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Abstract
Sampling-based search, a simple paradigm for
utilizing test-time compute, involves generating
multiple candidate responses and selecting the
best one—typically by having models self-verify
each response for correctness. In this paper,
we study the scaling trends governing sampling-
based search. Among our findings is that sim-
ply scaling up a minimalist implementation of
sampling-based search, using only random sam-
pling and direct self-verification, provides a prac-
tical inference method that, for example, elevates
the reasoning capabilities of Gemini v1.5 Pro
above that of o1-Preview on popular benchmarks.
We partially attribute the scalability of sampling-
based search to a phenomenon of implicit scaling,
where sampling a larger pool of responses in turn
improves self-verification accuracy. We further
identify two useful principles for improving self-
verification capabilities with test-time compute:
(1) comparing across responses provides helpful
signals about the locations of errors and halluci-
nations, and (2) different model output styles are
useful for different contexts—chains of thought
are useful for reasoning but harder to verify. We
also find that, though accurate verification can
be elicited, frontier models demonstrate remark-
ably weak out-of-box verification capabilities and
introduce a benchmark to measure progress on
these deficiencies.

1. Introduction
Recent advances in language models highlight the impor-
tance of test-time compute scaling wherein one uses more
compute during inference to enhance reasoning capabil-
ities (OpenAI, 2024; Team, 2025; Agarwal et al., 2024;
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Wei et al., 2022; Yao et al., 2023; Akyürek et al., 2024).
There are many methods for increasing test-time compute
usage, including implicitly encouraging longer responses
via reinforcement learning (OpenAI, 2024; Team, 2025)
or explicitly via prompting (Wei et al., 2022; Yao et al.,
2023). However, sampling-based search—an instance of
the generate-and-test approach where a model generates
many responses in parallel, e.g. via random sampling or
delegation, and selects what the model guesses to be the
best one—remains one of the most natural and fundamental
paradigms. In addition to being complementary with other
test-time compute scaling strategies, it also has the unique
advantage of being embarrassingly parallel and allowing for
arbitrarily scaling: simply sample more responses (Cobbe
et al., 2021; Wang et al., 2023).

Though recent works demonstrate the benefits of sampling-
based search (Cobbe et al., 2021; Wang et al., 2023; Xue
et al., 2023), many questions remain as to what scaling
trends govern this fundamental test-time compute scaling
strategy. In particular, the practical utility of sampling-based
search is limited by verification. Whereas prior work have
shown that parallel scaling of test-time compute via Pass@k
can be remarkably effective (Brown et al., 2024), sampling
remains fundamentally bottlenecked by the availability of
external verification or the model’s ability to self-verify. We
are interested in understanding how this bottleneck evolves
with scale and how much of the Pass@k - Pass@1 gap can
actually be attained in practice.

To develop this understanding, we study a minimalist—
yet remarkably effective—instantiation of sampling-based
search that uses a language model (Gemini Team, 2024) to
both generate a set of candidate responses via random sam-
pling and select the best one by self-verifying each response
with natural language. Specifically, we consider the case
where models must self-verify their responses to select the
best answer, and do not make the strong assumption that

2The o1-preview-2024-09-12 numbers in Table 1 use public
figures, with MATH and AIME figures sourced from the OpenAI
blog post (OpenAI, 2024), and LiveBench figures sourced from
the LiveBench leaderboard (livebench.ai). We found o1-Preview
performance through the OpenAI API to slightly differ with pub-
licly reported figures, e.g. scoring 26% not 44% on AIME, and
scoring 77% not 67% on LiveBench Reasoning.
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Method AIME MATH LiveBench Math LiveBench Reasoning

Pass@1 1 / 15 426 / 500 104 / 200 63 / 140
Consistency@200 4 / 15 460 / 500 118 / 200 75 / 140
Consistency@1,000 3 / 15 460 / 500 120 / 200 73 / 140
Verification@200 8 / 15 467 / 500 135 / 200 97 / 140
o1-Preview@1 7 / 15 428 / 500 131 / 200 95 / 140

Table 1. Accuracy rates of the Gemini v1.5 Pro model using sampling-based search (Verification@200) on reasoning benchmarks,
compared to other inference methods and o1-Preview performance. Verification@200 consistently improves on Consistency@200 and
surpasses o1-Preview.2 Each score reflects a single run, due to the high expense of search at this scale (see Section 4).

one can access ground-truth answers or symbolic systems
that exactly verify correctness. In this setup, we address
the question: what test-time scaling trends emerge as we
scale both the number of sampled responses and verification
capabilities? In particular, what are the limits of scaling
this simple sampling-based search paradigm and how much
does one need to continuously scale verification capability
as one scales up search?

Our findings. We first identify scaling trends demon-
strating that reasoning performance continues to improve
with sampling-based search even as test-time compute is
scaled well beyond the point where the performance of
self-consistency (Wang et al., 2023) saturates. At sufficient
scale, even our minimalist implementation provides a sig-
nificant leap in reasoning accuracy, lifting Gemini v1.5 Pro
performance beyond o1-Preview, and Gemini v1.5 Flash
beyond Gemini v1.5 Pro, on reasoning benchmarks such
as LiveBench (White et al., 2024) and the AIME (MAA,
2024), exhibiting sustained power-law scaling on the latter.
This not only highlights the importance of sampling-based
search for scaling capability, but also suggests the utility
of sampling-based search as a simple baseline on which to
compare other test-time compute scaling strategies and mea-
sure genuine improvements in models’ search capabilities.

We then attribute much of the strong scaling trends of
sampling-based search to an implicit scaling phenomenon.
Contrary to the intuition that sampling more responses
should impose a greater burden on the verifier and reduce
verification accuracy, we observe that scaling sampling indi-
rectly enhances verification accuracy. At a high-level, this
is because well-written responses are easier to verify than
poorly written responses, and scaling sampling widens the
pool of well-written candidates.

We further identify two effective strategies for scaling verifi-
cation capabilities using test-time compute: (1) directly com-
paring candidate responses and (2) task-specific rewriting of
candidate responses. The former mitigates a core weakness
of language models, which struggle to identify mistakes
and hallucinations unless given their locations (Tyen et al.,
2024), by leveraging the fact that differences between can-

didate responses provide a strong signal for where errors
might be located. The latter leverages our observation of
output style suitability where chain-of-thought output for-
mats are beneficial when generating responses but harder to
verify than more formal, mathematically conventional writ-
ing styles. Surprisingly, while effective verification can be
easily elicited from frontier models by communicating these
strategies, we observe that frontier models have remarkably
poor out-of-box verification capabilities and introduce a new
benchmark to quantify these deficits.

Historically, self-verification has been believed to be an
unreliable means of closing the Pass@k - Pass@1 gap, mo-
tivating the use of process-based reward models (Lightman
et al., 2024), the reinforcement learning of verifiers (Snell
et al., 2024), and other complicated interventions. Our re-
sults indicate that self-verification can actually be made
quite reliable at scale and in fact is sufficient to extract
o1-level performance from non-reasoning models without
finetuning, distillation, RL, or custom-trained verifiers.

Preview and outline. Table 1 summarizes our first find-
ing: that, with effective self-verification, simply scaling
sampling-based search is sufficient to approach state-of-art
performance on reasoning and math benchmarks (AIME
2024 (MAA, 2024), LiveBench Math, LiveBench Reason-
ing (White et al., 2024), and the Berkeley MATH dataset
(Hendrycks et al., 2021)). It depicts the accuracy of the
Gemini v1.5 Pro model (Gemini Team, 2024) when only
one solution3 is attempted per question (Pass@1), when 200
solutions are attempted and the most common final answer
is selected (Consistency@200, (Wang et al., 2023)), and
under sampling-based search, when 200 solutions are at-
tempted and scored for correctness with the highest scorer
selected (Verification@200, Algorithm 1). With sampling-
based search (Verification@200), Gemini v1.5 surpasses the
performance of o1-Preview, a model explicitly trained on
reasoning problems to leverage significant test-time com-
pute and perform internal search.

3As we focus on answering reasoning problems, we use “model
responses” and “model solutions” interchangeably.
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The rest of this paper is devoted to studying the three key
factors behind the numbers in Table 1. Section 2.1 analyzes
the scalability of sampling-based search, as one varies the
compute spent on search and verification; Section 2.2 an-
alyzes the phenomenon of implicit scaling that drives this
scalability; and Section 3 discusses key principles for scal-
ing self-verification capability. We also highlight deficits in
the verification capabilities of frontier models with a new
benchmark in Section 5. Further discussion of related work
is found in Appendix A.

Algorithm 1 Sampling-Based Search (Verification@kinf )

Input: Prompt Q, model LM, params kinf , kverif , ktie.
Populate S with kinf samples from LM(“Answer Q”).
for each candidate response si ∈ S do

Let Vi be kverif samples of LM(1[is si correct?]).
end for
Gather the highest-scored response

SBest =

{
si

∣∣∣∣Avg(Vi) ≥ max
j∈[kinf ]

Avg(Vj)− 0.05

}
.

Return SBest if |SBest| = 1.
for each (si, sj) in

(SBest

2

)
do

Let Ci,j be ktie samples of LM(“Is si or sj correct”).
end for
Return round-robin winner si∗ of {Ci,j | si, sj ∈ SBest}.

2. Scaling Trends
This section examines how reasoning capability scales with
two fundamental test-time compute axes:

• Search refers to the compute used to discover candidate
solutions. In this section, our knob for scaling search
is the number of responses sampled for each reasoning
problem (kinf in Algorithm 1).

• Verification refers to the compute used to scrutinize
candidate solutions. Our knob for scaling verification
is the number of verification scores we compute and
average over per solution (kverif ).

For computational reasons, this section uses a streamlined
form of Algorithm 1 that omits tie-breaking. This, for exam-
ple, results in significant underestimates of Verification@k
on MATH (see Table 3). All figures are averaged over 20
random seeds, where each run subsamples solutions and
verification scores from a primary run that sampled 200 so-
lutions per question and 50 verification scores per solution.

2.1. Scaling Trends

Figure 1 provides a heatmap of Verification@k on each
benchmark in Table 1 as we scale search and verification.

In addition to clear burn-in costs along both axes of scale,
we can observe that the largest performance gains are real-
ized when search and verification are both scaled. These
trends also indicate that the performances of sampling-based
search, as reported in Table 1, have not yet been scaled
to saturation on these benchmarks. This scaling trend is
strongest on the AIME benchmark, where performance is
bottlenecked by k (search); we attribute this bottleneck to
the difficulty of the AIME questions resulting in correct solu-
tions only appearing with very low probability (see Table 2).
In particular, we note that of the 7/15 AIME questions where
exactly 1-4% of solutions are correct, Verification@200 suc-
cessfully extracts a correct solution for 5/7 questions.

2.2. Implicit Scaling

Scaling sampling-based search along the search axis by
sampling more solutions, i.e. increasing k, should have two
effects on performance that partially cancel out: (1) the ver-
ifier must discriminate between more solutions, increasing
the likelihood of error and (2) the generator is more likely
to produce at least one solution that reaches a correct final
answer, i.e. Pass@k increases.

To isolate the first effect, we study the model’s Verifica-
tion@k accuracy on “ambiguous” questions: questions
where at least one of the model’s k candidate solutions
reaches the correct final answer (note that Pass@k equals
the number of ambiguous questions). Figure 2 and Figure 3
do exactly this, plotting Verification@k accuracy measured
only on ambiguous questions from each benchmark. To
reduce noise in these figures, we deterministically omit
benchmark questions that Consistency@200 answers cor-
rectly or where, with high probability, 50 random responses
result in either all correct or all incorrect final answers.

After controlling for the growth of Pass@k, we should ex-
pect a trend of decreasing accuracy if we increase k but
keep the number of verification attempts constant. However,
Figure 2 shows the reverse trend: accuracy increases with k.
This demonstrates an implicit scaling of verification accu-
racy, where increasing the number of generated responses
increases not only the chance that at least one response is
correct (Pass@k) but also the chance that at least one of the
correct responses is of higher quality. Here, quality can be
understood as the rigour or flawlessness of a response; a
lower quality solution may be generally correct but fail to
justify a non-trivial step or make a non-critical error.

Implicit scaling suggests that verification should become
more accurate, and sampling-based search should become
more effective, with the use of more capable base models
that produce more sound reasoning and compelling proofs
of correctness. Because the number of ambiguous questions
strictly increases with more candidate solutions, the implicit
scaling effect also explains the overall accuracy scaling

3



Sample, Scrutinize and Scale: Effective Inference-Time Search by Scaling Verification

Figure 1. Heatmap of Gemini v1.5 Pro accuracy rates using sampling-based search (without tie-breaking) as the number of responses
generated (x-axis) and verification attempts (y-axis) increase. Warmer colors indicate higher accuracy (cubic scale). The largest gains
occur when scaling both search and verification, with the strongest trend on AIME.

Figure 2. Plot of Gemini v1.5 Pro accuracy rates using sampling-based search (without tie-breaking and with kverif = 50) on ambiguous
questions only as the number of responses generated increases. A question is ambiguous when the model generates at least one candidate
response with a correct final answer. Accuracy on ambiguous questions increases with search.
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gains in Figure 1: larger k increases both the number of
ambiguous questions (Pass@k) and accuracy on the set of
ambiguous questions.

