
Scaling White-Box Transformers for Vision

Jinrui Yang⋆1 Xianhang Li⋆1 Druv Pai2

Yuyin Zhou1 Yi Ma2 Yaodong Yu†2 Cihang Xie†1
⋆equal technique contribution, †equal advising

1UC Santa Cruz 2UC Berkeley

Abstract

CRATE, a white-box transformer architecture designed to learn compressed and
sparse representations, offers an intriguing alternative to standard vision trans-
formers (ViTs) due to its inherent mathematical interpretability. Despite extensive
investigations into the scaling behaviors of language and vision transformers, the
scalability of CRATE remains an open question which this paper aims to address.
Specifically, we propose CRATE-α, featuring strategic yet minimal modifications to
the sparse coding block in the CRATE architecture design, and a light training recipe
designed to improve the scalability of CRATE. Through extensive experiments, we
demonstrate that CRATE-α can effectively scale with larger model sizes and datasets.
For example, our CRATE-α-B substantially outperforms the prior best CRATE-B
model accuracy on ImageNet classification by 3.7%, achieving an accuracy of
83.2%. Meanwhile, when scaling further, our CRATE-α-L obtains an ImageNet
classification accuracy of 85.1%. More notably, these model performance im-
provements are achieved while preserving, and potentially even enhancing the
interpretability of learned CRATE models, as we demonstrate through showing that
the learned token representations of increasingly larger trained CRATE-α models
yield increasingly higher-quality unsupervised object segmentation of images. The
project page is https://rayjryang.github.io/CRATE-alpha/.

1 Introduction

Over the past several years, the Transformer architecture [42] has dominated deep representation
learning for natural language processing (NLP), image processing, and visual computing [8, 2, 9,
5, 12]. However, the design of the Transformer architecture and its many variants remains largely
empirical and lacks a rigorous mathematical interpretation. This has largely hindered the development
of new Transformer variants with improved efficiency or interpretability. The recent white-box
Transformer model CRATE [46] addresses this gap by deriving a simplified Transformer block via
unrolled optimization on the so-called sparse rate reduction representation learning objective.

More specifically, layers of the white-box CRATE architecture are mathematically derived and fully
explainable as unrolled gradient descent-like iterations for optimizing the sparse rate reduction. The
self-attention blocks of CRATE explicitly conduct compression via denoising features against learned
low-dimensional subspaces, and the MLP block is replaced by an incremental sparsification (via
ISTA [1, 11]) of the features. As shown in previous work [47], besides mathematical interpretabil-
ity, the learned CRATE models and features also have much better semantic interpretability than
conventional transformers, i.e., visualizing features of an image naturally forms a zero-shot image
segmentation of that image, even when the model is only trained on classification.

Scaling model size is widely regarded as a pathway to improved performance and emergent proper-
ties [44, 40, 41, 14]. Until now, the deployment of CRATE has been limited to relatively modest scales.
The most extensive model described to date is the base model size encompasses 77.6M parameters

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://rayjryang.github.io/CRATE-alpha/

85

FLOPs (G)

75

70
0 100 200 400

L/8

80

300

L/14
B/8

B/16

B/32

B/32

B/16

L/16

L/16
B/16

85

FL
O

Ps
 (

G
)

To
p-

1
A

cc
ur

ac
y

on
 Im

ag
eN

et
-1

K

75 70
0

10
0

20
0

40
0

L/
8

80

30
0

L/
16

B/
8

B/
16

B/
32

B/
32B/

16

L/
16

L/
16

B/
16

CRATE-α

CRATE

ViT

Figure 1: (Left) We demonstrate how modifications to the components enhance the performance of the
CRATE model. The four models are trained using the same setup: first pre-trained on ImageNet-21K
and then fine-tuned on ImageNet-1K. Details are provided in Section 3. (Right). We compare the
FLOPs and accuracy on ImageNet-1K of our methods with ViT [9] and CRATE [46]. The values
of CRATE-α model correspond to those presented in Table 1. A more detailed comparison between
CRATE-α and ViT is included in Appendix A.2.

(CRATE-Large) [46]. This contrasts sharply with standard Vision Transformers (ViTs [9]), which
have been effectively scaled to a much larger model size, namely 22B parameters [5].

To this end, this paper provides the first exploration of training CRATE at different scales for vision,
i.e., Tiny, Small, Base, Large, Huge. Detailed model specifications are given in Table 7 of Appendix
A.1. To achieve effective scaling, we make two key changes. First, we identify the vanilla ISTA block
within CRATE as a limiting factor that hinders further scaling. To overcome this, we significantly
expand the channels, decouple the association matrix, and add a residual connection, resulting in a
new model variant — CRATE-α. It is worth noting that this architecture change still preserves the
mathematical interpretability of the model. Second, we propose an improved training recipe, inspired
by previous work [38, 46, 39], for better coping the training with our new CRATE-α architecture.

We provide extensive experiments supporting the effective scaling of our CRATE-α models. For
example, we scale the CRATE-α model from Base to Large size for supervised image classification
on ImageNet-21K [6], achieving 85.1% top-1 accuracy on ImageNet-1K at the Large model size.
We further scale the model size from Large to Huge, utilizing vision-language pre-training with
contrastive learning on DataComp1B [10], and achieve a zero-shot top-1 accuracy of 72.3% on
ImageNet-1K at the Huge model size.1 These results demonstrate the strong scalability of the
CRATE-α model, shedding light on scaling up mathematically interpretable models for future work.

The main contributions of this paper are threefold:
1. We design three strategic yet minimal modifications for the CRATE model architecture to unleash

its potential. In Figure 1, we reproduce the results of the CRATE model within our training setup,
initially pre-training on ImageNet-21K classification and subsequently fine-tuning on ImageNet-
1K classification. Compared to the vanilla CRATE model that achieves 68.5% top-1 classification
accuracy on ImageNet-1K, our CRATE-α-B/32 model significantly improves the vanilla CRATE
model by 8%, which clearly demonstrates the benefits of the three modifications to the existing
CRATE model. Moreover, following the settings of the best CRATE model and changing the image
patch size from 32 to 8, our CRATE-α-B model attains a top-1 accuracy of 83.2% on ImageNet-1K,
exceeding the previous best CRATE model’s score of 79.5% by a significant margin of 3.7%.

2. Through extensive experiments, we show that one can effectively scale CRATE-α via model size
and data simultaneously. In contrast, when increasing the CRATE model from Base to Large
model size, there is a marginal improvement on top-1 classification accuracy (+0.5%, from 70.8%
to 71.3%) on ImageNet-1K, indicating diminished returns [46]. Furthermore, by scaling the
training dataset, we achieved a substantial 1.9% improvement in top-1 classification accuracy on
ImageNet-1K, increasing from 83.2% to 85.1% when going from CRATE-α Base to Large.

