HIERARCHICALLY OPTIMIZED GAUSSIAN SPLATTING FOR ROBUST AND EFFICIENT MONOCULAR SLAM

Anonymous authorsPaper under double-blind review

000

001

002 003 004

010 011

012

013

014

016

017

018

019

021

025

026

027

028

029

031

034

037

038

040

041

042

043

044

045

046

047

048

051

052

ABSTRACT

Monocular Simultaneous Localization and Mapping (SLAM) remains a fundamental challenge in the robotics perception area, particularly in generating dense, high-fidelity 3D scene reconstructions efficiently. While recent advances in neural radiance fields have shown promise, they often struggle with the computational demands of real-time applications. 3D Gaussian Splatting has emerged as a powerful alternative, enabling high-quality rendering at high frame rates. This paper introduces a novel monocular SLAM system that leverages the strengths of 3D Gaussian Splatting within a robust and efficient hierarchical optimization framework. Our method decomposes the SLAM problem into three interconnected levels: a lightweight frame-to-model tracking process, a joint optimization adjustment for refining a co-visible window of keyframes and associated Gaussians, and a global optimization stage to ensure large-scale map consistency and correct for accumulated drift. This hierarchical strategy allows our system to achieve a strong balance between tracking robustness and mapping accuracy without the overhead of full, per-frame bundle adjustment. Besides, another innovative aspect of our work is the integration of a local Newton-based diagonal Hessian optimizer within our bundle adjustment stage. This nearly second-order method significantly accelerates convergence and improves the accuracy of map point and camera pose refinement, enabling a strong balance between tracking robustness and mapping accuracy without the overhead of full, per-frame bundle adjustment. We demonstrate through extensive evaluation on standard benchmark datasets that our approach achieves competitive performance in camera tracking accuracy and produces state-of-the-art, photorealistic 3D scene reconstructions at high speed, marking a significant step forward for dense monocular SLAM systems.

1 Introduction

Simultaneous Localization and Mapping (SLAM) is a fundamental problem in robotics and computer vision, enabling autonomous systems to build maps of unknown environments while simultaneously estimating their own position within those maps. Monocular SLAM, which relies solely on a single camera, offers advantages in terms of cost, size, and ubiquity but introduces significant challenges, including scale ambiguity due to the absence of direct depth cues, susceptibility to drift over large scales, and difficulties in handling dynamic scenes or low-texture areas. These issues make it particularly demanding to achieve accurate, dense 3D reconstructions in real-time applications, such as augmented reality, autonomous navigation, and mobile robotics. Early monocular SLAM systems were predominantly feature-based, extracting and matching sparse keypoints to estimate camera poses and build maps, as exemplified by ORB-SLAM Mur-Artal et al. (2015). These methods excel in robustness and efficiency but typically produce sparse point clouds, limiting their utility for tasks requiring detailed scene understanding. Direct methods, such as Direct Sparse Odometry (DSO) Engel et al. (2017), optimize photometric errors across pixels to enable semi-dense reconstructions, yet they still struggle with photorealistic quality and computational overhead in dense mapping scenarios. To overcome these limitations, recent research has shifted toward neural implicit representations, which parameterize scenes continuously for high-fidelity rendering and reconstruction. Neural Radiance Fields (NeRF) Mildenhall et al. (2020) have revolutionized view synthesis by modeling scenes as continuous functions that predict color and density at any 3D point, enabling photorealistic novel view generation from sparse inputs. Integrating NeRF into monocular SLAM

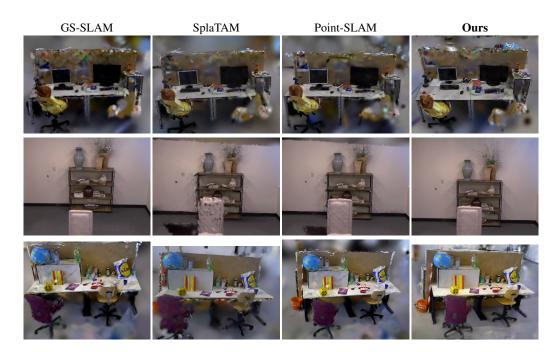


Figure 1: **3D** reconstruction results on various scenes of different methods. Visual comparison of 3D reconstruction methods across different datasets. We compare our method against outstanding methods on challenging scenes. The first row shows results on the fr3/office sequence from TUM-RGBD, featuring a desk with computer setup. The second row presents reconstruction of room2 from the Replica dataset, showing a shelf with decorative items. The third row displays another view from the fr3/office sequence from TUM-RGB. Our method produces sharp textures and accurate geometry while maintaining reconstruction stability and efficiency across different viewing angles.

frameworks, such as NeRF-SLAM Rosinol et al. (2023), has shown promise for dense mapping by fusing geometric and photometric cues in real-time. However, NeRF-based approaches often incur high computational costs and slow-speed due to the need for dense sampling and multi-layer perceptron evaluations during optimization. Variants incorporating multi-modal sensors or semantic priors have mitigated some issues, but challenges in convergence speed and handling monocular depth ambiguity persist. Addressing these drawbacks, 3D Gaussian Splatting (3DGS) Kerbl et al. (2023) has emerged as an explicit, efficient alternative to implicit representations like NeRF. By representing scenes as collections of anisotropic 3D Gaussians optimized for radiance and opacity, 3DGS achieves high-quality rendering at frame rates orders of magnitude faster than NeRF, while supporting differentiable rasterization for gradient-based optimization. This has spurred its adoption in SLAM, with pioneering works like Gaussian Splatting SLAM Matsuki et al. (2024) demonstrating the first monocular implementation, yielding dense reconstructions with improved speed and fidelity. Subsequent systems, such as SplatMAP Hu et al. (2025b) and UDGS-SLAM Mansour et al. (2025), incorporated depth priors or semantic segmentation to enhance robustness in challenging environments. Extensions for dynamic scenes, like WildGS-SLAM Zheng et al. (2025), further highlight 3DGS's versatility by separating static and moving elements. Despite these advances, many existing 3DGS-based SLAM methods rely on per-frame optimizations or simplified tracking, leading to trade-offs between accuracy, drift correction, and efficiency in large-scale scenarios. In this paper, we present a novel monocular SLAM system that harnesses the efficiency of 3D Gaussian Splatting within a hierarchical optimization framework to achieve a balance of robustness, accuracy, and speed. Our approach decomposes the SLAM pipeline into three levels: a lightweight frame-to-model tracking stage for real-time pose estimation, a joint optimization adjustment that refines co-visible keyframes and associated Gaussians, and a global optimization phase to mitigate accumulated drift and ensure map consistency. This structure avoids the computational burden of full per-frame adjustments while maintaining high-fidelity outputs. Furthermore, we introduce a Newton-based diagonal Hessian optimizer in the bundle adjustment, approximating second-order

information to accelerate convergence and enhance refinement precision. Extensive experiments on benchmark datasets validate our system's performance and high photorealistic reconstructions.