2.3. The Long Tail of Response Distributions

We can directly observe Verification@k scaling beyond the
saturation point of Consistency@k in Figure 4, where we
plot their performance after fixing the number of verification
attempts at 50. On AIME, the most technically challenging
benchmark, Verification@k demonstrates power law scaling
even as Consistency@k begins to plateau. The rapid satu-
ration of Consistency@k can be attributed to the fact that,
while it is effective at small scales in averaging out noisy
mistakes, it necessarily plateaus as it converges on the most
probable response; for example, Consistency@50 has the
same accuracy as Consistency@10,000 on AIME.

Consider cheaply sampling a vast set of solutions from
a weak but ergodic model: Consistency@k is unlikely to
return a correct solution, but an effective verifier should
still be expected to detect rare but correct solutions in the
long-tail of the response distribution. We find an example
of this on the AIME 2024 exam, where the Gemini v1.5
model struggles to identify the correct answer to Problem
11 on Exam II. Table 2 shows the final answers from 200
randomly sampled Gemini v1.5 solutions, of which only
one is correct (“601,” in green).

Consistency returns the incorrect answer of “1” (in red),
which appears in over half the responses. In contrast, Ver-
ification successfully identifies the solution reaching the
correct answer from the response distribution’s long-tail,
assigning a ≤36% score to each solution reaching a final
answer of “1” but a 98% score to the single solution reach-
ing “601”. Scaling verification capability is key to driving
improved search, allowing for discerning between answers
that appear correct with 98% vs. 76% confidence. The fact
that verification can be used to so effectively leverage the
long-tail of model response distributions also suggests that
Pass@k, not Pass@1, should be the key performance metric
for search applications. Existing post-training techniques
(e.g., reinforcement learning from human feedback (RLHF)
(Ouyang et al., 2022)) which explicitly optimize for Pass@1
may potentially be doing so at the expense of Pass@k and
inhibiting search capability.

3. Effective Self-Verification
In the process of scaling sampling-based search, we identi-
fied two general principles for eliciting more accurate self-
verification, that may be of independent interest.

1. Compare responses to localize errors. Disagreements
between candidate solutions strongly signal the poten-
tial locations of their errors. This can be leveraged to

combat the fact that language models have low recall
(i.e., often overlook) when asked to identify mistakes
and hallucinations (Tyen et al., 2024; Kamoi et al.,
2024a), as models are able to identify errors when
provided their locations (Tyen et al., 2024). We can
improve the self-verification of a candidate response by
providing the verifier with other responses to compare
the candidate against—an instance of implicit scaling.

2. Rewrite responses for output style suitability. The opti-
mal output style of a language model should depend on
the task. Writing in a linear chain of thought— which
includes detailing reasoning before committing to a
claim—is effective when generating responses (search)
(Wei et al., 2022). However, responses are easier to
verify when written rigorously, hierarchically, and mod-
ularly. This can be leveraged by having verifiers first
rewrite candidate responses in, e.g., an expanded math-
ematically conventional theorem-lemma-proof format
rather than directly evaluating chains-of-thought.

These principles also provide levers for scaling self-
verification capability with test-time compute, including
by (1) sampling and providing verifiers with more responses
to compare between and (2) rewriting responses with in-
creasing rigour and structure.

3.1. Sampling-Based Search Implementation

We now detail our minimalist implementation of sampling-
based search (summarized in Algorithm 1) that uses only
parallelizable blackbox queries to a language model. It
generates candidate responses by randomly sampling from
models and select responses by asking models to self-verify;
prompts are identical across all benchmarks.

Step 1: Generate Candidate Responses. A language
model generates kinf candidate responses (candidate so-
lutions) in parallel to each question, using temperature σinf .

Step 2: Verify Candidate Responses. A language model
generates kverif binary “verification scores” for each candi-
date in parallel, indicating whether its final answer is correct.
Each scoring attempt is a single conversation thread that
rewrites the response as a theorem, supporting lemmas, and
proofs (examples in Appendix F) and systematically scans
for errors. The highest scoring response is selected.

Tie-Break: Compare Candidate Responses. When the
three highest scoring candidates score within 5% of one
another and disagree on the final answer, a language model
directly compares the responses in pairwise matchups. Each
matchup is a single conversation thread that identifies where
responses diverge and, at each such point, determines which
side is correct. Each matchup is repeated ktie = 100 times,
and the response with the most wins is selected.
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Figure 3. Heatmap of Gemini v1.5 Pro accuracy rates using sampling-based search (without tie-breaking) on ambiguous questions only as
the number of responses generated (x-axis) and verification attempts (y-axis) increase. Warmer colors indicate higher accuracy (linear
scale). A question is ambiguous when the model generates at least one candidate response with a correct final answer. Accuracy on
ambiguous questions increases with search (x-axis).

Figure 4. Line graph depicting the accuracy rates of the Gemini v1.5 Pro model using sampling-based search as the number of candidate
responses generated is scaled upwards. The number of verification attempts is fixed at 50 for all plots. The depicted accuracies are
obtained without tie-breaking and may be lower than reported elsewhere. Verification@k improves with k even when Consistency@k
stagnates on AIME and LiveBench Reasoning.
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Problem 11, AIME 2024

Find the number of triples of nonnegative
integers (a, b, c) satisfying a+ b+ c = 300
and a2b+ a2c+ b2a+ b2c+ c2a+ c2b =
6, 000, 000.

Verification Score Final Answer # Solutions

0.98 601 (Correct) 1
0.76 6 (Wrong) 11
0.52 0 (Wrong) 14
0.40 7 (Wrong) 21
0.38 4 (Wrong) 10
0.36 1 (Wrong) 124
0.22 10 (Wrong) 2
0.20 3 (Wrong) 9
0.18 301 (Wrong) 1
0.16 45451 (Wrong) 1
0.14 101 (Wrong) 2
0.06 2 (Wrong) 1
0.04 45151 (Wrong) 1
0.04 303 (Wrong) 1
0.00 100 (Wrong) 1

Table 2. The final answers identified by the Gemini v1.5 Pro model to Problem 11 on AIME 2024, sorted by verification score and
annotated with their multiplicity in 200 solution generations. The correct final answer (green) is only found by 1 generated response
whereas Consistency@200 selects an incorrect final answer (red) that is found by 124 generated responses.

3.2. Ablation Studies

We can individually ablate the practices of comparing and
rewriting candidate responses to confirm their role in elicit-
ing greater verification capability.

Ablating comparisons. The step of asking models to di-
rectly compare candidate solutions with similar verification
scores significantly increases sampling-based search perfor-
mance. This is demonstrated in Table 3, where we depict
the accuracy rates from Table 1 alongside the accuracy rates
after ablating the tie-breaking step. These comparisons
have the greatest impact when models struggle from low
recall and excessively assign high verification scores. On
the MATH benchmark, which sees the greatest lift from
comparisons, the average verification score of the top 3
candidate responses is nearly 90%.

Ablating rewritings. We explored a limited number of
prompts for self-verification, including prompts which omit
instructing the model to rewrite responses. We did not per-
form further prompt optimization and expect refinements
would boost accuracy. Table 4 shows each prompt’s proba-
bility of mislabeling correct solutions (false positive) and in-
correct solutions (false negative), with the former generally
having a more severe impact on downstream performance.
We evaluated these prompts on 1,080 candidate responses
to 54 level-5 questions from the MATH training split, and
120 candidate responses to 6 questions from AIME 2023.
A response is marked as incorrect if, of 20 verification at-
tempts, the number finding an error in the solution exceeds
the equal error rate threshold.

Main refers to manually written prompts used in our ex-
periments. Shortened refers to a shorter variant of “Main”
that omits, e.g., instructions to avoid truncation. Without
Rewrite refers to a variant of “Main” that omits instructing
the verifier to first rewrite responses. Split-Context refers
to a variant of “Main” that creates separate conversation
threads to individually verify pieces of the response.

The gap between the performance of “Main” and “Without
Rewrite” demonstrates that ablating the rewriting of solu-
tions negatively impacts verification performance. Similarly,
the gap with “Split-Context” demonstrates that splitting
the verification process into separate conversation threads
sharply decreases performance due to low precision, which
we attribute to miscalibration.

4. Technical Details
All experiments are run on Google Cloud with Gemini
v1.5-Pro-002 and Gemini v1.5-Flash-002 models dated
to September 2024. Unless otherwise specified, the de-
fault parameters for our implementation of sampling-based
search (Section 3) are kinf = 200, σinf = 1.5, kverif = 50,
σverif = 1, and a maximum of 8,192 output tokens per query.
For all benchmarks, the scoring of candidate responses is
performed using a language model rather than literal string
comparison; details are in Appendix C.2.

Preliminary scoring. When generating kverif = 50 veri-
fication scores per candidate solution is too expensive, we
first generate kverif = 10 preliminary verification scores
and discard candidate solutions with an average score below
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Dataset Cons@200 Verification@200
Without With Tie-Break

MATH 460 / 500 457 / 500 467 / 500
LiveBench Math 118 / 200 125 / 200 135 / 200
LiveBench Reasoning 75 / 140 94 / 140 97 / 140
AIME 4 / 14 7 / 14 8 / 14

Table 3. Accuracy rates of Gemini v1.5 Pro using sampling-based search, with and without tie-breaking. Tie-breaking provides most of
Verification@200’s gains on Consistency@200 (Cons@200) on MATH and LiveBench Math, and smaller gains on AIME and LiveBench
Reasoning.

Prompt Style MATH AIME

FPR FNR FPR FNR

Main 14% 17% 7% 7%
Shortened 17% 17% 7% 7%
Without Rewrite 16% 18% 11% 12%
Split-Context 19% 23% 11% 14%

Table 4. Verification scoring accuracy rates of the Gemini v1.5 Pro model for various prompts. False positive rate (FPR) refers to how
often a correct response is labeled as incorrect; false negative rate (FNR) refers to how often an incorrect response is labeled as correct.

0.2. If a final answer is represented by more than 15 can-
didate responses, only the top 15–as measured by average
preliminary score, tie-breaking randomly–are kept. This
results in a smaller pool of candidate solutions for which
we compute all kverif = 50 verification scores. Preliminary
scoring is used on all datasets except AIME.

Compute. On AIME, the verification process involves
32,000 characters (roughly 13,000 tokens) of model output.
Extrapolating from these figures, running the full sampling-
based search pipeline on a question for kinf = 200 and
kverif = 50 requires 200 · 50 · 13, 000 ≈ 130M output
tokens. At around $5/1M output tokens (public pricing
of Gemini v1.5 Pro), this is approximately $650 in cost.
Preliminary scoring reduce output token usage by 70%,
with a per-question cost of $200. The use of Gemini Flash
for verification decreases cost to $12 per question.

Datasets. Our MATH benchmark consists of 500 ques-
tions from the PRM800K (Lightman et al., 2024) test split
of MATH (Hendrycks et al., 2021). Our LiveBench Math
benchmark consists of 200 random questions from the
368 available as of October 21st 2024, including AMC12
2023, AIME 2024, SMC 2023, USAMO 2023, IMO 2023,
and synthetic math questions (White et al., 2024). Our
LiveBench Reasoning benchmark consists of 140 questions

from the 150 available as of October 21st 2024, including
Zebra puzzles, Web-Of-Lies, and Spatial reasoning (White
et al., 2024). Our AIME benchmark consists of the 15
questions in the 2024 Exam II (MAA, 2024).

5. A Verification Benchmark
Frontier language models demonstrate a remarkable mis-
match between their problem-solving capabilities and poor
out-of-box verification capabilities. These limitations have
largely been attributed to the inability of current language
models to self-diagnose hallucinations or enforce rigour
(Zhang et al., 2023; Orgad et al., 2024; Snyder et al., 2024;
Kamoi et al., 2024a; Tyen et al., 2024; Huang et al., 2024).
However, our findings that models can be directed to accu-
rately perform verifications at scale suggest that these out-
of-box limitations can be addressed with standard methods
like instruction tuning. We compiled a set of challenging
reasoning problems and candidate solutions to provide a
benchmark for these deficits.

Each entry in this benchmark consists of a question, a cor-
rect candidate response, and an incorrect candidate response,
and is manually curated from the residuals of our sampling-
based search experiments (Section 3). Example entries from
this benchmark can be found in Appendix E.
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Model Metric Scoring Accuracy Comparison Accuracy

Correct Wrong Flawed

GPT-4o Pass@1 76.5% 31.0% 22.2% 43.2%
Consistency@5 77.4% 30.0% 11.1% 35.4%

Claude 3.5 Sonnet Pass@1 89.6% 22.5% 33.3% 56.1%
Consistency@5 90.3% 17.5% 33.3% 61.2%

o1-preview Pass@1 100% 68.8% 80.0% 84.5%
Consistency@5 100% 79.4% 88.8% 92%

Gemini 2.0 Flash Pass@1 73.5% 44.5% 60% 58%
Consistency@5 77.4% 42.5% 66.6% 58.7%

Gemini 2.0 Thinking Flash Pass@1 75.4% 56.5% 53.3% 80%
Consistency@5 77.4% 55% 55.5% 89.1%

Random guessing 80% 20% 20% 50%

Table 5. Accuracy rates of commercial language models on our verification benchmark. For the task of response scoring (Scoring
Accuracy), accuracy rates are broken down for entries that require identifying a correct response as being correct (Correct), entries that
require identifying a wrong response as being wrong (Wrong), and entries that require identifying a wrong response that coincidentally
reaches the correct answer as being wrong (Flawed). GPT-4o and Claude 3.5 Sonnet only perform marginally better than random guessing
across all tasks. o1-Preview performs better, but still fails to identify 20-30% of wrong responses.