3. We further successfully scale CRATE-α model from Large to Huge by leveraging vision-language
pre-training on DataComp1B. Compared to the Large model, the Huge model (CRATE-α-H)
achieves a zero-shot top-1 classification accuracy of 72.3% on ImageNet-1K, marking a significant

1Model configurations are detailed in Table 7 (in Appendix A.1).

2

scaling gain of 2.5% over the Large model. These results indicate that the CRATE architecture has
the potential to serve as an effective backbone for vision-language foundation models.

Related Work

White-box Transformers. [46, 45] argued that the quality of a learned representation can be assessed
through a unified objective function called the sparse rate reduction. Based on this framework,
[46, 45] developed a family of transformer-like deep network architectures, named CRATE, which are
mathematically fully interpretable. CRATE models has been demonstrably effective on various tasks,
including vision self-supervised learning and language modeling [26, 45]. Nevertheless, it remains
unclear whether CRATE can scale as effectively as widely used black-box transformers. Previous
work [46] suggests that scaling the vanilla CRATE model can be notably challenging.

Scaling ViT. ViT [9] represents the initial successful applications of Transformers to the image
domain on a large scale. Many works [12, 31, 33, 32, 5, 37, 21, 22, 29, 18, 49] have deeply explored
various ways of scaling ViTs in terms of model size and data size. From the perspective of self-
supervision, MAE [12] provides a scalable approach to effectively training a ViT-Huge model using
only ImageNet-1K. Following the idea of MAE, [31] further scales both model parameters to billions
and data size to billions of images. Additionally, CLIP was the first to successfully scale ViT on a
larger data scale (i.e., 400M) using natural language supervision. Based on CLIP, [32, 33] further scale
the model size to 18 billion parameters, named EVA-CLIP-18B, achieving consistent performance
improvements with the scaling of ViT model size. From the perspective of supervised learning, [49, 5]
present a comprehensive analysis of the empirical scaling laws for vision transformers on image
classification tasks, sharing some similar conclusions with [15]. [49] suggests that the performance-
compute frontier for ViT models, given sufficient training data, tends to follow a saturating power law.
More recently, [5] scales up ViT to 22 billion parameters. Scaling up different model architectures is
non-trivial. [37, 21, 22] have made many efforts to effectively scale up different architectures. In this
paper, due to the lack of study on the scalability of white-box models, we explore key architectural
modifications to effectively scale up white-box transformers in the image domain.

2 Background and Preliminaries

In this section, we present the background on white-box transformers proposed in [46], including
representation learning objectives, unrolled optimization, and model architecture. We first introduce
the notation that will be used in the later presentation.

Notation. We use notation and problem setup following Yu et al. [46]. We use the matrix-valued
random variable X = [x1, . . . ,xN] ∈ RD×N to represent the data, where each xi ∈ RD is a “token”,
such that each data point is a realization of X . For instance, X can represent a collection of image
patches for an image, and xi is the i-th image patch. We use f ∈ F : RD×N → Rd×N to denote
the mapping induced by the transformer, and we let Z = f(X) = [z1, . . . ,zN] ∈ Rd×N denote the
features for input data X . Specifically, zi ∈ Rd denotes the feature of the i-th input token xi. The
transformer f consists of multiple, say L, layers, and so can be written as f = fL ◦ · · · ◦ f1 ◦ f pre,
where f ℓ : Rd×N → Rd×N denotes the ℓ-th layer of the transformer, and the pre-processing layer
is denoted by f pre = RD×N → Rd×N . The input to the ℓ-th layer f ℓ of the transformer is denoted
by Zℓ =

[
zℓ
1, . . . ,z

ℓ
N

]
∈ Rd×N , so that f ℓ : Zℓ 7→ Zℓ+1. In particular, Z1 = f pre(X) ∈ Rd×N

denotes the output of the pre-processing layer and the input to the first layer.

2.1 Sparse Rate Reduction

Following the framework proposed in [45], we posit that the goal of representation learning is to
learn a feature mapping or representation f ∈ F : RD×N → Rd×N that transforms the input data X
(which may have a nonlinear, multi-modal, and otherwise complicated distribution) into structured
and compact features Z, such that the token features lie on a union of low-dimensional subspaces, say
with orthonormal bases U[K] = (Uk)k∈[K] ∈ (Rd×p)K . [46] proposes the Sparse Rate Reduction
(SRR) objective to measure the goodness of such a learned representation:

max
f∈F

EZ=f(X) [Lsrr(Z)] = min
f∈F

EZ=f(X)

[
Rc(Z |U[K])−R(Z |U[K]) + λ∥Z∥1

]
, (1)

3

where Z = f(X) denotes the token representation, ∥Z∥1 denotes the ℓ1 norm, and R(Z),
Rc(Z |U[K]) are (estimates for) rate distortions [4, 7], defined as:

R(Z)
.
=

1

2
log det

(
I +

d

Nϵ2
Z⊤Z

)
, Rc(Z | U[K])

.
=

K∑
k=1

R(U⊤
k Z). (2)

In particular, Rc(Z | U[K]) (resp. R(Z)) provide closed-form estimates for the number of bits
required to encode the sample Z up to precision ϵ > 0, conditioned (resp. unconditioned) on the
samples being drawn from the subspaces with bases U[K]. Minimizing the term Rc improves the
compression of the features Z against the posited model, and maximizing the term R promotes
non-collapsed features. The remaining term λ∥Z∥1 promotes sparse features. Refer to [45] for more
details about the desiderata and objective of representation learning via the rate reduction approach.

2.2 CRATE: Coding RATE Transformer

Unrolled optimization. To optimize the learning objective and learn compact and structured
representation, one approach is unrolled optimization [11, 36]: each layer of the deep network
implements an iteration of an optimization algorithm on the learning objective. For example, one
can design the layer f ℓ such that the forward pass is equivalent to a proximal gradient descent step
for optimizing learning objective L(Z), i.e., Zℓ+1 = f ℓ(Zℓ) = Prox[Zℓ − η · ∇ZL(Z

ℓ)]. Here we
use η to denote the step size and Prox[·] to denote the proximal operator [27].

