between training and evaluation.

Optimization and convergence We analyze the optimization behaviour of our SLN optimizer
compared to first-order methods through loss curves and convergence rates. This includes tracking
the loss over iterations and measuring the number of iterations required to reach specific thresholds.

Figure 6: Convergence comparison between our method and first-order optimization. Our approach
(blue) converges significantly faster than the first-order method (orange) across different scenes.
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GPU Memory Usage [GB]
NICE-SLAM Co-SLAM SplatMAP GS-SLAM (Mono) GS-SLAM (RGB-D) Ours

- 18.50 14.96 14.62 17.13 8.4

Table 1: Memory Analysis on TUM RGB-D dataset. We compare the peak memory usage of
our method against other state-of-the-art SLAM systems on the TUM RGB-D dataset. Our method
demonstrates significantly lower memory consumption, highlighting its efficiency in resource usage.

Monocular RGB-D
LC Class Method fr1 fr2 fr3 Avg. FPS LC Class Method fr1 fr2 fr3 Avg. FPS

w/o

3DGS
GS-SLAM 3.78 4.60 1.62 3.33 2.8

w/o

3DGS

GS-SLAM 1.50 1.44 1.49 1.47 2.5
UDGS 3.00 2.20 11.3 5.50 4.4 Point-SLAM 4.34 1.31 3.48 3.04 0.2
Ours 4.22 4.83 2.97 4.00 5.8 SplaTAM 3.35 1.24 5.16 3.25 1.3

Others

——————- Ours 3.51 1.62 4.97 3.37 5.4
DepthCov 5.60 1.20 68.8 25.2 10

NeRF
——————-

DROID-VO 5.20 10.7 7.30 7.73 18 Co-SLAM 2.40 1.70 2.40 2.17 0.4
DSO 22.4 1.10 9.50 11.0 25 iMAP 4.90 2.00 5.80 4.23 0.7
GlORIE 1.60 0.20 1.40 1.07 9 NICE-SLAM 4.26 6.19 3.87 4.77 0.6

Others
——————-
DI-Fusion 4.40 2.00 5.80 4.07 10
ESLAM 2.47 1.11 2.42 2.00 18
Vox-Fusion 3.52 1.49 26.01 10.34 10

w/ Others DROID-SLAM 1.80 0.50 2.80 1.70 10
w/ Others

BAD-SLAM 1.70 1.10 1.70 1.50 10
ORB-SLAM2 1.90 0.60 2.40 1.60 30 Kintinous 3.70 2.90 3.00 3.20 12

ORB-SLAM2 1.60 0.40 1.00 1.00 25

Table 2: Camera tracking result on TUM for monocular and RGB-D. ATE RMSE in cm is
reported. LC stands for Loop-closure. The fr1, fr2, and fr3 columns correspond to fr1/desk, fr2/xyz,
and fr3/office sequences respectively.

Method Cls LC r0 r1 r2 o0 o1 o2 o3 o4 Avg. FPS

Point-SLAM GS w/o 0.61 0.41 0.37 0.38 0.48 0.54 0.69 0.72 0.53 0.7
SplaTAM GS w/o 0.40 0.35 0.38 0.36 0.34 0.40 0.42 0.39 0.38 3.6
GS-SLAM GS w/o 0.44 0.32 0.31 0.44 0.52 0.23 0.17 2.25 0.58 25
GS-SLAM (sp) GS w/o 0.33 0.22 0.29 0.36 0.19 0.25 0.12 0.81 0.32 20
Ours GS w/o 0.45 0.33 0.41 0.46 0.42 0.31 0.27 0.82 0.43 80

Table 3: Camera tracking result on Replica for RGB-D SLAM. ATE RMSE in cm is reported.
LC stands for Loop-closure. The r0-r2 columns correspond to room sequences, and o0-o4 to office.

Computational metrics We report real-time performance metrics, mapping throughput, and re-
source usage to assess the efficiency of our SLAM system. This includes per-frame latency,
keyframe processing rates, and peak memory consumption, providing a comprehensive view of
the system’s operational characteristics.