Our benchmark studies verification accuracy on two tasks:

1. Scoring task. When given only the question and one
of the responses, is the model able to discern the cor-
rectness of the response?

2. Comparison task. When provided the whole tuple
with the correctness labels of the responses masked
and a guarantee that at least one response is correct,
is the model able to discern which response is correct
and which is incorrect?

The scoring task is also evaluated over a separate set of
(question, response) pairs where the response reaches the
correct final answer by coincidence but contains fatal errors
and should be labeled by a reasonable verifier as being incor-
rect; an example can be found in Appendix E. In the scoring
task, models are provided only with the task description;
in the comparison task, models are provided only with the
task description and a suggestion to identify disagreements
between responses in its reasoning.

Table 5 lists the baseline performances of current commer-
cial model offerings on this benchmark. Gemini v1.5 Pro is
omitted from the benchmark as the entries in the benchmark
are curated from the residuals of Gemini v1.5 Pro. The
prompts used in Table 5 are provided in Appendix C.4.

As we previously observed, and has been noted in prior
works (Tyen et al., 2024; Kamoi et al., 2024a), verifica-
tion errors are typically due to low recall. Even the easier
comparison task, models perform only marginally better—
and often worse—than random chance. In many cases,
Consistency@5 performs worse than one-shot inference be-

cause Consistency simply averages out noise from an output
distribution, meaning that a model biased towards produc-
ing an incorrect answer will do so with higher probability
under Consistency. Addressing these deficits in verifica-
tion capabilities—which we see as low-hanging fruit for
post-training—would enable not only better sampling-based
search, but also other downstream applications of verifica-
tion including reinforcement learning (e.g. OpenAI, 2024;
Team, 2025), data flywheeling (e.g., Welleck et al., 2022),
and end-user experience (further discussion in Section A).

6. Conclusion
This paper studied the scaling trends governing sampling-
based search with self-verification, finding that (1) it scales
remarkably well even with simple implementations, (2) im-
plicit scaling plays a big role in this scalability, and (3)
self-verification capability can be scaled with test-time com-
pute using two key principles: comparisons localize errors,
and responses should be rewritten for output style suitability.
To this end, we scaled a minimalist, embarrassingly parallel
implementation of sampling-based search that, with suffi-
cient test-time compute, is sufficient to attain state-of-art
performance on a range of reasoning benchmarks. Given
that it complements other test-time compute scaling strate-
gies, is parallelizable and allows for arbitrarily scaling, and
admits simple implementations that are demonstrably ef-
fective, sampling-based search will play a crucial role as
language models are tasked with solving increasingly com-
plex problems with increasingly large compute budgets.
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A. Related Work
Test-time compute. Many of the recent advances in language model reasoning capabilities can be traced to increasing use
of test-time compute. Inference strategies like chain-of-thought reasoning (Wei et al., 2022), tree-of-thoughts (Yao et al.,
2023) and self-critique (Valmeekam et al., 2023) result in improved reasoning performance at the cost of forming longer
responses. Reinforcement learning has emerged as a particularly successful strategy for effectively leveraging more test-time
compute, wherein models learn from exploration to form lengthy chain-of-thought outputs that incorporate backtracking
and search, despite not being explicitly taught to do so (OpenAI, 2024; Team, 2025). Inference-time model adaptation,
whether through many-shot learning (Agarwal et al., 2024; Anil et al., 2024) or finetuning (Akyürek et al., 2024), provides
another avenue when training data is available. We study sampling-based search: obtain a set of candidate responses from a
model and apply an aggregation method to select a response, such as self-consistency/plurality voting (Wang et al., 2023)
or selecting a response with a reward/verifier model (Cobbe et al., 2021). These various methods for scaling test-time
compute are complementary; for example, sampling-based search can also be used on models trained to produce longer
outputs. We note that it is possible for models trained to produce long chains of thought to perform something resembling
sampling-based search internally, in which case we still expect our observed scaling trends to hold. However, we also
expect explicit sampling-based search will remain indispensable, due to its greater parallelism and robustness than internally
implemented search.

Scaling sampling-based search. The paradigm of sampling-based search provides three main knobs for scaling: gen-
eration, sampling, and selection. While the cost of generating each individual response can be scaled with previously
mentioned interventions, such as chain-of-thought (e.g. Wei et al., 2022), reinforcement learning (e.g. OpenAI, 2024), or
inference-time adaptation (e.g. Anil et al., 2024), the cost of sampling a set of responses can be scaled by increasing the
number of responses generated (Wang et al., 2023; Snell et al., 2024; Brown et al., 2024). We use random sampling to
generate each set of candidate responses, which means the latter corresponds to simply taking more random draws. Whereas
prior work on parallel test-time compute scaling via Pass@k, such as Brown et al. (2024), has focused on understanding how
Pass@k scales, we are concerned with how much of the Pass@k - Pass@1 gap can actually be attained in practice. However,
this sampling can also be implemented in an agentic fashion, with a central model delegating the generation of responses so
as to perform search more systematically. The process of selecting a response can be scaled by using more expensive rules:
self-consistency provides a simple plurality voting rule at the lowest-cost end of the spectrum (Wang et al., 2023), while
language model self-verification (e.g. Xue et al., 2023, see below) and learned verification/reward models (e.g. Cobbe et al.,
2021, see below) provide a range of selection strategies that vary in cost and capability. For more fine-grained control over
the scaling of self-verification in our experiments, we apply plurality voting (Wang et al., 2023) to self-verification and vary
our number of verification attempts per response.

Verification of language model outputs. A large body of recent work has studied the self-verification capabilities of
large language models (e.g., Cobbe et al., 2021; Kadavath et al., 2022; Saunders et al., 2022; Kim et al., 2023; Xie et al.,
2023; Weng et al., 2023; Zhang et al., 2023; Xue et al., 2023; Li et al., 2023; Liu et al., 2024; Chow et al., 2024; Jiang et al.,
2024; Dhuliawala et al., 2024; Snyder et al., 2024; Wu et al., 2024b; Huang et al., 2024; Kamoi et al., 2024a;b; Orgad et al.,
2024; Wen et al., 2024; Tyen et al., 2024; Chen et al., 2024; Kumar et al., 2024; Qu et al., 2024; Zhang et al., 2024; Ko et al.,
2025; Havrilla et al., 2024). While some works—including ours—simply ask models to perform verification and parse the
response, others have proposed custom methods of performing self-verification, including: recreating the problem from the
response (Xue et al., 2023; Wu et al., 2024b), masking and re-filling parts of the response (Weng et al., 2023; Jiang et al.,
2024), creating a rubric (Dhuliawala et al., 2024), or asking models to choose from options (Xie et al., 2023; Chen et al.,
2024). Our work does not focus on optimizing for self-verification or advocate for any particular strategy. However, in the
course of performing our scaling study, we did identify several previously unstudied principles of self-verification that only
arise at sufficiently large scale and may be of independent interest, including implicit scaling, output style suitability, and the
importance of directly comparing responses. Other related bodies of work study the learning of verifiers, often on top of a
pretrained large language model (e.g. Cobbe et al., 2021; Saunders et al., 2022; Li et al., 2023; Havrilla et al., 2024; Kumar
et al., 2024; Qu et al., 2024; Chow et al., 2024; Zhang et al., 2024), and the use of external tools for verification (e.g. Min
et al., 2023; Gou et al., 2024; Gao et al., 2024; Kim et al., 2023). We did not train customized verification models or permit
verifier use of external tools in the listed experiments, as we found blackbox model access to be sufficient for effective
verification at scale. The limitations of model self-verification capabilities are also well-studied (Kamoi et al., 2024a; Tyen
et al., 2024; Huang et al., 2024; Wu et al., 2024a), and can be remedied with external information (Huang et al., 2024) or
hints for localizing errors (Tyen et al., 2024). Models especially struggle with self-diagnosing hallucinations (Zhang et al.,
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2023; Orgad et al., 2024; Snyder et al., 2024), despite awareness of their own limitations (Kadavath et al., 2022), and are
often incentivized to obfuscate errors (Wen et al., 2024).

Applications of verification. In addition to being used to select from candidate responses (Cobbe et al., 2021; Li et al.,
2023; Weng et al., 2023; Jiang et al., 2024; Chen et al., 2024; Xie et al., 2023), verifiers can be used to guide iterative
improvements to a model’s output by providing feedback to the generating model (Kim et al., 2023; Xue et al., 2023;
Valmeekam et al., 2023; Wu et al., 2024b; Huang et al., 2024; Dhuliawala et al., 2024; Stechly et al., 2024a;b; Qu et al.,
2024; Havrilla et al., 2024; Ko et al., 2025). Another important application of verification is in enhancing model capabilities.
For example, verification results for model outputs can be fed back into models as feedback via in-context reinforcement
learning (Shinn et al., 2023), reinforcement learning (Uesato et al., 2022; Peng et al., 2023; Madaan et al., 2023; Kumar
et al., 2024; Chow et al., 2024), or finetuning (Welleck et al., 2022; Paul et al., 2024; An et al., 2024; Singh et al., 2024), in
an approach known as data flywheeling. Verification has also been explored as a means of encouraging models to produce
better written responses (Anil et al., 2021; Kirchner et al., 2024). From a product perspective, verification capabilities are
also important to the workflow of end users (Collins et al.).

B. Additional Experiments
B.1. Smaller Models

Model Method AIME MATH LiveBench Math LiveBench Reasoning

Pro v1.5
Pass@1 1 / 15 426 / 500 104 / 200 63 / 140

Consistency@200 4 / 15 460 / 500 118 / 200 75 / 140
Verification@200 8 / 15 467 / 500 135 / 200 97 / 140

Flash v1.5
Pass@1 2 / 15 407 / 500 96 / 200 65 / 140

Consistency@200 3 / 15 440 / 500 92 / 200 84 / 140
Verification@200 5 / 15 445 / 500 104 / 200 84 / 140

Pro+Flash v1.5 Verification@200 7 / 15 456 / 500 119 / 200 84 / 140

Table 6. Accuracy rates with sampling-based search using either the Gemini v1.5 Pro model to both generate and verify responses (Pro),
Gemini v1.5 Flash to both generate and verify responses (Flash), or Gemini v1.5 Pro model to generate responses and v1.5 Flash to verify
responses (Pro+Flash). Verification@200 exceeds Consistency@200 for all model choices, while Pro+Flash Verification@200 matches or
exceeds Pro Consistency@200.

We also observe sampling-based search to be a powerful tool for enhancing smaller, lower-cost models. Here, we apply
sampling-based search to Gemini v1.5 Flash model, which has a nearly 20x lower inference cost than Gemini v1.5
Pro. Table 6 lists the performance of using the Flash model to evaluate candidate responses generated by the Pro model
(Pro+Flash), and the performance of using the Flash model end-to-end for sampling-based search (Flash). Sampling-based
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search still provides a significant improvement in performance for both Flash and Pro+Flash. Moreover, Verification@200
still provides significant improvements over Consistency@200, albeit lesser in magnitude than for end-to-end use of Gemini
Pro. In addition, Flash Verification@200 using Gemini Flash is competitive with Pro Consistency@200, while Pro+Flash
Verification@200 exceeds Pro Consistency@200. We highlight that Pro+Flash Verification@200 has roughly the compute
cost of Consistency@500—as our sampling-based search implementation is minimally optimized for efficiency, we expect
costs to further decrease.

B.2. Performance by Subtask

Dataset Cons@200 Verif@200 Improvement (%) Pass@200 # Questions

(Abs) (Rel)

Berkeley MATH 92.0% 93.4% 2% ↑ 20.0% 99.0% 500
AIME 2024 26.7% 53.3% 100% ↑ 57.1% 73.3% 15
Web-of-Lies-v2* 75.5% 91.8% 22% ↑ 66.5% 100.0% 49
Spatial* 33.3% 46.7% 40% ↑ 21.5% 95.6% 45
Zebra Puzzle* 50.0% 67.4% 35% ↑ 36.4% 97.8% 46
Competition† 66.2% 83.1% 26% ↑ 63.1% 93.0% 71
AMPS Hard† 70.6% 77.7% 10% ↑ 33.5% 91.8% 85
Olympiad† 25.0% 22.7% 9% ↓ -11.2% 45.5% 44

Table 7. The Pass@200, Consistency@200 (Cons@200), and Verification@200 (Verif@200) accuracy rates of the Gemini v1.5 Pro
model using sampling-based search. LiveBench Math† and LiveBench Reasoning* numbers are divided per task. Absolute % Increase
(Abs) is the percentage improvement of Verification@200 over Consistency@200. Relative % Increase (Rel) is (Verification@200 -
Consistency@200) / (Pass@200 - Consistency@200).

