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ABSTRACT

Pre-trained vision models used in robotics often misalign with manipulation tasks
due to the loss used to train these vision models being focused on appearance
rather than motion. In order to enhance motion encoding within vision models,
we introduce a simple novel contrastive training framework that operates over
predictions of motion. After training over EPIC Kitchens, model evaluations on
behavioral cloning show a improvement in success rate over state-of-the-art meth-
ods across a benchmark of 3 environments and 21 object manipulation tasks.

1 INTRODUCTION

Figure 1: Illustration of the distinction between:
a) appearance representations (RGB Frames) and,
b) motion representations, for two verbs and two
noun categories. Actions are difficult to distin-
guish on the basis of appearance alone, but the dis-
tinction becomes immediately apparent from the
motions of the action.

Vision models used in robotics often derive
from those trained for detection in still im-
ages or less commonly, in video clips. This
practice can result in a misalignment between
the robot’s objective — effective manipulation
(motion) — and the visual model’s objective
(appearance1). For robotics, especially in ma-
nipulation tasks, it is crucial to model motion
since manipulation is fundamentally defined by
motion rather than appearance.

Video representation learning often overfits to
characteristics of action besides movement,
such as gross-level scene and object appearance
(Sevilla-Lara et al., 2021). This overfitting lim-
its the utility of these models in robotic appli-
cations where motion is a critical factor. In or-
der for robotic applications to be more effective
it is important for visual models to capture mo-
tion characteristics, as this incorporation allows
a better alignment between the robot’s goals of
effective manipulation and the capabilities of
the visual model.

Consider Figure 1, which illustrates two actions—placing and pushing—that are visually similar but
distinct in their motions. While the visual appearance of these actions may be almost identical, the
motions involved distinguish them. The difference between placing and pushing lies in their motion
characteristics rather than their appearance characteristics.

Constraining a vision network to focus on motion is readily achieved via a contrastive loss. We
introduce in this paper such a contrastive loss. Our contrastive learning approach utilizes motion as
a self-supervised cue. This approach forces similar motions to be grouped together and dissimilar
motions to be distinguished, organizing visual representations based on motion similarity. Conse-
quently, any appearance characteristic that does not contribute to motion understanding is deemed
irrelevant, ensuring that the network’s focus remains on capturing the dynamics of motion. This

1From here on out we use "appearance" to refer to characteristics which are perceivable in static images
such as color, shape, texture, spatial arrangement, etc.
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Figure 2: Example actions as shown in the RGB frames, and the direction of movement projected
over the 2D plane of the image. Action categories are not immediately apparent from their single
frame RGB representations alone; the motion characteristics make the action category clear.

targeted approach enhances the network’s capability to learn and generalize from motion data effec-
tively. This approach is made feasible by recent advances in motion segmentation, and eliminates
the need for difficult and time-consuming ground truth collection, particularly for video data where
action labels are challenging to define.

We evaluate our learned vision representations in the domain of robot motor policy learning, a do-
main which benefits from the introduction of motion centered representations. It has been demon-
strated empirically (Nair et al., 2022; Hu et al., 2023) that improvements observed in simulation
over pre-trained vision networks translate to improved success rate in the real world. Our method
outperforms (measured by success rate) alternative approaches (Nair et al., 2022) that rely on tem-
poral action boundaries or language as supervisory cues, which are less effective than our method at
emphasizing motion characteristics and suffer from scalability issues due to the annotation burden.

Video datasets can come from a variety of sources, including those of human actions. Large-scale
video datasets of human interaction can be collected more easily than robot manipulation datasets,
which require aggregating videos across different robots in controlled settings. We choose the ego-
centric perspective, as they are especially useful in capturing hands and objects in interaction, of-
fering a rich, diverse, multi-cue sensory stream. Self-produced motion is commonly in full view
from the egocentric perspective, making motion particularly important to model. See Figure 2 for
examples. As such, we adopt the EPIC Kitchens dataset (Damen et al., 2018).

To summarize: vision models used in robotics often misalign with manipulation tasks because they
are trained for appearance-based objectives. By employing a contrastive loss to emphasize motion,
our approach aligns visual representations with robotic objectives.