4.4 QUANTITATIVE RESULTS

TUM RGB-D Table 2 presents the quantitative results of camera tracking accuracy and runtime
on the TUM RGB-D dataset Sturm et al. (2012), comparing our approach with a broad range
of state-of-the-art monocular and RGB-D visual SLAM systems. 3DGS-based methods: GS-
SLAM Matsuki et al. (2024), UDGS Mansour et al. (2025), Point-SLAM Sandström et al. (2023),
SplaTAM Keetha et al. (2024), and our proposed method. NeRF-based methods: Co-SLAM Wang
et al. (2023), iMAP Sucar et al. (2021), NICE-SLAM Zhu et al. (2022). Traditional and other
approaches: DepthCov Dexheimer & Davison (2023), DROID-VO/DROID-SLAM Teed & Deng
(2021), DSO Engel et al. (2017), GlORIE Zhang et al. (2024), BAD-SLAM Schöps et al. (2019),
Kintinous Whelan et al. (2015), ORB-SLAM2 Mur-Artal & Tardós (2017), DI-Fusion Huang et al.
(2021), ESLAM Johari et al. (2023), and Vox-Fusion Yang et al. (2022). We report the absolute
trajectory RMSE (ATE) for three standard representative sequences (fr1/desk, fr2/xyz, and
fr3/office) along with the average and the runtime in frames per second (FPS) for each method.
Among all evaluated methods, our approach achieves a compelling balance between competitive
tracking accuracy and substantially higher speed. In particular, our method operates at 5.8 FPS
for monocular and 5.4 FPS for RGB-D settings, clearly outperforming most learning-based and 3D
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Input Method fr1/desk fr2/xyz fr3/office Avg. FPS

M
on

o w/o joint optimization 17.32 20.44 12.57 16.78 3.7
w/o global optimization 10.42 9.73 6.18 8.78 4.3

w/o SLN 3.63 3.12 1.59 2.78 2.9
Ours 4.22 4.83 2.97 4.00 5.8

R
G

B
-D

w/o joint optimization 15.22 9.64 18.24 14.37 6.3
w/o global optimization 9.56 6.49 12.83 9.63 5.9

w/o SLN 2.74 1.21 3.15 2.37 2.6
Ours 3.51 1.62 4.97 3.37 5.4

Table 4: Ablation Study on TUM RGB-D dataset. We analyze the usefulness of the Stochastic
Local Newton (SLN) optimizer and joint optimization adjustment in our SLAM system. The best
(lowest) errors for each setting are in bold, and the highest FPS is also highlighted.

Gaussian-based counterparts in terms of efficiency, often by more than a factor of two to four, with-
out sacrificing accuracy. This significant speed advantage demonstrates the efficiency of our joint
optimization framework for time-sensitive SLAM applications.

Replica Table 3 presents the quantitative evaluation of camera tracking accuracy and runtime
across the Replica dataset Straub et al. (2019) for RGB-D SLAM. We compare our method with sev-
eral recent 3D Gaussian-based approaches: Point-SLAM Sandström et al. (2023), SplaTAM Keetha
et al. (2024), GS-SLAM Matsuki et al. (2024) (including the speed-optimized variant GS-SLAM
(sp) Matsuki et al. (2024)), together with our own method. For each method, we report the ab-
solute trajectory (ATE) RMSE in centimeters across a diverse set of sequences (rooms r0–r2 and
offices o0–o4), as well as the average ATE and the runtime in frames per second (FPS). Our method
achieves highly competitive tracking accuracy while offering a significant speed advantage: it runs
at 80 FPS, which is at least three times faster than the next fastest method (GS-SLAM (sp)), and over
20 times faster than most other evaluated approaches. This demonstrates the exceptional efficiency
of our system, making it ideal for real-time applications without sacrificing accuracy.