The LiveBench benchmarks each consist of multiple subtasks. In Table 7, we break down the numbers reported in Table 1
for each of these subtasks. We also provide in Table 7 the Pass@200 scores of the Gemini Pro model, which measure the
probability that of 200 attempted responses to a question at least one is correct. Pass@200 upper bounds what one can
hope to achieve through Verification or Consistency. Verification provides the greatest gains on AIME 2024, Web-of-Lies,
Competition, and Zebra Puzzle. In contrast, Verification does not improve on Consistency on the Olympiad task of the
LiveBench Math benchmark. We attribute this to the unique question design of LiveBench Olympiad task questions, which
is incompatible with our implementation of Verification (see Appendix B.4).

B.3. Temperature Tuning

After attempting temperature tuning on the training split of the MATH dataset, we found that the choices of temperatures
σinf and σverif did not significantly affect performance. In Table 8 and Table 9, we compare the post-verification accuracy of
our pipeline for various temperature choices. The Verification@20 figures are obtained without running tie-breaking and
with only 20 verification attempts.

Inference Temp σinf Pass@20 Consistency@20 Verification@20

0.2 89/100 76/100 82/100
1.0 94/100 73/100 80/100
1.5 89/100 73/100 79/100
2.0 89/100 75/100 82/100

Table 8. Accuracy rates of the Gemini v1.5 Pro model on the training split of MATH using different methods of selecting from 20
generated responses and varying the temperature used to generate the responses. The temperature used for verification attempts is fixed at
σverif = 1.0. Inference temperature does not significantly affect downstream performance.
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Verification Temp σverif Pass@20 Consistency@20 Verification@20

0.2 89/100 73/100 76/100
1.0 89/100 73/100 79/100
2.0 89/100 73/100 79/100

Table 9. Accuracy rates of the Gemini v1.5 Pro model on the training split of MATH using different methods of selecting from 20
generated responses and varying the temperature used to for verification attempts. The temperature used for generating responses is fixed
at σinf = 1.5. Verification temperature does not significantly affect downstream performance.

B.4. Olympiad LiveBench Math Subtask

The one task for which we saw no lift from verification is the Olympiad questions from LiveBench MATH. These questions
are not formatted as open-ended problems. Rather, they take a very specific form of asking one to fill in a pre-written
proof from a menu of expression options, and to output a specific sequence of indices corresponding to these options.
This is incompatible with our verification pipeline, which asks the verification model to rewrite candidate responses in a
theorem-lemma format where the theorem states the final answer. For example, the final answer to the Olympiad question at
the bottom of this section is the following sequence:

19,32,20,2,14,1,27,21,31,36,3,30,5,16,29,34,7,4,6,18,15,22,9,25,28,35,26,8,13,24,23,17,33,11,10,12 .

Representative example of Olympiad task from LiveBench MATH

You are given a question and its solution. The solution however has its formulae masked out using the tag ¡missing
X¿ where X indicates the identifier for the missing tag. You are also given a list of formulae in latex in the format
”¡expression Y¿ = latex code” where Y is the identifier for the formula. Your task is to match the formulae to the
missing tags in the solution. Think step by step out loud as to what the answer should be. If you are not sure, give
your best guess. Your answer should be in the form of a list of numbers, e.g., 5, 22, 3, ..., corresponding to the
expression identifiers that fill the missing parts. For example, if your answer starts as 5, 22, 3, ..., then that means
expression 5 fills ¡missing 1¿, expression 22 fills ¡missing 2¿, and expression 3 fills ¡missing 3¿.
The question is: Find all integers n ≥ 3 such that the following property holds: if we list the divisors of n! in
increasing order as 1 = d1 < d2 < · · · < dk = n!, then we have

d2 − d1 ≤ d3 − d2 ≤ · · · ≤ dk − dk−1.

Find all integers n ≥ 3 such that the following property holds: if we list the divisors of n! in increasing order as
1 = d1 < d2 < · · · < dk = n!, then we have

d2 − d1 ≤ d3 − d2 ≤ · · · ≤ dk − dk−1.

The solution is: We can start by verifying that ¡missing 1¿ and n = 4 work by listing out the factors of ¡missing 2¿
and ¡missing 3¿. We can also see that ¡missing 4¿ does not work because the terms 15, 20, and 24 are consecutive
factors of ¡missing 5¿. Also, ¡missing 6¿ does not work because the terms ¡missing 7¿, and 9 appear consecutively
in the factors of ¡missing 8¿.
We can start by verifying that ¡missing 9¿ and ¡missing 10¿ work by listing out the factors of ¡missing 11¿ and 4!.
We can also see that ¡missing 12¿ does not work because the terms 15, 20, and 24 are consecutive factors of 5!. Also,
¡missing 13¿ does not work because the terms ¡missing 14¿, and 9 appear consecutively in the factors of ¡missing
15¿.
Note that if we have a prime number ¡missing 16¿ and an integer ¡missing 17¿ such that both k and ¡missing 18¿ are
factors of ¡missing 19¿, then the condition cannot be satisfied.
If ¡missing 20¿ is odd, then ¡missing 21¿ is a factor of ¡missing 22¿. Also, ¡missing 23¿ is a factor of n!. Since
¡missing 24¿ for all ¡missing 25¿, we can use Bertrand’s Postulate to show that there is at least one prime number p
such that ¡missing 26¿. Since we have two consecutive factors of ¡missing 27¿ and a prime number between the
smaller of these factors and n, the condition will not be satisfied for all odd ¡missing 28¿.
If ¡missing 29¿ is even, then (2)(n−2

2 )(n− 2) = n2 − 4n+ 4 is a factor of ¡missing 30¿. Also, (n− 3)(n− 1) =
n2 − 4n+ 3 is a factor of ¡missing 31¿. Since ¡missing 32¿ for all n ≥ 8, we can use Bertrand’s Postulate again to
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show that there is at least one prime number p such that ¡missing 33¿. Since we have two consecutive factors of
¡missing 34¿ and a prime number between the smaller of these factors and n, the condition will not be satisfied for
all even ¡missing 35¿.
Therefore, the only numbers that work are n = 3 and ¡missing 36¿.
The formulae are:

• ¡expression 1¿ n = 6

• ¡expression 2¿ n = 5

• ¡expression 3¿ 3!

• ¡expression 4¿ k + 1

... (omitted for brevity)

• ¡expression 33¿ n < p < n2 − 4n+ 3

• ¡expression 34¿ p > n

• ¡expression 35¿ n < p < n2 − 2n

• ¡expression 36¿ n = 4

Your final answer should be STRICTLY in the format:
Detailed reasoning
Answer: ¡comma separated list of numbers representing expression identifiers¿

C. Additional Technical Details
C.1. Inference Prompts

For questions from the MATH and AIME benchmarks, we use the following prompt.

MATH and AIME Prompt

Please answer the following question. Think carefully and in a step-by-step fashion. At the end of your solution, put
your final result in a boxed environment, e.g. 42 .
The question would be here.

For questions from the LiveBench Math and LiveBench Reasoning benchmarks, which already come with their own
instructions and formatting requests, we do not provide any accompanying prompt and simply submit the model the question
verbatim.

LiveBench Prompt

The question would be here.

C.2. LM-Based Scoring

Given a tuple consisting of a question, ground-truth solution, and candidate response, we grade the correctness of the
candidate response by querying a Gemini-v1.5-Pro-002 model to compare the candidate and ground-truth solutions.
This involves repeating the following process five times: (1) send a prompt to the model that provides the question,
the correct ground-truth solution, and the candidate response, and asks the model to deliberate on the correctness of
the candidate response; and (2) send a followup prompt to the model to obtain a correctness ruling in a structured
format. If a strict majority of (valid) responses to the second prompt evaluate to a JSON object with the key-value pair
“student final answer is correct” = True rather than “student final answer is correct” = False , the candidate response
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is labeled correct. Otherwise, the candidate response is labeled incorrect. These queries are all processed with temperature
zero. The prompts, which can be found at the end of this subsection, ask the language model to (1) identify the final answer
of the given response, (2) identify the final answer of the reference (ground truth) response, and (3) determine whether
the final answer of the given response satisfactorily matches that of the reference response, ignoring any non-substantive
formatting disagreements. In line with convention, we instruct our scoring system to ignore the correctness of the logic
used to reach the final answer and rather only judge the correctness of the final answer. The model is asked to label all
non-sensical and incomplete responses as being incorrect.

As a form of quality assurance, every scoring output for the Consistency@200 and Verification@200 figures depicted in
Table 1 was manually compared against human scoring. No discrepancies between automated and human scoring were
found on the MATH and AIME datasets for both Consistency@200 and Verification@200. No discrepancies were found on
LiveBench Reasoning for Consistency@200. For Verification@200, one false positive (answer labeled by automated system
as being incorrect but labeled by human as being correct) and one false negative (answer labeled by automated system as
being correct but labeled by human as being incorrect) were identified on LiveBench Reasoning; three false positives and
four false negatives were identified on LiveBench Math. For Consistency@200, two false negatives were identified on
LiveBench Math. This means that LM scoring matched human scoring 99% of the time, and the choice of human versus
automated scoring matters little to our results.

Prompt 1

You are an accurate and reliable automated grading system. Below are two solutions to a math exam problem: a
solution written by a student and the solution from the answer key. Your task is to check if the student’s solution
reaches a correct final answer.
Your response should consist of three parts. First, after reading the question carefully, identify the final answer of
the answer key’s solution. Second, identify the final answer of the student’s solution. Third, identify whether the
student’s final answer is correct by comparing it to the answer key’s final answer.
# The question, answer key, and student solution
The math exam question:
```
The question would be here.
```
The answer key solution:
```
The reference solution would be here.
```
The student’s solution:
```
The candidate solution would be here.
```
# Your response format
Please structure your response as follows. PROVIDE A COMPLETE RESPONSE.
```
# Answer Key Final Answer
Identify the final answer of the answer key solution. That’s all you need to do here: just identify the final answer.
A ”final answer” can take many forms, depending on what the question is asking for; it can be a number (e.g., ”37”),
a string (e.g., ”ABCDE”), a sequence (e.g., ”2,3,4,5”), a letter (e.g., ”Y”), a multiple choice option (e.g. ”C”), a
word (e.g., ”Apple”), an algebraic expression (e.g. ”x2 + 37”), a quantity with units (e.g. ”4 miles”), or any of a
number of other options. If a solution concludes that the question is not answerable with the information provided or
otherwise claims that there is no solution to the problem, let the final answer be ”None”. If the solution does not
produce any final answer because it appears to be cut off partway or is otherwise non-sensical, let the solution’s final
answer be ”Incomplete solution” (this could only ever possibly happen with the student solution).
YOUR RESPONSE HERE SHOULD BE BRIEF. JUST IDENTIFY WHAT THE QUESTION IS ASKING FOR,
AND IDENTIFY THE ANSWER KEY’S FINAL ANSWER. DO NOT ATTEMPT TO ANSWER THE QUESTION
OR EVALUATE INTERMEDIATE STEPS.
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# Student Solution Final Answer
Identify the final answer of the student solution.
YOUR RESPONSE HERE SHOULD BE BRIEF. JUST IDENTIFY WHAT THE QUESTION IS ASKING FOR,
AND IDENTIFY THE STUDENT’S FINAL ANSWER. DO NOT ATTEMPT TO ANSWER THE QUESTION OR
EVALUATE INTERMEDIATE STEPS.
# Correctness
Simply evaluate whether the student’s final answer is correct by comparing it to the answer key’s final answer.
Compare the student’s final answer against the answer key’s final answer to determine if the student’s final answer is
correct.
* It does not matter how the student reached their final answer, so long as their final answer itself is correct.
* It does not matter how the student formatted their final answer; for example, if the correct final answer is 7/2 ,

the student may write ***3.5*** or three and a half or
14

4
. It does not matter if the student’s final answer uses

the same specific formatting that the question asks for, such as writing multiple choice options in the form ”(E)”
rather than ”***E***”.
* It does not matter if the student omitted units such as dollar signs.
* If the student solution appears to be truncated or otherwise incoherent, e.g. due to a technical glitch, then it should
be treated as being incorrect.
ONCE AGAIN, DO NOT EVALUATE INTERMEDIATE STEPS OR TRY TO SOLVE THE PROBLEM YOUR-
SELF. THE ANSWER KEY IS ALWAYS RIGHT. JUST COMPARE THE FINAL ANSWERS. IF THEY MATCH,
THE STUDENT ANSWER IS CORRECT. IF THEY DO NOT MATCH, THE STUDENT ANSWER IS INCOR-
RECT.
# Summary
* Answer key final answer: (The final answer of the answer key solution. Please remove any unnecessary formatting,
e.g. provide ”3” rather than ” 3 ”, provide ”E” rather than ”***E***”, provide ”1, 2, 3” rather than ”[1, 2, 3]”,
provide ”4 ounces” rather than ”4oz”.)
* Student final answer: (The final answer of the student’s solution. Please remove any unnecessary formatting, e.g.
provide ”3” rather than ” 3 ”, provide ”E” rather than ”***E***”, provide ”1, 2, 3” rather than ”[1, 2, 3]”, provide
”4 ounces” rather than ”4oz”.)
* Student final answer is correct?: (Does the student final answer match the answer key final answer? Please provide
”true” or ”false”.)
```

Prompt 2

Please structure your output now as JSON, saying nothing else. Use the following format: ``` { ”an-
swer key final answer”: str (the final answer of the answer key solution; please remove any formatting”),
”student final answer”: str (the final answer of the student’s solution; please remove any formatting”), ”stu-
dent final answer is correct”: true/false, }

C.3. Implementation of Consistency@k

Consistency@k measures the performance of a model by evaluating the correctness of the most common answer reached by
the model after being run k times. An important consideration with implementing consistency@k is that there are many
choices for the equivalence relation one can use to define “the most common answer”. We define two candidate responses as
reaching the same answer if their final answer is the same. We determine a candidate response’s final answer by prompting a
language model to identify the final answer from the candidate response; we then strip the extracted final answer of leading
and trailing whitespace. We determine equivalence with a literal string match. After determining the most common final
answer to a question, we use the string “The final answer is {final answer}” as the consistency@k response. Note that we
could have instead randomly chosen a candidate response corresponding to the most common final answer, and used that
selected response as the consistency@k response—we have found that, because our LM-based scoring system evaluates
correctness using only the final answer, this alternative results in the same consistency@k metrics.
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C.4. Benchmark Evaluation Prompts

The benchmark performances reported in Table 5 are obtained with the following prompts. The following prompt is used for
the comparison task.