2 RELATED WORK

Visual Simultaneous Localization and Mapping (SLAM) has been extensively studied in robotics and computer vision, with approaches broadly categorized into feature-based, direct, and more recently, learning-based methods incorporating neural representations. In this section, we review key developments in monocular SLAM, the role of neural radiance fields (NeRF) in dense reconstruction, and the emerging use of 3D Gaussian Splatting (3DGS) that directly motivates our work.

Traditional Monocular SLAM Early monocular SLAM systems prioritized efficiency and robustness by generating sparse or semi-dense reconstructions. Feature-based methods, exemplified by the highly influential ORB-SLAM series Mur-Artal et al. (2015); Mur-Artal & Tardós (2017); Campos et al. (2021), match sparse keypoints to estimate camera poses and build point cloud maps. These systems achieve state-of-the-art accuracy in large-scale environments through robust bundle adjustment and loop closure. However, their sparse map representation is insufficient for applications requiring photorealistic rendering or dense scene interaction. In contrast, direct methods optimize photometric error directly on pixel intensities to enable denser mapping. Pioneers like LSD-SLAM Engel et al. (2014) and Direct Sparse Odometry (DSO) Engel et al. (2017) demonstrated that this approach could yield semi-dense depth maps and highly accurate odometry. Despite these advances, direct methods remain sensitive to illumination changes and typically lack the high-fidelity detail needed for truly photorealistic scene reconstruction.

Neural Radiance Fields in SLAM The introduction of Neural Radiance Fields (NeRF) Mildenhall et al. (2020) marked a paradigm shift toward implicit neural representations for novel view synthesis. By modeling scenes as continuous functions, NeRF achieves unprecedented photorealism but at a prohibitive computational cost. This has inspired a new class of SLAM systems focused on dense, photorealistic mapping. Several systems, such as iMAP Sucar et al. (2021) and NICE-SLAM Zhu et al. (2022), were among the first to integrate MLP-based implicit representations into a real-time SLAM framework. Subsequent works like Orbeez-SLAM Chung et al. (2023) and NeRF-SLAM Rosinol et al. (2023) further developed this concept for monocular inputs. While these methods produce stunningly detailed scene reconstructions, they are fundamentally constrained by the high computational overhead of per-frame MLP optimization and volumetric rendering.

3D Gaussian Splatting in SLAM To overcome the performance bottlenecks of NeRF, 3D Gaussian Splatting (3DGS) Kerbl et al. (2023) was introduced. By representing a scene with a set of explicit, optimizable 3D Gaussians, 3DGS facilitates high-quality, photorealistic rendering at real-time frame rates via a differentiable rasterization pipeline. This breakthrough has spurred rapid development in the SLAM community. Several recent works have started to build monocular SLAM systems using 3DGS. Gaussian Splatting SLAM Matsuki et al. (2024), one of the pioneering efforts, demonstrates the potential of this representation but employs a simplistic tracking and densification strategy that struggles to scale. Others like SplatMAP Hu et al. (2025b) improve on this with more integrated frameworks, introducing SLAM-informed adaptive densification and geometry-guided optimization for enhanced reconstruction quality. Recent extensions, such as WildGS-SLAM Zheng et al. (2025) and Dy3DGS-SLAM Zhou et al. (2025), further enhance robustness by handling dynamic environments through uncertainty-aware mapping and fused dynamic masks, respectively. For efficiency, MGSO Hu et al. (2025a) integrates photometric SLAM with 3DGS for real-time performance on resource-limited hardware, while MemGS Bai et al. (2025) focuses on memory optimization by merging redundant Gaussians in voxel space. SplaTAM Keetha et al. (2024) (extended from RGB-D) also inspires monocular variants. However, a common theme in these early systems is a reliance on either simplified frame-to-model tracking or a full, costly optimization for every new frame. This leads to a difficult trade-off: either tracking robustness is compromised, or real-time performance is sacrificed. For instance, many of these methods use a standard first-order optimizer for both tracking and mapping, which can be slow to converge and less accurate for refining geometry.

Existing 3DGS-SLAM systems have not yet established a robust, multi-level optimization strategy that balances real-time tracking, accurate local map refinement, and large-scale consistency. Our

approach is distinct in its introduction of a hierarchical framework that decouples these tasks, and crucially, integrates a nearly second-order Newton-based optimizer Lan et al. (2025) for the joint optimization adjustment stage. This combination provides a more principled solution to achieving both high accuracy and efficiency without the overhead of full per-frame optimization.

3 METHOD

Our monocular SLAM system leverages 3D Gaussian Splatting (3DGS) for real-time, photorealistic scene reconstruction with robust tracking and drift-resilient mapping. It employs a hierarchical framework: a lightweight frontend for pose-only tracking using Adam, and a backend mapping stage where a joint optimizer, as the core engine, refines keyframe poses (via Adam) and Gaussian parameters (via a novel Stochastic Local Newton (SLN) optimizer), supported by differentiable rendering and loss computation. An optional global consistency pass corrects drift. The SLN optimizer accelerates Gaussian refinement using a diagonal Hessian approximation, improving convergence over first-order methods Hu et al. (2025a); Anonymous (2025). Evaluated on TUM RGB-D Sturm et al. (2012), our system advances efficiency and acceptable precision over prior 3DGS SLAM approaches Matsuki et al. (2024); Ye et al. (2025); Zhou et al. (2025).

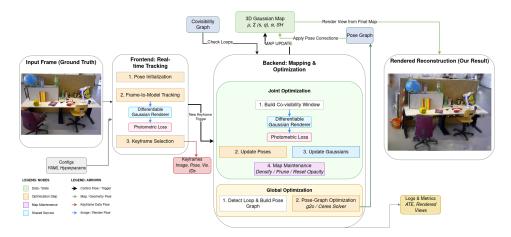


Figure 2: Overview of our hierarchical 3D Gaussian Splatting SLAM system. The pipeline consists of three main stages. The Frontend performs lightweight frame-to-model tracking using a pose-only Adam optimizer. When keyframe criteria are met, it triggers the Backend, which performs mapping. The core of the backend is a Joint Optimization stage that uses a hybrid optimizer—Adam for poses and our SLN for Gaussians—to refine a local window of the map. Finally, an optional Global Optimization stage performs pose-graph optimization to ensure large-scale consistency.

3.1 Scene Representation and Rendering

Our scene representation A.1 builds upon the foundational work of 3D Gaussian Splatting (3DGS) introduced by Kerbl et al. Kerbl et al. (2023). In our system, the scene is modeled as a collection of anisotropic 3D Gaussians $G = \{g_i\}_{i=1}^N$, where each Gaussian g_i encapsulates geometric and appearance attributes. Specifically, it includes a mean position $\mu_i \in \mathbb{R}^3$, a covariance matrix $\Sigma_i \in \mathbb{R}^{3 \times 3}$ parameterized by scale $s_i \in \mathbb{R}^3$ and rotation quaternion $q_i \in \mathbb{R}^4$, view-dependent color via spherical harmonics (SH) coefficients a_i , and opacity $\alpha_i \in [0,1]$. To support SLAM operations, we augment each Gaussian with bookkeeping information: observation counts $n_{\text{obs},i}$, maximum screenspace radii $\max_{\text{radii}\text{2D},i}$, and covisibility identifiers. The renderer, projects these Gaussians into the camera frame using the camera pose $T_j \in \text{SE}(3)$, parameterized by a Lie algebra twist $\xi_j \in \mathbb{R}^6$. It computes per-pixel weights, colors, and transmittances via alpha-blending in depth order, producing rendered colors, depths, gradients with respect to Gaussian parameters and poses, and masks.

