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ABSTRACT

Most existing adversarial defenses only measure robustness to L, adversarial
attacks. Not only are adversaries unlikely to exclusively create small L,, perturba-
tions, adversaries are unlikely to remain fixed. Adversaries adapt and evolve their
attacks; hence adversarial defenses must be robust to a broad range of unforeseen
attacks. We address this discrepancy between research and reality by proposing
a new evaluation framework called ImageNet-UA. Our framework enables
the research community to test ImageNet model robustness against attacks not
encountered during training. To create ImageNet-UA’s diverse attack suite, we
introduce a total of four novel adversarial attacks. We also demonstrate that,
in comparison to ImageNet-UA, prevailing L., robustness assessments give a
narrow account of adversarial robustness. By evaluating current defenses with
ImageNet-UA, we find they provide little robustness to unforeseen attacks. We
hope the greater variety and realism of ImageNet-UA enables development of
more robust defenses which can generalize beyond attacks seen during training.

1 INTRODUCTION

Neural networks perform well on many datasets (He et al.| 2016)) yet can be consistently fooled by
minor adversarial distortions (Goodfellow et al.,|2014)). The research community has responded by
quantifying and developing adversarial defenses against such attacks (Madry et al.|[2017), but these
defenses and metrics have two key limitations.

First, the vast majority of existing defenses exclusively defend against and quantify robustness to
L,-constrained attacks (Madry et al.} 2017; |Cohen et al, 2019; Raff et al., [2019; |Xie et al.,|2018).
Though real-world adversaries are not L, constrained (Gilmer et al., 2018) and can attack with
diverse distortions (Brown et al., 2017; Sharif et al.| 2019), the literature largely ignores this and
evaluates against the L, adversaries already seen during training (Madry et al., 2017; |Xie et al.,
2018), resulting in optimistic robustness assessments. The attacks outside the L,, threat model that
have been proposed (Song et al., 2018 |Qiu et al.,|2019; [Engstrom et al., 2017; |[Evtimov et al., 2017;
Sharif et al.| |2016) are not intended for general defense evaluation and suffer from narrow dataset
applicability, difficulty of optimization, or fragility of auxiliary generative models.

Second, existing defenses assume that attacks are known in advance (Goodfellow} 2019) and use
knowledge of their explicit form during training (Madry et al.l [2017). In practice, adversaries can
deploy unforeseen attacks not known to the defense creator. For example, online advertisers use
attacks such as perturbed pixels in ads to defeat ad blockers trained only on the previous generation
of ads in an ever-escalating arms race (Tramer et al., |2018). However, current evaluation setups
implicitly assume that attacks encountered at test-time are the same as those seen at train-time,
which is unrealistic. The reality that future attacks are unlike those encountered during training
is akin to a train-test distribution mismatch—a problem studied outside of adversarial robustness
(Recht et al., |2019; |[Hendrycks & Dietterichl |2019)—but now brought to the adversarial setting.

The present work addresses these limitations by proposing an evaluation framework ImageNet-UA
to measure robustness against unforeseen attacks. ImageNet-UA assesses a defense which may
have been created with knowledge of the commonly used L., or Lo attacks with six diverse at-
tacks (four of which are novel) distinct from L., or Ls. We intend these attacks to be used at
test-time only and not during training. Performing well on ImageNet-UA thus demonstrates gen-
eralization to a diverse set of distortions not seen during defense creation. While ImageNet-UA
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Figure 1: Adversarially distorted chow chow dog images created with old attacks and our new
attacks. The JPEG, Fog, Snow, and Gabor adversarial attacks are visually distinct from previous
attacks, result in distortions which do not obey a small L,, norm constraint, and serve as unforeseen
attacks for the ImageNet-UA attack suite.

does not provide an exhaustive guarantee over all conceivable attacks, it evaluates over a diverse
unforeseen test distribution similar to those used successfully in other studies of distributional shift
(Rajpurkar et al 2018} [Hendrycks & Dietterich, 2019; [Recht et all 2019). ImageNet-UA works
for ImageNet models and can be easily used with our code available at https://github.com/
anon-submission-2020/anon-submission-2020.

Designing ImageNet-UA requires new attacks that are strong and varied, since real-world attacks
are diverse in structure. To meet this challenge, we contribute four novel and diverse adversarial
attacks which are easily optimized. Our new attacks produce distortions with occlusions, spatial
similarity, and simulated weather, all of which are absent in previous attacks. Performing well on
ImageNet-UA thus demonstrates that a defense generalizes to a diverse set of distortions distinct
from the commonly used L, or L.