4.5 QUALITATIVE RESULTS

Figure 1 showcases the qualitative results of our SLAM system on the TUM RGB-D fr3/office
sequence and Replica room2. The figure illustrates the detailed reconstruction capabilities of our
method, highlighting its ability to preserve small objects and textures in challenging lighting condi-
tions. Figure 7 further details the sequence and Replica room1 and real-world captures, demonstrat-
ing the robustness of our Gaussian parameter optimization approach in maintaining scene fidelity.

4.6 ABLATION STUDY

We conduct an ablation study to evaluate the contributions of key components in our SLAM system,
the Stochastic Local Newton (SLN) optimizer and the hierarchical optimization strategy. Table 4
summarizes the results on the TUM RGB-D dataset for both monocular and RGB-D configurations.

5 CONCLUSION

We have presented a novel hierarchical monocular SLAM system that leverages a Stochastic Lo-
cal Newton (SLN) optimizer for efficient and accurate Gaussian parameter updates. Our approach
integrates a robust frontend for camera tracking with a backend that performs joint optimization
of camera poses and Gaussian map parameters through differentiable rendering. The system also
incorporates effective map maintenance strategies and global consistency mechanisms to ensure
long-term accuracy and robustness. Extensive evaluations on standard benchmarks demonstrate that
our method achieves competitive accuracy while significantly outperforming existing approaches in
terms of speed, making it suitable for real-time applications. Future work will explore the imple-
mentation on the mobile platform and the extension to dynamic scenes.
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A APPENDIX

A.1 DETAILS OF SCENE REPRESENTATION AND RENDERING

The scene is modeled as G = {gi}Ni=1, with each Gaussian gi = (µi ∈ R3,Σi ∈ R3×3, ai, αi ∈
[0, 1]) defining:

• Mean position µi, covariance Σi (via scale si ∈ R3, rotation quaternion qi ∈ R4).

• View-dependent color via spherical harmonics (SH) coefficients ai.

• Opacity αi.

• SLAM bookkeeping: observation counts nobs,i, maximum screen-space radii maxradii2D,i,
covisibility identifiers.

The differentiable renderer, transforms Gaussian i for camera pose Tj = [Rj |tj ] ∈ SE(3), parame-
terized by twist ξj ∈ R6:

xc = Rjµi + tj , Σc = RjΣiR
T
j , (1)

Jproj(xc) =

[ fx
Z 0 − fxX

Z2

0
fy
Z − fyY

Z2

]
, Σimg = JprojΣcJ

T
proj + εI2, (2)

using intrinsics K = diag(fx, fy), principal point (cx, cy), and ε = 10−6. Per-pixel weight:

wi,p = exp

(
−1

2
(xp − µ2D

i )TΣ−1
img(xp − µ

2D
i )

)
,
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Table 5: PSNR, SSIM, and LPIPS Metrics for Different SLAM Methods on Replica Dataset. M1
refers to NICE-SLAM Zhu et al. (2022), M2 refers to Vox-Fusion Yang et al. (2022), M3 refers
to ESLAM Johari et al. (2023), M4 refers to Point-SLAM Sandström et al. (2023), M5 refers to
GS-SLAM Matsuki et al. (2024), M6 refers to SplaTAM Keetha et al. (2024), M7 refers to RTG-
SLAM Liu et al. (2024), M8 refers to GLORIE-SLAM Zhang et al. (2024), M9 refers to Photo-
SLAM Wang et al. (2024), M10 refers to SplatMAP Hu et al. (2025b). For each method, the first
row corresponds to PSNR, the second row to SSIM, and the third row to LPIPS. The best results for
each metric are highlighted in bold.