3.2 PHOTOMETRIC OPTIMIZATION

In our system, photometric optimization A.2 minimizes the discrepancy between observed pixel intensities and those rendered from the 3D Gaussian map, enabling precise refinement of camera poses and scene parameters. This approach leverages a robust loss function that combines absolute residuals with structural similarity, augmented by regularization terms to maintain Gaussian stability.

3.3 FRONTEND: FRAME-TO-MODEL TRACKING

The frontend handles real-time pose estimation by aligning each incoming frame against the fixed Gaussian map through pose-only optimization. This stage A.3 uses Adam to update the camera twist parameters based on photometric gradients, ensuring efficient tracking. Keyframes are selected adaptively based on motion and covisibility criteria to trigger backend mapping, packaging the frame data and visible Gaussians for further refinement.

3.4 BACKEND: MAPPING STAGE

In our system, the backend mapping stage A.4 refines the poses of selected keyframes and the associated Gaussian map through a joint optimizer, which acts as the core engine for maintaining map accuracy. The workflow involves differentiable rendering of covisible views, computation of the photometric loss, and backpropagation of gradients to update parameters. For a covisible window W of size N, views are rendered via a customized function, the loss $\mathcal{L}(\Theta)$ is evaluated using joint loss, and gradients are computed for optimization. Poses are updated using Adam, while Gaussians are refined with our SLN optimizer, followed by updates to bookkeeping attributes. This stage ensures efficient local refinement without full per-frame adjustments.

3.5 STOCHASTIC LOCAL NEWTON (SLN) OPTIMIZER

In our system, the Stochastic Local Newton (SLN) optimizer is applied to refine Gaussian parameters such as positions, covariances, colors, and opacities. This method approximates a diagonal Hessian to enable near-second-order updates, accelerating convergence and acceptable accuracy compared to first-order optimizers. By incorporating a damped preconditioner and clamping mechanisms, SLN ensures stable and efficient optimization, particularly beneficial for handling the stochastic nature of photometric gradients in SLAM. Rotations are updated using the exponential map for Lie group consistency Anonymous (2025); Hu et al. (2025a). Detailed equations for the gradient, Hessian approximation, and parameter updates are provided in Appendix A.5.

Figure 3: The blue curve represents the optimized camera trajectory as selected keyframe poses.

3.6 MAP MAINTENANCE

In our system, map maintenance ensures the Gaussian representation remains efficient and accurate by dynamically adjusting the density and pruning unnecessary elements. Densification is triggered for Gaussians that exceed size or gradient energy thresholds, promoting detailed reconstruction in high-variance areas. Pruning removes under-observed or low-contributing Gaussians to reduce redundancy and computational load. Periodic opacity resets for non-visible Gaussians prevent accumulation of artifacts, while support for dynamic objects is achieved through pixel-level masks, extending prior techniques for handling motion in scenes Zhou et al. (2025). These operations are performed post-optimization to maintain a compact yet expressive map. Detailed criteria for densification and pruning are outlined in Appendix A.6.

3.7 GLOBAL CONSISTENCY

To mitigate accumulated drift in large-scale environments, our system incorporates a global consistency stage using pose-graph optimization over covisible keyframes. Covisibility is quantified

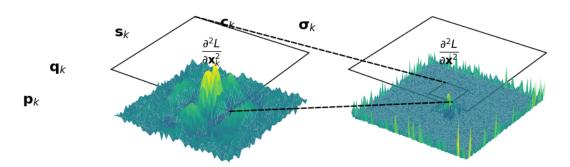


Figure 4: Hessian visualization for our Stochastic Local Newton optimizer. We analyze the structure of the Hessian matrices to validate our diagonal approximation approach. The *local* Hessian (left) displays the second derivatives of the loss function with respect to parameters of a single Gaussian (\mathbf{p}_k for position, \mathbf{q}_k for rotation quaternion, \mathbf{s}_k for scale, \mathbf{c}_k for color coefficients, and σ_k for opacity). This exhibits significant non-zero structure, particularly around the center, indicating strong coupling within individual Gaussians' parameters that benefits from second-order optimization. In contrast, the *global* Hessian (right) shows minimal coupling between parameters across different Gaussians, with most off-diagonal elements close to zero except for sparse structures. This empirical analysis justifies our hybrid approach: using SLN with diagonal Hessian approximation for efficient parameter updates while preserving convergence properties superior to first-order one.

by the overlap of observed Gaussian sets between keyframes, forming edges in the graph when exceeding a threshold. The optimization minimizes a weighted sum of relative pose errors, ensuring long-term map coherence without frequent full adjustments. This approach complements the local hierarchical refinements, providing robustness in extended sequences. The covisibility computation and pose-graph error function are detailed in Appendix A.7.

4 EXPERIMENT

4.1 DATASETS

Datasets For our quantitative analysis, we evaluate our method on the TUM RGB-D dataset Sturm et al. (2012) and the Replica dataset Straub et al. (2019). For qualitative results, we capture real-world sequences with an OAK-D camera and validate our algorithm on fr2/xyz of TUM RGB-D as well Sturm et al. (2012); these image sequences include challenging motions and other difficult viewpoints that stress tracking and mapping, and are used to demonstrate robustness of our frontend and the visual quality improvements from backend updates.

4.2 PLATFORM AND IMPLEMENTATION

We run our SLAM on a server equipped with two AMD EPYC 7H12 (Rome) CPUs—each with 64 physical cores (128 cores total, 256 hardware threads)—based on the Zen 2 microarchitecture with AVX2 support, running at a 2.6 GHz base frequency (boost up to 3.3 GHz). The system uses an NVIDIA A100 GPU for acceleration. As with 3DGS, time-critical rasterization and gradient computation are implemented in CUDA, while the rest of the SLAM pipeline is implemented in PyTorch. Details of hyperparameters are provided in the supplementary material.

4.3 EVALUATION METRICS

We evaluate the system along three complementary axes: trajectory accuracy, visual/map fidelity, and computational/resource metrics. All quantitative measures are reported as mean \pm standard deviation over repeated runs (when applicable).