Comparison Task Prompt Part 1

Question here.
Here are two solutions to the above question. You must determine which one is correct. Please think extremely
carefully. Do not leap to conclusions. Find out where the solutions disagree, trace them back to the source of their
disagreement, and figure out which one is right.
Solution 1:
First solution here.
Solution 2:
Second solution here.

Comparison Task Prompt Part 2

Now summarize your response in a JSON format. Respond in the following format saying nothing else:
{
”correct solution”: 1 or 2
}

The following prompt is used for the scoring task.

Scoring Task Prompt Part 1

Question here.
I include below a student solution to the above question. Determine whether the student solution reaches the correct
final answer in a correct fashion; e.g., whether the solution makes two major errors that still coincidentally cancel
out. Please be careful and do not leap to conclusions without first reasoning them through.
Solution:
Solution here.

Scoring Task Prompt Part 2

Now summarize your response in a JSON format. Respond in the following format saying nothing else:
{
”is solution correct”: ’yes’ or ’no’
}

D. Self-Verification Prompts
In this section we present the prompts used to query models to self-verify candidate responses. In Table 4, this corresponds
to the “Main” prompt style. We also provide the prompts used for tie-breaking comparisons. These prompts are broken into
multiple parts to encourage longer responses.
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D.1. Verification Scoring Prompts

Verification Prompt 1

[Commandments] Over the coming interactions, you must fulfill the following commandments: 1. *Be excruciatingly
detailed and exhaustive in your analyses.* This will often mean that your responses will be long. Do not cut your
responses short. When you are asked to fulfill a list of tasks, you must fulfill each and every task to completion.
2. *Be structured and systematic in your responses*. Organize your thoughts in a clear hierarchical format. Use
neutral, rigorous mathematical language to write things in your own words and avoid subjective descriptions.
3. *Never put the cart before the horse.* Before making a claim or statements, always verbally reason out your chain
of thought and convince yourself of it in an exhaustive fashion. Instead of saying ”X is Y because Z”, say ”Consider
Z. Therefore ..., meaning that X is Y.”. Avoid premature conclusions.
[Background] An examiner has presented a math problem along with a ”candidate solution”. Your purpose is to
assist in evaluating whether the *final answer* in the candidate solution is correct. We will guide you through a
series of exercises to fulfill this purpose. The question is a real exam problem, which means there is always one
unique correct answer.
Here is the math question. {} Here is the candidate solution. {}
** Current Task ** Your task is to rewrite the candidate solution into a rigorous, structured format consistent with
mathematical convention. You should rewrite the solution in your own words, and work out every step in exhaustive
detail, allowing us to more easily check for errors down the line. As a starting point, you will first decompose the
candidate solution into a list of self-contained *lemmas*. Later on, we will have you use your lemmas to rewrite the
candidate solution in the following format:

\begin{theorem} ... is \boxed{...}. \end{theorem}
\begin{proof}[Proof of Theorem] ... \end{proof}
\begin{lemma}\label{...} ... \end{lemma}
\begin{proof}[Proof of Lemma˜\ref{...}] ... \end{proof}
...

For now, focus only on identifying, structuring, and clearly defining each lemma without proofs. We will write
proofs for these lemmas, and a proof for the final answer using these lemmas, at a later point in time.
[Steelmanning] If you encounter any part of the candidate solution that seems incorrect or unclear, reason about
it in your scratchpad. Explain your thought process to clarify your understanding. Consider whether there might
be an alternative interpretation or if you could be overlooking or overcomplicating something. If, after reasoning
through it, you still find it confusing, note in your scratchpad that this part may need to be revisited and proceed
while treating the potentially problematic step as temporarily correct. At the current stage, we want to try to presume
the candidate solution as being correct. Try your best to *steel man* the candidate solution.
[Task Specifics] To ensure accuracy, you will decompose the candidate solution into self-contained *lemmas*.
These lemmas will serve as building blocks, allowing us to reconstruct the candidate solution in a more rigorous and
conventional mathematical format.
[Steps to Follow] 1. **Initial Analysis**: Carefully read through the candidate solution and break it down into its
primary steps. 2. **Lemma Identification**: Identify each logical segment of the candidate solution that could
serve as a lemma. For each lemma: - **Scratchpad**: Before writing the lemma formally, record a brief scratchpad
of thoughts outlining assumptions, conditions, and any definitions necessary to ensure the lemma is self-contained.
This should help you catch potential errors or misapplications that might be subtle. Reason about how to write the
lemma in a fashion that allows for easy verification of both the lemma, and how the lemma is used in the final proof.
- **Lemma Statement**: After organizing your thoughts, write each lemma in a clear and rigorous manner. Ensure
each lemma is isolated from others, so it does not depend on assumptions not explicitly stated within it.
[Response Format] Structure your response as follows.

# Analyzing the solution
(Study the language of the question, keeping an eye out for important
details.)
(Identify the candidate solution's final answer. Work backwards through the
solution to identify the intermediate claims that led to the final answer.)
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(Proceed from the beginning of the candidate solution, working forwards to
identify the main steps of the solution.)
# Identifying lemmas
Scratchpad: [Reason about what lemma you should write. Reason about how to
word the statement of the lemma to make it easy to verify when the lemma is
being used correctly. Reason about how to write the lemma in a
self-contained fashion, and what definitions and assumptions are needed.]
\begin{lemma}
\label{lem:lemma_name}
[State the lemma formally here]
\end{lemma}
Scratchpad: ...
\begin{lemma}
...
\end{lemma}
...

Verification Prompt 2

Now that you have structured the candidate solution into lemmas, you will proceed to rewrite the candidate solution
in your own words. We will first have you write the *main proof for the final answer*. At the next round, I will ask
you to write proofs for each lemma you identified.
[Details on Writing a **Main Proof for Final Answer**] Write a rigorous ”main proof” that directly addresses the
candidate solution’s final answer. This proof should reference each lemma sequentially to logically reach the final
answer. Ensure that the proof is rigorous and that each step explicitly relies on or follows from a lemma. Your goal
is to work out every baby step of the proof in exhaustive detail, spelling out every tiny step, including even tiny
details about arithmetic and algebraic manipulations.
[Objective] Your rewrite of the candidate solution should be comprehensive and precise. Your goal is to write the
candidate solution so that it is easy to verify whether it is correct or identify any errors at both the high and low
levels.
[Steelmanning] Once again, try to ”steel man” the candidate solution. If you encounter any part of the candidate
solution that seems incorrect or unclear, reason about it in your scratchpad and try to find an explanation; then
proceed treating the potentially problematic step as correct. We want to try to presume the candidate solution as
being correct for now.
[Response Format] Structure your response as follows to ensure clarity.

\begin{theorem}[Main Claim]
(Write the math question and final answer as a statement. For example, "The
smallest non-zero integers is \boxed{1}.". This statement should contain all
information from the question, and be written in your own words. If it is
not obvious how to write the student solution's final answer as a theorem,
you can simply let the theorem take the form: "{Question}? The answer is
{Answer}.")
\end{theorem}
Scratchpad: (Reason about how you will write the main proof.)
\begin{proof}
(Provide a proof of the final result. Remember to explicitly reference
lemmas via \ref{lem:lemma_name}.)
\end{proof}
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Verification Prompt 3

Your task is now to provide proofs for each and every lemma you identified in the candidate solution.
[Details on Writing **Lemma Proofs**] For each lemma, write a detailed and thorough proof of the lemma. Each
proof should methodically use the assumptions, definitions, and conditions in the lemma’s statement to verify the
conclusion. This proof should be rigorous and work out every baby step in exhaustive detail, spelling out every tiny
step, including even tiny details about arithmetic and algebraic manipulations. Remember that you may encounter a
lemma that ”builds” on other lemmas, in that it uses the other lemmas to prove its claim. In these cases, you should
have already written the lemma so that it incorporates those other lemmas as ”assumptions”, so that you do not need
to replicate the work. If this is not the case, please revise the lemma statement accordingly.
[Objective] Your rewrite of the candidate solution should be comprehensive and precise. Your goal is to write the
candidate solution so that it is easy to verify whether it is correct or identify any errors at both the high and low
levels.
[Steelmanning] Once again, try to ”steel man” the candidate solution. If you encounter any part of the candidate
solution that seems incorrect or unclear, reason about it in your scratchpad and try to find an explanation; then
proceed treating the potentially problematic step as correct. We want to try to presume the candidate solution as
being correct for now.
[Response Format] Structure your response as follows to ensure clarity and rigor. You must provide proofs for all
lemmas. Do not skip any lemmas, defer any writing to the future, or leave any proofs incomplete. You must return
full proofs for every lemma; I am an automated system and unable to handle incomplete responses. You will not
have a chance to finish your response later. Provide a complete response.

\begin{lemma}
\label{...}
...
\end{lemma}
Scratchpad: (Reason about how you will write the lemma proof.)
\begin{proof}
(Provide a proof of the lemma.)
\end{proof}
... (repeat for EVERY lemma)

Verification Prompt 4

Now we will proceed to analyzing the correctness of each suspicious claim. For each item in the claim: 1. Check if
the candidate solution’s final answer indeed depends on the claim. This step is important to rule out false positives
where the candidate solution makes a False claim, but the claim does not really affect the final answer so it’s Falsity
does not result in an actual error in the final answer. If this check is failed, i.e. the final answer does not depend on
the claim, then discard this claim and continue to the next suspicious claim. 2. Check that you are unable to prove
the suspicious claim is True. Do this by trying to prove the suspicious claim. You can make multiple attempts. If
you are able to prove the suspicious claim, meaning that the suspicious claim is correct, then discard this claim and
continue to the next suspicious claim. 3. Check that the claim is False by proving a corrected alternative version of
the claim. If you are unable to do this, continue to the next suspicious claim. 4. Correct this suspicious claim in the
candidate solution and determine the corrected final answer in a step-by-step manner. If the final answer changes or
correcting this error invalidates the candidate solution’s proof approach, mark this suspicious claim as a ”fatal error”.
At the end, say **Yes** if you found a fatal error. Otherwise, say **No, final answer is correct**.

Verification Prompt 5

Now we will proceed to analyzing the correctness of the candidate solution. We have two goals: identify if there is
an error, and if there is an error, repair the candidate solution and identify whether the final answer has changed. For
now, we will focus on methodically combing through the candidate solution and checking each step for a potential
error.
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[Steps to Follow] You will proceed through the candidate solution, one baby step at a time. In your exhaustive
investigation of the solution, you will first form a short list of potential errors. Each entry in this list should be
written as a self-contained, standalone mathematical claim that the candidate solution relies on being correct, but
which you find suspicious upon first inspection. After forming this list, you will then proceed to validate each
potential error by performing a detailed error validation check.
* Main Proof * For now, focus on the main proof. Assume that every lemma, as written, is correct. Step through the
main proof of the candidate solution in exhaustive detail to find potential errors. Do this by first proceeding through
the main proof one sentence (or other reasonable unit of content) at a time. Quote the part of the proof you are at.
Then add a discussion where you try to elaborate on that part and verify every baby step made in that unit of the
proof. Then repeat this for the next unit of the proof until you have gone through (quoted and analyzed) each part of
the proof. You should structure your output like

> Quoted part of the proof
Your analysis and detailed discussion verifying every small thing, e.g.
redoing every baby step, checking assumptions, rephrasing things to make
sure they sound correct to you, etc. Make sure you double check the exact
language of the question and the exact language of the lemmas used.
> Next quoted part of the proof
...