One layer of the CRATE model. We now present the design of each layer of the white-box transformer
architecture – Coding RATE Transformer (CRATE) – proposed in [46]. Each layer of CRATE contains
two blocks: the compression block and the sparsification block. These correspond to a two-step
alternating optimization procedure for optimizing the sparse rate reduction objective (1). Specifically,
the ℓ-th layer of CRATE is defined as

Zℓ+1 = f ℓ(Zℓ) = ISTA(Zℓ+1/2 |Dℓ), where Zℓ+1/2 = Zℓ + MSSA(Zℓ). (3)

Compression block (MSSA). The compression block in CRATE, called Multi-head Subspace Self-
Attention block (MSSA), is derived for compressing the token set Z = [z1, . . . ,zN] by optimizing
the compression term Rc (defined Eq. (1)), i.e.,

Zℓ+1/2 = Zℓ + MSSA(Zℓ | U ℓ
[K]) ≈ Zℓ − κ∇ZR

c(Zℓ |U ℓ
[K]), (4)

where U ℓ
[K] denotes the (local) signal model at layer ℓ, and the MSSA operator is defined as

MSSA(Z | U[K]) =
κp

Nϵ2
[U1 · · · UK]

(U
⊤
1 Z) softmax((U⊤

1 Z)⊤(U⊤
1 Z))

...
(U⊤

KZ) softmax((U⊤
KZ)⊤(U⊤

KZ))

 . (5)

Compared with the commonly used attention block in transformer [42], where the k-th attention head
is defined as (V ⊤

k Z) softmax((Q⊤
k Z)⊤(K⊤

k Z)), MSSA uses only one matrix to obtain the query,
key, and value matrices in the attention: that is, Uk = Qk = Kk = Vk.

Sparse coding block (ISTA). The Iterative Shrinkage-Thresholding Algorithm (ISTA) block is
designed to optimize the sparsity term and the global coding rate term, λ∥Z∥0 −R(Z | U[K]) in (1).
[46] shows that an optimization strategy for these terms posits a (complete) incoherent dictionary
Dℓ ∈ Rd×d and takes a proximal gradient descent step towards solving the associated LASSO
problem argminZ≥0[

1
2∥Z

ℓ+1/2 −DℓZ∥22 + λ∥Z∥1], obtaining the iteration

Zℓ+1 = ISTA(Zℓ+1/2 |Dℓ) = ReLU(Zℓ+1/2 + η (Dℓ)⊤(Zℓ+1/2 −DℓZℓ+1/2)− ηλ1). (6)

In particular, the ISTA block sparsifies the intermediate iterates Zℓ+1/2 w.r.t. Dℓ to obtain Zℓ+1.

3 CRATE-α Model

In this section, we present the CRATE-α architecture, which is a variant of CRATE [46]. As shown in
Fig. 1 (Right), there is a significant performance gap between the white-box transformer CRATE-B/16

4

ISTA-overcomplete

MSSA

ODL

MSSA

ODL

·

·

·

·

·

·

Aggregate

Figure 2: One layer of the CRATE-α model architecture. MSSA (Multi-head Subspace Self-Attention,
defined in (5)) represents the compression block, and ODL (Overcomplete Dictionary Learning,
defined in (12)) represents the sparse coding block. A more detailed illustration of the modifications
is provided in Fig. 6 in the Appendix .

(70.8%) and the vision transformer ViT-B/16 (84.0%) [9]. One possible reason is that the ISTA block
applies a complete dictionary D ∈ Rd×d, which may limit its expressiveness. In contrast, the MLP
block in the transformer2 applies two linear transformations W1,W2 ∈ Rd×4d, leading to the MLP
block having 8 times more parameters than the ISTA block.

Since the ISTA block in CRATE applies a single incremental step to optimize the sparsity objective,
applying an orthogonal dictionary can make it ineffective in sparsifying the token representations.
Previous work [28] has theoretically demonstrated that overcomplete dictionary learning enjoys a
favorable optimization landscape. In this work, we use an overcomplete dictionary in the sparse
coding block to promote sparsity in the features. Specifically, instead of using a complete dictionary
Dℓ ∈ Rd×d, we use an overcomplete dictionary Dℓ ∈ Rd×(Cd), where C > 1 (a positive integer) is
the overcompleteness parameter. Furthermore, we explore two additional modifications to the sparse
coding block that lead to improved performance for CRATE. We now describe the three variants of
the sparse coding block that we use in this paper.

Modification #1: Overparameterized sparse coding block. For the output of the ℓ-th CRATE atten-
tion block Zℓ+1/2, we propose to sparsify the token representations with respect to an overcomplete
dictionary Dℓ ∈ Rd×(Cd) by optimizing the following LASSO problem,

Aℓ ≈ argmin
A≥0

[1
2
∥Zℓ+1/2 −DℓA∥22 + λ∥A∥1

]
. (7)

To approximately solve (7), we apply two steps of proximal gradient descent, i.e.,

Aℓ
0 = 0, Aℓ

1 = Proxη,λ
[
Aℓ

0;D
ℓ,Zℓ+1/2

]
, Aℓ

2 = Proxη,λ
[
Aℓ

1;D
ℓ,Zℓ+1/2

]
, (8)

where Prox is the proximal operator of the above non-negative LASSO problem (7) and defined as

Proxη,λ[A;D,Z] = ReLU(A− ηD⊤(DA−Z)− ηλ1). (9)

The output of the sparse coding block is defined as

Zℓ+1 = DℓAℓ, where Aℓ = Aℓ
2
.
= ISTA-OC(Zℓ+1/2 | Dℓ). (10)

Namely, Aℓ is a sparse representation of Zℓ+1/2 with respect to the overcomplete dictionary Dℓ.
The original CRATE ISTA tries to learn a complete dictionary D ∈ Rd×d to transform and sparsify
the features Z. By leveraging more atoms than the ambient dimension, the overcomplete dictionary
D ∈ Rd×(Cd) can provide a redundant yet expressive codebook to identify the salient sparse

2The MLP block is defined as Zℓ+1 = Zℓ + W2σ(W
⊤
1 Zℓ+1/2), where σ is the nonlinear activation

function and Zℓ+1/2 denotes the output of the attention block.

5

0 50000 100000 150000 200000 250000
Step

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

Tr
ai

ni
ng

 L
os

s

Training Loss on ImageNet-21k (Varying Model Sizes)

CRATE- -T/16
CRATE- -S/16
CRATE- -B/16
CRATE- -L/14

0 50000 100000 150000 200000 250000
Step

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

Tr
ai

ni
ng

 L
os

s

Training Loss on ImageNet-21k (Varying Patch Sizes)

CRATE- -L/32
CRATE- -L/14
CRATE- -L/8

Figure 3: Training loss curves of CRATE-α on ImageNet-21K. (Left) Comparing training loss curves
across CRATE-α with different model sizes. (Right) Comparing training loss curves across CRATE-α-
Large with different patch sizes.

structures underlying Z. As shown in Fig. 1, the overcomplete dictionary design leads to 5.3%
improvement compared to the vanilla CRATE model.