With ImageNet-UA, we show weaknesses in existing evaluation practices and defenses through a
study of 8 attacks against 48 models adversarially trained on ImageNet-100, a 100-class subset
of ImageNet. While most adversarial robustness evaluations use only L., attacks, ImageNet-UA
reveals that models with high L., attack robustness can remain susceptible to other attacks. Thus,
L, evaluations are a narrow measure of robustness, even though much of the literature treats this
evaluation as comprehensive (Madry et al[2017; [Qian & Wegman| 2019} [Schott et al., 2019} [Zhang
2019). We address this deficiency by using the novel attacks in ImageNet-UA to evaluate
robustness to a more diverse set of unforeseen attacks. Our results demonstrate that L, adversarial
training, the current state-of-the-art defense, has limited generalization to unforeseen adversaries,
and is not easily improved by training against more attacks. This adds to the evidence that achieving
robustness against a few train-time attacks is insufficient to impart robustness to unforeseen test-time
attacks (Jacobsen et al.| 2019} Jordan et al., [2019; [Tramér & Bonehl [2019).

In summary, we propose the framework ImageNet-UA to measure robustness to a diverse set of
attacks, made possible by our four new adversarial attacks. Since existing defenses scale poorly
to multiple attacks (Jordan et al.} 2019} [Tramér & Boneh| [2019), finding defense techniques which
generalize to unforeseen attacks is crucial to create robust models. We suggest ImageNet-UA as a
way to measure progress towards this goal.

2 RELATED WORK

Adversarial robustness is notoriously difficult to correctly evaluate (Papernot et al., 2017; [Athalye|
2018a). To that end, [Carlini et al.| (2019a) provide extensive guidance for sound adversarial
robustness evaluation. By measuring attack success rates across several distortion sizes and using a
broader threat model with diverse differentiable attacks, ImageNet-UA has several of their recom-
mendations built-in, while greatly expanding the set of attacks over previous work on evaluation.
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Figure 2: Randomly sampled distortions and adversarially optimized distortions from our new at-
tacks, targeted to the target class in red. Stochastic average-case versions of our attacks affect
classifiers minimally, while adversarial versions are optimized to reveal high-confidence errors. The
snowflakes in Snow decrease in intensity after optimization, demonstrating that lighter adversarial
snowflakes are more effective than heavy random snowfall at uncovering model weaknesses.

We are only aware of a few prior works which evaluate on unforeseen attacks in specific limited
circumstances. [Wu et al| (2020) evaluate against physically-realizable attacks from [Evtimov et al.|
(2017)) and [Sharif et al.| (2016), though this limits the threat model to occlusion attacks on narrow
datasets. Outside of vision, |Pierazzi et al.|(2020) proposes constraining attacks by a more diverse set
of problem-space constraints in diverse domains such as text and malware or source code generation;
however, even in this framework, analytically enumerating all such constraints is impossible.

Within vision, prior attacks outside the L,, threat model exist, but they lack the general applicability
and fast optimization of ours. [Song et al] (2018)) and [Qiu et al| (2019) attack using variational
autoencoders and StarGANSs, respectively, resulting in weaker attacks which require simple image
distributions suitable for VAEs and GANs. Engstrom et al.| (2017) apply Euclidean transformations
determined by brute-force search. |Zhao et al.| (2019) use perceptual color distances to align human
perception and Lo perturbations. [Evtimov et al.| (2017) and [Sharif et al] (2016) attack stop signs
and face-recognition systems with carefully placed patches or modified eyeglass frames, requiring
physical object creation and applying only to specific image types.

3 NEW ATTACKS FOR A BROADER THREAT MODEL

There are few diverse, easily optimizable, plug-and-play adversarial attacks in the current literature;
outside of Elastic (Xiao et a1.|, 2018)), most are L, attacks such as L, (Goodfellow et al.[, 2014), Lo
(Szegedy et al, 2013} [Carlini & Wagner}, 2017), L; (Chen et all, 2018)). We rectify this deficiency
with four novel adversarial attacks: JPEG, Fog, Snow, and Gabor. Our attacks are differentiable and
fast, while optimizing over enough parameters to be strong. We show example adversarial images
in Figure[T]and compare stochastic and adversarial distortions in Figure 2]

Our novel attacks provide a range of fest-time adversaries visually and semantically distinct from
L, and L, attacks. Namely, they cause distortions with large L., and L, norm, but result in images
that are perceptually close to the original. These attacks are intended as unforeseen attacks not used
during training, allowing them to evaluate whether a defense can generalize from L., or Ly to
a more varied set of distortions than current evaluations. Though our attacks are not exhaustive,
performing well against them already demonstrates robustness to occlusion, spatial similarity, and
simulated weather, which are absent from previous evaluations.
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Our attacks create an adversarial image 2’ from a clean image x with true label y. Let model f map
images to a softmax distribution, and let £(f(x),y) be the cross-entropy loss. Given a target class
y' # y, our attacks attempt to find a valid image =’ such that (1) the attacked image z’ is obtained
by applying a distortion (of size controlled by a parameter ¢) to z, and (2) the loss £(f(z'),') is
minimized. An unforeseen adversarial attack is a white- or black-box adversarial attack unknown to
the defense designer which does not change the true label of x according to an oracle or human.