Trajectory accuracy Let $\{T_i\}_{i=1}^N$ be ground-truth camera poses and $\{\hat{T}_i\}_{i=1}^N$ the estimated poses. We first align the estimated trajectory to ground truth via a similarity (Umeyama) or rigid body

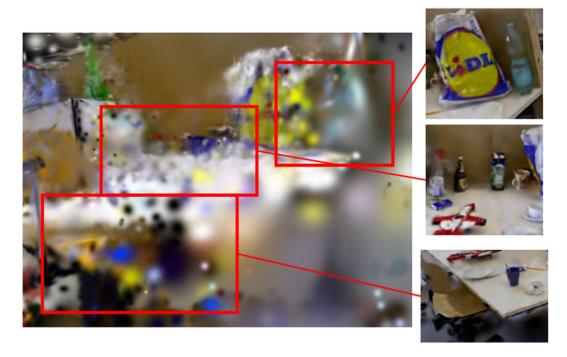


Figure 5: Visualization of 3D Gaussian rendering process of our algorithm Our hierarchical system enables stochastic local Newton optimization reconstruction of the TUM-RGBD fr3/office scene from monocular input. The reconstruction process of gaussian (red boxes) and corresponding zoomed views demonstrate preservation of small objects and textures including product packaging (top), arrangement of bottles (middle), and desktop items (bottom). These details are maintained despite challenging lighting conditions and the inherent scale ambiguity of monocular input, showcasing the robustness of our Gaussian parameter optimization approach.

transform (R^*, t^*) computed on translations. Then we report "Absolute Trajectory Error" (ATE, translational RMSE) as a standard metric for SLAM accuracy Sturm et al. (2012).

Visual / map fidelity We quantify how well the learned Gaussian map reproduces held-out views using renderer-based image metrics including: Peak Signal-to-Noise Ratio (PSNR) Hore & Ziou (2010), Structural Similarity Index (SSIM) Wang et al. (2004), and Learned Perceptual Image Patch Similarity (LPIPS) Zhang et al. (2018). We also report map compactness/coverage metrics to assess the efficiency of the Gaussian representation. All rendering-based metrics are computed using the same renderer to ensure consistent forward modelling between training and evaluation.

Optimization and convergence We analyze the optimization behaviour of our SLN optimizer compared to first-order methods through loss curves and convergence rates. This includes tracking the loss over iterations and measuring the number of iterations required to reach specific thresholds.

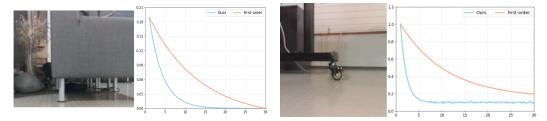


Figure 6: Convergence comparison between our method and first-order optimization. Our approach (blue) converges significantly faster than the first-order method (orange) across different scenes.

GPU Memory Usage [GB]								
NICE-SLAM	Co-SLAM	SplatMAP	GS-SLAM (Mono)	GS-SLAM (RGB-D)	Ours			
-	18.50	14.96	14.62	17.13	8.4			

Table 1: **Memory Analysis on TUM RGB-D dataset.** We compare the peak memory usage of our method against other state-of-the-art SLAM systems on the TUM RGB-D dataset. Our method demonstrates significantly lower memory consumption, highlighting its efficiency in resource usage.

	Monocular							RGB-D							
LC	Class	Method	fr1	fr2	fr3	Avg.	FPS	LC	Class	Method	fr1	fr2	fr3	Avg.	FPS
		GS-SLAM	3.78	4.60	1.62	3.33	2.8			GS-SLAM	1.50	1.44	1.49	1.47	2.5
	3DGS	UDGS	3.00	2.20	11.3	5.50	4.4		3DGS /o NeRF	Point-SLAM	4.34	1.31	3.48	3.04	0.2
		Ours	4.22	4.83	2.97	4.00	5.8			SplaTAM	3.35	1.24	5.16	3.25	1.3
w/o					İ			İ		Ours	3.51	1.62	4.97	3.37	5.4
	Others	DepthCov	5.60	1.20	68.8	25.2	10	/a							
	Others	DROID-VO	5.20	10.7	7.30	7.73	18	W/O		Co-SLAM	2.40	1.70	2.40	2.17	0.4
		DSO	22.4	1.10	9.50	11.0	25			iMAP	4.90	2.00	5.80	4.23	0.7
		GIORIE	1.60	0.20	1.40	1.07	9			NICE-SLAM	4.26	6.19	3.87	4.77	0.6
					İ			İ							
									Others	DI-Fusion	4.40	2.00	5.80	4.07	10
										ESLAM	2.47	1.11	2.42	2.00	18
										Vox-Fusion	3.52	1.49	26.01	10.34	10
w/	Others	DROID-SLAM	1.80	0.50	2.80	1.70	10			BAD-SLAM	1.70	1.10	1.70	1.50	10
W/	w/ Others	ORB-SLAM2	1.90	0.60	2.40	1.60	30	w/	Others	Kintinous	3.70	2.90	3.00	3.20	12
										ORB-SLAM2	1.60	0.40	1.00	1.00	25

Table 2: Camera tracking result on TUM for monocular and RGB-D. ATE RMSE in cm is reported. LC stands for Loop-closure. The fr1, fr2, and fr3 columns correspond to fr1/desk, fr2/xyz, and fr3/office sequences respectively.

Method	Cls	LC	r0	r1	r2	о0	о1	о2	о3	04	Avg.	FPS
Point-SLAM	GS	w/o	0.61	0.41	0.37	0.38	0.48	0.54	0.69	0.72	0.53	0.7
SplaTAM	GS	w/o	0.40	0.35	0.38	0.36	0.34	0.40	0.42	0.39	0.38	3.6
GS-SLAM	GS	w/o	0.44	0.32	0.31	0.44	0.52	0.23	0.17	2.25	0.58	25
GS-SLAM (sp)	GS	w/o	0.33	0.22	0.29	0.36	0.19	0.25	0.12	0.81	0.32	20
Ours	GS	w/o	0.45	0.33	0.41	0.46	0.42	0.31	0.27	0.82	0.43	80

Table 3: **Camera tracking result on Replica for RGB-D SLAM**. ATE RMSE in cm is reported. LC stands for Loop-closure. The r0-r2 columns correspond to room sequences, and o0-o4 to office.

Computational metrics We report real-time performance metrics, mapping throughput, and resource usage to assess the efficiency of our SLAM system. This includes per-frame latency, keyframe processing rates, and peak memory consumption, providing a comprehensive view of the system's operational characteristics.