Modification #2: Decoupled dictionary. We propose to apply a decoupled dictionary D̂ℓ in the last
step (defined in (10) of the sparse coding block, Zℓ+1 = D̂ℓAℓ, where D̂ℓ ∈ Rd×(Cd) is a different
dictionary compared to Dℓ. By introducing the decoupled dictionary, we further improve the model
performance by 2.0%, as shown in Fig. 1. We denote this mapping from Zℓ+1/2 to Zℓ+1 as the
Overcomplete Dictionary Learning block (ODL), defined as follows:

ODL(Zℓ+1/2 | Dℓ, D̂ℓ)
.
= D̂ℓ · ISTA-OC(Zℓ+1/2 | Dℓ) = D̂ℓAℓ. (11)

Modification #3: Residual connection. Based on the previous two modifications, we further add a
residual connection, obtaining the following modified sparse coding block:

Zℓ+1 = Zℓ+1/2 + ODL(Zℓ+1/2 | Dℓ, D̂ℓ). (12)

An intuitive interpretation of this modified sparse coding block is as follows: instead of directly
sparsifying the feature representations Z, we first identify the potential sparse patterns present in
Z by encoding it over a learned dictionary. Subsequently, we incrementally refine Z by exploiting
the sparse codes obtained from the previous encoding step. From Fig. 1, we find that the residual
connection leads to a 0.7% improvement.

To summarize, to effectively scale white-box transformers, we implement three modifications to the
vanilla white-box CRATE model proposed in [46]. Specifically, in our CRATE-α model, we introduce
a decoupling mechanism, quadruple the dimension of the dictionary (4×), and incorporate a residual
connection in the sparse coding block.

4 Experiments

Overall. The experimental section consists of three parts: (1) Scaling study: We thoroughly
investigate the scaling behaviors of CRATE-α from Base to Large size and ultimately to Huge size. (2)
Downstream applications: To further verify the broader benefits of scaling the CRATE-α model, we
conduct additional experiments on real-world downstream tasks and present preliminary exploration
results of CRATE-α on language tasks. (3) Interpretability: In addition to scalability, we study the
interpretability of CRATE-α across different model sizes.

4.1 Dataset and Evaluation

Scaling Study. For the transition from Base to Large size, we pre-train our model on ImageNet-21K
and fine-tune it on ImageNet-1K via supervised learning. When scaling from Large to Huge, we
utilize the DataComp1B [10] dataset within a vision-language pre-training paradigm, allowing us to
study the effects of scaling the model to a massive size. For evaluation, we evaluate the zero-shot
accuracy of these models on ImageNet-1K.

6

Table 1: Top-1 accuracy of CRATE-α on ImageNet-1K with different model scales when pre-trained
on ImageNet-21K and then fine-tuned on ImageNet-1K. For comparison, we also list the results from
the paper [46] which demonstrate the diminished return from CRATE base to large, trained only on
ImageNet-1K. "IN-21K" refers to ImageNet-21K. (‡Results from [46].)

Models (Base) ImageNet-1K(%) Models (Large) ImageNet-1K(%)

CRATE-B/16 w/o IN-21K 70.8‡ CRATE-L/16 w/o IN-21K 71.3‡

CRATE-α-B/32 76.5 CRATE-α-L/32 80.2

CRATE-α-B/16 81.2 CRATE-α-L/14 83.9

CRATE-α-B/8 83.2 CRATE-α-L/8 85.1

Downstream Applications. We include additional experimental results on four downstream datasets
(CIFAR-10/100, Oxford Flowers, and Oxford-IIT Pets). We also examine the dense prediction capa-
bility of CRATE-α by training it on segmentation tasks using the ADE20K dataset [51]. For language
tasks, we conduct new experiments with CRATE-α using autoregressive training on OpenWebText,
following the setup in nanoGPT [16].

Interpretability. Following the evaluation setup of CRATE as outlined in [46], we apply MaskCut [43]
to validate and evaluate the rich semantic information captured by our model in a zero-shot setting,
including both qualitative and quantitative results.

4.2 Training and Fine-tuning Procedures

Scaling Study. (1) Base to Large size: We initially pre-train the CRATE-α model on ImageNet-21K
and subsequently fine-tune it on ImageNet-1K. During the pre-training phase, we set the learning rate
to 8× 10−4, weight decay to 0.1, and batch size to 4096. We apply data augmentation techniques
such as Inception crop [35] resized to 224 and random horizontal flipping. In the fine-tuning phase,
we adjust the base learning rate to 1.6 × 10−4, maintain weight decay at 0.1, and batch size at
4096. We apply label smoothing with a smoothing parameter of 0.1 and apply data augmentation
methods including Inception crop, random horizontal flipping, and random augmentation with two
transformations (magnitude of 9). For evaluation, we resize the smaller side of an image to 256
while maintaining the original aspect ratio and then crop the central portion to 224×224. In both the
pre-training and fine-tuning phases, we use the AdamW optimizer [24] and incorporate a warm-up
strategy, characterized by a linear increase over 10 epochs. Both the pre-training and fine-tuning are
conducted for a total of 91 epochs, utilizing a cosine decay schedule.

(2) Large to Huge size: In the pre-training stage, we utilize an image size of 84×84, and the
maximum token length is 32, with a total of 2.56 billion training samples. During the fine-tuning
stage, we increase the image size to 224×224 while maintaining the maximum token length at 32,
with a 512 million training samples. Here, the key distinction between the pre-training stage and
the fine-tuning stage is the image size. A smaller image size results in a faster training speed. In
the configurations of CRATE-α-CLIPA-B, CRATE-α-CLIPA-L, and CRATE-α-CLIPA-H, we use the
CRATE-α model as the vision encoder, and utilize the same pre-trained huge transformer model from
CLIPA [18] as the text encoder. For both the pre-training and fine-tuning stages, we freeze the text
encoder and only train the vision encoder, i.e., the CRATE-α model. As we will show in the later
results, this setup effectively demonstrates the scaling behaviors of CRATE-α models in the image
domain. Detailed hyperparameter settings can be found in Appendix A.

Downstream Applications. On four downstream datasets, we follow the training setup from [46].
For the segmentation task, we compare the performance of CRATE and CRATE-α on the ADE20K
dataset, mainly following the setup of [30] with minor modifications. Our batch size is set to 128,
and the total number of training steps is 5000. For the language task, we conduct experiments with
CRATE-α using autoregressive training on OpenWebText, following the setup in [16]. We compare
CRATE-α models (57M and 120M) with CRATE and GPT-2, using results from CRATE reported
in [45].