3.1 FoOUR NEW UNFORESEEN ATTACKS

JPEG. JPEG applies perturbations in a JPEG-encoded space of compressed images rather than
raw pixel space. More precisely, JPEG compression is a linear transform JPEG which applies color-
space conversion, the discrete cosine transform, and then quantization. Our JPEG attack imposes
the L .-constraint

|[JPEG(x) — JPEG(2) || < €

on the attacked image x’. We optimize z = JPEG(z’) under this constraint to find an adversarial
perturbation in the resulting frequency space. The perturbed frequency coefficients are quantized,
and we then apply a right-inverse of JPEG to obtain the attacked image =’ in pixel space. We use
ideas from |Shin & Song| (2017) to make this differentiable. The resulting attack is conspicuously
distinct from L, attacks.

Fog. Fog simulates worst-case weather conditions. Robustness to adverse weather is a safety crit-
ical priority for autonomous vehicles, and Figure [2| shows Fog provides a more rigorous stress-test
than stochastic fog (Hendrycks & Dietterich, |2019). Fog creates adversarial fog-like occlusions by
adversarially optimizing parameters in the diamond-square algorithm (Fournier et al., [1982) typi-
cally used to render stochastic fog effects.

This algorithm starts with random perturbations to the four corner pixels of the image. At step ¢, it
iteratively perturbs pixels at the centers of squares and diamonds formed by those pixels perturbed at
step t — 1. The perturbation of a step ¢ pixel is the average of the neighboring step ¢ — 1 perturbations
plus a parameter value which we adversarially optimize. We continue this process until all pixels
have been perturbed; the outcome is a fog-like distortion to the original image.

Snow.  Snow simulates snowfall with occlusions of randomly located small image regions rep-
resenting snowflakes. Because the distortions caused by snowflakes are not differentiable in their
locations, we instead place occlusions representing snowflakes at randomly chosen locations and
orientations and adversarially optimize their intensities. This choice results in a fast, differentiable,
and strong attack. Compared to synthetic stochastic snow (Hendrycks & Dietterich, 2019), our ad-
versarial snow is faster and includes snowflakes at differing angles. Figure[2|shows adversarial snow
exposes model weaknesses more effectively than the easier stochastic, average-case snow.

Gabor.  Gabor spatially occludes the image with visually diverse Gabor noise|Lagae et al.[(2009).
Gabor noise is a form of band-limited anisotropic procedural noise which convolves a parameter
mask with a Gabor kernel which is a product of a Gaussian kernel and a harmonic kernel. We choose
the Gabor kernel randomly and adversarially optimize the parameters of the mask starting from a
sparse initialization. We apply spectral variance normalization (Co et al., 2019) to the resulting
distortion and add it to the input image to create the attack.

3.2 IMPROVING EXISTING ATTACKS

Elastic modifies the attack of Xiao et al.| (2018)); it warps the image by distortions &’ = Flow(z, V),
where V' : {1,...,224}2 — R? is a vector field on pixel space, and Flow sets the value of pixel
(i, 7) to the bilinearly interpolated original value at (4, j) + V' (4, j). We construct V' by smoothing a
vector field W by a Gaussian kernel (size 25 x 25, o =~ 3 for a 224 x 224 image) and optimize W
under ||W (i, j)||c < € for all 4, j. The resulting attack is suitable for large-scale images.

The other three attacks are L;, Lo, L, attacks, but we improve the L; attack. For L., and Lo
constraints, we use randomly-initialized projected gradient descent (PGD), which applies gradient
descent and projection to the L., and L, balls (Madry et al.l [2017). Projection is difficult for L,
and previous L attacks rely on computationally intensive methods for it (Chen et al.,|2018; Tramer
& Bonehl 2019). We replace PGD with the Frank-Wolfe algorithm (Frank & Wolfe, [1956), which
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Figure 3: Accuracies of Lo and FElastic attacks at different distortion sizes against a ResNet-50
model adversarially trained against Ly at ¢ = 9600 on ImageNet-100. At small distortion sizes, the
model appears to defend well against Elastic, but large distortion sizes reveal that robustness does
not transfer from Lo to Elastic.

optimizes a linear function instead of projecting at each step (pseudocode in Appendix [D). This
makes our L; attack more principled than previous implementations.