4.4 QUANTITATIVE RESULTS

TUM RGB-D Table 2 presents the quantitative results of camera tracking accuracy and runtime on the TUM RGB-D dataset Sturm et al. (2012), comparing our approach with a broad range of state-of-the-art monocular and RGB-D visual SLAM systems. 3DGS-based methods: GS-SLAM Matsuki et al. (2024), UDGS Mansour et al. (2025), Point-SLAM Sandström et al. (2023), SplaTAM Keetha et al. (2024), and our proposed method. NeRF-based methods: Co-SLAM Wang et al. (2023), iMAP Sucar et al. (2021), NICE-SLAM Zhu et al. (2022). Traditional and other approaches: DepthCov Dexheimer & Davison (2023), DROID-VO/DROID-SLAM Teed & Deng (2021), DSO Engel et al. (2017), GIORIE Zhang et al. (2024), BAD-SLAM Schöps et al. (2019), Kintinous Whelan et al. (2015), ORB-SLAM2 Mur-Artal & Tardós (2017), DI-Fusion Huang et al. (2021), ESLAM Johari et al. (2023), and Vox-Fusion Yang et al. (2022). We report the absolute trajectory RMSE (ATE) for three standard representative sequences (fr1/desk, fr2/xyz, and fr3/office) along with the average and the runtime in frames per second (FPS) for each method. Among all evaluated methods, our approach achieves a compelling balance between competitive tracking accuracy and substantially higher speed. In particular, our method operates at 5.8 FPS for monocular and 5.4 FPS for RGB-D settings, clearly outperforming most learning-based and 3D

Input	Method	fr1/desk	fr2/xyz	fr3/office	Avg.	FPS
	w/o $joint_optimization$	17.32	20.44	12.57	16.78	3.7
onc	w/o $global_optimization$	10.42	9.73	6.18	8.78	4.3
Mono	w/o SLN	3.63	3.12	1.59	2.78	2.9
	Ours	4.22	4.83	2.97	4.00	5.8
$\overline{}$	w/o joint_optimization	15.22	9.64	18.24	14.37	6.3
B-1	w/o $global_optimization$	9.56	6.49	12.83	9.63	5.9
RGB-D	w/o SLN	2.74	1.21	3.15	2.37	2.6
	Ours	3.51	1.62	4.97	3.37	5.4

Table 4: **Ablation Study on TUM RGB-D dataset.** We analyze the usefulness of the Stochastic Local Newton (SLN) optimizer and joint optimization adjustment in our SLAM system. The best (lowest) errors for each setting are in bold, and the highest FPS is also highlighted.

Gaussian-based counterparts in terms of efficiency, often by more than a factor of two to four, without sacrificing accuracy. This significant speed advantage demonstrates the efficiency of our joint optimization framework for time-sensitive SLAM applications.

Replica Table 3 presents the quantitative evaluation of camera tracking accuracy and runtime across the Replica dataset Straub et al. (2019) for RGB-D SLAM. We compare our method with several recent 3D Gaussian-based approaches: Point-SLAM Sandström et al. (2023), SplaTAM Keetha et al. (2024), GS-SLAM Matsuki et al. (2024) (including the speed-optimized variant GS-SLAM (sp) Matsuki et al. (2024)), together with our own method. For each method, we report the absolute trajectory (ATE) RMSE in centimeters across a diverse set of sequences (rooms r0-r2 and offices o0-o4), as well as the average ATE and the runtime in frames per second (FPS). Our method achieves highly competitive tracking accuracy while offering a significant speed advantage: it runs at **80 FPS**, which is at least three times faster than the next fastest method (GS-SLAM (sp)), and over 20 times faster than most other evaluated approaches. This demonstrates the exceptional efficiency of our system, making it ideal for real-time applications without sacrificing accuracy.

4.5 QUALITATIVE RESULTS

Figure 1 showcases the qualitative results of our SLAM system on the TUM RGB-D fr3/office sequence and Replica room2. The figure illustrates the detailed reconstruction capabilities of our method, highlighting its ability to preserve small objects and textures in challenging lighting conditions. Figure 7 further details the sequence and Replica room1 and real-world captures, demonstrating the robustness of our Gaussian parameter optimization approach in maintaining scene fidelity.

4.6 ABLATION STUDY

We conduct an ablation study to evaluate the contributions of key components in our SLAM system, the Stochastic Local Newton (SLN) optimizer and the hierarchical optimization strategy. Table 4 summarizes the results on the TUM RGB-D dataset for both monocular and RGB-D configurations.

5 CONCLUSION

We have presented a novel hierarchical monocular SLAM system that leverages a Stochastic Local Newton (SLN) optimizer for efficient and accurate Gaussian parameter updates. Our approach integrates a robust frontend for camera tracking with a backend that performs joint optimization of camera poses and Gaussian map parameters through differentiable rendering. The system also incorporates effective map maintenance strategies and global consistency mechanisms to ensure long-term accuracy and robustness. Extensive evaluations on standard benchmarks demonstrate that our method achieves competitive accuracy while significantly outperforming existing approaches in terms of speed, making it suitable for real-time applications. Future work will explore the implementation on the mobile platform and the extension to dynamic scenes.

REFERENCES

- Anonymous. Ags: Accelerating 3d gaussian splatting slam via codec-assisted frame covisibility detection. *arXiv preprint arXiv:2509.00433*, 2025.
- Yinlong Bai, Yunjia Zhang, Zhaopeng Cui, Songyou Peng, Marc Pollefeys, and Martin R Oswald. Memgs: Memory-efficient gaussian splatting for real-time slam. *arXiv* preprint arXiv:2509.13536, 2025.
- Carlos Campos, Richard Elvira, Juan J Gómez Rodríguez, José M M Montiel, and Juan D Tardós. Orb-slam3: An accurate open-source library for visual, visual-inertial, and multi-map slam. *IEEE Transactions on Robotics*, 37(5):1874–1890, 2021.
 - Chi-Ming Chung, Yang-Che Tseng, Ya-Ching Hsu, Xiang-Qian Shi, Yun-Hung Hua, Jia-Fong Yeh, Wen-Chin Chen, Yi-Ting Chen, and Winston H Hsu. Orbeez-slam: A real-time monocular visual slam with orb features and nerf-realized mapping. In 2023 IEEE International Conference on Robotics and Automation (ICRA), pp. 9400–9406. IEEE, 2023.
 - Eric Dexheimer and Andrew J Davison. Depthcov: Revisiting monocular depth estimation with a mask-based approach. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 17599–17609, 2023.
 - Jakob Engel, Thomas Schöps, and Daniel Cremers. Lsd-slam: Large-scale direct monocular slam. In *Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part II 13*, pp. 834–849. Springer, 2014.
 - Jakob Engel, Vladlen Koltun, and Daniel Cremers. Direct sparse odometry. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 40(3):611–625, 2017.
 - Alain Hore and Djemel Ziou. Image quality metrics: Psnr vs. ssim. In 2010 20th International Conference on Pattern Recognition, pp. 2366–2369. IEEE, 2010.
 - Yan Song Hu, Yu-Zhe Meng, Yue Hu, Tian Chen, Xiaoshui Wang, Feihu Liu, Lin Li, Zongyuan Liu, and Xuesong Liu. Mgso: Monocular real-time photometric slam with efficient 3d gaussian splatting. *arXiv preprint arXiv:2409.13055*, 2025a.
 - Yue Hu, Xiaoliang Ye, Jiepeng Wang, Xiaofeng Wang, Yuanyou Sun, Fengyu Yang, and Ming Chen. Splatmap: Online dense monocular slam with 3d gaussian splatting. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, 2025b.
 - Jiahui Huang, Shi-Sheng Chen, Haoxuan Zhang, Tianjian Huang, Haochen Tian, Wei Yu, Lei Yang, Heng Yang, Jian Wang, and Jason Wang. Di-fusion: Online implicit 3d reconstruction with deep priors. In 2021 IEEE International Conference on Robotics and Automation (ICRA), pp. 13692–13698. IEEE, 2021.
 - Mohammad Mahdi Johari, Claudio Carta, Erik Sandstrom, and Andrew J Davison. Eslam: Efficient dense slam system based on hybrid representation of signed distance fields. *arXiv* preprint arXiv:2310.05047, 2023.
 - Nikhil Keetha, Jay Karhade, Krishna Murthy Jatavallabhula, Gengshan Yang, Sebastian Scherer, Deva Ramanan, and Jonathon Luiten. Splatam: Splat, track & map 3d gaussians for dense rgb-d slam. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 20430–20439, 2024.
 - Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3d gaussian splatting for real-time radiance field rendering. *ACM Transactions on Graphics*, 42(4):1–14, 2023.
- Lei Lan, Tianjia Shao, Zixuan Lu, Yu Zhang, Chenfanfu Jiang, and Yin Yang. 3dgs2: Near second-order converging 3d gaussian splatting. In *Proceedings of the Special Interest Group on Computer Graphics and Interactive Techniques Conference Conference Papers*, SIGGRAPH Conference Papers '25, New York, NY, USA, 2025. Association for Computing Machinery. ISBN 9798400715402. doi: 10.1145/3721238.3730687. URL https://doi.org/10.1145/3721238.3730687.