7

0 10000 20000 30000 40000 50000 60000 70000
Step

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Tr
ai

ni
ng

 L
os

s

CLIPA Training Loss on DataComp1B
CRATE- -B/16
CRATE- -L/14
CRATE- -H/14

CRATE- -B/16 CRATE- -L/14 CRATE- -H/14 ViT-H/14
Model

30

40

50

60

70

80

To
p-

1
Ac

cu
ra

cy

52.9

63.6
66.7

72.2

60.8

69.8
72.3

79.1

Zero-shot Accuracy on ImageNet-1k
Pre-train
Fine-tune

Figure 4: (Left) Comparing training loss curves of CRATE-α-CLIPA with different model sizes on
DataComp1B. (Right) Comparing zero-shot accuracy of CRATE-α-B/L/H models and ViT-H on
ImageNet-1K.

4.3 Results and Analysis

Scaling the CRATE-α Model from Base to Large. As shown in Table 1, we compare CRATE-α-B
and CRATE-α-L at patch sizes 32, 16, and 8. Firstly, we find our proposed CRATE-α-L consistently
achieves significant improvements across all patch sizes. Secondly, compared with the results of
the vanilla CRATE (the first row of Table 1), increasing from CRATE-B to CRATE-L results in only a
0.5% improvement on ImageNet-1K. This indicates a case of diminishing returns. These findings
compellingly highlight that the scalability of CRATE-α models significantly outperforms that of the
vanilla CRATE. Meanwhile, the training loss in the pre-training stage is presented in Fig. 3; as the
model capacity increases, the trend of the training loss improves predictably. This phenomenon is
also described in [9].

Scaling the CRATE-α Model from Large to Huge. From the results shown in Fig. 4, we find that:
(1) CRATE-α-CLIPA-L/14 significantly outperforms CRATE-α-CLIPA-B/16 by 11.3% and 9.0% in
terms of ImageNet-1K zero-shot accuracy during the pre-training and fine-tuning stages, respectively.
The substantial benefit suggests that the quality of learned representation may be constrained by the
model size. Therefore, increasing the model size effectively leverages larger amounts of data. (2)
When continuing to scale up model size, we also observe that CRATE-α-CLIP-H/14 continues to
benefit from larger training datasets, outperforming CRATE-α-CLIP-L/14 by 3.1% and 2.5% in terms
of ImageNet-1K zero-shot accuracy during the pre-training and fine-tuning stages, respectively. This
demonstrates the strong scalability of the CRATE-α model. To explore the performance ceiling, we
train a standard ViT-CLIPA-H/14 from scratch and observe improved performance.

Downstream Applications. On four downstream datasets, as shown in Table 2, we find that
CRATE-α consistently outperforms CRATE, with both models pre-trained on IN21K, while CRATE-α
demonstrates improved performance as model size increases. For the segmentation task, results
in Table 3 show that CRATE-α consistently outperforms CRATE across all key metrics, with both
models pre-trained on IN21K. These findings indicate significant performance gains in vision tasks
beyond classification. For the language task, Table 4 shows that CRATE-α significantly improves
over CRATE in language modeling. Due to limited time and resource constraints, we completed 80%
of the total iterations for CRATE-α-small and 55% for CRATE-α-base, compared to the 600K total
iterations used for CRATE. Nevertheless, CRATE-α still demonstrated notable improvements.

Interpretability. As shown in Fig. 5, we provide the segmentation visualization on COCO
val2017 [20] for CRATE-α, CRATE, and ViT, respectively. We find that our model preserves and
even improves the (semantic) interpretability advantages of CRATE. Moreover, we summarize quan-
titative evaluation results on COCO val2017 in Table 6. Interestingly, when scaling up model size
for CRATE-α, the Large model improves over the Base model in terms of object detection and
segmentation.

4.4 Compute-efficient Scaling Strategy

We further explore methods to scale models efficiently in terms of computation. Table 1 demonstrates
that the CRATE-α model scales effectively from the Base model to its larger variants. However,
the pre-training computation for the top-performing model, CRATE-α-L/8, is resource-intensive on

8

Table 2: The performance comparison between CRATE and CRATE-α across various datasets.

Dataset CRATE-B/32 CRATE-α-B/32 CRATE-α-L/32 CRATE-α-B/16 CRATE-α-L/14

CIFAR-10 97.22 98.17 98.68 98.67 99.10
CIFAR-100 85.27 89.40 91.16 90.58 92.57
Oxford Flowers-102 93.90 97.77 99.01 99.27 99.56
Oxford-IIIT-Pets 80.38 88.19 90.46 92.70 93.98

Table 3: Performance comparison of CRATE models with different configurations.
Model Scope mIoU mAcc aAcc

CRATE-α-B/32 global 35.35 45.28 77.63
CRATE-B/32 global 30.28 39.29 75.21

Table 4: The comparison between CRATE and CRATE-α on the NLP task using the OpenWebText
dataset.

GPT-2-base CRATE-base CRATE-α-small CRATE-α-base

Model size 124M 60M 57M 120M
Cross-entropy validation loss 2.85 3.37 3.28 3.14

Table 5: Compute-efficient scaling strategy. To reduce the compute requirements of the pre-training
stage, we use a model with a larger patch size. This results in a shorter token length for the same
input size. The second and fourth columns indicate the compute requirements for the pre-training and
fine-tuning stages, respectively, measured in TPU v3 core-hours. Details are provided in Section 4.4.

Pre-train Core-hours Fine-tune Core-hours Total core-hours IN-1K(%)

CRATE-α-L/32 2,652 CRATE-α-L/14 872 3,524 83.7
CRATE-α-L/8 3,486 6,138 84.2

CRATE-α-L/14 8,947 CRATE-α-L/14 872 9,819 83.9

CRATE-α-L/8 35,511 CRATE-α-L/8 3,486 38,997 85.1

ImageNet-21K. Inspired by CLIPA [18], we aim to reduce computational demands by using reduced
image token sequence lengths, while maintaining the same training setup during the fine-tuning stage.
The results are summarized in Table 5.

Results and analysis. (1) When fine-tuning with CRATE-α-L/14 and using CRATE-α-L/32 for pre-
training on ImageNet-21K, this approach consumes about 35% of the TPU v3 core-hours required by
CRATE-α-L/14, yet achieves a promising 83.7% top-1 accuracy on ImageNet-1K, comparable to the
83.9% achieved by CRATE-α-L/14; (2) When fine-tuning with CRATE-α-L/8 and using CRATE-α-L/32
for pre-training, this approach consumes just 15% of the training time required by CRATE-α-L/8,
yet it still achieves a promising 84.2% top-1 accuracy on ImageNet-1K, compared to 85.1% when
using the CRATE-α-L/8 model in the pre-training stage; (3) While the total computational cost of
CRATE-α-L/32 + CRATE-α-L/8 is less than that of CRATE-α-L/14 + CRATE-α-L/14, the performance
of the former is slightly better. In summary, we find that this strategy offers a valuable reference for
efficiently scaling CRATE-α models in the future.