Our primary contributions can be summarized as followed:

• We observe that visual encoders commonly used in robotic control policies are not trained in
such a way as to model the internal motion dynamics of actions. Robot control policies can
benefit from visual representations modeling motion. We introduce a novel contrastive training
framework which explicitly enhances motion encoding in the visual representation network.

• Qualitatively, our contrastive training framework improves the visual representation network’s
sensitivity to motions and its robustness to appearance change.

• Quantitatively, we evaluate our contrastive training framework on three behavior cloning RL
environments. The experiments show that the visual representation network overall yields an
improvement over state-of-the-art methods across a benchmark of 3 environments and 21 object
manipulation tasks.
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2 RELATED WORK

2.1 LEARNING VISUAL REPRESENTATIONS FOR MOTOR CONTROL

Large-scale pre-training Mahajan et al. (2018); Sun et al. (2017) over in-the-wild video datasets
Damen et al. (2018); Grauman et al. (2022); Li et al. (2015) has long been considered a promis-
ing direction for learning useful visual representations for robotics applications. The pre-training
paradigm has been explored in the domain of policy learning for motor control Shridhar et al.
(2022); Nair et al. (2022); Yuan et al. (2022a); Hu et al. (2023), where visual representations are
frozen during the training of motor policies.

There have been many recent works exploring the learning of visual representations over simulated
robotic action Yen-Chen et al. (2020); Bousmalis et al. (2023); Yuan et al. (2022b) (but simulated
environments suffer from lack of diversity), large-scale image data Dasari et al. (2023) (which result
in misalignment between vision and policy objectives), small-scale real-world robot action videos
Radosavovic et al. (2023) (which are difficult to collect), and large-scale human action videos Nair
et al. (2022); Xiao et al. (2022). In this work, we pre-train a network over a large-scale human action
video dataset - the EPIC Kitchens dataset Damen et al. (2018).

2.2 SELF-SUPERVISION OVER VIDEO

There have been a plethora of works which align video representations with language targets for
learning useful representations for downstream language-conditioned robotics tasks Mees et al.
(2022); Lynch & Sermanet (2020); Ma et al. (2023) and for robotic manipulation tasks conditioned
on vision alone Nair et al. (2022); Sontakke et al. (2024). In an attempt to learn video representations
with less explicit supervision, there has been significant attention exploring how time can be used as
a self-supervisory signal. The majority of existing works fall within two categories: 1) approaches
that enforce the feature-level distance between different video representations to be proportional to
their respective distances over time Tanwani et al. (2020); Zhou et al. (2021); Nair et al. (2022),
and 2) approaches that predict visual states in the future using a learned video dynamics model Wu
et al. (2020); Manuelli et al. (2020). While these approaches implicitly learn the motions, the ex-
plicit adoption of motion as a form of self-supervision has only been applied over the field of action
understanding Huang et al. (2021); Dessalene et al. (2024). To our knowledge, there is no existing
work exploring 3D motion as a supervisory cue in the learning of frozen representations for robotics.

3 METHODS

Our goal is to leverage large, diverse, and naturalistic video datasets of human interaction as a sub-
stitute for real-world robot data that is 1) difficult to collect at scale, 2) only collected for specific
embodiments, and 3) difficult to acquire for complex manipulation tasks. We learn a visual repre-
sentation through a contrastive learning formulation detailed in Section 3.1. This involves vision
architectures detailed in Section 3.2, and is trained through use of an egocentric RGB dataset de-
tailed in Section 3.3. We then deploy the visual representations learned over these videos for learning
motor control policies.

3.1 CONTRASTIVE LEARNING FORMULATION

We assume access to a dataset of RGB video clips v ∈ V encompassing object manipulation actions.
For each frame fk in video clip v with length t frames, there exist objects oki

∈ Ok, each paired with
a homogeneous transformation Tki (with respect to the origin at the center of the camera) for each
frame k in {1, 2, .., t}. Our approach predicts 3D motion pertaining to object oki from RGB video,
making our method independent of linguistic annotations or clip boundary annotations, unlike other
approaches.