Input Method Room0 Room1 Room2 Office0 Office1 Office2 Office3

RGBD

M1 22.12 22.47 24.52 27.09 30.34 19.66 22.83
0.76 0.76 0.81 0.84 0.91 0.77 0.81
0.24 0.30 0.30 0.26 0.28 0.20 0.21

M2 22.33 22.36 22.37 27.79 29.83 20.33 23.47
0.79 0.79 0.81 0.84 0.91 0.78 0.83
0.28 0.30 0.30 0.25 0.26 0.18 0.21

M3 25.36 27.77 29.23 29.08 32.57 28.36 32.62
0.91 0.93 0.94 0.97 0.97 0.96 0.98
0.31 0.30 0.30 0.29 0.23 0.21 0.20

M4 29.10 31.12 31.01 35.18 38.77 35.04 32.34
0.97 0.98 0.98 0.99 0.99 0.99 0.99
0.11 0.12 0.11 0.09 0.07 0.09 0.08

M5 31.56 32.86 35.08 37.80 41.17 39.01 33.92
0.97 0.97 0.97 0.99 0.99 0.99 0.99
0.09 0.09 0.09 0.07 0.04 0.06 0.06

M6 32.86 33.89 35.95 38.26 41.28 39.86 32.92
0.97 0.97 0.97 0.99 0.98 0.99 0.99
0.07 0.10 0.09 0.09 0.07 0.06 0.09

M7 34.15 34.21 35.57 37.91 41.27 38.22 35.81
0.979 0.981 0.981 0.99 0.99 0.98 0.98
0.13 0.13 0.12 0.12 0.11 0.13 0.12

MONO

M8 30.56 30.97 28.42 31.63 32.32 31.61 32.98
0.96 0.97 0.96 0.97 0.98 0.98 0.98
0.13 0.13 0.11 0.10 0.09 0.10 0.11

M9 29.87 29.01 29.41 32.75 33.59 31.62 34.17
0.87 0.91 0.91 0.95 0.96 0.94 0.96
0.10 0.11 0.09 0.08 0.07 0.10 0.09

M10 35.367 31.746 38.117 42.858 42.062 35.504 39.034
0.98 0.95 0.99 0.99 0.99 0.99 0.99
0.03 0.09 0.03 0.01 0.02 0.04 0.04

Ours 36.12 34.21 38.45 42.91 43.12 36.78 39.87
0.98 0.96 0.97 0.98 0.97 0.98 0.97
0.03 0.09 0.03 0.01 0.02 0.04 0.04

color ci,p = SH(ai, vp), transmittance Ti,p =
∏

k<i(1− αkwk,p). Rendered pixel:

Ĉp(G,Tj) =
∑
i∈Sp

wi,pci,pαiTi,p,

where Sp is depth-ordered Kerbl et al. (2023). Outputs include color, depth, gradients
∂Ĉp/∂(ξj , µi,Σi, ai, αi), and masks.

A.2 DETAILS OF PHOTOMETRIC OPTIMIZATION

Per-pixel residual: rj,p(G,Tj) = Ij,p − Ĉj,p(G,Tj). Robust loss:

ϕ(rj,p) = (1− λSSIM)ρ(|rj,p|) + λSSIM(1− SSIM(Ij , Îj)), λSSIM = 0.85,
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using Huber surrogate ρ. Joint optimization loss:

L(Θ) =
∑
j∈W

∑
p∈Ωj

wpϕ(rj,p) + λreg

∑
i∈GW

(∥diag(Σi)∥22 + |αi − 0.5|2),

where Θ = ({Tj}, GW ), and the regularizer stabilizes optimization Matsuki et al. (2024); Engel
et al. (2017).

A.3 DETAILS FRONTEND: FRAME-TO-MODEL TRACKING

The frontend estimates the pose of frame It with prior Tprev, minimizing pose-only:

Ltrack(Tt) =
∑
p∈Ωt

wpϕ(rt,p(G,Tt)),

with the map G fixed. Update ξt using Adam:

gξt = −
∑
p

wpψt,p

(
∂Ĉt,p

∂ξt

)T

, ψt,p = ϕ′(rj,p), ξt ← Adam(ξt, gξt , αpose), Tt ← exp(ξt)Tt.