4 ImageNet-UA: MEASURING ROBUSTNESS TO UNFORESEEN ATTACKS

We propose the framework ImageNet-UA and its CIFAR-10 analogue CIFAR-10-UA to measure
and summarize model robustness while fulfilling the following desiderata: (1) defenses should be
evaluated against a broad threat model through a diverse set of attacks, (2) defenses should exhibit
generalization to attacks not exactly identical to train-time attacks, and (3) the range of distortion
sizes used for an attack must be wide enough to avoid misleading conclusions caused by overly
weak or strong versions of that attack (Figure[3).

The ImageNet-UA evaluation framework aggregates robustness information into a single measure,
the mean Unforeseen Adversarial Robustness (mMUAR). The mUAR is an average over six different
attacks of the Unforeseen Adversarial Robustness (UAR), a metric which assesses the robustness
of a defense against a specific attack by using a wide range of distortion sizes. UAR is normalized
using a measure of attack strength, the ATA, which we now define.

Adversarial Training Accuracy (ATA). The Adversarial Training Accuracy ATA(A, ) estimates
the strength of an attack A against adversarial training (Madry et al.l 2017), one of the strongest
known defense methods. For a distortion size ¢, it is the best adversarial test accuracy against A
achieved by adversarial training against A. We allow a possibly different distortion size &’ during
training, since this can improves accuracy, and we choose a fixed architecture for each dataset.

For ImageNet-100, we choose ResNet-50 for the architecture, and for CIFAR-10 we choose ResNet-
56. When evaluating a defense with architecture other than ResNet-50 or ResNet-56, we recommend
using ATA values computed with these architectures to enable consistent comparison. To estimate
ATA(A, ¢) in practice, we evaluate models adversarially trained against distortion size ¢’ for £’ in a
large range (we describe this range at this section’s end).

UAR: Robustness Against a Single Attack. The UAR, a building block for the mUAR, averages a
model’s robustness to a single attack over six distortion sizes €1, . . . , g chosen for each attack (we
describe the selection procedure at the end of this section). It is defined as

22:1 Acc(A, e, M)
Y he1 ATA(A, )

UAR(A) := 100 x (1)

where Acc(A, e, M) is the accuracy Acc(A, e, M) of a model M after attack A at distortion size
ek. The normalization in (I)) makes attacks of different strengths more commensurable in a stable
way. We give values of ATA(A, ) and e for our attacks on ImageNet-100 and CIFAR-10 in
Tables [4] and [5] (Appendix [B)), allowing computation of UAR of a defense against a single attack
with six adversarial evaluations and no adversarial training.

mUAR: Mean Unforeseen Attack Robustness. = We summarize a defense’s performance on
ImageNet-UA with the mean Unforeseen Attack Robustness (mMUAR), an average of UAR scores
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for the L4, Elastic, JPEG, Fog, Snow, and Gabor attacks:

mUAR := — |UAR(L;)+UAR(Elastic)+UAR(JPEG)+UAR(Fog) + UAR(Snow)+UAR(Gabor) | .

[N

Our measure mUAR estimates robustness to a broad threat model containing six unforeseen attacks
at six distortion sizes each, meaning high mUAR requires generalization to several held-out attacks.
In particular, it cannot be achieved by the common practice of engineering defenses to a single
attack, which Figure [d] shows does not necessarily provide robustness to different attacks.

Our four novel attacks play a crucial role in mUAR by allowing us to estimate robustness to a
sufficiently large set of adversarial attacks. As is customary when studying train-test mismatches and
distributional shift, we advise against adversarially training with these six attacks when evaluating
ImageNet-UA to preserve the validity of mUAR, though we encourage training with other attacks.

Distortion Sizes. We explain the &’ values used to estimate ATA and the choice of 1, . .., ¢ used
to define UAR. This calibration of distortion sizes adjusts for the fact (Figure [3)) that adversarial
robustness against an attack may vary drastically with distortion size. Further, the relation between
distortion size and attack strength varies between attacks, so too many or too few € values in a
certain range may cause an attack to appear artificially strong or weak according to UAR.

We choose distortion sizes between e,;, and €.« as follows. The minimum distortion size &p;, 1S
the largest € for which the adversarial accuracy of an adversarially trained model at distortion size
€ is comparable to that of a model trained and evaluated on unattacked data (for ImageNet-100,
within 3 of 87). The maximum distortion size €, is the smallest £ which either reduces adversarial
accuracy of an adversarially trained model at distortion size € below 25 or yields images confusing
humans (adversarial accuracy can remain non-zero in this case).

As is typical in recent work on adversarial examples (Athalye et al.} 2018} [Evtimov et all, 2017}
[Dong et al., 2019} [Qin et al.|2019), our attacks can be perceptible at large distortion sizes. We make

this choice to reflect perceptibility of attacks in real world threat models per Gilmer et al.| (2018).