- Yang Liu, Shuo Zhang, Gengshan Yang, Nikhil Keetha, Krishna Murthy Jatavallabhula, Sebastian Scherer, Deva Ramanan, and Jonathon Luiten. Real-time 3d semantic occupancy prediction for autonomous vehicles using neural networks. *arXiv preprint arXiv:2403.19655*, 2024.
 - Mostafa Mansour, Ahmed Abdelsalam, Ari Happonen, Jari Porras, and Esa Rahtu. Udgs-slam: Unidepth assisted gaussian splatting for monocular slam. *Array*, 26:100400, 2025. ISSN 2590-0056. doi: 10.1016/j.array.2025.100400. URL https://www.sciencedirect.com/science/article/pii/S259000562500027X.
 - Hidenobu Matsuki, Riku Murai, Paul H J Kelly, and Andrew J Davison. Gaussian splatting slam. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 18429–18438, 2024.
 - Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. In *ECCV*, 2020.
 - Raúl Mur-Artal and Juan D Tardós. Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. *IEEE Transactions on Robotics*, 33(5):1255–1262, 2017.
 - Raúl Mur-Artal, José María Martínez Montiel, and Juan D Tardos. Orb-slam: A versatile and accurate monocular slam system. *IEEE Transactions on Robotics*, 31(5):1147–1163, 2015.
 - Antoni Rosinol, Alexander Abate, Marcus Chang, and Luca Carlone. Nerf-slam: Real-time dense monocular slam with neural radiance fields. In 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3437–3444. IEEE, 2023.
 - Erik Sandström, Yue Zhou, Horia Porav, and Lennart Hammarstrand. Point-slam: Dense neural point cloud-based slam. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 1597–1607, 2023.
 - Thomas Schöps, Torsten Sattler, and Marc Pollefeys. Bad slam: Bundle adjusted direct rgb-d slam. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 993–1002. IEEE, 2019.
 - Julian Straub, Thomas Whelan, Lingni Ma, Yufan Yan, Richard Newcombe, Dieter Fox, Daniel Cremers, Stefan Leutenegger, and Andrew J Davison. The replica dataset: A digital replica of indoor spaces. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 8470–8480. IEEE, 2019.
 - Jürgen Sturm, Nikolas Engelhard, Felix Endres, Wolfram Burgard, and Daniel Cremers. A benchmark for the evaluation of rgb-d slam systems. In 2012 IEEE/RSJ international conference on intelligent robots and systems, pp. 573–580. IEEE, 2012.
 - Edgar Sucar, Thomas Laidlow, Kentaro Wada, and Andrew J Davison. imap: Implicit mapping and positioning in real-time. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 7469–7478, 2021.
 - Zachary Teed and Jia Deng. Droid-slam: Deep visual slam for monocular, stereo, and rgb-d cameras. In *Advances in Neural Information Processing Systems*, pp. 1137–1149, 2021.
 - Hengyi Wang, Jingwen Wang, Lourenço Chen, Jianbo Zhang, Kailun Wang, Yang Yang, and Wei Zhang. Co-slam: Joint coordinate and sparse parametric encodings for neural real-time slam. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 15937–15947, 2023.
 - Huadong Wang, Xinyang Wang, Hexiang Sun, Mingbo Ren, Shiyu Song, Zhaoyang Zhang, Xiaoxia Ye, Jianfeng Chen, and Bolei Wang. Photo-slam: Real-time simultaneous localization and photorealistic mapping for monocular, stereo, and rgb-d cameras. *arXiv preprint arXiv:2402.18512*, 2024.
 - Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment: From error visibility to structural similarity. *IEEE Transactions on Image Processing*, 13(4): 600–612, 2004.

Thomas Whelan, Stefan Leutenegger, Renato Salas-Moreno, Ben Glocker, and Andrew J Davison. Elasticfusion: Dense slam without a pose graph. *The International Journal of Robotics Research*, 34(5):647–650, 2015.

Gengshan Yang, Shuo Zhang, Jay Karhade, Nikhil Keetha, Krishna Murthy Jatavallabhula, Sebastian Scherer, Deva Ramanan, and Jonathon Luiten. Vox-fusion: Dense tracking and mapping with voxel-based neural implicit representation. In *European Conference on Computer Vision*, pp. 509–526, 2022.

Xiaoliang Ye, Jiepeng Wang, Xiaofeng Wang, Yuanyou Sun, Fengyu Yang, and Ming Chen. Splatmap: Online dense monocular slam with 3d gaussian splatting. *arXiv* preprint arXiv:2501.07015, 2025.

Huaiyu Zhang, Yilun Li, Tianyuan Gao, and Daniel Cremers. Glorie-slam: Globally optimized rgb-only implicit encoding point cloud slam. *arXiv preprint arXiv:2407.03970*, 2024.

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable effectiveness of deep features as a perceptual metric. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, pp. 4171–4181, 2018.

Jianhao Zheng, Zihan Zhu, Valentin Bieri, Marc Pollefeys, Songyou Peng, and Iro Armeni. Wildgs-slam: Monocular gaussian splatting slam in dynamic environments. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, 2025.

Mingrui Zhou, Mingrui Li, Kai Wang, Yue Zhang, Zhihui Chen, Mengran Zhang, and Mingyang Li. Dy3dgs-slam: Monocular 3d gaussian splatting slam for dynamic environments. *arXiv preprint arXiv:2506.05965*, 2025.