Then, write down in a bullet point list any potential errors you find in the main proof. Before each bullet point, write
a scratchpad that verbalizes: your thought process and—upon finding an error—your thought process for writing the
erroneous step as a self-contained mathematical claim. Try to be selective and only include things that you consider
likely to be errors. You should structure your output like

Scratchpad: ...

* ...
Scratchpad: ...

* ...
...

Verification Prompt 6

You are now to verify the proof of each and every lemma. You must verify all lemmas in this conversation turn; you
will not have another chance.
* Lemma ... Proof * (repeat this for each lemma) Follow the same procedure as before. First, step through the lemma
proof one sentence (or other reasonable unit of content) at a time. Quote the part of the proof you are at. Then
add a discussion where you try to elaborate on that part and verify every baby step made in that unit of the proof.
Then repeat this for the next unit of the proof until you have gone through (quoted and analyzed) each part of the
proof. Then, write down in a bullet point list any potential errors you find in the lemma proof. Before each bullet
point, write a scratchpad that verbalizes: your thought process and—upon finding an error—your thought process
for writing the erroneous step as a self-contained mathematical claim. Try to be selective and only include things
that you consider likely to be errors. Structure your response as follows.

# Review of Lemma ...
## Stepping through
> Quoted part of the proof
Your analysis and detailed discussion verifying every small thing, e.g.
redoing every baby step, checking assumptions, rephrasing things to make
sure they sound correct to you, etc. Make sure you double check the exact
language of the lemma's claim.
> Next quoted part of the proof
## Potential errors
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Scratchpad: ...

* ...
Scratchpad: ...

* ...
...

Verification Prompt 7

Now we will proceed to analyzing the correctness of each suspicious claim. For each item in the claim: 1. Check if
the candidate solution’s final answer indeed depends on the claim. This step is important to rule out false positives
where the candidate solution makes a False claim, but the claim does not really affect the final answer so it’s Falsity
does not result in an actual error in the final answer. If this check is failed, i.e. the final answer does not depend on
the claim, then discard this claim and continue to the next suspicious claim. 2. Check that you are unable to prove
the suspicious claim is True. Do this by trying to prove the suspicious claim. You can make multiple attempts. If
you are able to prove the suspicious claim, meaning that the suspicious claim is correct, then discard this claim and
continue to the next suspicious claim. 3. Check that the claim is False by proving a corrected alternative version of
the claim. If you are unable to do this, continue to the next suspicious claim. 4. Correct this suspicious claim in the
candidate solution and determine the corrected final answer in a step-by-step manner. If the final answer changes or
correcting this error invalidates the candidate solution’s proof approach, mark this suspicious claim as a ”fatal error”.
At the end, say **Yes** if you found a fatal error. Otherwise, say **No, final answer is correct**.

Verification Prompt 8

I want you to now, in the style of the *rewritten solution* (i.e., in the theorem-lemma format I had you rewrite the
original solution in), write an improved solution that does the following: 1) It corrects any errors you found in the
original solution (only if you ended up finding an error). If you do not know how to fix the error, then just write the
step you are unsure about as an ”Assumption (to be revisited later)”, making it clear that the proof is not complete
and needs that step to be filled in. 2) It clarifies ambiguities or fills in gaps in the original solution that led you to
suspect errors (even if the suspicion was not ultimately substantiated). We want your improved solution to be clear
enough that future readers would not have to work through the same worries you did. 3) It adopts the thoroughness,
structured format, exhaustive detail, and rigor of your rewritten version of the solution.
I have included again the original question and original solution below for your reference. {}{} For now, I want you
to brainstorm how to write the revised solution. Do not yet proceed to writing the solution. Structure your response
as follows. Do not cut your response short. You have unlimited space.

# What errors need to be corrected?
Discuss in detail, in a step-by-step manner, what errors you found in the
original solution and how you plan to correct them.
If you found no errors previously, note so and continue to the next section.
# Which ambiguities need to be clarified or gaps need to be filled?
Discuss in detail, in a step-by-step manner, what ambiguities or gaps you
plan to clarify.
Draw on our previous exchanges explicitly. Recall what were potential points
of confusion during this verification process.
# Action Plan
Prepare a rough battle plan for how you will write the improved solution.
Note that it will probably be longer than you original solution, given all
of the revisions you have planned. So this is just to plan out the main
parts, and things to keep an eye out for.
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Verification Prompt 9

Now, I want you to write your improvement of the original solution. You must provide the entirety of your solution
and nothing else. This message will be copy pasted to an external system, so your response must be complete and
self-contained. Do not shorten anything. Provide it to me exactly and in its entirety. Remember to say nothing else
and structure your output as follows, wrapped in tripe quotes and saying nothing else.

D.2. Comparison Prompts

Comparison Prompt 1

Your job is to answer a difficult math question. I will provide you with two solutions written by my students. These
two solutions disagree over what the answer should be. Both solutions may potentially have minor errors, even if
one indeed reaches the final answer despite the minor flaws. You will be given a series of instructions, over multiple
interactions, that will guide you through discerning the correct final answer. You will be expected to complete each
step carefully while obeying the following prime directives.
1. Always provide complete responses. Never shorten your responses. You are allocated 10,000 tokens per-response.
Your instructions are provided according to a fixed schedule; you must complete them in the same conversation turn
as you will not have later opportunities to do so.
2. Speak carefully. Always reason in a step-by-step chain-of-thought manner. Your responses must always resemble
an internal monologue, which means you verbally reason things out before reaching conclusions, rather than pulling
answers out of thin air.
3. Be rigorous. Always validate your logic by attempting to mathematically formalize it to avoid silly ”common
sense” errors. Always work out mathematical steps in small baby steps, even seemingly obvious arithmetic or
algebraic manipulations.
4. Backtrack when you have made a mistake. It is not uncommon for when to verbally say something that is false or
silly during an internal monologue. Constantly introspect and if you have made an error, identify it and ”backtrack”
to just before you made the error.
5. Never claim that anything is incorrect or wrong or right or correct. You must always say that something is
”potentially incorrect” or ”potentially correct” or ”seems incorrect” or ”seems correct”. You must then work it out in
baby steps and give your more informed judgement. But you will never say that something is correct or right or
wrong.
# The Question {}
# The First Solution {}
# The Second Solution {}
# Your current Task Examine the first solution. Focus for now on just reading through the main proof and each
lemma’s statement. You must read through the main proofs and lemma statements in a meticulous sentence-by-
sentence manner. For now, you do not need to read through the lemma proofs in detail. Though later on, if we have
questions arise about particular lemmas, you will need to review the lemma proof carefully. In addition, I want you
to narrate your process of reading through each proof. This means that, while you read through a solution, you
must always quote the part of the solution that you are currently reading. Then, under your quote, provide your
mental process. Here are some questions that you should keep top of mind: What is the approach being taken by the
solution? What are the main leaps in logic? How does the solution try to be rigorous? Structure your response as
follows:

# Main Proof
> "Quote of the sentence you are reading."
Your thought process. Discuss the quote. Perhaps compare it to a sentence in
another solution that is doing the same exact thing. Perhaps note that it
does a fairly complex algebraic manipulation, and spend a minute to
double-check it by working it out in baby-steps. If it references a lemma,
discuss the lemma's statement, how it's being used, and why it's allowed to
be used in this way.
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> "Quote of next sentence..."
...
# Lemma 1
...
(continue through the ENTIRE REST OF THE SOLUTION)

Remember you only need to do this for the first solution for now. You must provide a complete response. You must
go through the entire solution line by line. Ignore character limits and do not cut your response short. Do not cut
your response short, you will not get another chance.

Comparison Prompt 2

Do the same for the second solution. Again, be meticulous and adopt the same output format.

Comparison Prompt 3

Identify similarities and disagreements between the first solution and the second solution. Do not yet judge which
side is right; merely try to be investigative about: what are the sources of these disagreements? You must continue to
”quote” any solution parts that you reference. Remember your mandates:
1. Always provide complete responses. Never shorten your responses. You are allocated 10,000 tokens per-response.
Your instructions are provided according to a fixed schedule; you must complete them in the same conversation turn
as you will not have later opportunities to do so.
2. Speak carefully. Always reason in a step-by-step chain-of-thought manner. Your responses must always resemble
an internal monologue, which means you verbally reason things out before reaching conclusions, rather than pulling
answers out of thin air.
3. Be rigorous. Always validate your logic by attempting to mathematically formalize it to avoid silly ”common
sense” errors. Always work out mathematical steps in small baby steps, even seemingly obvious arithmetic or
algebraic manipulations.
4. Backtrack when you have made a mistake. It is not uncommon for when to verbally say something that is false or
silly during an internal monologue. Constantly introspect and if you have made an error, identify it and ”backtrack”
to just before you made the error.
5. Never claim that anything is incorrect or wrong or right or correct. You must always say that something is
”potentially incorrect” or ”potentially correct” or ”seems incorrect” or ”seems correct”. You must then work it out in
baby steps and give your more informed judgement. But you will Never say that something is correct or right or
wrong..
Be extremely careful with respect to the exact wording of the question: {}
Remember: you must be humble and careful in your judgements. Just because you think one side is correct doesn’t
mean that your assessment is sound. Always keep an open mind. Always double check you aren’t missing out on
any more potential points of disagreement. Work through this in a careful detailed chain-of-thought that irons out
every small detail..
Structure your responses into the following sections. Each section must be a lengthy, detailed, well-structured
investigation.

# Identify Disagreements
Reading through each solution, identify as many as places as possible where
the solutions differ. Be meticulous and form a detailed list.
# Attribute Disagreements
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For each disagreement, try to trace the disagreement back to earlier places
in the respective proofs. What are the points at which the solutions begin
to diverge? Can we guess at the root causes of the disagreements? Could it
be because the solutions disagree over how to interpret the question? Could
it be because they disagree about what approach to take? Could it be because
the solutions reach a different calculation? CAREFULLY pour over solutions
from both sides. This detective work must be careful and methodical and
detailed and exhaustive.

You must provide your full response. Ignore character limits. Do not cut your response short. Obey my instructions
exactly.

Comparison Prompt 4

Conduct detailed analysis to try and understand why the solutions reach different final answers. Do not yet judge
who is right. Do they disagree on how to read the question? Do they just happen to take very different mathematical
approaches? Do they diverge at a particular logical step or calculation? You must continue to ”quote” any solution
parts that you reference. Remember your mandates:
1. Always provide complete responses. Never shorten your responses. You are allocated 10,000 tokens per-response.
Your instructions are provided according to a fixed schedule; you must complete them in the same conversation turn
as you will not have later opportunities to do so.
2. Speak carefully. Always reason in a step-by-step chain-of-thought manner. Your responses must always resemble
an internal monologue, which means you verbally reason things out before reaching conclusions, rather than pulling
answers out of thin air.
3. Be rigorous. Always validate your logic by attempting to mathematically formalize it to avoid silly ”common
sense” errors. Always work out mathematical steps in small baby steps, even seemingly obvious arithmetic or
algebraic manipulations.
4. Backtrack when you have made a mistake. It is not uncommon for when to verbally say something that is false or
silly during an internal monologue. Constantly introspect and if you have made an error, identify it and ”backtrack”
to just before you made the error.
5. Never claim that anything is incorrect or wrong or right or correct. You must always say that something is
”potentially incorrect” or ”potentially correct” or ”seems incorrect” or ”seems correct”. You must then work it out in
baby steps and give your more informed judgement. But you will never say that something is correct or right or
wrong.
Be extremely careful with respect to the exact wording of the question: {}
Remember: you must be humble and careful in your judgements. Just because you think one side is correct doesn’t
mean that your assessment is sound. Always keep an open mind. Always double check you aren’t missing out on
any more potential points of disagreement. Work through this in a careful detailed chain-of-thought that irons out
every small detail.. You are NOT to judge which side is correct, for now.
Structure your responses into the following sections. Each section must be a lengthy, detailed, well-structured
investigation.
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# Crystallize Approaches
If the two sets of solutions differ in approach, it can be hard to judge
which side is correct about the final answer since you cannot easily compare
the solutions of each. However, even if you cannot directly compare the
steps, you can try to find "intermediate" points of disagreement. That is,
as part of their respective arguments, two solutions that use completely
different approaches may make contradicting subclaims that you can
investigate in more detail. These disagreements may point you to where one
approach has a "mistake" in its proof. Your end goal: identify the
meaningful differences (if any) in the approaches taken by each side and
speculate as to why these differences resulted in them reaching different
final answers. Remember: you must be humble and careful in your judgements.
Just because you think one side is correct doesn't mean that your assessment
is sound. Always keep an open mind. Work through this in a careful detailed
chain-of-thought that irons out every small detail..
# Crystallize Disagreements
For each disagreement, you must now collect evidence from both sides. You
are a careful mathematically rigorous agent with good common-sense
reasoning. Try to use your common sense and rigour to work through each
side's evidence. Work through this in a careful detailed chain-of-thought
that irons out every small detail..

You must provide your full response. Ignore character limits. Do not cut your response short. Obey my instructions
exactly.