For ATA, we evaluate against models adversarially trained with &’ increasing geometrically from
€min 10 €max DY factors of 2. We then choose ¢ as follows: We compute ATA at ¢ increasing
geometrically from ey, to emax by factors of 2 and take the size-6 subset whose ATA values have
minimum ¢; -distance to the ATA values of the L, attack in Table ] (Appendix [B.I). For example,
for Gabor, (emin, €max) = (6.25,3200), so we compute ATAs at the 10 values £ = 6.25, ... ,3200.
Viewing size-6 subsets of the ATAs as vectors with decreasing coordinates, we select €, for Gabor
corresponding to the vector with minimum ¢, -distance to the ATA vector for L.
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Table 1: Clean Accuracy, UAR, and mUAR scores for models adv trained against L, and L attacks.
L training, the most popular defense, provides less robustness than Lo training. Comparing the
highest mUAR achieved to individual UAR values in Figureindicates a large robustness gap.

Clean Accuracy| Lo L2 mUAR Clean Accuracy | Lo L2 mUAR
Normal Training 86.7 7.3 17.2 14.0 ||Normal Training 86.7 7.3 17.2 14.0
Leoe=1 86.2 46.4 542 30.7 ||L2e =150 86.6 38.0 494 27.1
Loe=2 85.5 59.8 644 369 ||Lze =300 85.9 49.7 60.1 333
Loe=14 83.9 72.1 73.6 423 || L2 e =600 84.7 61.9 71.6 40.0
Loe=38 79.8 82.6 720 422 ||L2 e = 1200 823 729 82.0 46.8
Lo e=16 74.5 89.1 60.0 37.5 ||L2e = 2400 76.8 79.6 88.5 50.7
Lo e =32 70.8 88.1 419 31.8 ||L2 e = 4800 68.3 80.4 87.7 50.5

Table 2: Clean Accuracy, UAR, and mUAR scores for models jointly trained against (L., L2). Joint
training does not provide much additional robustness.

Clean Accuracy | Lo Lo mUAR
Lo e =1, Lae =300 86.1 50.3  60.2 33.6
Lo € =2, Ly e =600 85.1 62.8 725 41.0
Lo e=4,Lye=1200 81.3 729 81.2 46.9
Lo € =8, Ly e = 2400 76.5 80.0 87.3 50.8
Lo € =16, Ly € = 4800 68.4 81.5 879 50.9

5 NEW INSIGHTS FROM ImageNet-UA

We use ImageNet-UA to assess existing methods for adversarial defense and evaluation. First,
ImageNet-UA reveals that L., trained defenses fail to generalize to different attacks, indicating
substantial weakness in current L., adversarial robustness evaluation. We establish a baseline
for ImageNet-UA using Lo adversarial training which is difficult to improve upon by adversarial
training alone. Finally, we show non-adversarially trained models can still improve robustness on
ImageNet-UA over standard models and suggest this as a direction for further inquiry.

5.1 EXPERIMENTAL SETUP

We adversarially train 48 models against the 8 attacks from Section [3] and evaluate against targeted
attacks. We use the CIFAR-10 and ImageNet-100 datasets for ImageNet-UA and CIFAR-10-UA.
ImageNet-100 is a 100-class subset of ImageNet-1K (Deng et al.,|2009) containing every tenth class
by WordNet ID order; we use a subset of ImageNet-1K due to the high compute cost of adversarial
training. We use ResNet-56 for CIFAR-10 and ResNet-50 from torchvision for ImageNet-100
(He et al.,[2016). We provide training hyperparameters in Appendix

To adversarially train against attack A, at each mini-batch we select a uniform random (incorrect)
target class for each training image. For maximum distortion size ¢, we apply targeted attack A
to the current model with distortion size ¢’ ~ Uniform(0, €) and take a SGD step using only the
attacked images. Randomly scaling ¢’ improves performance against smaller distortions.

We train on 10-step attacks for attacks other than Elastic, where we use 30 steps due to a harder
optimization. For L,, JPEG, and Elastic, we use step size e/+/steps; for Fog, Gabor, and Snow,
we use step size 1/0.001/steps because the latent space is independent of €. These choices have
optimal rates for non-smooth convex functions (Nemirovski & Yudin, |1978;|1983). We evaluate on
200-step targeted attacks with uniform random (incorrect) target, using more steps for evaluation
than training per best practices (Carlini et al.| |2019b)).