5 Discussion

Limitations. Although we have used some existing compute-efficient training methods (e.g.,
CLIPA [18]) and have initiated an exploration into compute-efficient scaling strategies for white-
box transformers in Section 4.4, this work still requires a relatively large amount of computational
resources, which may not be easily accessible to many researchers.

Societal impact. A possible broader implication of this research is the energy consumption needed
to conduct the experiments in our scaling study. However, there is growing interest in developing
white-box transformers for better interpretability and transparency across a wide range of tasks
and domains, including image segmentation [46], self-supervised masked autoencoders [26], and
integrated sensing and communications [50], etc. Moreover, our results on the scalability of white-

9

CRATE-α

CRATE

ViT

Figure 5: Visualization of segmentation on COCO val2017 [20] with MaskCut [43]. (Top row)
Supervised CRATE-α effectively identifies the main objects in the image. Compared with CRATE
(Middle row), CRATE-α achieves better segmentation performance in terms of boundary. (Bottom
row) Supervised ViT fails to identify the main objects in most images. We mark failed image with .

Table 6: Object detection and fine-grained segmentation via MaskCut on COCO val2017 [20].
We evaluate models of various scales and assess their average precision using COCO’s official
evaluation metric. Compared with existing models such as CRATE and ViT, CRATE-α model achieves
a notable performance gain. In addition, when scaling CRATE-α from base to large, it also exhibits
the benefit of scalability.

Detection Segmentation
Model Train AP50 ↑ AP75 ↑ AP ↑ AP50 ↑ AP75 ↑ AP ↑
CRATE-B/8 [47] Supervised 2.9 1.0 1.3 2.2 0.7 1.0
ViT-B/8 [47] Supervised 0.8 0.2 0.4 0.7 0.5 0.4

CRATE-α-B/8 Supervised 3.5 1.1 1.5 2.2 1.0 1.1
CRATE-α-L/8 Supervised 4.0 1.7 2.0 2.7 1.1 1.4

box transformers could also shed light on scaling up a broader class of white-box deep neural
networks, such as white-box ISTA networks and their variants [11, 34, 3, 48, 17], designed via
unrolled optimization. In summary, we believe that our findings and insights could be helpful for
developing white-box transformers for a wide range of applications and tasks, benefiting a broad
audience interested in building more interpretable and performant deep learning models and further
amortizing the pre-training compute costs.

6 Conclusion

This paper provides the first exploration of training white-box transformer CRATE at scale for vision
tasks. We introduce both principled architectural changes and improved training recipes to unleash
the potential scalability of the CRATE type architectures. With these modifications, we successfully
scale up the CRATE-α model along both the dimensions of model size and data size, while preserving,
in most cases even improving, the semantic interpretability of the learned white-box transformer
models. We believe this work provides valuable insights into scaling up mathematically interpretable
deep neural networks, not limited to transformer-like architectures.

Acknowledgement

This work is supported by a gift from Open Philanthropy, TPU Research Cloud (TRC) program, and
Google Cloud Research Credits program.

10

References
[1] Thomas Blumensath and Mike E Davies. Iterative thresholding for sparse approximations.

Journal of Fourier analysis and Applications, 14:629–654, 2008.

[2] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

[3] Xiaohan Chen, Jialin Liu, Zhangyang Wang, and Wotao Yin. Theoretical linear convergence
of unfolded ista and its practical weights and thresholds. Advances in Neural Information
Processing Systems, 31, 2018.

[4] Thomas M Cover. Elements of information theory. John Wiley & Sons, 1999.

[5] Mostafa Dehghani, Josip Djolonga, Basil Mustafa, Piotr Padlewski, Jonathan Heek, Justin
Gilmer, Andreas Peter Steiner, Mathilde Caron, Robert Geirhos, Ibrahim Alabdulmohsin, et al.
Scaling vision transformers to 22 billion parameters. In International Conference on Machine
Learning, pages 7480–7512. PMLR, 2023.

[6] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-
scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern
recognition, pages 248–255. Ieee, 2009.

[7] Harm Derksen, Yi Ma, Wei Hong, and John Wright. Segmentation of multivariate mixed data
via lossy coding and compression. In Visual Communications and Image Processing 2007,
volume 6508, pages 170–181. SPIE, 2007.

[8] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805,
2018.

[9] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al.
An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

[10] Samir Yitzhak Gadre, Gabriel Ilharco, Alex Fang, Jonathan Hayase, Georgios Smyrnis, Thao
Nguyen, Ryan Marten, Mitchell Wortsman, Dhruba Ghosh, Jieyu Zhang, et al. Datacomp:
In search of the next generation of multimodal datasets. Advances in Neural Information
Processing Systems, 36, 2024.

[11] Karol Gregor and Yann LeCun. Learning fast approximations of sparse coding. In Proceedings
of the 27th international conference on international conference on machine learning, pages
399–406, 2010.

[12] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked
autoencoders are scalable vision learners. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 16000–16009, 2022.

[13] Gabriel Ilharco, Mitchell Wortsman, Ross Wightman, Cade Gordon, Nicholas Carlini, Rohan
Taori, Achal Dave, Vaishaal Shankar, Hongseok Namkoong, John Miller, Hannaneh Hajishirzi,
Ali Farhadi, and Ludwig Schmidt. Openclip. July 2021.

[14] Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh
Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile
Saulnier, et al. Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

[15] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

[16] Andrej Karpathy. nanogpt, 2022. URL https://github.com/karpathy/nanoGPT. GitHub
repository.

11

https://github.com/karpathy/nanoGPT

[17] Mingyang Li, Pengyuan Zhai, Shengbang Tong, Xingjian Gao, Shao-Lun Huang, Zhihui Zhu,
Chong You, Yi Ma, et al. Revisiting sparse convolutional model for visual recognition. Advances
in Neural Information Processing Systems, 35:10492–10504, 2022.

[18] Xianhang Li, Zeyu Wang, and Cihang Xie. An inverse scaling law for clip training. Advances
in Neural Information Processing Systems, 36, 2024.

[19] Yanghao Li, Haoqi Fan, Ronghang Hu, Christoph Feichtenhofer, and Kaiming He. Scaling
language-image pre-training via masking. In CVPR, 2023.