Insert keyframe if:

∥tt − tlast∥2 > τt, angle(RtR
−1
last) > τR, or

|St ∩ Slast|
|St ∪ Slast|

< τc,

with τt = 0.1m, τR = 5◦, τc = 0.7. Packages include It, Tt, visible Gaussians.

A.4 BACKEND: MAPPING STAGE

The mapping stage refines keyframe poses and the Gaussian map through a joint optimizer, the core
engine, following the flow: differentiable rendering→ loss computation→ joint optimization. For
a covisible window W (size N ), render views using gaussian model.py, compute loss L(Θ)
(Eq. equation A.2) and backpropagate:

gθ = −
∑
j∈W

∑
p∈Ωj

wpψj,p

(
∂Ĉj,p

∂θ

)T

, θ ∈ Θ.

- Update poses using Adam: ξj ← Adam(ξj , gξj , αpose). - Update Gaussians using SLN. - Update
bookkeeping (nobs,i, maxradii2D,i).

A.5 STOCHASTIC LOCAL NEWTON (SLN) OPTIMIZER

SLN, applied to Gaussian parameters θb (e.g., µi,Σi, ai, αi), approximates the Hessian diagonally:

gb = −
∑
j∈W

∑
p∈Ωj(i)

wpψj,pJ
T
j,p,b, ψj,p = ϕ′(rj,p), (3)

hdiag,b ≈
∑
j∈W

∑
p∈Ωj(i)

sj,p(Jj,p,b ⊙ Jj,p,b), sj,p ≈
1

|rj,p|+ ϵ
, (4)

using a Huber surrogate for L1/SSIM (ϵ = 10−3). Damped preconditioner:

pb = clamp(hdiag,b + β + ε, pmin, pmax), ∆θb = −αSLN
gb
pb
,

with β = 10−4, ε = 10−6, pmin = 10−6, pmax = 106. Rotations use expmap Anonymous (2025);
Hu et al. (2025a).
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Figure 7: Example visual results of our method. Top row: four samples from our lab, bottom row:
four samples from room1 of Replica. Our approach reconstructs photorealistic scenes with sharp
object boundaries and faithful color, even in challenging cases.

A.6 MAP MAINTENANCE

Densify if:

max radii2Di > τsplit or grad energyi =
∑

j,p∈Ω(i)

∥JT
j,p,iψj,p∥2 > τgrad.

Prune if:
nobs,i < τobs or wi,p < τcontrib.

Reset opacity for non-visible Gaussians at cadence kreset. Dynamic objects are supported via pixel-
level masks, extending Zhou et al. (2025).

A.7 GLOBAL CONSISTENCY

Covisibility: Cab = |Sa ∩ Sb|. Edge if Cab > τloop. Pose-graph error:

Epose =
∑

(a,b)∈E

∥∥∥log ((T−1
a Tb)T̂

−1
ab

)∥∥∥2
Σ−1

ab

.

A.8 IMPLEMENTATION DETAILS

A.9 QUALITATIVE RESULTS2
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Category Parameter Value

Results

save results True
save dir results
save trj True
save trj kf intv 5
use gui False
eval rendering False

Dataset

type tum
sensor type depth
pcd downsample 128
pcd downsample init 32
adaptive pointsize True
depth scale 5000.0

Training

joint optimization True
joint opt window size 8
joint opt mapping iters 25
global opt enabled True
global opt interval 50
adaptive lr enabled True
lr decay factor 0.95
init itr num 1050

Tracking/Mapping

tracking itr num 100
mapping itr num 150
gaussian update every 150
gaussian th 0.7
gaussian extent 1.0
kf interval 5
spherical harmonics True

Learning Rates

cam rot delta 0.003
cam trans delta 0.001
position 0.00016
feature 0.0025
opacity 0.05
scaling 0.005

3DGS/Optimization

iterations 30000
position lr init 0.00016
percent dense 0.01
lambda dssim 0.2
densification interval 100

Table 6: Key parameters used in our SLAM and 3DGS experiments.
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