Figure 4 summarizes ImageNet-100 results. Full results for ImageNet-100 and CIFAR-10 are in
Appendix [E and robustness checks to random seed and attack iterations are in Appendix [F]

5.2 ImageNet-UA REVEALS WEAKNESSESS IN L., TRAINING AND TESTING

We use ImageNet-UA to reveal weaknesses in the common practices of L, robustness evaluation
and L., adversarial training. We compute the mUAR and UAR(L.,) for models trained against
the L, attack with distortion size € and show results in Figure E} For small ¢ < 4, mUAR and
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Table 3: Non-adversarial defenses can noticeably improve ImageNet-UA performance. ResNeXt-
101 (32x8d) + WSL is trained on approximately 1 billion images Mahajan et al.|(2018). Stylized
ImageNet is trained on a modification of ImageNet using style transfer |Geirhos et al.|(2019). Patch
Gaussian augments using Gaussian distortions on small portions of the image [Lopes et al.| (2019).
AugMix mixes simple random augmentations of the image Hendrycks et al.| (2020). These results
suggest that ImageNet-UA performance may be achieved through non-adversarial defenses.

Clean Acc. Lo Lo | L1 Elastic JPEG Fog Snow Gabor | mUAR
SqueezeNet 84.1 52 1121149 259 19 201 98 44 12.8
ResNeXt-101 (32x8d) 95.9 25 551207 265 1.8 141 124 53 134
ResNeXt-101 (32x8d) + WSL 97.1 30 57 (283 294 19 262 203 80 19.0
ResNet-18 91.6 27 82 (135 226 1.8 203 95 42 12.0
ResNet-50 94.2 27 6.6 (201 249 1.8 158 119 49 132
ResNet-50 + Stylized ImageNet 94.6 29 741228 260 1.8 162 125 8.1 14.6
ResNet-50 + Patch Gaussian 93.6 45 109|274 282 1.8 239 105 52 16.2
ResNet-50 + AugMix 95.1 6.1 134|343 388 1.8 28.6 247 11.1 | 23.2

UAR(L,) increase together with e. For larger ¢ > 8, UAR(L«) continues to increase with &, but
the mUAR decreases, a fact which is not apparent from L, evaluation.

The decrease in mUAR while UAR(L,) increases suggests that L., adversarial training begins to
heavily fit L., distortions at the expense of generalization at larger distortion sizes. Thus, while it
is the most commonly used defense procedure, L, training may not lead to improvements on other
attacks or to real-world robustness.

Worse, L, evaluation against L, adversarial training at higher distortions indicates higher robust-
ness. In contrast, mUAR reveals that L., adversarial training at higher distortions in fact hurts
robustness against a more diverse set of attacks. Thus, L., evaluation gives a misleading picture of
robustness. This is particularly important because L, evaluation is the most ubiquitous measure of
robustness in deep learning (Goodfellow et al.,[2014; Madry et al.l 2017} Xie et al., 2018]).

5.3 LIMITS OF ADVERSARIAL TRAINING FOR ImageNet-UA

We establish a baseline on ImageNet-UA using Ly adversarial training but show a significant perfor-
mance gap even for more sophisticated existing adversarial training methods. To do so, we evaluate
several adversarial training methods on ImageNet-UA and show results in Table[T]

Our results show that Lo trained models outperform L, trained models and have significantly im-
proved absolute performance, increasing mUAR from 14.0 to 50.7 compared to an undefended
model. The individual UAR values in Figure [7| (Appendix improve substantially against all
attacks other than Fog, including several (Elastic, Gabor, Snow) of extremely different nature to L.

This result suggests pushing adversarial training further by training against multiple attacks simul-
taneously via joint adversarial training (Jordan et al.l 2019} [Tramer & Bonehl 2019)) detailed in
Appendix [C] Table [2| shows that, despite using twice the compute of Lo training, (Lo, L2) joint
training only improves the mUAR from 50.7 to 50.9. We thus recommend Lo training as a baseline
for ImageNet-UA, though there is substantial room for improvement compared to the highest UARs
against individual attacks in Figure 4] which are all above 80 and often above 90.

5.4 ImageNet-UA ROBUSTNESS THROUGH NON-ADVERSARIAL DEFENSES

We find that methods can improve robustness to unforeseen attacks without adversarial training. Ta-
ble shows mUAR for SqueezeNet (landola et al.,[2017), ResNeXts (Xie et al.,|2016), and ResNets.
For ImageNet-1K models, we mask 900 logits to predict ImageNet-100 classes.

A popular defense against average case distortions (Hendrycks & Dietterich, [2019)) is Stylized Im-
ageNet (Geirhos et al., 2019), which modifies training images using image style transfer in hopes
of making networks rely less on textural features. Table [3] shows it provides some improvement on
ImageNet-UA. More recently, |[Lopes et al.[(2019) propose to train against Gaussian noise applied to
small image patches, improving the mUAR by 3% over the ResNet-50 baseline. The second largest
mUAR improvement comes from training a ResNeXt on approximately 1 billion images (Maha-
jan et al.l 2018)). This three orders of magnitude increase in training data yields a 5.4% mUAR
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increase over a vanilla ResNeXt baseline. Finally, Hendrycks et al.| (2020) create AugMix, which
randomly mixes stochastically generated augmentations. Although AugMix did not use random nor
adversarial noise, it improves robustness to unforeseen attacks by 10%.