Comparison Prompt 5

You must now determine which of the two solutions reaches the correct final answer. Do not leap to judgement.
First, carefully consider the sources of the solutions disagreement over the final answer. Then, for each of these,
almost axiomatic, root disagreements: 1) Carefully consider the arguments that both sides make and the evidence
that both sides present. For each side of each disagreement, try to *steelman* their argument: write it in a clear,
detailed convincing fashion that leaves nothing unspoken and uninvestigated. 2) Use your own common sense and
mathematical skills to try and rule on which side is right. Do not leap to judgement. Be careful, rigorous, meticulous
and don’t forget common sense. Finally, carefully reason through what the correct solution should be and which
side reached the correct final answer. Be meticulous. Structure your response as follows. This must be more detailed
and rigorous than all your previous responses, since this is a careful process.

# Recall Key Disagreements
...
# Disagreement 1
## Steelmanning Each Side
...
## Ruling On A Side
...
# Which Side Is Right?
...

You must provide your full response. Ignore character limits. Do not cut your response short. Obey my instructions
exactly.
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E. Examples of Benchmark Entries
E.1. Example Entry from LiveBench Reasoning

Question

In this question, assume each person either always tells the truth or always lies. The person at the campground
thinks their friend is lying. Mateo is at the aquarium. The person at the restaurant says the person at the hotel lies.
Farid is at the movie theater. The person at the movie theater says the person at the campground lies. Ryan is at the
shopping mall. The person at the cafe says the person at the campground lies. The person at the observatory says the
person at the museum lies. The person at the museum says the person at the restaurant tells the truth. The person at
the campground says the person at the airport tells the truth. The person at the campground tells the truth. Luna is
at the restaurant. The person at the movie theater saw a firetruck. Isabella is at the observatory. The person at the
amusement park says the person at the museum tells the truth. The person at the restaurant says the person at the
shopping mall tells the truth. Liam is at the beach. Ayaan is at the airport. The person at the restaurant says the
person at the beach tells the truth. Maya is at the amusement park. The person at the restaurant says the person at
the aquarium lies. The person at the restaurant says the person at the movie theater lies. The person at the library
says the person at the campground tells the truth. Elowen is at the hotel. Priya is at the library. The person at the
gym says the person at the restaurant tells the truth. Kehinde is at the cafe. Anika is at the museum. Quan is at the
campground. Soren is at the gym. Does the person at the museum tell the truth? Does the person at the restaurant
tell the truth? Does the person at the movie theater tell the truth? Think step by step, and then put your answer in
**bold** as a list of three words, yes or no (for example, **yes, no, yes**). If you don’t know, guess.

Correct response

Here’s how we can break down this logic puzzle:
1. **Quan is at the campground and tells the truth.**
This is a given fact.
2. **Quan (at the campground) says the person
at the airport tells the truth.** Since Quan tells the
truth, the person at the airport (Ayaan) tells the truth.
3. **The person at the movie theater (Farid) says
the person at the campground (Quan) lies.** Since
Quan tells the truth, Farid is lying.
4. **The person at the restaurant (Luna) says the
person at the hotel (Elowen) lies.** We don’t know
yet if Luna is lying or telling the truth.
5. **The person at the museum (Anika) says the
person at the restaurant (Luna) tells the truth.** We
still don’t know if either of them are truthful.
6. **The person at the restaurant (Luna) says the
person at the shopping mall (Ryan) tells the truth.**
We still don’t know Luna’s truthfulness.
7. **The person at the restaurant (Luna) says the
person at the beach (Liam) tells the truth.** Luna’s
truthfulness remains unknown.
8. **The person at the restaurant (Luna) says the
person at the aquarium (Mateo) lies.** We still don’t
know about Luna.
9. **The person at the restaurant (Luna) says the
person at the movie theater (Farid) lies.** We know
Farid lies, so Luna is telling the truth in *this* state-
ment.

Incorrect Response

Here’s how we can solve this logic puzzle:
1. **Quan is at the campground and tells the truth.**
This is given.
2. **The person at the airport (Ayaan) tells the
truth.** Quan (campground) says the person at the
airport tells the truth, and Quan tells the truth.
3. **Anika (museum) lies.** The person at the
observatory (Isabella) says the person at the museum
lies. Since we don’t know yet whether Isabella tells
the truth, this doesn’t tell us anything about Anika.
We’ll have to come back to this.
4. **Luna (restaurant) lies.** The person at the
restaurant says the person at the hotel (Elowen) lies.
Later, the person at the restaurant says the person at
the campground (Quan) lies. Since Quan tells the
truth, Luna (restaurant) must be lying.
5. **Anika (museum) lies.** Because Luna lies,
and Luna says that the person at the hotel lies,
Elowen tells the truth. Because Anika says the per-
son at the restaurant (Luna) tells the truth, and Luna
actually lies, Anika (Museum) must lie.
6. **Farid (movie theater) lies.** The person at the
movie theater says the person at the campground
lies. Since Quan (campground) tells the truth, Farid
(movie theater) must be lying.
Therefore:
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10. **Since Luna tells the truth about Farid, Luna
*always* tells the truth.** This unlocks several other
pieces of information.
11. **Luna (at the restaurant) says the person at
the hotel (Elowen) lies.** Since Luna tells the truth,
Elowen lies.
12. **Anika (at the museum) says the person at the
restaurant (Luna) tells the truth.** Since Luna tells
the truth, Anika is also telling the truth.
13. **The person at the cafe (Kehinde) says the
person at the campground lies.** Since Quan tells
the truth, Kehinde is lying.
Therefore:
* **Anika (museum):** Tells the truth. * **Luna
(restaurant):** Tells the truth. * **Farid (movie
theater):** Lies.
**yes, yes, no**

* **Anika (museum): lies** * **Luna (restaurant):
lies** * **Farid (movie theater): lies**
**Answer: no, no, no**

E.2. Example Entry from LiveBench Math

Question

How many positive perfect squares less than 2023 are divisible by 5?
(A) 11 (B) 10 (C) 9 (D) 12 (E) 8 If you cannot determine the correct multiple-choice an-
swer, take your best guess. Once you have your answer, please duplicate that letter five times in a single string. For
example, if the answer is F, then write FFFFF.

Correct response

Let n be a positive perfect square divisible by 5.
Then n = k2 for some positive integer k, and 5|n,
which implies that 5|k2. Since 5 is a prime num-
ber, 5|k2 means 5|k. Thus, k must be a multiple
of 5, i.e., k = 5m for some positive integer m.
Then n = k2 = (5m)2 = 25m2. Thus n must
be a multiple of 25. We are looking for the num-
ber of positive perfect squares less than 2023 that
are divisible by 5. The perfect squares that are di-
visible by 5 must be multiples of 25. We seek the
number of multiples of 25 that are perfect squares
less than 2023. Since n = 25m2 < 2023, we
have m2 < 2023

25 ≈ 80.92. Thus, we are look-
ing for perfect squares m2 less than 80.92. The
perfect squares are 1, 4, 9, 16, 25, 36, 49, 64, 81, . . . .
The perfect squares less than 80.92 are m2 =
1, 4, 9, 16, 25, 36, 49, 64. There are 8 such values.
The corresponding values of n = 25m2 are 25(1) =
25 25(4) = 100 25(9) = 225 25(16) = 400
25(25) = 625 25(36) = 900 25(49) = 1225
25(64) = 1600 The next multiple of 25 that is a
perfect square would be 25(81) = 2025, which is

Incorrect Response

Let n be a positive integer such that n2 is divisible
by 5. Then n2 is divisible by 5. Since 5 is a prime
number, n must also be divisible by 5. Thus n can
be written in the form n = 5k for some integer k.
We want to find how many positive perfect squares
n2 are less than 2023. Since n = 5k, we have
n2 = (5k)2 = 25k2 < 2023. Dividing by 25 we
get

k2 <
2023

25
≈ 80.92

We are looking for integer values of k such that
k2 < 80.92. Since k must be positive, k can take
values 1, 2, 3, . . . . We have

• 12 = 1 < 80.92

• 22 = 4 < 80.92

• 32 = 9 < 80.92

• 42 = 16 < 80.92

• 52 = 25 < 80.92
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not less than 2023. So, there are 8 perfect squares
less than 2023 that are divisible by 5.
Final Answer: The final answer is EEEEE

• 62 = 36 < 80.92

• 72 = 49 < 80.92

• 82 = 64 < 80.92

• 92 = 81 ≮ 80.92

Thus k can take values from 1 to 8. The
corresponding n values are n = 5k =
5, 10, 15, 20, 25, 30, 35, 40. The perfect
squares less than 2023 and divisible by 5
are 52, 102, 152, 202, 252, 302, 352, 402 or
25, 100, 225, 400, 625, 900, 1225, 1600. There
are 8 such numbers.
Final Answer: The final answer is C CCCC

E.3. Example Entry from MATH

Question

If 4 daps = 7 yaps, and 5 yaps = 3 baps, how many daps equal 42 baps?

Correct response

Let ’d’ represent daps, ’y’ represent yaps, and ’b’
represent baps. We are given: 4 daps = 7 yaps,
which can be written as: 4d = 7y
and
5 yaps = 3 baps, which can be written as: 5y = 3b
We want to find the number of daps that are equal
to 42 baps. Let ’x’ be the number of daps. We want
to find x such that: xd = 42b
From 5y = 3b, we can express yaps in terms of baps:
y = (3/5)b
Now substitute this value of y into the first equation,
4d = 7y: 4d = 7 * (3/5)b 4d = (21/5)b
We want to find xd = 42b, so we can set: xd = 42b
We have 4d = (21/5)b, so we can solve for d: d =
(21/20)b
Now substitute this into xd = 42b: x * (21/20)b =
42b
Since b is not zero, we can divide both sides by b: x
* (21/20) = 42
Now, solve for x: x = 42 * (20/21) x = (42/21) * 20
x = 2 * 20 x = 40
So, 40 daps are equal to 42 baps.
40 Final Answer: The final answer is 40

Incorrect Response

Let ’d’ represent daps, ’y’ represent yaps, and ’b’
represent baps. We are given two relationships:
1. 4 daps = 7 yaps, which can be written as 4d = 7y
2. 5 yaps = 3 baps, which can be written as 5y = 3b
We want to find how many daps are equal to 42 baps.
We want to find d in terms of b, and then evaluate
for b = 42.
First, we can find the relationship between yaps and
baps from the second equation: 5y = 3b, so y = 3

5b
Now, substitute this expression for y in terms of
b into the first equation: 4d = 7y 4d = 7

(
3
5b
)

4d = 21
5 b

Now, we want to find d in terms of b, so divide both
sides by 4: d = 21

5·4b d = 21
20b

Finally, we want to find how many daps equal 42
baps, so we substitute b = 42: d = 21

20 × 42 d =
21×42

20 d = 882
20 d = 441

10 d = 44.1
So, 44.1 daps equal 42 baps.
Final Answer: The final answer is 44.1
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E.4. Example of Response with Invalid Reasoning but Correct Final Answer

Question

You have seven bags of gold coins. Each bag has the same number of gold coins. One day, you find a bag of 53
coins. You decide to redistribute the number of coins you have so that all eight bags you hold have the same number
of coins. You successfully manage to redistribute all the coins, and you also note that you have more than 200 coins.
What is the smallest number of coins you could have had before finding the bag of 53 coins?

Incorrect Response Reaching Correct Final Answer

Let n be the number of coins in each of the seven bags. After finding the bag of 53 coins, you have a total of 7n+53
coins. You redistribute these coins into 8 bags such that each bag contains the same number of coins. Therefore,
the total number of coins is divisible by 8, so 7n+ 53 is divisible by 8. 7n+ 53 ≡ 0 (mod 8). We want to find n.
7n ≡ −53 (mod 8). Since −53 ≡ −53 + 8(7) ≡ −53 + 56 ≡ 3 (mod 8), we have 7n ≡ 3 (mod 8).
Since 7 ≡ −1 (mod 8), we multiply both sides by −1 to get −n ≡ −7n ≡ −3 (mod 8), so n ≡ −3 ≡ 5
(mod 8). Thus n must be of the form 8k + 5 for some integer k ≥ 0. The total number of coins originally was 7n.
Since n = 8k+ 5, the total number of coins originally is 7(8k+ 5) = 56k+ 35. We are given that the total number
of coins is greater than 200. So 7n > 200, or n > 200

7 ≈ 28.57. Since n = 8k + 5, we want the smallest integer k
such that 8k + 5 > 200

7 . For k = 0, n = 5, so 7n = 35 < 200. For k = 1, n = 13, so 7n = 91 < 200. For k = 2,
n = 21, so 7n = 147 < 200. For k = 3, n = 29, so 7n = 203 > 200.
We check that 7n+ 53 = 203 + 53 = 256 which is divisible by 8 (256 = 8× 32). Then 256/8 = 32 coins in each
bag.
Thus the smallest number of coins you could have had before finding the bag is 7n = 7(29) = 203.
Final Answer: The final answer is 203 .