Zihan Zhu, Songyou Peng, Viktor Larsson, Weiwei Xu, Hujun Bao, Zhaopeng Cui, Martin R Oswald, and Marc Pollefeys. Nice-slam: Neural implicit scalable encoding for slam. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 12730–12739, 2022.

A APPENDIX

A.1 DETAILS OF SCENE REPRESENTATION AND RENDERING

The scene is modeled as $G = \{g_i\}_{i=1}^N$, with each Gaussian $g_i = (\mu_i \in \mathbb{R}^3, \Sigma_i \in \mathbb{R}^{3\times 3}, a_i, \alpha_i \in [0,1])$ defining:

- Mean position μ_i , covariance Σ_i (via scale $s_i \in \mathbb{R}^3$, rotation quaternion $q_i \in \mathbb{R}^4$).
- View-dependent color via spherical harmonics (SH) coefficients a_i .
- Opacity α_i .
- SLAM bookkeeping: observation counts $n_{\text{obs},i}$, maximum screen-space radii $\max_{\text{radii2D},i}$, covisibility identifiers.

The differentiable renderer, transforms Gaussian i for camera pose $T_j = [R_j | t_j] \in SE(3)$, parameterized by twist $\xi_j \in \mathbb{R}^6$:

$$x_c = R_j \mu_i + t_j, \quad \Sigma_c = R_j \Sigma_i R_j^T, \tag{1}$$

$$J_{\text{proj}}(x_c) = \begin{bmatrix} \frac{f_x}{Z} & 0 & -\frac{f_x X}{Z^2} \\ 0 & \frac{f_y}{Z} & -\frac{f_y Y}{Y^2} \end{bmatrix}, \quad \Sigma_{\text{img}} = J_{\text{proj}} \Sigma_c J_{\text{proj}}^T + \varepsilon I_2,$$
 (2)

using intrinsics $K = \text{diag}(f_x, f_y)$, principal point (c_x, c_y) , and $\varepsilon = 10^{-6}$. Per-pixel weight:

$$w_{i,p} = \exp\left(-\frac{1}{2}(x_p - \mu_i^{2D})^T \Sigma_{\text{img}}^{-1}(x_p - \mu_i^{2D})\right),$$

Table 5: PSNR, SSIM, and LPIPS Metrics for Different SLAM Methods on Replica Dataset. M1 refers to NICE-SLAM Zhu et al. (2022), M2 refers to Vox-Fusion Yang et al. (2022), M3 refers to ESLAM Johari et al. (2023), M4 refers to Point-SLAM Sandström et al. (2023), M5 refers to GS-SLAM Matsuki et al. (2024), M6 refers to SplaTAM Keetha et al. (2024), M7 refers to RTG-SLAM Liu et al. (2024), M8 refers to GLORIE-SLAM Zhang et al. (2024), M9 refers to Photo-SLAM Wang et al. (2024), M10 refers to SplatMAP Hu et al. (2025b). For each method, the first row corresponds to PSNR, the second row to SSIM, and the third row to LPIPS. The best results for each metric are highlighted in bold.

Input	Method	Room0	Room1	Room2	Office0	Office1	Office2	Office3
	M1	22.12	22.47	24.52	27.09	30.34	19.66	22.83
		0.76	0.76	0.81	0.84	0.91	0.77	0.81
		0.24	0.30	0.30	0.26	0.28	0.20	0.21
	M2	22.33	22.36	22.37	27.79	29.83	20.33	23.47
		0.79	0.79	0.81	0.84	0.91	0.78	0.83
		0.28	0.30	0.30	0.25	0.26	0.18	0.21
	M3	25.36	27.77	29.23	29.08	32.57	28.36	32.62
		0.91	0.93	0.94	0.97	0.97	0.96	0.98
		0.31	0.30	0.30	0.29	0.23	0.21	0.20
	M4	29.10	31.12	31.01	35.18	38.77	35.04	32.34
RGBD		0.97	0.98	0.98	0.99	0.99	0.99	0.99
		0.11	0.12	0.11	0.09	0.07	0.09	0.08
	M5	31.56	32.86	35.08	37.80	41.17	39.01	33.92
		0.97	0.97	0.97	0.99	0.99	0.99	0.99
		0.09	0.09	0.09	0.07	0.04	0.06	0.06
	M6	32.86	33.89	35.95	38.26	41.28	39.86	32.92
		0.97	0.97	0.97	0.99	0.98	0.99	0.99
		0.07	0.10	0.09	0.09	0.07	0.06	0.09
	M7	34.15	34.21	35.57	37.91	41.27	38.22	35.81
		0.979	0.981	0.981	0.99	0.99	0.98	0.98
		0.13	0.13	0.12	0.12	0.11	0.13	0.12
	M8	30.56	30.97	28.42	31.63	32.32	31.61	32.98
		0.96	0.97	0.96	0.97	0.98	0.98	0.98
		0.13	0.13	0.11	0.10	0.09	0.10	0.11
	M9	29.87	29.01	29.41	32.75	33.59	31.62	34.17
		0.87	0.91	0.91	0.95	0.96	0.94	0.96
MONO		0.10	0.11	0.09	0.08	0.07	0.10	0.09
WONO	M10	35.367	31.746	38.117	42.858	42.062	35.504	39.034
		0.98	0.95	0.99	0.99	0.99	0.99	0.99
		0.03	0.09	0.03	0.01	0.02	0.04	0.04
	Ours	36.12	34.21	38.45	42.91	43.12	36.78	39.87
		0.98	0.96	0.97	0.98	0.97	0.98	0.97
		0.03	0.09	0.03	0.01	0.02	0.04	0.04

color $c_{i,p} = \mathrm{SH}(a_i, v_p)$, transmittance $T_{i,p} = \prod_{k < i} (1 - \alpha_k w_{k,p})$. Rendered pixel:

$$\hat{C}_p(G, T_j) = \sum_{i \in S_p} w_{i,p} c_{i,p} \alpha_i T_{i,p},$$

where S_p is depth-ordered Kerbl et al. (2023). Outputs include color, depth, gradients $\partial \hat{C}_p/\partial(\xi_j,\mu_i,\Sigma_i,a_i,\alpha_i)$, and masks.

A.2 DETAILS OF PHOTOMETRIC OPTIMIZATION

Per-pixel residual: $r_{j,p}(G,T_j) = I_{j,p} - \hat{C}_{j,p}(G,T_j)$. Robust loss:

$$\phi(r_{j,p}) = (1 - \lambda_{\text{SSIM}}) \rho(|r_{j,p}|) + \lambda_{\text{SSIM}} (1 - \text{SSIM}(I_j, \hat{I}_j)), \quad \lambda_{\text{SSIM}} = 0.85,$$

using Huber surrogate ρ . Joint optimization loss:

$$\mathcal{L}(\Theta) = \sum_{j \in W} \sum_{p \in \Omega_j} w_p \phi(r_{j,p}) + \lambda_{\text{reg}} \sum_{i \in G_W} (\|\text{diag}(\Sigma_i)\|_2^2 + |\alpha_i - 0.5|^2),$$

where $\Theta = (\{T_j\}, G_W)$, and the regularizer stabilizes optimization Matsuki et al. (2024); Engel et al. (2017).