These results imply that defenses not relying on adversarial examples can improve ImageNet-UA
performance. They indicate that training on more data only somewhat increases robustness
on ImageNet-UA, unlike many other robustness benchmarks (Hendrycks & Dietterich, 2019
Hendrycks et al., |2019) where more data helps tremendously (Orhan} 2019). While models with
lower clean accuracy (e.g., SqueezeNet and ResNet-18) have higher UAR(L«,) and UAR(Lz) than
many other models, there is no clear difference in mUAR. Last, these non-adversarial defenses have
minimal cost to accuracy on clean examples, unlike adversarial defenses. Much remains to explore,
and we hope non-adversarial defenses will be a promising avenue toward adversarial robustness.

6 CONCLUSION

This work proposes a framework ImageNet-UA to evaluate robustness of a defense against
unforeseen attacks. Because existing adversarial defense techniques do not scale to multiple
attacks, developing models which can defend against attacks not seen at train-time is essential for
robustness. Our results using ImageNet-UA show that the common practice of L., training and
evaluation fails to achieve or measure this broader form of robustness. As a result, it can provide
a misleading sense of robustness. By incorporating our 4 novel and strong adversarial attacks,
ImageNet-UA enables evaluation on the diverse held-out attacks necessary to measure progress
towards robustness more broadly.
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A  TRAINING HYPERPARAMETERS

For ImageNet-100, we trained on machines with 8 NVIDIA V100 GPUs using standard data aug-
mentation (He et al., 2016). Following best practices for multi-GPU training (Goyal et al., |2017),
we ran synchronized SGD for 90 epochs with batch size 32x8 and a learning rate schedule with 5
“warm-up” epochs and a decay at epochs 30, 60, and 80 by a factor of 10. Initial learning rate after
warm-up was 0.1, momentum was 0.9, and weight decay was 10, For CIFAR-10, we trained on a
single NVIDIA V100 GPU for 200 epochs with batch size 32, initial learning rate 0.1, momentum
0.9, and weight decay 10~%. We decayed the learning rate at epochs 100 and 150.

B CALIBRATION OF ImageNet-UA AND CIFAR-10-UA

B.1 CALIBRATION FOR ImageNet-UA

Calibrated distortion sizes and ATA values are in Table[d]
B.2 CALIBRATION FOR CIFAR-10-UA

The ¢ calibration procedure for CIFAR-10 was similar to that used for ImageNet-100. We started
with small e, values and increased ¢ geometrically with ratio 2 until adversarial accuracy of an
adversarially trained model dropped below 40. Note that this threshold is higher for CIFAR-10 than
ImageNet-100 because there are fewer classes. The resulting ATA values for CIFAR-10 are shown
in Table

C JOINT ADVERSARIAL TRAINING

Our joint adversarial training procedure for two attacks A and A’ is as follows. At each training step,
we compute the attacked image under both A and A’ and backpropagate with respect to gradients
induced by the image with greater loss. This corresponds to the “max” loss of [Tramer & Boneh
(2019). We train ResNet-50 models for (Lo, L2), (Lo, L1), and (Lo, Elastic) on ImageNet-100.

Table E] shows training against (L., L1) is worse than training against L; at the same distortion
size and performs particularly poorly at large distortion sizes. Table [/|shows joint training against

Table 4: Calibrated distortion sizes and ATA values for different distortion types on ImageNet-100.

Attack €1 €2 €3 €4 €x 6 ATAl ATA2 ATA3 ATA4 ATA5 ATA@
Lo 1 2 4 8 16 32 84.6 821 762 669 40.1 129
Lo 150 300 600 1200 2400 4800 85.0 835 79.6 726 59.1 199
Ly 9562.5 19125 76500 153000 306000 612000 84.4 82.7 763 689 564 36.1

Elastic 0.25 0.5 2 4 8 16 859 832 78.1 756 57.0 225
JPEG 0.062 0.125 0.250 0.500 1 2 85.0 832 793 728 348 1.1
Fog 128 256 512 2048 4096 8192 858 83.8 79.0 684 679 64.7
Snow 0.0625 0.125 0.25 2 4 8 84.0 81.1 77.7 656 595 412