Our contrastive learning approach operates over the aforementioned frames fk and 3D relative mo-
tion, as shown in Figure 3. In formulating the training loss we randomly sample two frames fn and
fm from video clip v, extracting frame-level feature maps using a backbone encoder. We extract
image features qn and qm, encouraging the feature representations to be aware of the motions acting
upon them by predicting the motions from these features. Specifically, we compute the 3D relative
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Figure 3: Illustration of our contrastive learning approach for leveraging video datasets in learning
useful frozen representations for robot policy learning. From the same clip, we sample 2 frames for
which hands and objects are in contact. A) We first infer 3D relative hand transformation Trel by
feeding both frames to a 3D hand extractor (Pavlakos et al., 2024) and computing the difference in
3D hand predictions. B) We then feed both frames to an agent inpainting network (Chang et al.,
2024), removing the hands from each image. Both inpainted frames are processed through a vision
backbone (F), over which the relative transform between object states is predicted. This enables the
model to learn representations that are sensitive to object motion.

motion Trel, where Trel is tied to the relative motion of object omi
from frame m to n. We predict

T̂rel using a fully connected head over image features qn and qm, supervising the head with mean
squared error (MSE).

3.2 VISION MODELS

Figure 4: RGB frames where
each row corresponds to a dif-
ferent task. Left column corre-
sponds to images taken from the
original environment, and right
column corresponds to images
after the robot body has been re-
moved (the red circle is used for
an ablation, see Section 4.3.

For consistency with the collection of models benchmarked
in (Hu et al., 2023), our backbone network of choice is the
ResNet50 network (He et al., 2016). In practice, the backbone
of choice can be any network that preserves spatial locality.

3.3 DATASET

The following are desirable properties for a dataset to be used in
our formulation: 1) The dataset features videos of everyday ob-
ject manipulation, similar in distribution as to be encountered by
the robot; and, 2) the data contains rigid transformation tracking
(Tki ) for one or more objects of interest; and, 3) the data does not
lead to trained networks that are over-reliant on the embodiment
of the (human) actor and therefore does not generalize to im-
ages containing the embodiment of a robot. The EPIC Kitchens
dataset satisfies criterion 1).

Regarding criterion 2), as the data does not feature rigid trans-
formation tracking (Tki ) for the objects of interaction, we deploy
a 3D hand model predictor (Pavlakos et al., 2024) as a substitute
for the 3D pose of the objects of interaction. This exploits the
fact that object motion and hand motion are strongly correlated
during periods of contact between the two. We extract hands in
3D for frames in which contact is predicted between the hand
and the environment using an off-the-shelf hand-object contact
detector (Shan et al., 2020). As such, we calculate relative object
transform Trel as the difference in predicted 3D hand vertices be-
tween frames m and n, where Trel is of dimensionality 27 × 3.
By representing Trel as 27 points belonging to the hand in con-
tact with the object, Trel captures aspects of object motion.
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Figure 5: Behavioral cloning success rates (as Inter-Quartile Median (IQM)) for our model along
with 4 SOTA benchmarks (VIP Ma et al. (2022), (Chen et al., 2020), VICReg (Bardes et al., 2021),
and R3M (Nair et al., 2022)) over number of demonstrations for all three environments (MetaWorld,
RoboSuite, and Franka Kitchen). These experiments are conducted over the original demonstra-
tions, without any removal of the robot body in either the training demonstrations or simulation
environment.

Figure 6: Behavioral cloning success rates (as Inter-Quartile Median (IQM)) for our model along
with 4 SOTA benchmarks (VIP Ma et al. (2022), (Chen et al., 2020), VICReg (Bardes et al., 2021),
and R3M (Nair et al., 2022)) over number of demonstrations for all three environments (MetaWorld,
RoboSuite, and Franka Kitchen). These experiments are conducted over an inpainted version of the
original demonstrations, removing the robot body from all demonstration videos. The evaluation
takes place with the robot body removed (keeping only the floating end-effector(s)).