[20] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In Computer
Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014,
Proceedings, Part V 13, pages 740–755. Springer, 2014.

[21] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining
Guo. Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings
of the IEEE/CVF international conference on computer vision, pages 10012–10022, 2021.

[22] Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining
Xie. A convnet for the 2020s. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 11976–11986, 2022.

[23] Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. In
ICLR, 2017.

[24] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

[25] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In ICLR, 2018.

[26] Druv Pai, Ziyang Wu, Sam Buchanan, Tianzhe Chu, Yaodong Yu, and Yi Ma. Masked
completion via structured diffusion with white-box transformers. In Conference on Parsimony
and Learning (Recent Spotlight Track), 2023.

[27] Neal Parikh, Stephen Boyd, et al. Proximal algorithms. Foundations and trends® in Optimiza-
tion, 1(3):127–239, 2014.

[28] Qing Qu, Yuexiang Zhai, Xiao Li, Yuqian Zhang, and Zhihui Zhu. Geometric analysis of
nonconvex optimization landscapes for overcomplete learning. In International Conference on
Learning Representations, 2019.

[29] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning,
pages 8748–8763. PMLR, 2021.

[30] Sucheng Ren, Fangyun Wei, Zheng Zhang, and Han Hu. Tinymim: An empirical study of
distilling mim pre-trained models. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 3687–3697, 2023.

[31] Mannat Singh, Quentin Duval, Kalyan Vasudev Alwala, Haoqi Fan, Vaibhav Aggarwal, Aaron
Adcock, Armand Joulin, Piotr Dollár, Christoph Feichtenhofer, Ross Girshick, et al. The effec-
tiveness of mae pre-pretraining for billion-scale pretraining. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 5484–5494, 2023.

[32] Quan Sun, Yuxin Fang, Ledell Wu, Xinlong Wang, and Yue Cao. Eva-clip: Improved training
techniques for clip at scale. arXiv preprint arXiv:2303.15389, 2023.

[33] Quan Sun, Jinsheng Wang, Qiying Yu, Yufeng Cui, Fan Zhang, Xiaosong Zhang, and Xinlong
Wang. Eva-clip-18b: Scaling clip to 18 billion parameters. arXiv preprint arXiv:2402.04252,
2024.

12

[34] Xiaoxia Sun, Nasser M Nasrabadi, and Trac D Tran. Supervised deep sparse coding networks.
In 2018 25th IEEE International Conference on Image Processing (ICIP), pages 346–350. IEEE,
2018.

[35] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov,
Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 1–9,
2015.

[36] Bahareh Tolooshams and Demba Ba. Stable and interpretable unrolled dictionary learning.
arXiv preprint arXiv:2106.00058, 2021.

[37] Ilya O Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Thomas
Unterthiner, Jessica Yung, Andreas Steiner, Daniel Keysers, Jakob Uszkoreit, et al. Mlp-mixer:
An all-mlp architecture for vision. Advances in neural information processing systems, 34:
24261–24272, 2021.

[38] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and
Hervé Jégou. Training data-efficient image transformers & distillation through attention. In
International conference on machine learning, pages 10347–10357. PMLR, 2021.

[39] Hugo Touvron, Matthieu Cord, and Hervé Jégou. Deit iii: Revenge of the vit. In European
conference on computer vision, pages 516–533. Springer, 2022.

[40] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timo-
thée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open
and efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

[41] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open
foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

[42] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

[43] Xudong Wang, Rohit Girdhar, Stella X Yu, and Ishan Misra. Cut and learn for unsupervised
object detection and instance segmentation. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 3124–3134, 2023.

[44] Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani
Yogatama, Maarten Bosma, Denny Zhou, Donald Metzler, et al. Emergent abilities of large
language models. Transactions on Machine Learning Research, 2022.

[45] Yaodong Yu, Sam Buchanan, Druv Pai, Tianzhe Chu, Ziyang Wu, Shengbang Tong, Hao Bai,
Yuexiang Zhai, Benjamin D Haeffele, and Yi Ma. White-box transformers via sparse rate
reduction: Compression is all there is? arXiv preprint arXiv:2311.13110, 2023.

[46] Yaodong Yu, Sam Buchanan, Druv Pai, Tianzhe Chu, Ziyang Wu, Shengbang Tong, Benjamin
Haeffele, and Yi Ma. White-box transformers via sparse rate reduction. Advances in Neural
Information Processing Systems, 36, 2023.

[47] Yaodong Yu, Tianzhe Chu, Shengbang Tong, Ziyang Wu, Druv Pai, Sam Buchanan, and Yi Ma.
Emergence of segmentation with minimalistic white-box transformers. In Conference on
Parsimony and Learning, pages 72–93. PMLR, 2024.

[48] John Zarka, Louis Thiry, Tomás Angles, and Stéphane Mallat. Deep network classification by
scattering and homotopy dictionary learning. arXiv preprint arXiv:1910.03561, 2019.

[49] Xiaohua Zhai, Alexander Kolesnikov, Neil Houlsby, and Lucas Beyer. Scaling vision transform-
ers. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pages 12104–12113, 2022.

13

[50] Bowen Zhang and Geoffrey Ye Li. White-box 3d-omp-transformer for isac. arXiv preprint
arXiv:2407.02251, 2024.

[51] Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela Barriuso, and Antonio Torralba.
Scene parsing through ade20k dataset. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 633–641, 2017.

14

Appendix

A Additional Experiments and Details

A.1 Model configuration.

We provide details about CRATE-α model configurations in Table 7.

Table 7: Model configurations for different sizes of CRATE-α, parameter counts, and comparisons to
CRATE models. L is depth, d is the hidden size, and K is the number of heads.

Model Size L d K CRATE-α # Params CRATE # Params

Tiny 12 192 3 4.8M 1.7M

Small 12 576 12 41.0M 13.1M

Base 12 768 12 72.3M 22.8M

Large 24 1024 16 253.8M 77.6M

Huge 32 1280 16 526.8M 159.8M

Table 8: The comparison between CRATE-α and ViT. FLOPs and throughput are calculated based on
an input size of 224x224 on an NVIDIA RTX A6000 graphics card.

Model FLOPs (G) #Params (M) Throughput Model FLOPs (G) #Params (M) Throughput

CRATE-α-B/32 6.4 74.0 499 ViT-B/32 4.4 88.2 706
CRATE-α-B/16 25.8 72.3 233 ViT-B/16 17.6 86.5 375
CRATE-α-L/32 22.8 256.0 215 ViT-L/32 15.4 306.5 329
CRATE-α-L/14 119.7 253.7 56 ViT-L/14 81.1 304.1 85

A.2 Comparison of model structure with ViT.