Gabor 6.25 125 25 400 800 1600 84.0 79.8 79.8 66.2 447 14.6

Table 5: Calibrated distortion sizes and ATA values for ResNet-56 on CIFAR-10

Attack ¢ 1 €2 €3 4 €5 e ATA1 ATA2 ATA3 ATA4 ATA 5 ATA6
Lo 1 2 4 8 16 32 91.0 87.8 81.6 713 465 23.1
Lo 40 80 160 320 640 2560 90.1 864 79.6 673 499 173
Ly 195 390 780 1560 6240 24960 92.2 90.0 832 73.8 474 353
JPEG 0.03125 0.0625 0.125 0.25 0.5 1 89.7 87.0 83.1 78.6 69.7 354

Elastic 0.125 025 05 1 2 8 874 813 72.1 582 454 278
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Table 6: UAR scores for L; -trained models and (Lo, L1)-jointly trained models. At each distortion
size, L;-training performs better than joint training.

UAR,_ UARy,

Lo e=2,L; e =76500 48 66
Lo e =4, L ¢ = 153000 51 72
Lo e =8, L e = 306000 44 62
Ly e = 76500 50 70
Ly e = 153000 54 81
Ly € = 306000 59 87

Table 7: UAR scores for L.- and Elastic-trained models and (L., Elastic)-jointly trained models.
No jointly trained model matches a Elastic-trained model on UAR vs. Elastic.

UARLOO UAREIastic

Lo € =4, Elastice = 2 68 63
Lo € =8, Elastice =4 35 65
Lo, € =16, Elastice = 8 69 43
Elastic e = 2 37 68
Elastice =4 36 81
Elastice = 8 31 91

(Lo, Elastic) also performs poorly, never matching the UAR score of training against Elastic at
moderate distortion size (¢ = 2).

D THE FRANK-WOLFE ALGORITHM

We chose to use the Frank-Wolfe algorithm for optimizing the L; attack, as Projected Gradient
Descent would require projecting onto a truncated L; ball, which is a complicated operation. In
contrast, Frank-Wolfe only requires optimizing linear functions ¢ ' = over a truncated L; ball; this
can be done by sorting coordinates by the magnitude of g and moving the top k coordinates to the
boundary of their range (with k& chosen by binary search). This is detailed in Algorithm [I]

E FULL EVALUATION RESULTS

E.1 FULL EVALUATION RESULTS AND ANALYSIS FOR IMAGENET-100

We show the full results of all adversarial attacks against all adversarial defenses for ImageNet-100
in Figure @ These results also include L1-JPEG and L,-JPEG attacks, which are modifications of
the JPEG attack applying L,-constraints in the compressed JPEG space instead of L, constraints.
Full UAR scores are provided for ImageNet-100 in Figure

E.2 FULL EVALUATION RESULTS AND ANALYSIS FOR CIFAR-10

We show the results of adversarial attacks and defenses for CIFAR-10 in Figure[§] We experienced
difficulty training the Lo and L; attacks at distortion sizes greater than those shown and have omitted

those runs, which we believe may be related to the small size of CIFAR-10 images. Full UAR values
for CIFAR-10 are shown in Figure[9]

F ROBUSTNESS OF OUR RESULTS

F.1 REPLICATION

We replicated our results for the first three rows of Figure [] with different random seeds to see the
variation in our results. As shown in Figure[T0] deviations in results are minor.
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Algorithm 1 Pseudocode for the Frank-Wolfe algorithm for the L attack.

—

Input: function f, initial input z € [0, l}d, L1 radius p, number of steps 7.
Output: approximate maximizer Z of f over the truncated L; ball By (p;z) N [0, 1] centered
at x.

N

3:

4: 2 + RandomInit(z) {Random initialization}

5. fort=1,...,T do

6: g < Vf(xz*=1) {Obtain gradient}

7 fork=1,...,ddo

8: 53, < index of the coordinate of g by with &™ largest norm
9: end for

10: Sk<—{817...,8k}.

12:  {Compute move to boundary of [0, 1] for each coordinate.}
13: fori=1,...,ddo

14: if g; > 0 then

15: b +—1—x;

16: else

17: b; + —ux;

18: end if

19:  end for

20: My« Y e, |bil {Compute L;-perturbation of moving k largest coordinates. }

21:  k* + max{k | My < p} {Choose largest k satisfying L constraint.}

23:  {Compute & maximizing g ' = over the L; ball.}
24: fori=1,...,ddo

25: if i € Sy« then

26: 521 — x; + bz

27: else if i = sy-, 1 then

28: &+ x; + (p — My~ ) sign(g;)

29: else

30: T; < T;

31: end if

32:  end for

33 2™ « (1—2)z~Y + 13 {Average & with previous iterates}
34: end for

35: 7 « (D)

F.2 CONVERGENCE

We replicated the results in Figure [6] with 50 instead of 200 steps to see how the results changed
based on the number of steps in the attack. As shown in Figure |11} the deviations are minor.
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