A.3 DETAILS FRONTEND: FRAME-TO-MODEL TRACKING

The frontend estimates the pose of frame I_t with prior T_{prev} , minimizing pose-only:

$$\mathcal{L}_{\text{track}}(T_t) = \sum_{p \in \Omega_t} w_p \phi(r_{t,p}(G, T_t)),$$

with the map G fixed. Update ξ_t using Adam:

$$g_{\xi_t} = -\sum_{p} w_p \psi_{t,p} \left(\frac{\partial \hat{C}_{t,p}}{\partial \xi_t} \right)^T, \quad \psi_{t,p} = \phi'(r_{j,p}), \quad \xi_t \leftarrow \operatorname{Adam}(\xi_t, g_{\xi_t}, \alpha_{\operatorname{pose}}), \quad T_t \leftarrow \exp(\xi_t) T_t.$$

Insert keyframe if:

$$\|t_t - t_{\text{last}}\|_2 > \tau_t, \quad \text{angle}(R_t R_{\text{last}}^{-1}) > \tau_R, \quad \text{or} \quad \frac{|S_t \cap S_{\text{last}}|}{|S_t \cup S_{\text{last}}|} < \tau_c,$$

with $\tau_t = 0.1$ m, $\tau_R = 5^{\circ}$, $\tau_c = 0.7$. Packages include I_t , T_t , visible Gaussians.

A.4 BACKEND: MAPPING STAGE

The mapping stage refines keyframe poses and the Gaussian map through a joint optimizer, the core engine, following the flow: differentiable rendering \rightarrow loss computation \rightarrow joint optimization. For a covisible window W (size N), render views using <code>gaussian_model.py</code>, compute loss $\mathcal{L}(\Theta)$ (Eq. equation A.2) and backpropagate:

$$g_{\theta} = -\sum_{j \in W} \sum_{p \in \Omega_j} w_p \psi_{j,p} \left(\frac{\partial \hat{C}_{j,p}}{\partial \theta} \right)^T, \quad \theta \in \Theta.$$

- Update poses using Adam: $\xi_j \leftarrow \text{Adam}(\xi_j, g_{\xi_j}, \alpha_{\text{pose}})$. - Update Gaussians using SLN. - Update bookkeeping $(n_{\text{obs},i}, \max_{\text{radii}2D,i})$.

A.5 STOCHASTIC LOCAL NEWTON (SLN) OPTIMIZER

SLN, applied to Gaussian parameters θ_b (e.g., $\mu_i, \Sigma_i, \alpha_i, \alpha_i$), approximates the Hessian diagonally:

$$g_b = -\sum_{i \in W} \sum_{p \in \Omega_d(i)} w_p \psi_{j,p} J_{j,p,b}^T, \quad \psi_{j,p} = \phi'(r_{j,p}), \tag{3}$$

$$h_{\text{diag},b} \approx \sum_{j \in W} \sum_{p \in \Omega_j(i)} s_{j,p}(J_{j,p,b} \odot J_{j,p,b}), \quad s_{j,p} \approx \frac{1}{|r_{j,p}| + \epsilon}, \tag{4}$$

using a Huber surrogate for L1/SSIM ($\epsilon = 10^{-3}$). Damped preconditioner:

$$p_b = \operatorname{clamp}(h_{\operatorname{diag},b} + \beta + \varepsilon, p_{\min}, p_{\max}), \quad \Delta\theta_b = -\alpha_{\operatorname{SLN}} \frac{g_b}{p_b},$$

with $\beta = 10^{-4}, \varepsilon = 10^{-6}, p_{\min} = 10^{-6}, p_{\max} = 10^{6}$. Rotations use expmap Anonymous (2025); Hu et al. (2025a).

Figure 7: Example visual results of our method. Top row: four samples from our lab, bottom row: four samples from room1 of Replica. Our approach reconstructs photorealistic scenes with sharp object boundaries and faithful color, even in challenging cases.

A.6 MAP MAINTENANCE

Densify if:

$$\text{max}\, \text{radii} 2 \mathbf{D}_i > \tau_{\text{split}} \quad \text{or} \quad \text{grad_energy}_i = \sum_{j,p \in \Omega(i)} \|J_{j,p,i}^T \psi_{j,p}\|^2 > \tau_{\text{grad}}.$$

Prune if:

$$n_{{
m obs},i} < au_{{
m obs}} \quad {
m or} \quad \overline{w_{i,p}} < au_{{
m contrib}}.$$

Reset opacity for non-visible Gaussians at cadence k_{reset} . Dynamic objects are supported via pixel-level masks, extending Zhou et al. (2025).

A.7 GLOBAL CONSISTENCY

Covisibility: $C_{ab} = |S_a \cap S_b|$. Edge if $C_{ab} > \tau_{loop}$. Pose-graph error:

$$E_{\text{pose}} = \sum_{(a,b)\in\mathcal{E}} \left\| \log \left((T_a^{-1} T_b) \hat{T}_{ab}^{-1} \right) \right\|_{\Sigma_{ab}^{-1}}^{2}.$$

A.8 IMPLEMENTATION DETAILS

A.9 QUALITATIVE RESULTS2

J			
4			
5			
6			
7			
8			
	Category	Parameter	Value
		save_results	True
		save_dir	results
	Results	save_trj	True
	Results	save_trj_kf_intv	5
		use_gui	False False
		eval_rendering	raise
		type	tum
		sensor_type	depth
	Dataset	pcd_downsample pcd_downsample_init	128 32
		adaptive_pointsize	True
		depth_scale	5000.0
			True
		joint_optimization joint_opt_window_size	8
		joint_opt_mapping_iters	25
	Training	global_opt_enabled	True
	Hammig	global_opt_interval	50
		adaptive_lr_enabled	True
		lr_decay_factor	0.95
		init_itr_num	1050
		tracking_itr_num	100
		mapping_itr_num	150
	Tracking/Mapping	gaussian_update_every gaussian_th	150 0.7
	macking/iviapping	gaussian_extent	1.0
		kf_interval	5
		spherical_harmonics	True
		cam_rot_delta	0.003
		cam_trans_delta	0.003
	Lagurina Datas	position	0.00016
	Learning Rates	feature	0.0025
		opacity	0.05
		scaling	0.005
		iterations	30000
		position_lr_init	0.00016
	3DGS/Optimization	percent_dense	0.01
		lambda_dssim	0.2
		densification_interval	100
T.1.1	6. Vou normania	odin our CLAM 1 2F)CC
Table	e o: Key parameters us	ed in our SLAM and 3D	JGS expe

Table 6: Key parameters used in our SLAM and 3DGS experiments.