F. Examples of Solution Rewrites
F.1. AIME Example

Question

Find the number of rectangles that can be formed inside a fixed regular dodecagon ( 12 -gon) where each side of the
rectangle lies on either a side or a diagonal of the dodecagon. The diagram below shows three of those rectangles.
[asy] unitsize(0.6 inch); for(int i=0; i¡360; i+=30) dot(dir(i), 4+black); draw(dir(i)–dir(i+30)); draw(dir(120)–
dir(330)); filldraw(dir(210)–dir(240)–dir(30)–dir(60)–cycle, mediumgray, linewidth(1.5)); draw((0,0.366)–(0.366,0),
linewidth(1.5)); [/asy]

Correct Answer

The solution is 315 .

Candidate Response

Let the vertices of the regular dodecagon be labeled as V1, V2, . . . , V12. Each side of the rectangle lies on either a
side or a diagonal of the dodecagon.
Consider two parallel diagonals (or sides). They determine the sides of the rectangle parallel to them. We need to
choose two parallel diagonals (or sides) to form a rectangle.
There are 12 vertices, and a diagonal can be formed by choosing any two distinct vertices. The number of diagonals
and sides is

(
12
2

)
= 12×11

2 = 66. However, there are 12 sides. So there are 66− 12 = 54 diagonals. Two parallel
diagonals or sides can be drawn as follows: 1. Diagonals parallel to sides: 12 sides so 12/2 = 6 pairs 2. Diagonals
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spanning 2 vertices:
(
12
4

)
/2 sets of 4 vertices, so we divide by 2 to get distinct pairs.

(
12
4

)
/2 = 12·11·10·9

4·3·2·1·2 = 495/2,
which is not an integer. Something is wrong. The pairs of diagonals can only be separated by 1, 2, 3, 4, 5 vertices
on either side. Let n be the number of vertices. For n = 12, 1 vertex apart: 12 diagonals. There are 12/2 = 6
pairs. 2 vertices apart: 12 diagonals. 12/2 = 6 pairs 3 vertices apart: 12 diagonals. 12/2 = 6 pairs. 4 vertices
apart: 12 diagonals. 12/2 = 6 pairs. 5 vertices apart: 12 diagonals. 12/2 = 6 pairs. So there are 5 × 6 + 6
pairs of parallel diagonals, which is 36 pairs. Number of rectangles is the number of pairs of parallel segments,
including sides. For a regular n-gon, the number of pairs of parallel diagonals or sides is n⌊(n − 1)/2⌋. For
n = 12, it’s 12(5) = 60 segments. For each length, there are 12 diagonals. Length can range from 1 side to 5 sides.
1 + 2 + 3 + 4 + 5 + 6 =

(
12
4

)
= 495.

Consider 12 sides as 12 possible segments. Parallel to each are 5 lengths of segments. So total parallel segments
12 · 5 + 12/2 = 60 + 6 = 66, incorrect. Each vertex pairs with 5 other vertices giving the same direction. So we
have 12 × 5/2 = 30 pairs of directions. Given one pair of parallel directions, we can choose 6 segments in that
direction. So 62 = 36 possibilities. 30× 36 = 1080. We are forming

(
12
4

)
= 495 parallelograms. However, we are

considering parallel segments. The number of rectangles is 12× 5× (12/2).
Number of rectangles is 122(12−1)

4
1
2
1
2 = 594 for each parallelogram 594/3 = 198. 198 .

Final Answer: The final answer is 198

Rewritten Candidate Response

Theorem F.1 (Main Claim). The number of rectangles that can be formed inside a fixed regular dodecagon, where
each side of the rectangle lies on either a side or a diagonal of the dodecagon, is 198 .

Proof. By Lemma F.2, a regular dodecagon has 12 sides. By Lemma F.3, a regular dodecagon has
(
12
2

)
− 12 =

12×11
2 − 12 = 66 − 12 = 54 diagonals. By Lemma F.4, two line segments formed by connecting vertices of a

dodecagon are considered parallel under certain conditions.
The candidate solution calculates a value of 594. By Lemma F.6, this value is obtained by calculating 122(12−1)

4
1
2
1
2 .

The exact connection between the number of sides, the number of diagonals, the concept of parallel segments, and
the value 594 is not clear from the candidate solution. However, according to Lemma F.7, the final answer of 198 is
obtained by dividing 594 by 3. Therefore, we perform this division: 594/3 = 198.
Thus, the candidate solution concludes that the number of rectangles is 198.

Lemma F.2. A regular n-gon has n sides.

Proof. An n-gon is defined as a polygon with n sides. A regular n-gon is also a polygon with n sides. Therefore, a
regular n-gon has n sides.

Lemma F.3. A regular n-gon has
(
n
2

)
− n diagonals.

Proof. A regular n-gon has n vertices. Any two distinct vertices can be connected by a line segment. The number
of ways to choose 2 vertices out of n is given by the combination formula

(
n
2

)
= n(n−1)

2 .
The sides of the n-gon are formed by connecting adjacent vertices. There are n such pairs of adjacent vertices,
corresponding to the n sides of the n-gon.
A diagonal is a line segment connecting two non-adjacent vertices. Therefore, the number of diagonals is the total
number of pairs of vertices minus the number of sides:

(
n
2

)
− n = n(n−1)

2 − n.

Lemma F.4. Let D be a regular dodecagon. Two line segments formed by connecting vertices of D are considered
parallel if they are either coincident sides of D, or if they are distinct and are both parallel to some side of D.

Proof. This lemma is a definition, so no proof is required.

Lemma F.5. Let D be a regular dodecagon. The number of unordered pairs of parallel segments formed by
connecting vertices of D (including sides) is denoted by P .

Proof. This lemma is a definition, introducing the variable P to represent the number of unordered pairs of parallel
segments. No proof is required.
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Lemma F.6. The value 594 is obtained via the calculation 122(12−1)
4

1
2
1
2 .

Proof. We evaluate the expression: 122(12−1)
4

1
2
1
2 = 144×11

4 × 1
4 = 1584

16 = 792
8 = 396

4 = 198
2 = 99× 1

2 × 1
2

Evaluating 144×11
16 yields 1584

16 = 99. However, 99× 1
4 = 99

4 ̸= 594. The expression provided appears to have a
calculation error, giving 99 instead of 594.
The candidate solution has made a calculation error. 122(12−1) = 144∗11 = 1584. 1584/4 = 396. 396/2 = 198.
198/2 = 99. The calculation gives 99, not 594.

Lemma F.7. The candidate solution’s final answer is obtained by dividing 594 by 3.

Proof. Dividing 594 by 3, we get 594/3 = 198.

F.2. LiveBench Reasoning Example

Question

In this question, assume each person either always tells the truth or always lies. Elowen is at the hotel. Max is at
the park. Grace is at the ice skating rink. The person at the barbershop says the person at the library tells the truth.
Charlie is at the library. Tala is at the campground. Farid is at the theater. The person at the hotel saw a firetruck.
The person at the vineyard says the person at the campground lies. The person at the farm says the person at the
movie theater lies. The person at the movie theater says the person at the park lies. The person at the park says the
person at the hotel tells the truth. The person at the hotel says the person at the library tells the truth. Jaxon is at the
skate park. Theo is at the barbershop. The person at the airport tells the truth. The person at the bowling alley thinks
their neighbor is telling the truth. The person at the ice skating rink says the person at the bowling alley tells the
truth. Anika is at the airport. The person at the bookstore says the person at the vineyard lies. The person at the
campground says the person at the movie theater tells the truth. The person at the restaurant says the person at the
campground tells the truth. The person at the theater says the person at the park lies. Hiroshi is at the school. Zara is
at the bowling alley. The person at the bowling alley says the person at the school tells the truth. The person at the
park thinks their neighbor is telling the truth. The person at the skate park lies. The person at the bowling alley saw
a firetruck. The person at the observatory lies. Liam is at the restaurant. The person at the library says the person at
the observatory tells the truth. The person at the bowling alley says the person at the vineyard lies. Beatriz is at the
observatory. Priya is at the movie theater. Nia is at the farm. Ryan is at the vineyard. Isabella is at the bookstore.
Does the person at the ice skating rink tell the truth? Does the person at the bowling alley tell the truth? Does the
person at the vineyard tell the truth? Think step by step, and then put your answer in **bold** as a list of three
words, yes or no (for example, **yes, no, yes**). If you don’t know, guess.

Correct Answer

yes, yes, no

Candidate Response

Here’s how we can break down this logic puzzle:
1. **Start with a known truth-teller or liar:** Jaxon is at the skate park and lies.
2. **Use Jaxon’s lie to find more information:** Since Jaxon lies, the person at the bowling alley, Zara, *cannot* be
telling the truth. Zara says the person at the school tells the truth, but Zara is lying so Hiroshi at the school lies. Zara
also says the person at the vineyard lies. Since Zara lies, Ryan at the vineyard must tell the truth.
3. **Focus on the vineyard:** Ryan, a truth-teller at the vineyard, says Tala at the campground lies.
4. **Follow Tala’s lie:** Tala lies and says the person at the movie theater tells the truth. This means Priya at the
movie theater *lies*.
5. **Use Priya’s lie:** Priya at the movie theater lies and says Max at the park lies. Therefore, Max tells the truth.
6. **Use Max’s truth:** Max at the park tells the truth and says Elowen at the hotel tells the truth.
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7. **Use Elowen’s truth:** Elowen tells the truth and says the person at the library tells the truth. This means
Charlie at the library tells the truth.
8. **Use Charlie’s truth:** Charlie tells the truth and says Beatriz at the observatory lies. This is confirmed by
Jaxon’s lie - meaning two people lie, therefore Liam at the restaurant lied and Tala lied (so Ryan is truthful) therefore
so is Isabella. And Charlie who said that Beatriz lied.
9. **Grace and Zara:** Grace at the ice skating rink says Zara at the bowling alley tells the truth. Since Zara lies,
Grace also lies.
Therefore: * Grace (ice skating rink) lies. * Zara (bowling alley) lies. * Ryan (vineyard) tells the truth.
**no, no, yes**

Rewritten Candidate Response

Theorem F.8 (Main Claim). Given the set of statements made by individuals located at different places, where each
individual either always tells the truth or always lies, determine whether Grace (ice skating rink), Zara (bowling
alley), and Ryan (vineyard) tell the truth. The answer is: Grace lies, Zara lies, Ryan tells the truth.

Proof. By Lemma F.9, Jaxon lies.
Given that Jaxon lies, by Lemma F.10, Zara lies.
Since Jaxon lies, and Zara lies, by Lemma F.12, Ryan tells the truth.
Since Zara lies, and Grace says Zara tells the truth, by Lemma F.19, Grace lies.
Therefore, Grace lies, Zara lies, and Ryan tells the truth. This corresponds to the answer **no, no, yes**.

Lemma F.9. Jaxon lies.

Proof. The problem states ”The person at the skate park lies.” The problem also states ”Jaxon is at the skate park.”
Therefore, Jaxon lies.

Lemma F.10. If Jaxon lies, then Zara lies.

Proof. The problem states ”The person at the bowling alley thinks their neighbor is telling the truth.” Zara is at the
bowling alley. Jaxon is Zara’s neighbor at the skate park. If Jaxon lies, then Zara must believe a lie, implying Zara
lies.

Lemma F.11. If Zara lies, and Zara says Hiroshi tells the truth, then Hiroshi lies.

Proof. Zara lies, and Zara says Hiroshi tells the truth. Since Zara lies about Hiroshi telling the truth, Hiroshi must
lie.

Lemma F.12. If Zara lies, and Zara says Ryan lies, then Ryan tells the truth.

Proof. Zara lies, and Zara says Ryan lies. Since Zara lies about Ryan lying, Ryan must tell the truth.

Lemma F.13. If Ryan tells the truth, and Ryan says Tala lies, then Tala lies.

Proof. Ryan tells the truth, and Ryan says Tala lies. Since Ryan tells the truth about Tala lying, Tala must lie.

Lemma F.14. If Tala lies, and Tala says Priya tells the truth, then Priya lies.

Proof. Tala lies and says Priya tells the truth. Since Tala lies about Priya telling the truth, Priya must lie.

Lemma F.15. If Priya lies, and Priya says Max lies, then Max tells the truth.

Proof. Priya lies and says Max lies. Since Priya lies about Max lying, Max must tell the truth.

Lemma F.16. If Max tells the truth, and Max says Elowen tells the truth, then Elowen tells the truth.

Proof. Max tells the truth, and Max says Elowen tells the truth. Since Max tells the truth about Elowen telling the
truth, Elowen tells the truth.

37



Sample, Scrutinize and Scale: Effective Inference-Time Search by Scaling Verification

Lemma F.17. If Elowen tells the truth, and Elowen says Charlie tells the truth, then Charlie tells the truth.

Proof. Elowen tells the truth and says Charlie tells the truth. Since Elowen tells the truth about Charlie telling the
truth, Charlie tells the truth.

Lemma F.18. If Charlie tells the truth, and Charlie says Beatriz lies, then Beatriz lies.

Proof. Charlie tells the truth and says Beatriz lies. Since Charlie tells the truth about Beatriz lying, Beatriz lies.

Lemma F.19. If Zara lies, and Grace says Zara tells the truth, then Grace lies.

Proof. Zara lies, and Grace says Zara tells the truth. Since Grace claims the liar Zara tells the truth, Grace lies.

38