Regarding criterion 3), as the human embodiment is strongly tied to the dataset, we apply a recent
work (Chang et al., 2024) that performs agent inpainting, removing the human from each and every
frame in the dataset. This synergizes with our approach to leveraging the hands as a substitute for
objects, as the network is forced to rely on the perceived motion of the object to estimate transforms
derived from the 3D hand predictions. This is opposed to if the hands were left in the video, in which
case the network would over-rely on the movements of the hands in predicting motion, resulting in
learned representations that fail to generalize towards robotic domains. We train our vision network
over the inpainted dataset and freeze the learned representations for the learning of control policies.

4 EXPERIMENTS

In our experiments, we demonstrate the effectiveness of our contrastive learning objective in gen-
eralizing beyond the egocentric training dataset, serving as a useful frozen visual representation
for motor policy learning. In Section 4.1 we describe the training and environment details of our
policy learning evaluation. In Section 4.2 we first demonstrate that motion sensitive visual represen-
tations learned through our contrastive learning formulation enable better performance and sample
efficiency over a variety of unseen environments and tasks. Second, in Section 4.3 we ablate the
various components of our contrastive learning formulation, justifying the design choices of our
proposed methodology. Finally, in Section 4.4 we show the learned representations are sensitive to
motion not just over the EPIC Kitchens dataset, but over the out-of-domain videos taken from the
RL environment.
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4.1 BEHAVIORAL CLONING EVALUATION

We perform experimentation over three prominent robot manipulation environments - Meta-World,
RoboSuite, and Franka-Kitchen. Our experiments are done over a total of 21 robot manipulation
tasks, simulated with the MuJoco physics engine, in accordance with the task distribution defined
by (Hu et al., 2023). See Figure 4 for example tasks across the 3 environments.

We evaluate our visual representations using behavioral cloning, which has been reported to be a re-
liable algorithm for evaluating visual representations in policy learning (Hu et al., 2023). The visual
representation backbone (ResNet50) is frozen during the training of the policy network, such that
the behavioral cloning tasks and environments do not influence the training of the visual backbone.
We vary the number of demonstrations the policy trains over and report the interquartile median
(IQM) as it is less sensitive to outliers and provides reduced uncertainty. All results are reported
over 4 independent runs, with different seeds.

Following the findings of (Hu et al., 2023), we opt out of performing experimentation where we
evaluate our visual representations in the training of policies through reinforcement learning. There
are known issues in evaluating visual representations for RL.

4.2 COMPARISONS

Environment +Temp +Act +Mark Ours
Robosuite 39.75% 45.91% 48.73% 49.12%
Meta-World 74.93% 75.08% 80.12% 79.90%
Kitchen 53.51% 57.19% 58.01% 58.31%
All 56.06% 58.86% 62.28% 62.44%

Table 1: The component evaluations we perform. +Temp corresponds
to stacking 3 visual representations across time during the policy train-
ing/evaluation stage, +Act corresponds to swapping motion targets for
action label targets, +Mark is where we superimpose the marker(s) over
EPIC Kitchens training videos and simulation environment. Ours is the
entirety of the proposed framework.

Here we evaluate the ex-
tent to which represen-
tations produced by our
method outperform exist-
ing visual representations
found to work well for
policy learning in behav-
ioral cloning settings. We
take 4 methods as re-
ported in (Hu et al., 2023)
- that is, MoCov2 (Chen
et al., 2020) (an unsu-
pervised learning method
using instance discrimi-
nation as a pre-training
task), VICReg (Bardes
et al., 2021) (a semi-supervised method that matches features within the same image based on pixel
distance), VIP (Ma et al., 2022) (a similarly self-supervised representation learning method) and
R3M (Nair et al., 2022) (a fully supervised representation learning method method utilizing linguis-
tic labels during training).

We perform two sets of experiments. The first set of experiments is conducted over the original
robot demonstrations and simulation environment. The second set of experiments is conducted over
an inpainted version of the robot demonstrations, with the robot body removed from each frame, and
the robot body is similarly removed from the simulation environment, keeping only the end effector
in both instances.