We also compare CRATE-α to ViT in terms of computational costs, number of parameters, and
inference speed. These comparisons are summarized in Table 8, where CRATE-α matches ViT’s effi-
ciency while achieving similar accuracy. With the same number of layers and embedding dimensions,
CRATE-α has fewer parameters than ViT, and its FLOPs/Throughput is slightly higher.

To more accurately compare CRATE-α and ViT with larger model sizes, we conduct experiments on
CRATE-α-L/16 with an image resolution of 336, nearly matching the setup of ViT-L/16. Both models
use a similar amount of FLOPs: 210G for CRATE-α-L/16 compared to 191G for ViT-L/16. The
throughput, or images processed per second, is also comparable at 35.53 for our model versus 35.56
for ViT-L/16. The accuracy of CRATE-α-L/16 reach 84.6%, closely approaching ViT’s 85.2% under
similar conditions. Meanwhile, combining the trend from Figure 1 (right) in the main paper, this
narrowing performance gap from Base to Large model size suggests that CRATE-α can nearly matche
ViT’s performance in large-scale settings. Besides, CRATE-α inherits the mathematical interpretability
of the white-box models and can also achieve much better semantic interpretability evaluated by
zero-shot segmentation.

A.3 Training details of CRATE-α-CLIPA models.

When employing the CRATE-α architecture to replace the vision encoder in the CLIPA [18] framework,
we essentially follow the original CLIPA training recipe. The setup for the pre-training stage is
presented in Table 9. During the fine-tuning stage, we made some modifications: the input image size
is set to 224× 224, the warmup steps are set to 800, and the base learning rate is set to 4e-7. When
calculating the loss, we use the classification token from the vision encoder as the image feature and
the last token from the text encoder as the text feature.

To explore the performance ceiling, we also train a ViT-CLIPA model from scratch. Most of the
hyperparameters remain the same as those in Table 9, but there are some modifications in the pre-
training stage. The batch size is set to 65,536, and the text length is set to 8 to speed up training. As

15

with the CLIPA setup, warm-up steps are set to 3,200. Additionally, we add color jitter and grayscale
augmentation, and use global average pooling instead of the classification token. These modifications
help stabilize training.

Config Value

optimizer AdamW [25]
optimizer momentum (0.9, 0.95)

batch size 32768
base lr 8e-6

minimal lr 0
warm-up steps 1600

schedule cosine decay [23]
weight decay 0.2

random crop area (40, 100)
resize method bi-linear

temperature init 1/0.07 [13, 19]

Table 9: Pre-training hyper-parameters for CLIPA.

Figure 6: One layer of the CRATE-α model architecture (with more details for the three modifications
described in Section 3.

16

Visualization of self-attention maps of CRATE-α. We provide visualization of attention maps of
CRATE-α in Fig. 7.

Figure 7: We visualize the self-attention maps of the CRATE-α Base model using 8 × 8 patches
trained using classification. Similar to the original CRATE [47], our model also demonstrates the
capability to automatically capture the structural information of objects. For each row, the original
image is displayed on the left, while the corresponding self-attention maps are shown on the right.
The number of self-attention maps corresponds to the number of heads in the CRATE-α model.

Visualization of loss curves. We visualize the training loss curves of the four models, including
CRATE and its three variants, in Fig. 8. We visualize the training loss curves of CRATE-α-Base with
different patch sizes in Fig. 9. In Fig. 10, we also visualize the training loss curves of models trained
with efficient scaling strategy described in Section 4.4 in the main paper.

0 50000 100000 150000 200000 250000
Step

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

Tr
ai

ni
ng

 L
os

s

Training Loss on ImageNet-21k (Varying Model Sizes)
CRATE
CRATE (+O)
CRATE (+O+D)
CRATE (+O+D+R)
CRATE-

Figure 8: Training loss curves of different model architectures (mentioned in Fig. 1 in the main paper)
on ImageNet-21K. The patch size is 32 for all four models shown in this figure. (+O: +overcomplete
dictionary, +D: +decoupled dictionary, +R: +residual connection.)

17

0 50000 100000 150000 200000 250000
Step

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

Tr
ai

ni
ng

 L
os

s

Training Loss on ImageNet-21k (Varying Patch Sizes)

CRATE- -B/32
CRATE- -B/16
CRATE- -B/8

Figure 9: Comparing training loss curves across CRATE-α-Base with different patch sizes.

200000 220000 240000 260000 280000 300000
Step

2.50

2.75

3.00

3.25

3.50

3.75

4.00

4.25

4.50

Tr
ai

ni
ng

 L
os

s

Training Loss (with Efficient Scaling)

CRATE- -L/32 (pre-train)
CRATE- -L/32->14 (fine-tune)
CRATE- -L/32->8 (fine-tune)

Figure 10: Comparing training loss curves when using the efficient scaling strategy. The blue
curve corresponds to the CRATE-α-Large/32 model (in the pre-training stage). After pre-training the
CRATE-α-Lage/32, we further fine-tune it with smaller patch sizes (longer token length), including
patch size 14 (orange curve) and patch 8 (green curve).

18

NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction clearly outline the primary contributions and
scope of the paper. For specific details, refer to abstract and Sections 1, which align with the
claims stated.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

19

Justification: We discuss the limitations of the work in section 5.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: This paper does not include theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide details of reproducing the experimental results in Section 4 and
the appendix.

Guidelines:

20

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: We use public datasets and will also release the code.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

21

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide details of reproducing the experimental results in Section 4 and
the appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We evaluate our method on a large public validation dataset, which is represen-
tative.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide details about the training compute resources in Section 4.

Guidelines:

• The answer NA means that the paper does not include experiments.

22

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: we follow the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: we discuss them in Section 5.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our work has no potential risk for misuse.

23

https://neurips.cc/public/EthicsGuidelines

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All assets used in the paper are properly credited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: we haven’t introduced new assets in this work.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

24

paperswithcode.com/datasets

Answer: [NA]
Justification: This paper does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

25

	1 Introduction
	2 Background and Preliminaries
	2.1 Sparse Rate Reduction
	2.2 crate: Coding RATE Transformer

	3 CRATE- Model
	4 Experiments
	4.1 Dataset and Evaluation
	4.2 Training and Fine-tuning Procedures
	4.3 Results and Analysis
	4.4 Compute-efficient Scaling Strategy

	5 Discussion
	6 Conclusion
	A Additional Experiments and Details
	A.1 Model configuration.
	A.2 Comparison of model structure with ViT.
	A.3 Training details of crate--CLIPA models.