4.3 COMPONENT EVALUATIONS

Here we support the design choices of our contrastive learning framework through ablating compo-
nents. Table 1 provides ablation results, and ablation descriptions are provided below:

Temporal: In this evaluation we explore the impact of additional information provided to our model:
(+Temp) explores the extent to which temporal information benefits policy learning. We incorporate
temporal information from the contrastive formulation by applying our backbone network indepen-
dently over 3 frames, stacking the resultant feature vectors along the channels, and feeding the entire
output to policy training.
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Figure 7: This figure illustrates the application of our motion prediction network across various ma-
nipulation tasks. For each subfigure we show an RGB image and a time-series plot depicting the
predicted transforms for distinct actions: opening a door, moving the plate water, hitting a hammer,
placing a container, picking and placing a block, and moving a spatula. Our method accurately cap-
tures the continuous progression of motion, demonstrating the sensitivity to motion of our learned
representations. We demonstrate sensitivity both to rotational motion and translational motions.

With Action labels: This ablation explores the extent to which the improvement in performance
due to our method is provided by the contrastive loss formulation. The contrastive loss formulation
is ablated in +Act, where it is replaced by a classification loss across the action categories.

+Mark Here we superimpose red marker(s) over the EPIC Kitchens training videos where the hands
are detected, along with a red marker where the robot end effector(s) is in both the robot demonstra-
tion videos and the simulation environment during evaluation. This in effect trivializes the learning
of our vision backbone over the motion targets, as the network no longer is forced to attend to the
object of interaction, and can instead attend to the marker for predicting the relative 3D transform
between frames. See the right side of Figure 4 for the size and placement of the markers.

4.4 MOTION GENERALIZABILITY

Here we perform experimentation over a small subset of videos belonging to the EPIC Kitchens
dataset and the simulation environments (see Figure 7). We compute the frame-to-frame motions
using our vision network trained over EPIC Kitchens, plotting the predicted motions along the y-
axis. These examples showcase instances where our network is capable of generalizing beyond
EPIC Kitchens in capturing robot manipulation motions in simulation. We note while we did not
perform real-world experimentation, it has been demonstrated empirically (Nair et al., 2022; Hu
et al., 2023) over the models we compare against that improved success rates in simulation translate
into the real-world.

5 DISCUSSION

We observe that the addition of our contrastive loss results in general improvements between the
results of our method in Figure 6 and the results of state-of-the-art methods (MoCoV2, VICReg,

7
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VIP and R3M) across both Figure 5 5 and Figure 6. Interestingly, we observe sizable performance
gains across all 3 environments in our method when evaluated over the environment with the robot
removed - we posit that this is because the motion in the scene is dominated by the arm and base
of the robot body, which is less useful a cue than the motion belonging to the object. Removing the
robot body results in a focused modeling of the end effector and object of interaction.

We also observe a drop in performance with the usage of action labels instead of our motion targets
when evaluated on policy learning. This indicates that the reason for the observed performance
improvements due to our contrastive learning method is not solely due to the usage of egocentric
video data, and that our motion targets serve as a powerful alternative to action labels that are difficult
to acquire at scale.

Curiously, we observe that the incorporation of temporal information (+Temp vs Ours in Table 1 )
provides no meaningful improvements. This is rather unintuitive as the visual representations are
sensitive to frame-to-frame level motion, and so are particularly amenable to aggregation over time.
We note that our findings are consistent with other experiments done (Hu et al., 2023) that aggregate
visual representations over time using other vision backbone networks. One possible explanation
for this is the lack of dynamics in the task definitions across all environments.

6 CONCLUSION

This paper presents a novel contrastive training framework that enhances motion encoding in visual
representations for robotic manipulation tasks. By using a loss which focuses on motion and uti-
lizing the EPIC Kitchens dataset, our approach significantly improves the alignment between visual
models and the dynamic nature of robotic manipulation. After training over EPIC Kitchens, model
evaluations on behavioral cloning show a improvement in success rate over state-of-the-art methods
across a benchmark of 3 environments and 21 object manipulation tasks.
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